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Thermomechanics of damageable materials under diffusion:
modeling and analysis

Tomáš Roub́ıček and Giuseppe Tomassetti

Abstract. We propose a thermodynamically consistent general-purpose model describing diffusion of a
solute or a fluid in a solid undergoing possible phase transformations and damage, beside possible visco-
inelastic processes. Also heat generation/consumption/transfer is considered. Damage is modelled as rate-
independent. The applications include metal-hydrogen systems with metal/hydride phase transformation,
poroelastic rocks, structural and ferro/para-magnetic phase transformation, water and heat transport
in concrete, and, if diffusion is neglected, plasticity with damage and viscoelasticity, etc. For the ensuing
system of partial differential equations and inclusions, we prove existence of solutions by a carefully devised
semi-implicit approximation scheme of the fractional-step type.
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80A20.

Keywords. visco-elastic porous solids, incomplete damage, diffusion driven by chemical-potential gradient,
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1. Introduction

This paper addresses damage processes in visco-elastic materials undergoing various diffusion or inelastic
processes with the goal to develop a general, multi-purpose model with wide application range and covering,
in particular, several particular models occuring in the literature in a unifying way.

We introduce two internal variables: a scalar variable d, which accounts for damage, and a (generally
vector-valued) phase field χ, whose components may have different interpretations according to the specific
application at hand. In particular, the components of χ may account for content of a solute or a fluid, plastic
strain, porosity, viscous strain causing creep, etc. The primary fields in our model will be:

• displacement u : [0, T ]× Ω → R3,
• phase field χ : [0, T ]× Ω → K ⊂ RN ,
• concentration c : [0, T ]× Ω → R+,
• damage variable d : [0, T ]× Ω → [0, 1],
• temperature θ : [0, T ]× Ω → R+,

where Ω ⊂ R3 is a considered domain occupied by the solid body, T > 0 is a fixed time horizon. We work in
the small-strain approximation and we assume that the linear strain has the following form:

ε(u) = E + Eχ, (1.1)

where ε(u) = 1
2 (∇u)⊤ + 1

2∇u is the total linear strain, E is its elastic part, and Eχ is its anelastic part
dependent linearly on the phase field χ. Here E is a third-order tensor, which we think as the mapping of
RN into R3×3 defined by (Eχ)ij = Eijkχk. Using the above decomposition we can cover the concept that
the free energy as well as the dissipation energy are let to depend on the elastic strain E rather than the
total strain ε(u). For a more general ansatz see Remarks 4.3 and 6.4 below.

The main difficulty is the combination of thermo-visco-(in)elastic-diffusive model with damage. As al-
ways, some simplifications are necessary mainly for analytical reasons. In particular, beside the mentioned
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small-strain concept, we admit only incomplete damage. Furthermore, we perform the analysis on a special
ansatz, see (3.4) below. In particular, among other approximations, we neglect thermal expansion effects,
direct coupling between concentration and strain (see Remark 6.10 below), direct coupling between concen-
tration and damage, and coupling between damage and temperature. We also neglect cross-effects between
dissipation in χ and d, cf. (3.1a), as well as the cross-effects in the transport processes, i.e. the Soret/Peltier
effects. On the other hand, in case of a multi-component diffusant (when c would be vector valued) some
cross effect could simply be modelled by a nondiagonal M in (3.1b). Let us emphasize that complete damage
would bring serious mathematical difficulties; in the isothermal case it has been addressed in [23] using a
formulation by a time-dependent domain.

Typical application of damage in engineering models assumes that this destruction process is activated,
irreversible, and much faster than the time scale of the other internal processes or than the external loading.
This is reflected by the dissipation potential for d being nonsmooth at zero rate, not everywhere finite, and
homogeneous of degree 1 , cf. (3.3) below and [12, 34, 52, 53], and also [13]. We remark that the dissipation
potential for the phase field χ has superlinear growth at infinity with respect to

.
χ. Thus, degree 1 homogeneity

of the dissipation potential for d provides a distinction between the character and the subsequent treatment
of damage d in contrast to the phase field χ. Without such distinction, we could treat the pair (d, χ)
as a single vector-valued internal variable (of course, we may still assume that E does not depend on d),
and merge (2.1b) with (2.1d), or (3.7b) with (3.7d), etc., leading to a model similar to those considered, for
instance in [40, 41]. In the literature, there exist many models that combine diffusion and elasticity under
damage; some of them are only isothermal and involve a regularization of damage by rate-dependent terms,
as in [5], and/or involve a gradient term for the concentration of diffusant leading to a diffusion equation of
Cahn-Hilliard type, see for instance [5] and [23].

The main analytical result here is the proof of existence of weak solutions of the initial-boundary-value
problem for the thermodynamical system. To this goal, a rather constructive method is used which yields
a conceptual algorithm that may serve for designing an efficient numerical strategy after a suitable spatial
discretisation (not performed here, however).

It should be emphasized that there are several important differences from [50]: the elastic strain (instead
of the total strain) is systematically used also for dissipative processes and the internal variables are split
into two sets, both subjected to a substantially different treatment and allow for qualification of the free
energy ψ well fitted to damage. On top of it, the mathematical treatment of the heat-transfer equation is
simplified like in by holding the formulation in terms of the couple temperature-enthalpy (instead of mere
temperature).

The paper is organized as follows: In Section 2 we formulate the general model and briefly outline the
underlying physics, referring mainly to the previous work [50]. Then, in Section 3 we present a menagerie
of various specific examples illustrating a wide range of applications. Eventually, Section 4 summarizes the
main existence result, whose proof is performed in Section 5.

Through the whole article, we use the convention that small italics stands for scalar, small and capital
bold stand, respectively, for elements of R3 and elements of R3×3. We shall occasionally use Greek letters
to denote elements of RN , where N is the number of internal variables incorporated in the phase field χ.
Consistent with this rule is our usage of the letter σ to denote the conjugate variable of χ, instead of stress.
For the reader’s convenience we summarize in the following Table 1 the symbols mostly used in the rest of
this paper.

u displacement,
χ phase field,
c concentration of diffusant,
d damage variable,
θ temperature,
w = e

TH
(χ, θ) enthalpy,

S stress,
f bulk force,
f s surface force,
σ internal microforce associated to χ,
Σ microstress,
f, g bulk microforces (eventually set to 0),
ψ free energy,
e internal energy,

ε(u) = 1
2

(
∇u +∇u⊤

)
small-strain tensor,

η entropy,
µ chemical potential,
h flux of diffusant,
h bulk supply of diffusant (eventually set to 0),
hs surface supply of diffusant,
q heat flux,
q bulk heat supply (eventually set to 0),
M = M(E, χ, c, d, θ) mobility tensor,
K = K(E, χ, c, d, θ) heat-conductivity tensor,
D tensor of viscous moduli in the Kelvin-Voigt model,
α = α(χ) fracture-toughness,
γ water content (in examples),
φ porosity (in an example).

Table 1: Main notation used in this paper.
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2. The general model: balance laws and dissipation inequality

The model derivation follows quite closely that of [50]. In order to derive a system of partial differential
equations governing the evolution of the primary fields, we adopt the point of view of [19]. The balance
equations are considered as:

̺
..
u − divS = f , (balance of linear momentum) (2.1a)

σ − divΣ = f, (Microscopic balance for phase field) (2.1b)
.
c + divh = h, (Solute balance) (2.1c)

s− div s = g. (Microscopic balance for damage) (2.1d)

The first equation is the stardard balance of linear momentum, with ̺ the referential mass density and f

the non-inertial body force. The second and the fourth equations involve systems of microscopic forces (σ, s)

and microscopic stresses (Σ, s) that perform work, respectively, on (
.
χ,

.
d) and (∇ .

χ,∇
.
d). Consistent with this

interpretation is the expression of the internal power expenditure that appears on the right-hand side of the
energy equation:

.
e + divq = q + S :ε(

.
u) + σ · .χ

+Σ :∇ .χ+ s
.
d+ s · ∇

.
d+ µ

.
c − h·∇µ, (Energy balance) (2.1e)

where also the energetic contribution from the diffusion of a chemical species is accounted for by the last two
terms. The choice of constitutive prescriptions, which we shall make is guided by the dissipation inequality:

.
ψ + η

.
θ − µ

.
c ≤ S :ε(

.
u) + σ · .χ+Σ :∇ .χ+ s

.
d+ s·∇

.
d− h · ∇µ− 1

θ
q·∇θ,

where ψ = e− ηθ is the free energy. The dissipation inequality can be rewritten by exploiting the decompo-
sition (1.1):

.
ψ + s

.
θ − µ

.
c ≤ S :

.
E + (σ + S :E) · .χ+Σ :∇ .χ+ s

.
d+ s · ∇

.
d− h · ∇µ− 1

θ
q · ∇θ. (2.2)

By using standard arguments, one can show that the free energy is ruled by a constitutive equation of the
following type:

ψ = ϕ(E, χ, c, d, θ,∇χ,∇d). (2.3)

Moreover, if entropy η does depend on the same list of variables, then necessarily

η = −∂θϕ(E, χ, c, d, θ,∇χ,∇d). (2.4)

The dissipation inequality can be rendered in a more compact form by defining:

Sd = S − ∂Eϕ, (2.5a)

σd = σ + S :E− ∂χϕ, (2.5b)

Σd = Σ− ∂∇χϕ, (2.5c)

sd = s− ∂dϕ, (2.5d)

sd = s− ∂∇dϕ, (2.5e)

µd = µ− ∂cϕ. (2.5f)

Here the Roman subscript d stands for “dissipative”, not to be confused with the Italic d, which indicates

the damage variable. Moreover, in (2.5b), S :E means the vector
∑3

i,j=1 SijEijk . With that splitting, one
indeed obtains the reduced dissipation inequality

0 ≤ Sd :
.
E + σd · .χ+Σd :∇ .χ+ sd

.
d+ sd · ∇

.
d+

.
cµd − h · ∇µ− 1

θ
q · ∇θ. (2.6)

Remark 2.1 (Rheology of the model). From (2.5a), we can see that the total mechanical stress is S =

∂
E
ϕ + Sd, in what follows considered as S = ∂

E
ϕ + D

.
E, cf. (3.1a). This is the classical Kelvin-Voigt

rheological model. Through the internal parameters contained possibly in χ, we can easily combine it to get
some more complicated solid-type rheological models as Jeffreys’ material or a so-called 4-parameter solid
etc.

Remark 2.2 (An alternative understanding). In the expression of the free energy we could alternatively use
as state variables the total strain ε(u) in place of the elastic strain. In particular, the mechanical energy
in (3.4) could be written as ϕ

ME
(ε(u)−Eχ, d), which would highlight the different roles played by χ and d;

note that, in this case, the term S : E in (2.5b) would be incorporated in ∂χϕ, and thus (2.5b) would be
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replaced by σd = σ − ∂χϕ. Note that then ∂
ε
ϕ, which is standardly understood as the elastic part of the

stress tensor, is indeed equal to ∂
E
ϕ we used in (2.5a).

3. Specialization and examples

The system of partial differential equations governing the evolution of the primary fields is obtained by
combining the balance equations (2.1) with appropriate constitutive prescriptions for the dissipative parts of
the auxiliary fields, consistent with the reduced dissipation inequality (2.6). We make the following choice:

Sd = D
.
E, σd ∈ ∂ .χζ(E, χ, c, d, θ,

.
χ), sd ∈ ∂ .

d
ξ(χ,

.
d), (3.1a)

q = −K(E, χ, d, c, θ)∇θ, h = −M(E, χ, d, c, θ)∇µ, (3.1b)

Σd = 0, sd = 0, µd = 0. (3.1c)

We also set to null bulk sources in (2.1), except for the force balance (2.1a), that is:

f = 0, h = 0, g = 0, q = 0. (3.2)

Here ζ and ξ are (possibly non-smooth) dissipation potentials, both ζ(E, χ, d, ·) and ξ(χ, ·) being convex and
possibly nonsmooth at 0. More specifically, ξ(χ, ·) is assumed convex positively homogeneous of degree 1, so
it is always nonsmooth at 0. Assuming irreversible (i.e. unidirectional) damage, ξ will be in the form

ξ(χ,
.
d) =

{
α(χ)|

.
d| if

.
d ≤ 0

∞ otherwise
(3.3)

with α : RN → R
+ denoting a phenomenological fracture-toughness coefficient, meaning the specific energy

in J/m3 required (and dissipated) during damage evolution. As we shall see later, the degree 1 homogeneity

of the dissipation potential ξ in
.
d has the consequence that

.
d will be a measure in general. On the other

hand, neither E nor d are continuous. Thus, α in (3.3) cannot be made to depend on E and d neither on θ
but, on the other hand, its dependence on χ is legitimate because we will have a regularity of χ at disposal,
cf. (5.34d) below.

The involvement of non-trivial dissipative terms σd and sd is essential. In fact, the non-smooth and
unbounded dissipation potential for d allows us to incorporate the phenomenology of irreversibility of damage
and its character to be an activated process. Moreover, we benefit from the dissipative term for χ to control
the terms containing

.
χ on the right-hand side of the heat equation, which would anyway be present because

of an adiabatic coupling (cf. (3.7e) below). Moreover, the specification of a non-trivial viscous stress in the
first of (3.1a) which leads to Kelvin-Voigt-type visco-elastic rheological models as mentioned in Remark 2.1 is
needed to handle inertia, otherwise it can be neglected, cf. Remark 6.11 below. Clearly, we may also include
non-trivial viscous-like contributions Σd and sd in the stress-like terms under divergence in the balance
equations (2.1b,d). Including these contributions would not significantly extend the range of applications of
our treatment and would make all notation heavier (moreover they would make our analysis more trivial to
some extent, as far as the equation governing χ). Similar considerations hold for a dissipative contribution
to chemical potential.

In order to facilitate the mathematical analysis of (2.1) with (2.5) and (3.1), see Remark 6.8 below, we
restrict the generality of the free energy (2.3). In particular, we make the partly decoupled ansatz for the
free energy (2.3), distinguishing mechanical, chemical, and thermal parts in the sense:

ψ = ϕ
ME

(E, χ, d) + ϕ
CH

(χ, c) + ϕ
TH

(χ, θ)
︸ ︷︷ ︸

=: ϕ
TOT

(E, χ, c, d, θ)

+
1

2
κ1|∇χ|2 +

1

2
κ2|∇d|2 + δK(χ) + δ[0,1](d). (3.4)

Here K is a convex set where values of χ are assumed to lie, while d is valued at [0, 1], and δ stands
for the indicator function, i.e. δK(·) is equal to 0 on K and +∞ otherwise and similarly for δ[0,1](·). The
consequence of the decoupling (3.4) is that the internal energy, defined by Gibbs’ relation e = ψ − θη and
occurring already in (2.1e), can be written as:

e = e
TH

(χ, θ) + ϕ
ME

(E, χ, d) + ϕ
CH

(χ, c)
︸ ︷︷ ︸

=: ϕ
ME/CH

(E, χ, c, d)

+
1

2
κ1|∇χ|2 +

1

2
κ2|∇d|2 + δK(χ) + δ[0,1](d), (3.5)

where the thermal part of the internal energy is

e
TH

(χ, θ) = ϕ
TH

(χ, θ)− θ∂θϕTH
(χ, θ). (3.6)

Altogether, from (2.1) with (2.5), (3.1), and (3.4), we obtain the following system:

̺
..
u − div

(
∂EϕME

(E, χ, d)+D
.
E
)
= f with E = ε(u)− Eχ, (3.7a)
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∂ .χζ(E, χ, c, d, θ,
.
χ)− κ1∆χ+ ∂χϕTOT

(E, χ, c, d, θ)

− E
⊤:(∂

E
ϕ

ME
(E, χ, d)+D

.
E) + σr ∋ 0 with σr ∈ ∂δK(χ), (3.7b)

.
c − div

(
M(E, χ, c, d, θ)∇µ

)
= 0 with µ = ∂cϕCH

(χ, c), (3.7c)

∂ .
d
ξ(χ,

.
d)− κ2∆d+ ∂dϕME

(E, χ, d) + sr ∋ 0 with sr ∈ ∂δ[0,1](d), (3.7d)
.
w − div(K(E, χ, c, d, θ)∇θ) = ∂ .χζ(E, χ, c, d, θ,

.
χ) · .χ+∂χϕTH

(χ, θ) · .χ

+ D
.
E :

.
E − α(χ)

.
d+M(E, χ, c, d, θ)∇µ·∇µ with w = e

TH
(χ, θ). (3.7e)

We point out that, at variance with standard treatments of the heat equation, the left-hand side of (3.7e)
does not contain the time derivative of temperature θ, at least explicitly. Instead, we have the time derivative
of the so-called enthalpy w. In principle, we may replace temperature with enthalpy in the formulation, as
done for instance in [49]. However, since temperature has a more straightforward physical relevance, we
prefer to keep both w and θ in our formulation.

We also note that ζ(E, χ, c, d, θ, ·) is possibly nonsmooth at 0, so that ∂ .χζ(E, χ, c, d, θ,
.
χ) may be

multi-valued, but anyhow we assume in (4.1n) below that the term ∂ .χζ(E, χ, c, d, θ,
.
χ) · .χ appearing in the

right-hand side of (3.7e) and also in (4.9f) below is well-defined. This occurs e.g. if ζ(E, χ, c, d, θ,
.
χ) has a

form a(E, χ, c, d, θ)| .χ|+b(E, χ, c, d, θ)| .χ|2 with some a, b ≥ 0. We complete (3.7) with the following boundary
condition:

(
∂EϕME

(E, χ, d)+D
.
E
)
n = f s, (3.8a)

∇χ · n = 0, (3.8b)

M(E, χ, c, d, θ)∇µ · n = hs, (3.8c)

∇d · n = 0, (3.8d)

K(E, χ, c, d, θ)∇θ · n = qs (3.8e)

to be valid on the boundary Γ of Ω. Using the convention like u(·, t) =: u(t), we complete the system by
the initial conditions:

u(0) = u0,
.
u(0) = v0, χ(0) = χ0, c(0) = c0, d(0) = d0, w(0) = w0 := ϕ

TH
(χ0, θ0).

(3.9)

The above formulated model is very general and can be understood as truly multi-purpose. Let us present
a couple of motivating examples now, while in the final section we shall present some examples more .

Example 3.1 (Metal/hydride phase transformation). Some metals or intermetallics allow for relatively easy
diffusion of hydrogen and undergo a transformation into hydrides accompanied by markable volume changes
(even up to 30%), cf. [29]. Several continuum models have been proposed, accompanied by their analytical
study [3, 4, 8, 50]. Such big volume variation then often causes damage. In this case, we have N = 1 and
the (scalar-valued) phase field χ stands for the volume fraction related to the metal/hydride transformation,
while the variable c is the hydrogen concentration. The free energy can be considered as

ϕ
TOT

(E, χ, c, d, θ) =
1

2
C(d)E:E

︸ ︷︷ ︸
=: ϕ

ME

+
k

2

∣∣a(χ)−c
∣∣2 + φ1(c)

︸ ︷︷ ︸
=: ϕ

CH

+ φ2(χ, θ)
︸ ︷︷ ︸
=: ϕ

TH

(3.10)

where k > 0 is a (typically large) coefficient and a(χ) a function that maps values of phase field into values
of concentration, which reflects the fact that different phases typically manifest themselves at different
concentrations. In this case, System (3.7) takes the form:

̺
..
u − div

(
C(d)E+D(ε(

.
u)− E

.
χ)

))
= f , with E = ε(u)− Eχ, (3.11a)

∂ .χζ(E, χ, c, d, θ,
.
χ)− κ1∆χ+ k(a(χ)∂χ − c)a′(χ) + ∂χφ2(χ, θ)

− E
⊤:(C(d)E+D

.
E) + σr ∋ 0 with σr ∈ ∂δK(χ), (3.11b)

.
c − div

(
M(E, χ, c, d, θ)∇µ

)
= 0 with µ = −k(a(χ)− c) + φ′1(c), (3.11c)

∂ .
d
ξ(χ,

.
d)− κ2∆d+

1

2
C

′(d)E : E + sr ∋ 0 with sr ∈ ∂δ[0,1](d), (3.11d)

.
w − div(K(E, χ, c, d, θ)∇θ) = ∂ .χζ(E, χ, c, d, θ,

.
χ) · .χ+k(a(χ)− c)a′(χ)

.
χ

+ D
.
E :

.
E − α(χ)

.
d +M(E, χ, c, d, θ)∇µ·∇µ with w = φ2(χ, θ)− θ∂θφ2(χ, θ). (3.11e)

As already remarked, (3.10) is consistent with our splitting ansatz (3.4). Without damage but considering
still thermal expansion, this model has been treated in [50]. Thus, the present paper generalizes [50] towards
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this important damage phenomenon. In particular we may take a(χ) = χ. In this case, χ is somehow related
to the concept of nonlocal species concentration, a concept introduced in [54] to handle the difficulties related
to the numerical solution of the Cahn-Hilliard equation, and further elaborated in [10], where the extra field
(here χ) is called micromorphic concentration. As ∂2ccϕCH

(χ, c) = k + φ′′1 (c), the uniform convexity in c
requires just a semi-convexity of φ1 if one admits k large. Moreover, the physically relevant non-negativity of
c can then be ensured by taking for φ2 a function that blows up as its argument tends to zero. An example
may be the coarse-grain chemical free energy obtained from regular solution theory:

φ2(χ, θ) = φ3(θ) +Aθ(χ log(χ) + (1−χ) log(1−χ)) +Bχ(1−χ), (3.12)

with A and B positive constants, cf. [24]. Of course, due to the large strains sometimes involved in the
hydration phase transformation, developing the model in the small-strain setting might be debatable. For a
model coupling diffusion and damage in the large-strain setting, we refer to [11].

Example 3.2 (Poroelastic rocks). Geophysical models of lithospheres in short time scale (less that 1 mil.
yrs) count small strains. Typical phenomena to be captured are damage, plasticity (considered here rate-
dependent), and water propagation through porous rocks, cf. e.g. [57]. The phase field is then composed from
plastic strain πpl and porosity φ, while c is the water concentration, cf. e.g. [20, 21, 31]. The free energy is
considered as ψ = 1

2λ(φ, d)(trE)2 +G(φ, d)|E|2+ 1
2M(φ, d)|βtrE−c+φ|2 + cvθ(lnθ−1) with E = ε(u)−πpl

and with λ the first Lamé coefficient, G the shear modulus (also called the second Lamé coefficient and
denoted by µ which here denotes, however, the chemical potential) M the Biot modulus, and β the Biot
coefficient. The chemical potential µ and the Nernst-Plack equation (3.7c) play the role of a pressure and of
the Darcy equation. This however does not directly fit with the splitting (3.4) because c and E are directly
coupled unless the Biot modulus or the Biot coefficient are zero. To make it consistent with (3.4), similarly
as in Example 3.1 we again distinguish between the water concentration c and the water content γ; in fact,
[20, 21, 31] speak about water content, although consider the water flow governed by the Darcy equation
like if it were a water concentration. Therefore, we consider the augmented phase field as χ = (πpl, φ, γ) and
then the free energy as

ϕ
TOT

(E, φ, γ, c, d, θ) =
1

2
λ(φ, d)(trE)2 +G(φ, d)|E|2 + 1

2
M(φ, d)|βtrE−γ+φ|2

︸ ︷︷ ︸
=: ϕ

ME

+
1

2
k|γ − c|2

︸ ︷︷ ︸
=: ϕ

CH

+ cvθ(lnθ−1)
︸ ︷︷ ︸

=: ϕ
TH

with E = ε(u)− πpl. (3.13)

Note that (1.1) still applies, provided that we define χ = (πpl, φ, γ) and Eχ := πpl. In order to arrive at
a concrete system of partial differential equations/inclusions, we assume for simplicity that the dissipation
pseudo-potential associated to the evolution of χ = (πpl, φ, γ) be decoupled, in the sense that

ζ(E, χ, c, d, θ,
.
χ) = ζpl(πpl,

.
πpl) + ζφ(φ,

.
φ) + ζγ(γ,

.
γ), (3.14)

and that the convex set K has the form K = R3×3
sym ×Kφ×Kγ , with Kφ, and Kγ convex. Then, system (3.7)

becomes:

̺
..
u − div

(
λ(φ, d)(trE)I+ 2G(φ, d)E +M(φ, d)(βtrE − γ + φ)βI+D

.
E
))

= f , with E = ε(u)− πpl,

(3.15a)

∂ .πpl
ζpl(πpl,

.
πpl)− κ1∆πpl − λ(φ, d)(trE)I− 2G(φ, d)E −M(φ, d)(βtrE − γ + φ)βI − D

.
E ∋ 0, (3.15b)

∂ .
φ
ζφ(φ,

.
φ)− κ1∆φ+

1

2
∂φλ(φ, d)(trE)2 + ∂φG(φ, d)|E|2 + 1

2
∂φM(φ, d)|βtrE−γ+φ|2

+M(φ, d)(βtrE−γ+φ) + σr,φ ∋ 0 with σr,φ ∈ ∂δKφ
(φ),

(3.15c)

∂ .γζγ(γ,
.
γ)− κ1∆γ −M(φ, d)(βtrE − γ + φ) + k(γ − c) + σr,γ ∋ 0 with σr,γ ∈ ∂δKγ

(φ),

(3.15d)
.
c − div

(
M(E, πpl, φ, γ, c, d, θ)∇µ

)
= 0 with µ = −k(γ − c),

(3.15e)

∂ .
d
ξ(πpl,

.
d)− κ2∆d+

1

2
∂dλ(φ, d)(trE)2 + ∂dG(φ, d)|E|2

+
1

2
∂dM(φ, d)|βtrE−γ+φ|2 ∋ 0 with sr ∈ ∂δ[0,1](d),

(3.15f)
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cv
.
θ − div(K(E, πpl, φ, γ, c, d, θ)∇θ) = ∂ .πpl

ζ(E, πpl, φ, γ, c, d, θ,
.
πpl) ·

.
πpl

+ D
.
E :

.
E − α(πpl, φ, γ)

.
d+M(E, πpl, φ, γ, c, d, θ)∇µ·∇µ. (3.15g)

Note that in this special case the thermal part of the free energy depends only on temperature. In particular,
for the special form of ϕ

TH
in (3.13) we have w = cvθ.

4. Data qualification, weak formulation, and the main result

Beside the standard notation for the Lebesgue Lp-spaces, we will use W k,p for Sobolev spaces whose k-th
derivatives are in Lp-spaces, the abbreviation Hk = W k,2. We consider a fixed time interval I = [0, T ]
and we denote by Lp(I;X) the standard Bochner space of Bochner-measurable mappings I → X with
X a Banach space. Also, W k,p(I;X) denotes the Banach space of mappings from Lp(I;X) whose k-th
distributional derivative in time is also in Lp(I;X). Also, C(I;X) and Cweak(I;X) will denote the Banach
space of continuous and weakly continuous mappings I → X , respectively. Moreover, we denote by BV(I;X)
the Banach space of the mappings I → X that have bounded variation on I, and by B(I;X) the space of
Bochner measurable, everywhere defined, and bounded mappings I → X . By Meas(I;X) we denote the
space of X-valued measures on I. Finally, in what follows, C denotes a positive, possibly large constant,
whereas ǫ denotes a positive small constant.

Let us collect our main assumptions on the data:

Ω ⊂ R
3 is a bounded Lipschitz domain, (4.1a)

ϕ
ME

∈ C2(RN×R×R
3×3
sym), ϕ

CH
∈ C2(RN×R), ϕ

TH
∈ C2(RN×R), (4.1b)

M ∈ C(R3×3
sym×R

N×R×R×R), K ∈ C(R3×3
sym×R

N×R×R×R). (4.1c)

ϕ
ME

(E, χ, d) ≥ ǫ|E|2 − C, |∂(E,χ)ϕME
(E, χ, d)| ≤ C(1 + |E|), (4.1d)

|∂χϕCH
(χ, c)| ≤ C(1 + |c|3), (4.1e)

0 < ǫ ≤ −θ∂2θθϕTH
(χ, θ) ≤ C and

∣∣∂χϕTH
(χ, θ)− θ∂2χθϕTH

(χ, θ)
∣∣ ≤ C, (4.1f)

ϕ
CH

(χ, c) ≥ ǫc2 − C, (4.1g)

E 7→ ϕ
ME

(E, χ, d) is strongly convex uniformly with respect to χ and d, (4.1h)

(E, χ) 7→ ϕ
ME

(E, χ, d) +M |χ|2 is convex for M sufficiently large, (4.1i)

c 7→ ϕ
CH

(χ, c), is strongly convex uniformly with respect to χ, (4.1j)

M(E, χ, c, d, θ) and K(E, χ, c, d, θ) are uniformly positive definite and bounded, (4.1k)

∃C > 0 :
∣∣∂cϕCH

(χ, c)
∣∣ ≤ C

(
1 + ϕ

CH
(χ, c)

)
, (4.1l)

ζ(E, χ, c, d, θ, ·) : RN → R
+ is convex and ∃ǫ > 0 : ǫ| .χ|2 ≤ ζ(E, χ, c, d, θ,

.
χ) ≤ 1 + | .χ|2

ǫ
, (4.1m)

.
χ 7→ ∂ .χζ(E, χ, c, d, θ,

.
χ)· .χ : RN → R

+ is single-valued and strictly convex, while (4.1n)

ξ satisfies (3.3) with α : RN → R
+ smooth and

bounded together with its second gradient and inf α(RN ) > 0, (4.1o)

|∂2χcϕCH
(χ, c)| ≤ C, (4.1p)

|∂χϕTH
(χ, θ)| ≤ C

√
1 + ϕ

ME/CH
(E, χ, c, d) + e

TH
(χ, θ), and (4.1q)

∣∣∂χeTH
(χ, θ)

∣∣ ≤ C
√
1 + e

TH
(χ, θ), (4.1r)

∂χϕTH
(χ, θ) = 0 for θ ≤ 0. (4.1s)

Then, we add the qualification of the outer mechanical, chemical, and thermal loading:

f ∈L2(Q;R3), f s∈L2(Σ;R3), qs∈L1(Σ), hs∈L2(Σ) with qs ≥ 0 and hs ≥ 0 a.e. on Σ, (4.2)

where we used the abbreviation Q = (0, T )×Ω and Σ = (0, T )× Γ for a fixed time horizon T > 0. Later, Q
will denote the closure of Q.

The uniform strong convexity means e.g. in (4.1h) that

∃ǫ > 0 ∀(E, Ẽ, χ, d)∈R
3×3
sym×R

3×3
sym×K×[0, 1] :

(
∂
E
ϕ

ME
(Ẽ, χ, d)− ∂

E
ϕ

ME
(E, χ, d)

)
:(Ẽ−E) ≥ ǫ|Ẽ−E|2.

(4.3)
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Analogous meaning has also (4.1l). The statement (4.1k) is as usual understood in the sense that there
exists ǫ > 0 such that, for all v ∈ R3 and (E, χ, c, d, θ) ∈ R3×3

sym × K × [0, 1] × R × R+, it holds ǫ|v|2 ≤
M(E, χ, c, d, θ)v · v ≤ |v|2/ǫ and ǫ|v|2 ≤ K(E, χ, c, d, θ)v · v ≤ |v|2/ǫ. In (4.1q)–(4.1r), we understand that
ϕ

ME/CH
≥ 0 and e

TH
≥ 0, as we always can without loss of generality. The qualification (4.11c) represents a

semi-stability of the initial damage profile; the adjective “semi” refers to that E0 and χ0 are fixed on both
the left- and the right-hand sides of (4.11c).

Let us briefly comment the main aspects of the above assumptions:

1. The second growth assumption in (4.1d) and assumption (4.1e) on ∂χϕME/CH
, together with assumption

(4.1m) on ζ facilitates the L2 estimate of ∆χ. This estimate is needed to make sense of the by-part-
integration formula (5.71) which by its turn justifies the weak form (4.9b) of (3.7b), the inclusion
governing χ.

2. In principle we could admit a general p-growth/coercivity with p ≤ 2 in (4.1d). However, we cannot
handle p > 2. The main reason is the integrability of terms in (5.73) and, if ̺ > 0, also the duality
in (5.52). For simplicity, we confine ourselves to p = 2 only, without restricting substantially possible
applications.

3. Assumptions (4.1k) are needed to have coercivity in the diffusion and the heat-conduction equation.
4. It follows from the third condition in (4.1b) and from the first condition in (4.1f) that the thermal part

of the internal energy e
TH

defined in (3.6) is continuously differentiable, and satisfies:

0 < ǫ ≤ ∂θeTH
(χ, θ) ≤ C. (4.4)

Hence, the function θ 7→ e
TH

(χ, θ) is invertible for all χ and its inverse is continuously differentiable.

Thus, there exists a function ϑ ∈ C1(RN×R+;R+) such that

e
TH

(χ, ϑ(χ,w)) = w (4.5)

0 < 1/C ≤ ∂wϑ(χ,w) ≤ 1/ǫ (4.6)

with ǫ and C referring to (4.4). Moreover, we observe that the second condition in (4.1f) entails that

|∂χϑ(χ,w)| ≤ C. (4.7)

5. The semi-stability of the initial damage (4.11c) is needed for the energy conservation which, in turn, is
vitally needed for the convergence in the heat equation, cf. Step 9 in the proof of Proposition 5.5.

We can now state the weak formulation of the initial-boundary-value problem (3.7)–(3.9). As for the
damage part, we use the concept of the so-called energetic solution devised by Mielke and Theil [35], based
on the energy (in)equality and the so-called stability, cf. (4.9d) below, and further employed in the thermo-
dynamical concept in [43]. This formulation is essentially equivalent to the conventional weak formulation
but excludes time derivatives of rate-independent variables, i.e. here the damage d.

Definition 4.1. Given initial conditions (4.11) and the bulk and boundary data (4.2), the seven-tuple
(u, χ, c, d, θ, µ, w) with

u ∈ L∞(I;W 1,p(Ω;R3)) ∩H1(I;H1(Ω;R3)), (4.8a)

χ ∈ Cweak(I;H
1(Ω;RN )) ∩H1(I;L2(Ω;RN )) with ∆χ ∈ L2(Q), (4.8b)

c ∈ L∞(I;L2(Ω)), (4.8c)

d ∈ B(I;H1(Ω)) ∩ BV(I;L1(Ω)), d ≥ 0 a.e. on Q, (4.8d)

θ ∈ Lr(I;W 1,r(Ω)) for any r ∈ [1, 5/4), (4.8e)

µ ∈ L∞(I;H1(Ω)), (4.8f)

w ∈ L∞(I;L1(Ω)) (4.8g)

is called a weak solution to the initial-boundary-value problem (3.7)–(3.9) if
∫

Q

(∂
E
ϕ

ME
(E, χ, d) + D

.
E) :ε(z)− ̺

.
u· .z dxdt =

∫

Q

f ·z dxdt+

∫

Σ

f s·z dS dt+

∫

Ω

v0·z(0) dx

∀z∈L2(I;H1(Ω;R3)) ∩H1(I;L2(Ω;R3)), z(T ) = 0, (4.9a)
∫

Q

ζ(E, χ, c, d, θ, z) +
(
∂χϕTOT

(E, χ, c, d, θ)− E
⊤ : (∂

E
ϕ

ME
(E, χ, d)+D

.
E) + σr

)
·(z− .χ) + κ1∇χ :∇z dxdt

+

∫

Ω

κ1
2

∣∣∇χ0

∣∣2 dx ≥
∫

Q

ζ(E, χ, c, d, θ,
.
χ) dxdt +

∫

Ω

κ1
2

∣∣∇χ(T )
∣∣2 dx ∀z∈L2(I;H1(Ω;RN )), (4.9b)

∫

Q

M(E, χ, c, d, θ)∇µ · ∇z − c
.
z dxdt =

∫

Σ

hsz dS dt+

∫

Ω

c0z(0)dx ∀z∈H1(Q), z(T ) = 0, (4.9c)
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∫

Ω

ϕ
ME

(E(t), χ(t), d(t)) +
κ2
2
|∇d(t)|2 dx ≤

∫

Ω

(
ϕ

ME
(E(t), χ(t), d̃) +

κ2
2
|∇d̃|2

+ α(χ(t))(d̃−d(t))
)
dx for a.e. t∈I ∀d̃∈H1(Ω), 0 ≤ d̃ ≤ d(t) on Ω, (4.9d)

∫

Q

K(E, χ, c, d, θ)∇θ · ∇z − w
.
z dxdt =

∫

Ω

(
w0+α(χ0)d0

)
z(0) dx+

∫

Σ

qsz dS dt

+

∫

Q

((
∂ .χζ(E, χ, c, d, θ,

.
χ)+∂χϕTH

(χ, θ)+α′(χ)d
)
· .χ+M(E, χ, c, d, θ)∇µ·∇µ

+ D
.
E :

.
E
)
z + α(χ)d

.
z dxdt ∀z∈W 1,∞(Q), z(T ) = 0, (4.9e)

E
MC

(T ) +

∫

Ω

α(χ(T ))d(T ) dx+

∫

Q

(
D
.
E:
.
E +

(
∂ .χζ(E, χ, c, d, θ,

.
χ)+∂χϕTH

(χ, θ)+α′(χ)d
)
· .χ

+M(E, χ, c, d, θ)∇µ·∇µ
)
dxdt = E

MC
(0) +

∫

Ω

α(χ0)d0 dx+

∫

Q

f · .u dxdt+

∫

Σ

f s·
.
u+qs+µhs dSdt

(4.9f)

where E ∈ H1(I;L2(Ω;R3×3
sym)), µ and w from (4.8f,g), and σr∈L2(Q;RN ), satisfy

E = ε(u)−Eχ, µ = ∂cϕCH
(χ, c), w = e

TH
(χ, θ), σr∈∂δK(χ) (4.9g)

a.e. in Q and where the energy occurring in (4.9f) at time t = 0 and t =T is:

EMC(t) :=

∫

Ω

ϕ
ME/CH

(E(t), χ(t), d(t), c(t)) +
̺

2

∣∣ .u(t)
∣∣2 + κ1

2

∣∣∇χ(t)
∣∣2 + κ2

2

∣∣∇d(t)
∣∣2 dx,

where ϕ
ME/CH

is defined in (3.5). Eventually, the remaining three initial conditions holds:

u(0) = u0, χ(0) = χ0, d(0) = d0 a.e. in Ω. (4.10)

We can now specify the qualifications of the initial conditions:

u0∈H1(Ω;R3), v0∈L2(Ω;R3), c0∈H1(Ω), χ0∈H1(Ω;RN ), d0∈H1(Ω), w0∈L1(Ω), (4.11a)

d0∈ [0, 1], χ0∈K, w0 = e
TH

(χ0, θ0) with θ0 ≥ 0 a.e. in Ω, and (4.11b)
∫

Ω

ϕ
ME

(E0, χ0, d0) +
κ2
2
|∇d0|2 dx

≤
∫

Ω

(
ϕ

ME
(E0, χ0, d̃) +

κ2
2
|∇d̃|2 + α(χ(t))(d̃−d0)

)
dx ∀d̃∈H1(Ω), 0 ≤ d̃ ≤ d0 a.e. on Ω, (4.11c)

with E0 = ε(u0)− Eχ0.
The above definition uses several tricky points, which seems in general quite inevitable for this sort of

complicated problems, cf. also [40] for an even more tricky definition. Here, let us note that we made the
by-part integration in time in (4.9a,c,e) to avoid abstract duality pairings due to only weak estimates on ̺

..
u,

.
c, and

.
w we will have at disposal, cf. (5.34a-c) below. The other three initial conditions

.
u(0) = v0, c(0) = c0,

and w(0) = w0 are thus involved already in (4.9a,c,e). The by-part integration used in (4.9b) is to avoid the
term

∫
Q ∇χ·∇ .

χ dxdt where ∇ .
χ would not have a good sense; for this we need the L2(Q) integrability of

∆χ specified in (4.8b). Also note that we used the by-part integration in time for the heat term induced by
damage, i.e.
∫

Q

α(χ)z
.
d(dxdt) =

∫

Ω

α(χ(T ))z(T )d(T ) dx−
∫

Q

(α′(χ)
.
χz + α(χ)

.
z)d dxdt −

∫

Ω

α(χ(0))z(0)d(0) dx (4.12)

for z smooth with z(T ) = 0 in (4.9e) or with z = 1 in (4.9f) to avoid usage of the measure
.
d in Definition 4.1,

which anyway would be problematic, since the continuity of α(χ) on Q does not seem to be guaranteed.
More importantly, we balanced only the mechano-chemical energy EMC to avoid usage of θ(T ) or of

w(T ) which would not have a specified meaning as the temperature as well as the thermal part of the internal

energy may be discontinuous in time instances where
.
d concentrates. The exponent 5/4 in (4.8e) is consistent

with the Boccardo–Gallouët regularity estimates on parabolic equations with L1 data [?], cf. e.g. also [44,
sect. 12.1]. This relevant estimate shell be derived in Lemma 5.3 below.

Theorem 4.2. Let the assumptions (4.1)–(4.2) be valid. Then there exists a weak solution to the initial-
boundary-value problem (3.7)–(3.9) in the sense of Definition 4.1 such that also ̺

..
u ∈ L2(I;H1(Ω;R3)∗),
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.
c ∈ L2(I;H1(Ω)∗),

.
w ∈ Meas(I;W 1,r/(r−1)(Ω)∗), θ ≥ 0 a.e. in Q. Moreover, the total-energy balance is

satisfied “generically” in the sense that, for a.a. t ∈ I, it holds that

E
TOT

(t)− E
TOT

(0) =

∫ t

0

( ∫

Ω

f · .u dx+

∫

Γ

f s·
.
u+ qs + µhs dS

)
dt, (4.13)

where, referring to ϕ
ME/CH

and e
TH

from (3.5)–(3.6), the total energy is:

E
TOT

(t) =

∫

Ω

(
ϕ

ME/CH

(
E(t), χ(t), d(t), c(t)

)
+ e

TH

(
χ(t), θ(t)

)
+
̺

2

∣∣ .u(t)
∣∣2 + 1

2
κ1

∣∣∇χ(t)
∣∣2 + 1

2
κ2

∣∣∇d(t)
∣∣2
)
dx.

We will prove this theorem in the next section by a constructive way which also suggest a concep-
tual numerical strategy which, after another discretisation in space, would allow for an efficient computer
implementation.

Remark 4.3 (Difficulties with nonlinear ansatz). One can attempt to generalize the linear term Eχ in (1.1)
but a strong nonlinear dependence may affect the semi-convexity assumption (4.1i) below. To better clarify
this last point, assume that we replace the decomposition (1.1) with ε(u) = E +Etr(χ), where Etr is now
a non-linear function. Suppose also that the mechanical energy has the simple form ϕ

ME
(E) = 1

2CE : E.
Then, the energy functional pertaining to u and χ would be

(u, χ) 7→
∫

Ω

1

2
C(ε(u)−Etr(χ)) : (ε(u)−Etr(χ)) dx (4.14)

but a simple calculation shows that if the function Etr is non-linear, then the integrand in (4.14) cannot be
convex (and not even semiconvex) with respect to the variables ε(u) and χ. Anyhow, the simple, linear ansatz
(1.1), to be interpreted as a first-order expansion consistent with the linearization implied by the small-strain
setting, still enjoys a considerable range of applications, cf. in particular Examples 3.1–6.5 below and the
references therein.

5. Time discretisation and the proof of existence of weak solutions

Our proof of Theorem 4.2 is based on the following strategy:

• A semi-implicit discretisation of the system (3.7) of a fractional-step type which decouples this system
at each time level and is numerically stable under quite weak convexity requirements on ϕ

TOT
, cf.

also [44, Rem. 8.25] for a general discussion. Namely, we use four steps in such a way that one solves
separately (3.7a-b), then (3.7c), then (3.7d), and eventually (3.7e).

• The above specified splitting allows for only the relatively weak (partial) semi-convexity assumption
(4.1i). In particular, we thus do not require any (semi)-convexity of ϕ

ME/CH
or even of ϕ

ME
itself which

would exclude interesting applications like the examples in Section 3.
• A further key ingredient is an L2-estimate of the term ∂χϕME/CH

(Eτ , χτ , dτ , cτ ) + ∂χϕTH
(χ

τ
, θτ ) −

E⊤:
(
∂
E
ϕ

ME
(Eτ , χτ , dτ )+D

.
Eτ

)
+ σr,τ in (5.13b), together with the qualification of the dissipation

potential ζ for χ to have a bounded subdifferential so that one can obtain the additional estimate
∆χ ∈ L2(Q;RN ). This facilitates the by-part integration formula (5.71) and, if Ω is smooth, also the

H2-regularity of χ is needed to give a good sense to the dissipative-heat term α(χ)
.
d.

We use an equidistant partition of the time interval I = [0, T ] with a time step τ > 0, assuming T/τ ∈ N,

and denote by {uk
τ}T/τ

k=0 an approximation of the desired values u(kτ), and similarly dkτ is to approximate

d(kτ), etc. Further, let us abbreviate by dkτ the backward difference operator, i.e. e.g. dkτu :=
u

k
τ−u

k−1
τ

τ , and

similarly also [dkτ ]
2u = dkτ [d

k
τu] =

u
k
τ−2uk−1

τ +u
k−2
τ

τ2 , or dkτd :=
dk
τ−dk−1

τ

τ , dkτ c :=
ckτ−ck−1

τ

τ , etc. When evaluating

[dkτ ]
2u for k = 1, we let u−1

τ = u0
τ − τv0.

From a conceptual “algorithmic” viewpoint that may serve for a possible numerical implementation
and for making the free-energy qualification as weak as possible, it is advantageous to make as fine splitting
as possible. The finest splitting is essentially dictated by the considered de-coupled form of the dissipation
energy. In particular, note that the Kelvin-Voigt viscosity acts on the elastic strain rate and thus involves
both u and Eχ so that the problems in Step 1 cannot be further decoupled, cf. also Remark 6.11 below for
further discussion. As a result, we consider the following 4-step algorithm:

Step 1: We seek weak solution uk
τ , and χ

k
τ to the following boundary-value problem (written in the classical

formulation)

̺[dkτ ]
2u− div

(
∂EϕME

(Ek
τ , χ

k
τ , d

k−1
τ )+DdkτEτ

)
= fk

τ (5.1a)

∂ .χζ(E
k−1
τ , χk−1

τ , dk−1
τ , ck−1

τ , θk−1
τ , dkτχ)− κ1∆χ

k
τ + ∂χϕME/CH

(Ek
τ , χ

k
τ , d

k−1
τ , ck−1

τ )
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+ ∂χϕTH
(χk−1

τ , θk−1
τ )− E

⊤:
(
∂
E
ϕ

ME
(Ek

τ , χ
k
τ , d

k−1
τ ) + DdkτEτ

)
+ σk

r,τ ∋ 0, (5.1b)

with Ek
τ = ε(uk

τ )−Eχk
τ and some σk

r,τ ∈ ∂δK(χk
τ ) on Ω, (5.1c)

and with boundary conditions
(
∂EϕME

(Ek
τ , χ

k
τ , d

k−1
τ )+DdkτEτ

)
n = fk

s,τ and ∇χk
τ · n = 0 on Γ. (5.1d)

Step 2. We seek a weak solution ckτ and µk
τ to the boundary-value problem:

dkτ c− div
(
M(Ek

τ , χ
k
τ , d

k−1
τ , ck−1

τ , θk−1
τ )∇µk

τ

)
= 0 with µk

τ = ∂cϕCH
(χk

τ , c
k
τ ) on Ω, (5.2a)

with boundary condition

∇µk
τ · n = 0 on Γ. (5.2b)

Step 3. We seek dkτ ∈ H1(Ω) as a (global) minimizer of the functional

d 7→
∫

Ω

ϕ
ME

(Ek
τ , χ

k
τ , d)− α(χk

τ )d+
κ2
2
|∇d|2dx (5.3)

on the set {d∈H1(Ω); 0 ≤ d ≤ dk−1
τ }.

Step 4. Eventually, we seek a weak solution θkτ and wk
τ to the boundary-value problem:

wk
τ−wk−1

τ

τ
− div

(
K(Ek

τ , χ
k
τ , d

k
τ , c

k
τ , θ

k
τ )∇θkτ

)
=

(
∂ .χζ(E

k−1
τ , χk−1

τ , dk−1
τ , ck−1

τ , θk−1
τ , dkτχ)+∂χϕTH

(χk
τ , θ

k
τ )
)
·dkτχ

− α(χk
τ )d

k
τd+

DdkτE :dkτE

1 + τ |dkτE|2 +
M(Ek

τ , χ
k
τ , d

k−1
τ , ck−1

τ , θk−1
τ )∇µk

τ · ∇µk
τ

1 + τ |∇µk
τ |2

with wk
τ = e

TH
(χk

τ , θ
k
τ ) (5.4a)

with the boundary condition

K(Ek
τ , χ

k
τ , d

k
τ , c

k
τ , θ

k
τ )∇θkτ = qks,τ on Γ. (5.4b)

Of course, this recursive scheme is to be started for k = 1 by putting

u0
τ = u0, u−1

τ = u0−τv0, χ0
τ = χ0, c0τ = c0, d0τ = d0, w0

τ = w0 (5.5)

with w0 from (3.9). An important feature of this scheme is that it decouples to four boundary-value problems,
which (after a further spatial discretisation) can facilitate a numerical treatment and which is advantageously
used even to show existence of approximate solutions. We also remark that the term ∂χϕTH

is treated as

lower-order terms. Note also that dkτ obtained in Step 3 is a weak solution to the boundary-value problem:

∂ .
d
ξ(χk

τ , d
k
τd) + ∂dϕME

(Ek
τ , χ

k
τ , d

k
τ ) + skr,τ ∋ κ2∆d

k
τ on Ω with ∇dkτ · n = 0 on Γ, (5.6)

with some skd,τ ∈ and skr,τ ∈∂δ[0,∞](d
k
τ ) on Ω. We however rely on the fact that dkτ is a special weak solution

which is also the minimizer of the underlying potential (5.3). This needs not be the same if ϕ
ME

(E, ·) is not
convex, i.e. if damage may undergo weakening effects.

We observe on passing that the right-hand side of (5.4a) approximates, at least formally, the dissipative
terms in the continuous heat equation (3.7e) as τ → 0. As we shall see in the proof of Lemma 5.1 below, this
expedient ensures that we can use the standard L2 theory for elliptic equations at the approximation level.

Lemma 5.1 (Existence of the discrete solution). Let (4.1)–(4.2) hold. Then, for any k = 1, ..., T/τ ,
(5.1)–(5.4) has a solution uk

τ ∈ H1(Ω;R3), χk
τ ∈ H1(Ω;RN ), dkτ ∈ H1(Ω), σk

r,τ ∈ L2(Ω;RN ), ckτ ∈ H1(Ω),

µk
τ ∈ H1(Ω), θkτ ∈ H1(Ω) such that θkτ ≥ 0.

Proof. Step 1: Let us consider the space V = H1(Ω;R3) ×H1(Ω). The boundary-value problem (5.1) is of
the form A(u, χ) ∋ 0, with A a set-valued mapping from V to its dual V ∗ such that A = ∂Φ, where

Φ(u, χ) =

∫

Ω

(
ϕ

ME/CH
(ε(u)− Eχ, χ, dk−1

τ , ck−1
τ ) +

1

2
κ1|∇χ|2 + δK(χ)

+
τ2

2
̺
∣∣∣u− 2uk−1

τ + uk−2
τ

τ2

∣∣∣
2

+
τ

2
D

(
ε
(u−uk−1

τ

τ

)
− Eχ

)
:
(
ε
(u−uk−1

τ

τ

)
− Eχ

)

+ τζ
(
Ek−1

τ , χk−1
τ , dk−1

τ , ck−1
τ , θk−1

τ ,
χ− χk−1

τ

τ

)

+ ∂χϕTH
(χk−1

τ , θk−1
τ ) · χ+ fk

τ ·u
)
dx+

∫

Γ

fk
s,τ ·udS. (5.7)

Here the formulation covers also the quasistatic case, which is obtained by formally setting ̺ = 0. By (4.1i)
and (4.1m), the potential Φ is weakly lower-semicontinuous although not necessarily convex here; in fact,
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later it will be convex if τ > 0 is small enough, cf. Lemma 5.3 below. Due to the terms δK and ζ, Φ is
nonsmooth. Moreover, by (4.1g) it is also coercive. Hence, by using the direct method, cf. e.g. [44, Theorem
5.3], we can see that (5.1) has at least a solution. Next we observe that the solution satisfies an inclusion:

∂χ(Φ1 +Φ2)(χ) +DΦ3(χ) ∋ 0, (5.8)

where the left-hand side is a subset of H1(Ω;RN )∗, with Φ1(χ) = τ
∫
Ω ζ(E

k−1
τ , χk−1

τ , dk−1
τ , θk−1

τ ,
χ−χk−1

τ

τ ) dx,

Φ2(χ) =
∫
Ω
δK(χ) dx and with Φ3 the remaining part of the potential Φ, which is Gateaux differentiable

(we denote its Gateaux differential by DΦ3). Next, we observe that Φ1 is convex, and by (4.1m) its domain
is the whole space H1(Ω;RN ), and it is bounded from above in a bounded set of H1(Ω;RN ). Thus, by [56,
Thm. 4.8], Φ1 is locally Lipschitz continuous. Next, since dom(Φ2) 6= ∅, there exists χ0 ∈ domΦ1 ∩ domΦ2

such that Φ1 is in particular continuous at χ0. As both Φ1 and Φ2 are convex and lower semicontinuous, we
conclude [56, Thm. 4.7] that:

∂Φ1(χ) + ∂Φ2(χ) = ∂χ(Φ1 +Φ2)(χ). (5.9)

Now, we can take a measurable selection σk
d,τ ∈ τ∂χζ(E

k−1
τ , χk−1

τ , dk−1
τ , θk−1

τ ,
χ−χk−1

τ

τ ) and by (4.1m), σk
d,τ ∈

L2(Ω;RN ). Then by comparison, we obtain σk
r,τ ∈ L2(Ω;RN ), cf. also the arguments leading to (5.34e) below;

we recall that σk
r,τ is the selection of ∂δK(χk

τ ) in (5.1c).

Step 2: We can treat (5.2) by a variational approach. We consider the function ϕ∗
CH

(χk
τ , ·) defined as

the Legendre transform of ϕ
CH

(χk
τ , ·), and we notice that (5.2b) can be written as

ckτ = ∂µϕ
∗
CH

(χk
τ , µ

k
τ ). (5.10)

Then (5.2) is equivalent the following variational problem on H1(Ω):

minimize µ 7→
∫

Ω

ϕ∗
CH

(χk
τ , µ)− ck−1

τ µ

τ
+M(Ek

τ , χ
k
τ , d

k−1
τ , ck−1

τ , θk−1
τ )∇µ · ∇µ dx, (5.11)

which can be solved through the direct method. With this aim in mind, we notice that, since the domain of
ϕ(χk

τ , d
k−1
τ , ·) is R, its Legendre transform is coercive; actually, this is a classical result from convex analysis.

Step 3: The solution of (5.3) can be obtained simply by weak lower semicontinuity and coercivity
arguments. Note that we do not require convexity of ϕ

ME
(E, d, ·) so that the solution of (5.3) does not need

to be unique.
Step 4: In this final step we solve the time-discrete heat equation (5.4a) with boundary conditions (5.4b).

To this effect, we note that ∇µk
τ ∈ L2(Ω;R3). In particular, we have simply both DdkτE :dkτE/(1+τ |dkτE|2) ∈

L∞(Ω) and M(Ek
e,τ , χ

k
τ , d

k−1
τ , ck−1

τ , θk−1
τ )∇µk

τ ·∇µk
τ/(1+τ |∇µk

τ |2) ∈ L∞(Ω), and thus the right-hand side of

(5.4a) is in L2(Ω). Therefore, eventually, we are to solve (5.4), which represents a semilinear heat-transfer
equation with the right-hand side in H1(Ω)∗. The only nonlinearity with respect to θkτ is in the terms
K(ε(uk

τ ), χ
k
τ , d

k
τ , c

k
τ , θ

k
τ ) and ∂χϕTH

(χk
τ , θ

k
τ ). The later is needed to guarantee θkτ ≥ 0. Anyhow, since this

nonlinearity is of lower order, we can pass through it by compactness and strong convergence. Thus, it
suffices for us to check coercivity of the underlying operator. Having this aim, we test (5.4) by θkτ . The
terms on the right-hand side of (5.4a) containing θkτ are estimated standardly by using Hölder’s and Young’s
inequalities, and using the qualification (4.1q).

Having coercivity, we see that there exists at least one solution. Moreover, this solution satisfies θkτ ≥ 0,
which can be seen by testing (5.4) by the negative part (θkτ )

− of θkτ and using that ∂χϕTH
(χ, θ) = 0 for

θ ≤ 0, as assumed in (4.1s); actually, besides other standard arguments including the non-negativity of the
initial temperature in (4.11b), one also uses that (θkτ )

− = f(wk
τ ) with f(·) = (ϕ

TH
(χk

τ , ·)−1)− nonpositive

nondecreasing, so that its primitive function f̂ is nonincreasing and convex, thus, in particular, we have

the inequality (wk
τ−wk−1

τ )(θkτ )
− = (wk

τ−wk−1
τ )f(wk

τ ) ≥ f̂(wk
τ ) − f̂(wk−1

τ ) which directly follows from the
definition of convex subdifferential. �

Remark 5.2. The delayed terms Ek−1
τ and dk−1

τ in (5.1b) and ck−1
τ in (5.2a) allows us to treat (5.1) and

(5.2) as variational problems. This does not create troubles in the limit passage, see also Step 5 in the proof
of Proposition 5.5 below.

We are now going to rewrite the approximate system (5.1)–(5.4) and the semi-stability information
we can get from (5.3) in a more “condensed” form closer to the desired continuous system (3.7). To this
aim, we extend to the whole time interval I the variables defined a the discrete times kτ through suitable
interpolations. For example, the piecewise affine interpolant of uτ is defined by

uτ (t) :=
t− (k−1)τ

τ
uk
τ +

kτ − t

τ
uk−1
τ for t ∈ [(k−1)τ, kτ ] (5.12a)
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with k = 0, ..., T/τ . Besides, we introduce also the forward (left-continuous)and the backward (right-
continuous)piecewise constant interpolants uτ and uτ defined by, respectively,

uτ (t) := uk
τ , for t ∈ ((k−1)τ, kτ ] , k = 1, ..., T/τ, (5.12b)

and

uτ (t) := uk−1
τ , for t ∈ [(k−1)τ, kτ) , k = 1, ..., T/τ. (5.12c)

Similarly, we define also dτ , dτ , dτ , wτ , wτ , gτ , fb,τ , etc. We will also need the piecewise affine interpolant

of the (piecewise constant) velocity
.
uτ , which we denote by

[ .
uτ

]i
, i.e.

[ .
uτ

]i
(t) :=

t−(k−1)τ

τ

uk
τ−uk−1

τ

τ
+
kτ−t
τ

uk−1
τ −uk−2

τ

τ
for t ∈ ((k−1)τ, kτ ]. (5.12d)

Note that
..
ui
τ := ∂

∂t

[ .
uτ

]i
is piecewise constant with the values (uk

τ−2uk−1
τ +uk−2

τ )/τ2 on the particular
subintervals ((k−1)τ, kτ). In a similar fashion, we interpolate the other variables, using the same notation
we use for u.

In terms of interpolants, we can write the approximate system (5.1)–(5.4) as:

̺
..
ui

τ − div
(
∂EϕME

(Eτ , χτ , dτ ) + D
.
Eτ

)
= fτ with Eτ = ε(uτ )−Eχτ , (5.13a)

∂ .χζ(Eτ , χτ
, dτ , cτ , θτ ,

.
χτ )− κ1∆χτ + ∂χϕME/CH

(Eτ , χτ , dτ , cτ )

+ ∂χϕTH
(χ

τ
, θτ )− E

⊤:
(
∂
E
ϕ

ME
(Eτ , χτ , dτ )+D

.
Eτ

)
+σr,τ ∋ 0 with σr,τ ∈ ∂δK(χτ ), (5.13b)

.
cτ − div

(
M(Eτ , χτ , dτ , cτ , θτ )∇µτ

)
= 0 with µτ = ∂cϕCH

(χτ , cτ ), (5.13c)
∫

Ω

ϕ
ME/CH

(Eτ (t), χτ (t), dτ (t), cτ (t)) +
κ2
2
|∇dτ (t)|2 dx ≤

∫

Ω

(
ϕ

ME/CH
(Eτ (t), χτ (t), d̃, cτ (t))

+
κ2
2
|∇d̃|2 + α(χτ (t))(d̃−dτ (t))

)
dx ∀d̃∈H1(Ω), 0 ≤ d̃ ≤ dτ (t) on Ω, for a.a. t∈I, (5.13d)

.
wτ − div

(
K(Eτ , χτ , dτ , cτ , θτ )∇θτ

)
= r̄τ with wτ = e

TH
(χτ , θτ ) and

with r̄τ =
(
s̄d,τ+∂χϕTH

(χτ , θτ )
)
· .χτ − α(χτ )

.
dτ +

D
.
Eτ :

.
Eτ

1+τ |
.
Eτ |2

+
M(Eτ , χτ , dτ , cτ , θτ )∇µτ ·∇µτ

1 + τ |∇µτ |2
, (5.13e)

where sd,τ ∈ ∂ .χζ(E
k−1
τ , χk−1

τ , dk−1
τ , ck−1

τ , θk−1
τ , dkτχ), (5.13f)

∫

Ω

ϕ
ME/CH

(Ek
τ , χ

k
τ , d

k
τ , c

k
τ ) +

̺

2

∣∣ .uk
τ

∣∣2 + κ1
2

∣∣∇χk
τ

∣∣2 + κ2
2

∣∣∇dkτ
∣∣2 dx

+

∫ kτ

0

∫

Ω

(
D
.
Eτ :

.
Eτ +

(
(∂ .χζ(Eτ , χτ

, dτ , cτ , θτ ,
.
χτ )−

√
τ
.
χτ )+∂χϕTH

(χ
τ
, θτ )

)
· .χτ − α(χτ )

.
dτ

+M(Eτ , χτ , dτ , cτ , θτ )∇µτ ·∇µτ

)
dxdt ≤

∫ kτ

0

∫

Γ

f s,τ ·
.
uτ+qs,τ+µτhs,τ dS + EMC(0), (5.13g)

holding for any k = 0, ..., T/τ , together with the corresponding boundary conditions

(
∂EϕME

(Eτ , χτ , dτ ) + D
.
Eτ

)
n = f s,τ , (5.14a)

∇χτ ·n = 0, (5.14b)

M(Eτ , χτ , dτ , cτ , θτ )∇µτ · n = hs,τ , (5.14c)
(
K(Eτ , χτ , dτ , cτ , θτ )∇θτ

)
·n = qs,τ . (5.14d)

Note that the arguments of the function ϕME/CH at the two sides of the inequality (5.13d) are not the same.

The discrete semi-stability (5.13d) has been obtained from minimizing (5.3) by comparing a solution

dkτ against d̃ and using the triangle inequality for ξ(χk
τ , ·); here the positive degree 1 homogeneity of ξ(χ, ·)

is used. Note that we just choose one global minimizer dkτ of (5.3) from possibly many, if ϕ
ME

(E, χ, ·) is
not convex. The energy inequality (5.13g) which we will prove in Lemma 5.3 below is an analog of the
mechanical/chemical energy (4.9f) over the time interval [0, kτ ] and without making the by-part integration
like (4.12). Note also the term

√
τ | .χτ |2 in (5.13g) which facilitates handling of non-convex energies ϕ

ME

as admitted by the semi-convexity assumption (4.1i) but which disappears in the limit for τ → 0, cf. [44,
Rem. 8.24] for this trick.
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Lemma 5.3 (First estimates). Let again the assumptions of Lemma 5.1 hold. Then the mechano-chemical
energy inequality (5.13g) holds and the following estimates hold uniformly with respect to the time-step
provided τ ≤ min(1/M2, T, 4ǫ2) with M from (4.1i) (or simply τ ≤ T if M = 0):

∥∥uτ

∥∥
W 1,∞(I;L2(Ω;R3))∩H1(I;H1(Ω;R3))

≤ C, (5.15a)
∥∥Eτ

∥∥
L∞(I;L2(Ω;R3))

(5.15b)
∥∥χτ

∥∥
L∞(I;H1(Ω;RN ))∩H1(I;L2(Ω;RN ))∩L∞(Q;RN )

≤ C, (5.15c)
∥∥cτ

∥∥
L2(I;H1(Ω))

≤ C, (5.15d)
∥∥µτ

∥∥
L2(I;H1(Ω))

≤ C, (5.15e)
∥∥dτ

∥∥
L∞(I;H1(Ω))∩BV(I;L1(Ω))∩L∞(Q)

≤ C, (5.15f)
∥∥wτ

∥∥
L∞(I;L1(Ω))

≤ C. (5.15g)

Moreover, for every 1 ≤ r < 5
4 there exists Cr > 0, independent of τ , such that

∥∥∇wτ

∥∥
Lr(Q;R3)

≤ Cr, (5.15h)
∥∥∇θτ

∥∥
Lr(Q;R3)

≤ Cr, (5.15i)

‖wτ‖Lr/(2−r)(Q) ≤ Cr, (5.15j)

‖θτ‖Lr/(2−r)(Q) ≤ Cr. (5.15k)

Proof. The strategy is to test the particular equations in (5.1)–(5.4) respectively by dkτu, d
k
τχ, µ

k
τ , d

k
τd, and

1
2 . For (5.1a,b), we note that a standard argument using convexity of (E, χ) 7→ ϕ

ME/CH
(E, χ, c, d) + δK(χ)

composed with the linear mapping (u, χ) 7→ E, and of
.
χ 7→ ζ(E, χ, c, d, θ,

.
χ) yields:

∫

Ω

̺[dkτ ]
2u·dkτu+

(
∂
E
ϕ

ME
(Ek

τ , χ
k
τ , d

k−1
τ ) + DdkτE

k
τ

)
:ε(dkτu)

+
(
∂ .
d
ζ(Ek

τ , χ
k
τ , d

k
τ , c

k
τ , θ

k
τ , d

k
τχ) + ∂χϕME/CH

(Ek
τ , χ

k
τ , d

k−1
τ , ck−1

τ )

− E
⊤:
(
∂EϕME

(Ek
τ , χ

k
τ , d

k−1
τ ) + DdkτE

k
τ

)
+ σk

r,τ

)
·dkτχ+ κ1∇χk

τ :∇dkτχ dx

≥
∫

Ω

DdkτEτ :
(
ε(dkτu)− Edkτχ

)
+ skd,τ + ∂χϕTH

(χk−1
τ , θk−1

τ ))dkτχ

+
̺

2
|dkτu|2 + ϕ

ME/CH
(Ek

τ , χ
k
τ , d

k−1
τ , ck−1

τ ) +
κ1
2
|∇χk

τ |2 + δK(χk
τ )

− ̺

2
|dk−1

τ u|2− ϕ
ME/CH

(Ek−1
τ , χk−1

τ , dk−1
τ , ck−1

τ )− κ1
2
|∇χk−1

τ |2− δK(χk−1
τ ) dx. (5.16)

Note that ∂EϕME
= ∂EϕME/CH

, since the chemical part of the free energy does not depend on strain. Further,

we execute the test of (5.2) relying on the convexity of c 7→ ϕ
CH

(χ, c)
∫

Γ

hks,τµ
k
τ dS =

∫

Ω

µk
τd

k
τ c+M(Ek

τ , χ
k
τ , d

k−1
τ , ckτ , θ

k−1
τ )∇µk

τ ·∇µk
τ dx

≥
∫

Ω

ϕ
CH

(χk
τ , c

k
τ )− ϕ

CH
(χk

τ , c
k−1
τ ) +M(Ek

τ , χ
k
τ , d

k−1
τ , ckτ , θ

k−1
τ )∇µk

τ ·∇µk
τ dx. (5.17)

Moreover, we test (5.3) with dk−1
τ to obtain

∫

Ω

ϕ
ME

(Ek
τ , χ

k
τ , d

k
τ ) +

κ2
2
|∇dkτ |2 dx ≤

∫

Ω

ϕ
ME

(Ek
τ , χ

k
τ , d

k−1
τ ) +

κ2
2
|∇dk−1

τ |2 − α(χk
τ )(d

k
τ − dk−1

τ ) dx. (5.18)

Relying on the semiconvexity (4.1i) of the mechano-chemical part ϕ
ME/CH

of the free energy (see the argument

in [44, Rem. 8.24]) and adding (5.16), (5.17), and (5.18), and recalling that ϕ
ME/CH

= ϕ
ME

+ϕ
CH

, we benefit

with the telescopic cancellation of the terms ±ϕ
ME/CH

(Ek
τ , χ

k
τ , d

k−1
τ , ckτ ) and ±ϕ

ME/CH
(Ek

τ , χ
k
τ , d

k−1
τ , ck−1

τ ),

and we obtain the following mechano-chemical energy balance:
∫

Ω

̺

2

∣∣dkτu
∣∣2 + ϕ

ME/CH
(Ek

τ , χ
k
τ , d

k
τ , c

k
τ ) +

κ2
2
|∇dkτ |2 +

κ1
2
|∇χk

τ |2 + δK(χk
τ ) + δ[0,1](d

k
τ ) dx

+ τ

k∑

j=1

∫

Ω

DdjτE : djτE + (∂ .χζ(E
k−1
τ , χk−1

τ , dk−1
τ , ck−1

τ , θk−1
τ , djτχ)−

√
τdjτχ) · djτχ
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− α(χj
τ ) · djτd+M(Ej−1

τ , χj−1
τ , dj−1

τ , cj−1
τ , θj−1

τ )∇µj
τ ·∇µj

τ dxdt

≤
∫

Ω

(
̺

2
|v0|2 + ϕ

ME/CH
(E0, χ0, d0, c0) +

κ2
2
|∇d0|2 +

κ1
2
|∇χ0|2

)
dx

+ τ

k∑

j=1

(∫

Ω

f
j
τ ·djτudjτχ dx+

∫

Γ

f
j
s,τ ·djτu+ hjs,τ ·µj

τdS

)
.

We also used that δK(χ0) + δ[0,1](d0) = 0. This proves (5.13g).

Finally, we test the heat equation (5.4) by 1/2, and we add the resulting equation to (5.16)–(5.18).
This is not a physical test (which would be by 1 instead of 1/2) and thus, in this summation, the adiabatic
terms do not cancel out. This scenario simplifies the implicit discretisation to let it decoupled by using θk−1

τ

in ϕ
TH

in (5.1b) instead of θkτ and also it allows us to estimate w with the other variables simultaneously
but it forces more restrictive assumption on the growth of heat capacity than physically necessary, i.e. the
adiabatic terms (i.e. here only ∂χϕTH

(χ, θ) · .χ) are in a smaller Lebesgue space than the physically natural

L1(Q)-space, cf. also [44, Exercise 12.9]. Upon summing over k, we arrive at the following estimate:
∫

Ω

1

2
wk

τ +
̺

2

∣∣dkτu
∣∣2 + ϕ

ME/CH
(Ek

τ , χ
k
τ , d

k
τ , c

k
τ ) +

κ2
2
|∇dkτ |2 +

κ1
2
|∇χk

τ |2 + δK(χk
τ ) + δ[0,1](d

k
τ ) dx

+ τ

k∑

j=1

∫

Ω

DdjτE : djτE + ∂ .χζ(E
k−1
τ , χk−1

τ , dk−1
τ , ck−1

τ , θk−1
τ , djτχ) · djτχ

− α(χj
τ ) · djτd+

1

2
M(Ej

τ , χ
j
τ , d

j−1
τ , cj−1

τ , θj−1
τ )∇µj

τ ·∇µj
τ dxdt

≤
∫

Ω

(
1

2
e
TH

(χ0, θ0) +
̺

2
|v0|2 + ϕ

CH
(χ0, c0) + ϕ

ME
(E0, d0, c0) +

κ2
2
|∇d0|2 +

κ1
2
|∇χ0|2

)
dx

+ τ

k∑

j=1

(∫

Ω

f j
τ ·djτu +

(1
2
∂χϕTH

(χj
τ , θ

j
τ )− ∂χϕTH

(χj−1
τ , θj−1

τ )
)
djτχ dx+

∫

Γ

f j
s,τ ·djτu+ hjs,τ ·µj

τ +
1

2
qjs,τdS

)
.

Using (4.1q) and Holder’s and Young’s inequalities, followed by the discrete Gronwall lemma, we see that
the left-hand side in the above inequality is bounded uniformly with respect to t for all k = 1, . . . , T/τ . We
therefore obtain the following bounds:

‖ .uτ‖L∞(I;L2(Ω;R3)) ≤ C, (5.19a)

‖ϕ
ME

(Eτ , χτ , dτ )‖L∞(I;L1(Ω)) ≤ C, (5.19b)

‖ϕ
CH

(χτ , cτ )‖L∞(I;L1(Ω)) ≤ C, (5.19c)

‖∇χτ‖L∞(I;L2(Ω;RN×3)) ≤ C, (5.19d)

‖∇dτ‖L∞(I;L2(Ω;R3)) ≤ C, (5.19e)

χτ ∈ K a.e. in Q, (5.19f)

‖
.
Eτ‖L2(Q;R3×3) ≤ C, (5.19g)

‖ .χτ‖L2(Q;RN ) ≤ C, (5.19h)

‖
.
dτ‖L1(Q) ≤ C, (5.19i)

‖∇µτ‖L2(Q;R3) ≤ C, (5.19j)

along with (5.15g). From (5.19b) and (4.1d) we immediately obtain the a-priori estimate (5.15b). Further-
more, from (5.19d,h) we get (5.15c). From (5.19e,i), combined with the initial condition for d contained in
(4.11b), and from the monotonicity of d (see Step 3 of the discretization scheme at the beginning of this sec-

tion) we obtain the bound (5.15f) on the damage variable. Moreover, since ε(
.
uτ ) =

.
Eτ +E

.
χτ ∈ L2(Q;R3×3),

estimates (5.19g,h) and Korn’s inequality entail

‖∇ .uτ‖L2(Q;R3×3) ≤ C. (5.20)

Estimate (5.15a) is now recovered from (5.16) and (5.20). Next, from (5.2b) taking a gradient of µτ =
∂cϕCH

(χτ , cτ ), cf. (5.13c), and using the strong convexity assumption (4.1j), we obtain the following estimate
on concentration gradient:

∇cτ = [∂2ccϕCH
(χτ , cτ )]

−1
(
∇µτ − ∂2cχϕCH

(χτ , cτ )∇χτ

)
, (5.21)



18 T.Roub́ıček and G.Tomassetti

and hence, by (4.1pb), (5.19d, j), and (5.15e), we obtain

‖∇cτ‖L2(Q;R3) ≤ C. (5.22)

Because of the coercivity assumption in (4.1g), the bounds (5.19c) and (5.22) imply (5.15d). Using the
assumption (4.1l), we obtain the bound of µτ in L∞(I;L1(Ω)), and combining it with (5.19j) we obtain
(5.15e).

It remains for us to prove (5.15h)–(5.15k). Let us fix r ∈ [1, 5/4) and let us set

φ(ω) =
1 + ω − (1 + ω)1−η

η(1 − η)
with η =

5− 4r

3
. (5.23)

We are going to exploit the following properties of φ:

∀ω ≥ 0 : φ(ω) ≥ 0, φ′(ω) ≤ C, 0 < φ′′(ω) <
1

1 + ω
, (5.24a)

lim sup
ω→+∞

1

φ′′(ω)ω1+η
≤ C. (5.24b)

By the second inequality in (5.24a), the function φ′(wτ ) is in L
∞(Q) and hence it is a legal test for (5.13f),

whose right-hand side r̄τ is in L1(Q). By performing this test, and by exploiting the convexity of φ we arrive
at: ∫

Ω

φ(wτ (T )) dx+

∫

Q

φ′′(wτ )K(Eτ , χτ , dτ , cτ , θτ )∇θτ · ∇wτ dxdt ≤ C. (5.25)

From the equation in the third line of (5.13f), recalling from (4.5) that w 7→ ϑ(χ,w) is the inverse of
θ 7→ e

TH
(χ, θ), we obtain

θτ = ϑ(χτ , wτ ) (5.26)

a.e. in Q. Furthermore, since wτ (t) ∈ H1(Ω) and χτ (t) ∈ H1(Ω;RN ), by the chain rule for Sobolev functions,
equation (5.26) together with assumptions (4.6) and (4.7) implies that θ̄τ (·, t) ∈ H1(Ω) for all t ∈ (0, T ) with

∇θτ = ∂χϑ(χτ , wτ )∇χτ + ∂wϑ(χτ , wτ )∇wτ (5.27)

holding a.e. in Q.
Now, by (4.1k) and (4.6), we have

φ′′(wτ )K(Eτ , χτ , dτ , χτ , θτ )∂wϑ(χτ , wτ )∇wτ · ∇wτ ≥ ǫ1φ
′′(wτ )|∇wτ |2, (5.28)

with some ǫ1 > 0. Moreover, using, in the order, Holder’s and Young’s inequalities, the last inequality in
(5.24a), the last line of (5.13f), and (4.5), we obtain, for δ sufficiently small,

φ′′(wτ )K(Eτ , χτ , dτ , χτ , θτ )∂χϑ(χτ , wτ )∇χτ · ∇wτ

≥ − 1

2δ
φ′′(wτ )|K(Eτ , χτ , dτ , cτ , θτ )∂χϑ(χτ , wτ )∇χτ |2 −

δ

2
φ′′(wτ )|∇wτ |2

≥ − 1

2δ

∣∣∣
K(Eτ , χτ , dτ , cτ , θτ )∂χϑ(χτ , wτ )∇χτ√

1 + wτ

∣∣∣
2

− δ

2
φ′′(wτ )|∇wτ |2

= − 1

2δ

∣∣∣
K(Eτ , χτ , dτ , cτ , θτ )∂χeϑ(χτ , θ̄τ )∇χτ

∂θeTH
(χτ , θ̄τ )

√
1 + e

TH
(χτ , θτ )

∣∣∣
2

− δ

2
φ′′(wτ )|∇wτ |2. (5.29)

The above chain of inequalities, combined with Assumption (4.1r) and with the lower bound in (4.4) yields:

φ′′(wτ )K(Eτ , χτ , dτ , cτ , θτ )∂χϑ(χτ , wτ )∇χτ · ∇wτ ≥ −C
δ
|∇χτ |2 −

δ

2
φ′′(wτ )|∇wτ |2. (5.30)

By combining (5.27) with (5.29), and (5.28), we arrive at

φ′′(wτ )K(Eτ , χτ , dτ , cτ , θτ )∇θτ · ∇wτ ≥ (1− δ)φ′′(wτ )|∇wτ |2 −
C

δ
|∇χτ |2. (5.31)

Since φ is bounded from below, see (5.24a), and since ∇dτ and ∇χτ are bounded in L2(Q), see (5.19d,e), it
follows from (5.25) and (5.31) that ∫

Q

φ′′(wτ )|∇wτ |2 dxdt ≤ C. (5.32)

Now, by Holder’s inequality and by (5.24b) we have the bound
∫

Q

∣∣∇wτ

∣∣r dxdt ≤
( ∫

Q

φ′′(wτ )
∣∣∇wτ

∣∣2 dxdt
)r/2( ∫

Q

( 1

φ′′(wτ )r/2

)2/(2−r)

dxdt
)1−r/2
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≤ C
(
1 +

∫

Q

∣∣wτ

∣∣(2−r)r/(1+η)
dt
)1−r/2

. (5.33)

Now, let us set λ = 2−r
1+η . The choice (5.23) for η entails that

λ
r = 1−λ+ λ

r∗ , with r
∗ = 3r

3−r the exponent of the

Sobolev embedding Lr∗(Ω) ⊂W 1,r(Ω). Thus, a standard interpolation argument based on Holder’s inequal-

ity entails ‖wτ‖Lr(1+η)/(2−r)(Ω) = ‖wτ‖Lr/λ(Ω) ≤ ‖wτ‖1−λ
L1(Ω)‖wτ‖λLr∗(Ω)

= ‖wτ‖r(1+η)/(2−r)
L1(Ω) ‖wτ‖(2−r)/(1+η)

Lr∗(Ω)
.

Hence, the Sobolev embedding and Poincaré’s inequality yield

∥∥wτ

∥∥
Lr(1+η)/(2−r)(Ω)

≤ C
∥∥wτ

∥∥(r−1+η)/(1+η)

L1(Ω)

(∥∥wτ

∥∥
L1(Ω)

+
∥∥∇wτ

∥∥
Lr(Ω)

)(2−r)/(1+η)

.

Thus, on taking into account the bound ‖wτ‖L∞(I;L1(Ω)) ≤ C, which has already been established, we obtain∫
Q
|∇wτ |r dxdt ≤ C(1 +

∫
Q
|∇wτ |r dxdt)1−r/2, whence (5.15h) and thence (5.15j). Finally, thanks to the

boundedness of ∂χϑ, cf. (4.7), by combining (5.27) with (5.19d-e), we obtain (5.15i). In view of (4.6), from
(5.15j) we obtain (5.15k). �

Lemma 5.4 (Further estimates). Under the assumption of Lemma 5.1, for some constant C and Cr

independent of τ , it also holds:
∥∥̺..ui

τ

∥∥
L2(I;H1(Ω;R3)∗)

≤ C, (5.34a)
∥∥ .wτ

∥∥
L1(I;W 1,r/(r−1)(Ω)∗)

≤ Cr with r from (4.8e), (5.34b)
∥∥.cτ

∥∥
L2(I;H1(Ω)∗)

≤ C, (5.34c)
∥∥∆χτ

∥∥
L2(Q;RN )

≤ C, (5.34d)
∥∥σr,τ

∥∥
L2(Q;RN )

≤ C, (5.34e)

where we recall that σr,τ is the piecewise affine interpolant of the selections σk
r,τ in (5.1c).

Proof. The “dual” estimates (5.34a-c) follow by comparison from the time-discrete equations (5.13a,c,e) with
the corresponding boundary conditions (5.14a,c,e).

In order to prove the remaining estimate (5.34d,e), we consider a measurable selection σd,τ ∈
∂ .
d
ζ(Eτ , χτ

, dτ , cτ , θτ ,
.
dτ ). We notice that, thanks to the growth assumption in (4.1m) and estimate (5.15c),

we have σd,τ ∈ L2(Q;RN ). Thus, the equation in (5.13b) can be written as

κ1∆χτ+fτ ∈∂δK(χτ ) with fτ = −σd,τ−∂χϕCH
(χτ , cτ )−∂χϕME

(Eτ , χτ , dτ )−∂χϕTH
(χ

τ
, dτ , θτ )∈L2(Q;RN ).

(5.35)
The estimate (5.34d) can be obtained by testing (5.35) by ∆χτ and using

∫
Ω ∂δK(χτ )∆χτdx ≤ 0 when

counting also the homogeneous boundary conditions. At this stage, (5.13b) is understood in the weak sense,
so that ∆χτ (and hence also σr,τ ) are elements of H1(Ω;RN )∗. A rigorous proof is to be made by the Yosida
regularization of δK and a subsequent limit passage; we refer e.g. to [?] or also [46] for technical details.The
bound (5.34e) then follows by comparison. �

Proposition 5.5 (Convergence for τ → 0). Let again the assumption of Lemma 5.1 hold and let Ω be
smooth. Then there is a subsequence such that

uτ → u strongly in H1(I;H1(Ω;R3)), (5.36a)

χτ → χ strongly in H1(I;L2(Ω;RN )) ∩ C(Q;RN ), (5.36b)

cτ → c & cτ → c strongly in L2(Q), (5.36c)

d̄τ (t) → d̄(t) weakly in H1(Ω) ∀t∈I, (5.36d)
.

dτ →
.

d weakly* in Meas(Q) ∼= C(Q)∗, (5.36e)

θ̄τ → θ, θτ → θ strongly in Ls(Q) with any 1 ≤ s < 5/3, (5.36f)

µτ → µ strongly in L2(I;H1(Ω)), (5.36g)

w̄τ → w & wτ → w strongly in Ls(Q) with any 1 ≤ s < 5/3, (5.36h)

and any (u, χ, c, d, θ, µ, w) obtained in this way is a weak solution to the initial-boundary-value problem
(3.7)–(3.9) according Definition 4.1 which also preserves the total energy in the sense (4.13).
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Proof. For clarity of exposition, we divide the proof to eleven particular steps.

Step 1: Selection of a converging subsequence. By Banach’s selection principle, we select a weakly* converging
subsequence with respect to the norms from estimates (5.15) and (5.34), namely,

uτ → u weakly∗ in W 1,∞(I;L2(Ω;R3)) ∩H1(I;H1(Ω;R3)) (5.37a)

Eτ → E weakly in H1(I;L2(Ω;R3×3)) (5.37b)

χτ → χ weakly∗ in L∞(I;H1(Ω;RN )) ∩ H1(I;L2(Ω;RN )) ∩ L∞(Q;RN ), (5.37c)

cτ → c weakly in L2(I;H1(Ω)), (5.37d)
.
cτ → .

c weakly in L2(I;H1(Ω)∗), (5.37e)

µτ → µ weakly in L2(I;H1(Ω)), (5.37f)

dτ → d weakly∗ in L2(I;H1(Ω)) ∩ L∞(Q), (5.37g)

σr,τ → σr weakly in L2(Q;RN ), (5.37h)

and also (5.36e). Here σr,τ is the piecewise-constant interpolant of the selection σk
r,τ appearing in (5.1c).

Moreover, by the BV-estimate (5.15f) and by Helly’s selection principle, we can rely also on (5.36d) for a
subsequence. We introduce the shorthand notation

vτ = [
.
uτ ]

i and vτ =
.
uτ . (5.38)

We also define tτ := t− τ [t/τ ]. Then, we have vτ − vτ = (τ − tτ )
.
vτ . Moreover,

∫ T

0

∫

Ω

|vτ − vτ |2 dxdt =
∫ T

0

∫

Ω

(τ − tτ )(vτ − vτ ) ·
.
vτ dxdt

≤ τ
∥∥vτ − vτ

∥∥
L2(I;H1(Ω;R3))

∥∥ .vτ

∥∥
L2(I;H1(Ω;R3)∗)

→ 0. (5.39)

By (5.37a), vτ → .
u weakly in L2(I;H1(Ω;R3)). Thus, (5.39) implies that also vτ → .

u weakly∗ in
L2(I;H1(Ω;R3)). On taking into account that

..
ui
τ =

.
vτ and using a standard argument to identify time

derivatives (see for instance [44, Theorem 8.9]), we arrive at
..
ui

τ → ..
u weakly in L2(I;H1(Ω;R3)∗). (5.40)

By Rellich’s theorem we have the continuous and the compact embeddings H1(I;L2(Ω)) ∩
L∞(I;H1(Ω)) ⊂ H1(Q) ⋐ L2(Q) so that (5.37c,f) imply

χτ → χ strongly in L2(Q;RN ). (5.41a)

Again, arguing as (5.39), we have that ‖χτ−χτ‖L2(Q;RN ) → 0 and similarly also for χ
τ
, cf. [44, Rem 8.10],

hence

χτ → χ and χ
τ
→ χ strongly in L2(Q;RN ). (5.41b)

Using the Aubin-Lions theorem with estimates (5.15d) and (5.34c), we obtain, for a subsequence,

cτ → c strongly in L2(I;Lq(Ω)) ∀1 ≤ q < 6. (5.42)

Moreover, we have
∫ T

0

∫
Ω |cτ − cτ |2 dxdt ≤ τ‖ .cτ‖L2(I;H1(Ω)∗)‖cτ − cτ‖L2(I;H1(Ω)) → 0 and similarly also for

cτ . Hence,

cτ → c and cτ → c strongly in L2(Q). (5.43)

Similarly, by using the generalized Aubin-Lions theorem relying on the boundedness of {
.
dτ}τ>0 in

Meas(I;L1(Ω)), see [44, Corollary 7.9], we also have at disposal

dτ → d strongly in L2(Q). (5.44)

Now, let 1 ≤ r < 5/4 and 1 ≤ q < r∗ = 3r
3−r . Then L

q(Ω) is compactly embedded inW 1,r(Ω). By (5.15h)

and (5.15j), we have that ‖wτ‖Lr(I;W 1,r(Ω)) ≤ C. Thus, by (5.34b), thanks to the Aubin-Lions Lemma, there

exists a subsequence such that ‖wτ−w‖Lr(I;Lq(Ω)) → 0. Now, for any such q and r, let λ(r, q) = (1+ 1
r − 1

q )
−1.

Then, we have λ(r,q)
r = 1−λ(r, q)+ λ(r,q)

q . Therefore, by interpolating between L∞(I;L1(Ω)) and Lr(I;Lq(Ω))

(see [44, Proposition 1.41]), we have the inequality ‖wτ − w‖
Lr/λ(r,q)(Q)

≤ C‖wτ − w‖1−λ(r,q)
L∞(I;L1(Ω))‖wτ −
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w‖λ(r,q)Lr(I;Lq(Ω)). Now, for 1 ≤ r < 5/4 fixed, we have inf1≤q<r∗ λ(r, q) = (1+ 1
r − 1

r∗ )
−1 = (1+ 1

r − 3−r
3r )−1 = 3

4 .

Thus, sup 1≤r<5/4
1≤q<r∗

r
λ(r,q) = 5/3. This gives

wτ → w strongly in Ls(Q) with any 1 ≤ s < 5/3. (5.45)

Next, we observe that
.
wτ is bounded in the space of W 1,r/(r−1)(Ω)∗-valued Radon measures on I, since:

∥∥ .wτ

∥∥
Meas(I;W 1,r/(r−1)(Ω)∗)

= sup
‖ϕ‖

C(I;W1,r/(r−1)(Ω)∗)
=1

∫

Q

wτ
.
ϕdxdt

= sup
‖ϕ‖

C(I;W1,r/(r−1)(Ω)∗)
=1

T/τ∑

k=1

∫

Ω

wk
τ (ϕ(kτ) − ϕ((k − 1)τ)) dx

= sup
‖ϕ‖

C(I;W1,r/(r−1)(Ω)∗)
=1

∫

Ω

wT/τ
τ ϕ(T )−

T/τ−1∑

k=1

∫

Ω

(
wk+1

τ −wk
τ

)
ϕ(kτ) dx − w1

τϕ(0) dx

≤
∥∥ .wτ

∥∥
L1(I;W 1,r/(r−1)(Ω)∗)

≤ C, (5.46)

where the last inequality follows from (5.34b). We can now use the generalized version of the Aubin-Lions
Lemma in [44, Corollary 7.9] and interpolate with the estimate to conclude that there exists w ∈ Ls(Q) such
that

wτ → w strongly in Ls(Q) with any 1 ≤ s < 5/3. (5.47)

Thanks to (5.45) and (5.47), in order to prove the first convergence statement in (5.36h) it suffices for us to
show that w = w. To this effect, we argue as in [44, Rem. 8.10]:

∥∥wτ − wτ

∥∥
L1(I;W 1,r/(r−1)(Ω)∗)

=

T/τ∑

k=1

∫ k

(k−1)τ

∥∥∥ t−kτ
τ

(wk
τ − wk−1

τ )
∥∥∥
W 1,r/(r−1)(Ω)∗

dt

=
τ

2

T/τ∑

k=1

∥∥wk
τ − wk−1

τ

∥∥
W 1,r/(r−1)(Ω)∗

=
τ

2

T/τ∑

k=1

∫ k

(k−1)τ

∥∥ .wτ

∥∥
W 1,r/(r−1)(Ω)∗

dt =
τ

2

∫ T

0

∥∥ .wτ

∥∥
W 1,r/(r−1)(Ω)∗

dt→ 0,

where we have used the bound (5.34b). The second convergence statement in (5.36h) is arrived at using a
similar argument.

In order to obtain the convergences in (5.36f), we invert (5.13f) with respect to θτ to obtain (cf. (4.5)):

θτ = ϑ(χτ , wτ ), and θτ = ϑ(χ
τ
, wτ ). (5.48)

Then, (5.36f) follows from the already-established convergences (5.36h) and (5.41b) by the continuity of the
Nemytskĭı mapping associated to ϑ.

Step 2: Strong convergence of Eτ . In this step we prove:

Eτ → E strongly in L2(Q;R3×3). (5.49)

Note that we already have the weak convergence. Thus, by (4.3),

ǫ‖Eτ −E‖2L2(Q;R3×3) ≤
∫

Q

(
∂
E
ϕ

ME
(Eτ , χτ , dτ )− ∂

E
ϕ

ME
(E, χτ , dτ )

)
: (Eτ −E) dxdt

=

∫

Q

∂
E
ϕ

ME
(Eτ , χτ , dτ ) : (ε(uτ )− ε(u))− ∂

E
ϕ

ME
(Eτ , χτ , dτ ) : E(χτ−χ) dxdt

−
∫

Q

∂EϕME
(E, χτ , dτ ) : (Eτ −E) dxdt. (5.50)

We are going to show that the right-hand side of (5.50) converges to 0 as τ → 0.
By (5.41b) and (5.44) and the continuity of the Nemytskĭı mapping induced by ∂

E
ϕ

ME
(E, ·, ·) and

by (5.37b), we have ∂
E
ϕ

ME
(E, χτ , dτ ):(Eτ−E) → 0 weakly in L1(Q). Also, by the boundedness of

{∂
E
ϕ

ME
(Eτ , χτ , dτ )}τ>0 in L2(Q;R3×3) and again by (5.41b), we have ∂

E
ϕ

ME
(Eτ , χτ , dτ ):E(χτ−χ) → 0

strongly in L1(Q). Hence, relying on the discrete equation (5.13a), we can continue in estimation (5.50) as
follows:

ǫ lim sup
τ→0

‖Eτ −E‖2L2(Q;R3×3) ≤ lim sup
τ→0

∫

Q

∂EϕME
(Eτ , χτ , dτ ):(ε(uτ )− ε(u)) dxdt.
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= lim sup
τ→0

∫

Q

(f τ − ̺
..
ui
τ ) · (uτ − u) dxdt−

∫

Q

D
.
Eτ : (Eτ −E) dxdt

≤ lim
τ→0

(∫

Ω

̺
.
uτ (0) · uτ (τ)− ̺

.
uτ (T ) · uτ (T ) dx+

∫ T

τ

∫

Ω

̺
.
uτ (· − τ)· .uτ dxdt+

∫

Q

̺
..
ui
τ ·udxdt

)

+ lim
τ→0

∫

Ω

fτ · (uτ − u) dxdt − lim inf
τ→0

∫

Q

D
.
Eτ : (Eτ −E) dxdt

=

∫

Ω

̺
.
u(0)·u(0)− ̺

.
u(T )·u(T ) dx+

∫

Q

̺| .u|2 + ̺
..
u·u dxdt

− lim inf
τ→0

∫

Q

D
.
Eτ : Eτ dxdt+ lim

τ→0

∫

Q

D
.
Eτ : E dxdt

= lim inf
τ→0

1

2

∫

Ω

(
DEτ (T ):Eτ (T )− DE0:E0

)
dx− 1

2

∫

Ω

(
DE(T ):E(T )− DE0:E0

)
dx ≤ 0. (5.51)

Here we also used the discrete by-part summation, cf. e.g. [44, Rem. 11.38] and that, since Eτ − Eτ =

(τk− t)
.
Eτ for t ∈ ((k− 1)τ, kτ) and since D is positive, we have

∫
Q D

.
Eτ :(Eτ −Eτ ) dxdt ≥ 0. Also we used

the weak convergence Eτ (T ) ⇀ E(T ) in L2(Ω;R3×3), which is readily verified through
∫
Ω Eτ (T ):Ẽ dx =

∫ T

0

∫
Ω

.
Eτ :Ẽ dxdt +

∫
Ω
Eτ (0):Ẽ dx →

∫ T

0

∫
Ω

.
E:Ẽ dxdt +

∫
Ω
E(0):Ẽ dx =

∫
Ω
E(T ):Ẽ dx holding for Ẽ ∈

L2(Ω;R3×3) arbitrary. Moreover, we also used that {̺ ..ui
τ}τ>0 converges weakly* in a space which is in

duality to the space where
.
u lives, and in particular also that ̺

..
u is in duality with

.
u:

.
u ∈ L2(I;H1(Ω;R3)) and ̺

..
u ∈ L2(I;H1(Ω;R3)∗). (5.52)

Step 3: Convergence in the semilinear mechanical part. Because of the smoothness of ϕ
ME

and of the strong

convergence of Eτ , χτ , and dτ already established and stated, respectively, in (5.49), (5.41b), and (5.44), we
have

∂
E
ϕ

ME
(Eτ , χτ , dτ ) → ∂

E
ϕ

ME
(E, χ, d) in L2(Q;R3×3). (5.53)

by continuity of the Nemytskĭı mapping induced by ϕ
ME

. The limit passage in (5.13a) is then done.

Step 4: Limit passage in the phase-field equation. We rewrite (5.13d) as two variational inequalities:
∫

Q

(
σr,τ + ∂χϕME/CH

(Eτ , χτ , dτ , cτ ) + ∂χϕTH
(χ

τ
, θτ )− E

⊤:(∂EϕME
(Eτ , χτ , dτ ) + D

.
Eτ )

)
·(v− .χτ )

+ κ1∇χτ :(∇v−∇ .χτ ) + ζ(Eτ , χτ
, dτ , cτ , θτ , v) dxdt

≥
∫

Q

−ζ(Eτ , χτ
, dτ , cτ , θτ ,

.
χτ ) dxdt ∀v∈L2(I;H1(Ω;RN )), (5.54a)

∫

Q

σr,τ ·(v−χτ ) dxdt ≥ 0 ∀v∈L2(Q;RN ), v∈K a.e. in Q. (5.54b)

The limit passage in (5.54b) is easy because σr,τ → σr weakly in L2(Q;RN) and χτ → χ strongly in
L2(Q;RN) has already been proved in Step 2; thus σr ∈ NK(χ) is shown. Now we can make a limit pas-
sage in (5.54a). Here on the left-hand side we have collected all terms that need to be handled through a
continuity or a weak upper semicontinuity, while the right-hand side is to be treated by weak lower semi-
continuity. We benefit from the already proven strong convergence of dτ , cτ , and Eτ . The limit passage in
∂χϕME/CH

(Eτ , χτ , dτ , cτ )·
.
χτ and ∂χϕTH

(χ
τ
, θτ )·

.
χτ is simply by continuity. Furthermore, we have

lim sup
τ→0

∫

Q

−κ1∇χτ ·∇
.
χτ dxdt ≤

∫

Ω

κ1
2

∣∣∇χ0

∣∣2 dx− lim inf
τ→0

∫

Ω

κ1
2

∣∣∇χ(T )
∣∣2 dx

≤
∫

Ω

κ1
2

∣∣∇χ0

∣∣2 − κ1
2

∣∣∇χ(T )
∣∣2 dx. (5.55)

The only difficult term is E⊤:D
.
Eτ

.
χτ because so far we only know the weak convergence of both

.
Eτ and

.
χτ .

This requires a quite tricky chain of arguments:

lim sup
τ→0

∫

Q

E
⊤ :

(
∂EϕME

(Eτ , χτ , dτ ) + D
.
Eτ

) .
χτ dxdt

= lim sup
τ→0

∫

Q

(
∂EϕME

(Eτ , χτ , dτ ) + D
.
Eτ

)
:
(
ε(
.
uτ )−

.
Eτ

)
dxdt
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= − lim inf
τ→0

∫

Q

(
̺
..
ui

τ − fτ

)
· .uτ + (∂

E
ϕ

ME
(Eτ , χτ , dτ ) + D

.
Eτ ) :

.
Eτ dxdt+ lim

τ→0

∫

Σ

f s,τ ·
.
uτ dS dt

≤ − lim inf
τ→0

(1
2

∫

Ω

̺| .uτ (T )|2 dx+

∫

Q

D
.
Eτ :

.
Eτ dxdt

)

+
1

2

∫

Ω

̺| .u(0)|2 dx+ lim
τ→0

( ∫

Q

fτ ·
.
uτ − ∂EϕME

(Eτ , χτ , dτ ) :
.
Eτ dxdt+

∫

Σ

f s,τ ·
.
uτ dS dt

)

≤ −1

2

∫

Ω

̺| .u(T )|2 dx−
∫

Q

D
.
E :

.
E dxdt

+
1

2

∫

Ω

̺| .u(0)|2 dx+

∫

Q

f · .u− ∂EϕME
(E, χ, d) :

.
E dxdt+

∫

Σ

f s·
.
udS dt

= −
∫ T

0

〈
̺
..
u,
.
u
〉
dt+

∫

Q

f · .u−
(
∂
E
ϕ

ME
(E, χ, d) + D

.
E
)
:
.
E dxdt+

∫

Σ

f s·
.
u dS dt

=

∫

Q

E
⊤ :

(
∂
E
ϕ

ME
(E, χ, d) + D

.
E
) .
χ dxdt. (5.56)

Here, the first equality has used just E
.
χτ = ε(

.
uτ ) −

.
Eτ , the second one has used the force balance (5.13a)

with the boundary conditions (5.14a) tested by
.
uτ , then we have used the discrete by-part integration (or, in

fact, summation) 1
2 |
.
uτ (T )|2− 1

2 |
.
u(0)|2 ≤

∫ T

0

..
ui
τ ·
.
uτdt on Ω, then semicontinuity arguments, then the by-part

integration formula
∫ T

0

〈
̺
..
u,
.
u
〉
dt =

∫

Ω

̺

2

∣∣ .u(T )
∣∣2 − ̺

2

∣∣ .u(0)
∣∣2 dx. (5.57)

relying on the fact that, by (5.52), ̺
..
u and

.
u are in duality, then the limit force equilibrium we have already

proved in Step 3, and at the end still E
.
χ = ε(

.
u) −

.
E. The limit in

∫
Q σr,τ ·

.
χτ dxdt is simple because, for

any σr,τ ∈ NK(
.
χτ ), this integral equals to

∫
Ω
δK(χτ (T ))− δK(χ0) dx = 0. Eventually, the limit passage the

right-hand side of (5.54a) is by convexity of ζ(E, χ, d, c, θ, ·) and the weak lower semi-continuity

lim inf
τ→0

∫

Q

ζ(Eτ , χτ
, dτ , cτ , θτ ,

.
χτ ) dxdt ≥

∫

Q

ζ(E, χ, d, c, θ,
.
χ) dxdt. (5.58)

Here we have also used that Eτ → E, which follows from (5.49) and from

‖Eτ −Eτ‖L2(Q;R3×3) ≤ τ‖
.
Eτ‖L2(Q;R3×3) → 0. (5.59)

Step 5: Limit passage in the diffusion equation. By the strong convergence of Eτ , χτ , dτ , and cτ established
in (5.49), (5.41b), (5.43), and (5.36f), and by assumption of boundedness (4.1k) of M and by the Nemytskii-
mapping continuity argument, we have that

M(Eτ , χτ , dτ , cτ ) → M(E, χ, c, d) strongly in Lp(Q;R3×3
sym) ∀1 ≤ p < +∞. (5.60)

Now, owing to (5.37e), (5.37f), and (5.60), we can pass to the limit in the first of (5.13c). In order to pass
to the limit in the second of (5.13c), we observe that by the aforementioned a.e. convergence of χτ , dτ , and
cτ in Q and by the continuity of ∂cϕCH

, we have

µτ = ∂cϕCH
(χτ , cτ ) → ∂cϕCH

(χ, c) a.e. in Q, (5.61)

for some subsequence. By comparing (5.61) with (5.37f) we conclude that

µ = ∂cϕCH
(χ, c). (5.62)

Step 6: Limit passage in the semi-stability (5.13d) towards (4.9d). The mutual recovery sequence in the sense
of [33] for (5.13d) uses the sophisticated construction of M.Thomas [52, 53]. For all t∈I, we have

dτ (t) → d(t) weakly in H1(Ω). (5.63)

Consider a competitor d̃ of d(t) in (4.9d). It suffices to consider the case

d̃(x) ≤ d(x, t) for a.e. x∈Ω, (5.64)

since otherwise the right-hand side the inequality (4.9d) is +∞.
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We define the sequence

d̃τ (x, t) = min
{
(d̃(x)− ετ )

+, dτ (x, t)
}

with ετ =
∥∥dτ (t)− d(t)

∥∥1/2

Lq(Ω)
. (5.65)

with 1 ≤ q < 6. It is immediate to check that d̃τ ∈ H1(Ω) and d̃τ (t) < dτ (t). Moreover, for Aτ (t) = {x ∈ Ω :

d̃(x) − ετ ≤ dτ (x, t)}, we have:

∇d̃τ (x, t) =




∇d̃(x) ∀x ∈ Aτ (t),

∇dτ (x, t) ∀x ∈ Ω \Aτ (t).
(5.66)

Consequently

lim inf
τ→0

∫

Ω

∣∣∇dτ (x, t)
∣∣2 −

∣∣∇d̃τ (x, t)
∣∣2 dx = lim inf

τ→0

∫

Aτ

∣∣∇dτ (x, t)
∣∣2 −

∣∣∇d̃(x)
∣∣2 dx. (5.67)

Because of (5.64), we have |dτ (x, t)− d(x)| ≤ ετ ⇒ x ∈ Aτ (t). Thus, Ω \Aτ (t) ⊂ {x ∈ Ω : |dτ (x, t)− d̃(x)| ≥
ετ}. Using Markov’s inequality and the weak convergence of dτ (t) to d(t) in H

1(Ω), we obtain

∣∣Ω\Aτ (t)
∣∣ ≤ 1

εqτ

∫

Ω

∣∣dτ (x, t) − d(x, t)
∣∣qdx =

∥∥dτ (t)− d(t)
∥∥q/2

Lq(Ω)
→ 0 (5.68)

where q ∈ [1, 6) is the same exponent as (5.65) and |Ω\Aτ (t)| denotes the Lebesgue measure of the set
Ω\Aτ (t). Given a set C, let δC be its indicator function. It is shown in [53] that

δAτ (t)∇dτ (t) → ∇d(t) weakly in L2(Ω;R3). (5.69)

On the other hand we have, trivially, that δAτ (t)∇d̃ converges strongly to ∇d̃. Thus, from (5.67) we find, by
lower semicontinuity,

lim inf
τ→0

∫

Ω

|∇dτ (x, t)|2 − |∇d̃τ (x, t)|2 dx = lim inf
τ→0

∫

Ω

δAτ (t)(x)|∇dτ (x, t)|2 dx− lim
τ→0

∫

Aτ (t)

|∇d̃(x)|2 dx

≥
∫

Ω

|∇dτ (x, t)|2 dx−
∫

A

|∇d̃(x)|2 dx. (5.70)

With this result, the limit passage in the semi-stability condition is easily achieved for a.e. t∈ I, on taking
into account that Eτ (t) → E(t) strongly in L2(Ω;R3×3

sym); furthermore, χτ (t) → χ(t) strongly in Lq(Ω;RN ),
and cτ (t) → c(t) strongly in Lq(Ω).

Step 7: Mechanical/chemical energy conservation (4.9f). This is standardly achieved by testing the mechano-

chemical equations (3.7a–d) respectively by
.
u,

.
χ, µ, and

.
d, and by using the chain rule to integrate with

respect to t. Here, however, (3.7d) has to be specially treated because
.
d can be a measure.

Making the first test legal, we again need ̺
..
u to be in duality with

.
u, cf. (5.52), and make use of (5.57).

For the second mentioned test, we need ∆χ ∈ L2(Q;RN ) to have the integration-by-part formula at our
disposal. The regularity of ∆χ follows from estimate (5.34d) and weak convergence. The proof of the by-part
integration formula is rather technical because χ : I → H1(Ω;RN ) is actually only a weakly continuous
function but not necessarily strongly continuous. The desired formula is

∫

Q

∆χ · .χ dxdt =
1

2

∫

Ω

|∇χ0|2 − |∇χ(T )|2 dx. (5.71)

Its proof is a bit tricky and can be done either by a mollification in space [36, Formula (3.69)] or also [44,
Formula (12.132b)], and or in time by a time-difference technique [18, Formula (2.15)]. Also we use that
σr ∈ L2(Q;RN ) is in duality with

.
χ ∈ L2(Q;RN ), so that the integral

∫
Q
σr · .χ dxdt has a sense and simply

equals to 0 because σr ∈ ∂δK(χ) has been proved in Step 4 and because δK(χ0) = 0 has been assumed, cf.
(4.11b).

Also,
.
c ∈ L2(I;H1(Ω)∗) is in duality with µ ∈ L2(I;H1(Ω)) as well as

.
χ ∈ L2(Q;RN ) is in duality with

∂χϕCH
(χ, c) ∈ L2(Q;RN ), cf. (5.34c) with (5.36g) and (4.1e) so that we obtain

∫ T

0

(
〈.c, µ〉+

∫

Ω

∂χϕCH
(χ, c)· .χ dx

)
dt =

∫

Ω

ϕ
CH

(χ(T ), c(T ))− ϕ
CH

(χ0, c0) dx. (5.72)

Eventually, we use the Riemann-sum approximation of Lebesgue integrals and semi-stability as devised
in [9, 32], cf. also [43, Formulas (4.68)–(4.74)] for a combination with rate-dependent mechanical part. In
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fact, the Riemann sums can range only a.a. points from I and thus the semi-stability need not hold at every
time but only at almost each times, cf. (4.9d). By this way we obtain

∫

Ω

ϕ
ME

(E(T ), χ(T ), d(T )) +
κ2
2
|∇d(T )|2 + α(χ(T ))d(T ) dx+

∫

Q

α′(χ)
.
χd dxdt

=

∫

Ω

ϕ
ME

(E0, χ0, d0) +
κ2
2
|∇d0|2 + α(χ0)d0 dx−

∫

Q

∂EϕME
(E, χ, d)

.
E + ∂χϕME

(E, χ, d)
.
χ dxdt. (5.73)

Again we used that
.
E ∈ L2(Q;R3×3

sym) and
.
χ ∈ L2(Q;RN ) are in duality with ∂

E
ϕ

ME
(E, χ, d) ∈ L2(Q;R3×3

sym)

and ∂χϕME
(E, χ, d)

.
χ, respectively. Here we also used the semi-stability of the initial condition d0 assumed

in (4.11c).

Eventually, by summing up all four obtained partial balances, we obtain (4.9f).

Step 8: Strong convergence of
.
Eτ ,

.
χτ , and ∇µτ . Using the discrete mechano-chemical energy imbalance

(5.13g) and eventually the energy equality (4.9f), we can write
∫

Q

D
.
E:
.
E + ∂ .χζ(E, χ, c, d, θ,

.
χ) · .χ+M(E, d, c, θ)∇µ·∇µ dxdt

≤ lim inf
τ→0

∫

Q

D
.
Eτ :

.
Eτ + ∂ .χζ(Eτ , χτ

, dτ , cτ , θτ ,
.
χτ ) ·

.
χτ +M(Eτ , χτ , dτ , cτ , θτ )∇µτ ·∇µτ

≤ lim sup
τ→0

∫

Q

D
.
Eτ :

.
Eτ + ∂ .χζ(Eτ , χτ

, dτ , cτ , θτ ,
.
χτ ) · .χ+M(Eτ , χτ , dτ , cτ , θτ )∇µτ ·∇µτ dxdt

≤ lim sup
τ→0

(
E

MC
(0)−

∫

Ω

̺

2

∣∣ .uτ (T )
∣∣2+ ϕ

ME/CH
(Eτ (T ), χτ (T ), dτ (T ), cτ (T ))

+
κ1
2

∣∣∇χτ (T )
∣∣2 + κ2

2

∣∣∇dτ (T )
∣∣2dx−

∫

Σ

f s,τ ·
.
uτ dSdt+

∫

Q

α(χτ )
.
dτ − fτ ·

.
uτ dxdt

)

≤ EMC(0)− EMC(T )−
∫

Σ

f s·
.
udSdt−

∫

Q

α′(χ)
.
χd+ f · .u dxdt−

∫

Ω

α(χ(T ))d(T )− α(χ0)d0 dx

=

∫

Q

D
.
E:
.
E + ∂ .χζ(E, χ, c, d, θ,

.
χ) · .χ+M(E, d, c, θ)∇µ·∇µ dxdt. (5.74)

Note that in the last inequality we have made use of the discrete by-part integration (= summation) formula
for the following calculations, being a discrete analogue of (4.12) with z = 1:

lim
τ→0

∫

Q

α(χτ )
.
dτ dxdt = lim

τ→0

T/τ∑

k=1

∫

Ω

α(χk
τ )(d

k
τ−dk−1

τ ) dx

= lim
τ→0

(∫

Ω

α(χT/τ
τ )dT/τ

τ dx−
T/τ∑

k=1

∫

Ω

(
α(χk

τ )− α(χk−1
τ )

)
dk−1
τ dx

)
−
∫

Ω

α(χ0
τ )d

0
τ dx

= lim
τ→0

(∫

Ω

α(χτ (T ))dτ (T ) dx−
∫

Q

(
α′(χτ )

.
χτdτ + rτdτ

)
dxdt

)
−
∫

Ω

α(χ0)d0 dx

=

∫

Ω

α(χ(T ))d(T ) dx−
∫

Q

(
α′(χ)

.
χd+ 0

)
dxdt−

∫

Ω

α(χ0)d0 dx,

where we have set d−1
τ = d0τ = d0 and where rτ denotes the difference between [α(χτ )]

.
meaning the time

derivative of the piecewise linear interpolation α(χk
τ ) and the piece-wise constant-in-time function with values

(α(χk
τ )−α(χk

τ ))/τ on the interval ((k−1)τ, kτ); here we used the differentiability assumption on α stated in
(4.1o) and the estimate |rτ | ≤ τ2(sup

RN α′′)| .χτ |2 so that
∣∣∣
∫

Q

rτdτ dxdt
∣∣∣ ≤ τ2

(
sup
RN

α′′
) ∫

Q

∣∣ .χτ

∣∣2dτ dxdt ≤ τ2
(
sup
RN

α′′
)∥∥ .χτ

∥∥2
L2(Q;RN )

∥∥dτ
∥∥
L∞(Q)

= O(τ2) → 0

for τ → 0. In order to check that α′(χτ )
.
χτdτ converges to α′(χ)

.
χd weakly in L1(Q), we used (5.41b) together

with (5.37c), and (5.44). The last equality in (5.74) has been proved in Step 7. Altogether, we can write
“lim” and “=” everywhere in (5.74) and, together with the already proved weak convergence, we obtain the

desired strong convergence of
.
Eτ and

.
χτ and ∇µτ in L2(Q)-spaces. Here we rely on the well-known concept

of compactness via convexity ([55, 56]) with some modifications. In particular, for technical details about
the term M∇µ·∇µ with the nonconstant coefficient M = M(E, d, c, θ), we refer to [49, Formula (4.25)].
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Step 9: Limit passage in the heat equation (5.13f). Having proved the strong convergence in Steps 3 and 9, the

right-hand side of (5.13f) converges strongly in L1(Q) except the term α(χ)
.
d but even this term converges

weakly∗ in Meas(Q), cf. Step 7, which is sufficient to the limit passage towards (3.7e), which is then easy.

Step 10: Total-energy conservation (4.13) at almost each time. Considering t∗ ∈ [0, T ) fixed, we use a
smoothened characteristic function of the cylinder Ω× [0, t∗], namely

zǫ(x, t) =




1 if t ≤ t∗,
1 + (t∗−t)/ǫ if t∗ ≤ t ≤ t∗ + ǫ,
0 if t ≥ t∗ + ǫ,

(5.75)

as the test function for (4.9e). Using that
.
z = 0 for t ∈ [0, t∗]∪ [t∗ + ǫ, T ] and that ∇z = 0, this test leads to

1

ǫ

∫ t∗+ǫ

t∗

∫

Ω

w dxdt =

∫ t∗

0

∫

Ω

((
∂ .χζ(E, χ, c, d, θ,

.
χ)+∂χϕTH

(χ, θ)+α′(χ)d
)
· .χ+M(E, χ, c, d, θ)∇µ·∇µ

+ D
.
E :

.
E
)
dxdt+

1

ǫ

∫ t∗+ǫ

t∗

∫

Ω

α(χ)d dxdt+

∫

Ω

(
w0+α(χ0)d0

)
dx+

∫

Σ

qs dS dt+ ot(ǫ) (5.76)

with ot∗(ǫ) abbreviating the corresponding integrals over [t∗, t∗ + ǫ]. We have limǫ→0 ot∗(ǫ) = 0 for any t∗
due to the absolute continuity of the Lebesgue integral. Considering however t∗ as a right Lebesgue point of
the functions t 7→

∫
Ω
w(x, t) dx and t 7→

∫
Ω
α(χ(x, t))d(x, t) dx, in the limit for ǫ→ 0+ we obtain

∫

Ω

w(t∗) dxdt =

∫ t∗

0

∫

Ω

((
∂ .χζ(E, χ, c, d, θ,

.
χ)+∂χϕTH

(χ, θ)+α′(χ)d
)
· .χ+M(E, χ, c, d, θ)∇µ·∇µ

+ D
.
E :

.
E
)
dxdt+

∫

Ω

α(χ(t∗))d(t∗) dx+

∫

Ω

(
w0+α(χ0)d0

)
dx+

∫ t∗

0

∫

Γ

qs dS dt. (5.77)

The set of such points t∗ has full Lebesgue measure on I. Eventually, we get (4.13) by summing (5.77) with
the mechanical/chemical energy balance (4.9f) written for t∗ instead of T obtained already in Step 8 by an
obvious modification of the arguments there. �

6. Some additional examples and concluding remarks

The general model (3.7) admits much wider application than so far presented in Examples 3.1 and 3.2, which
is what we want partly illustrate now.

Example 6.1 (Magnetic and hydride transformations in intermetallics). Some intermetallic compounds ex-
posed to hydrogen (or deuterium) exhibit not only metal/hydride phase transformations as mentioned above
but also a dramatic structural transformation analogous to the martensitic ferro-to-para magnetic trans-
formation, both mutually coupled. This is the case of Uranium- or rare-earth-based alloys, cf. [22, 25].
Experiments show that hydrogenation implies a substantial increase of the magnetic ordering temperature
and noticeable increase of specific heat, cf. e.g. [15, 26]. There does not seem to be any models for it in
mathematical literature to exist, however. The structural cubic-to-cubic phase transformation in particular
single-crystal grains is similar e.g. to cubic-to-tetragonal so-called martensitic transformation which may
also exhibit magnetic phase transformation in intermetallic like NiMnGa. Here, densely packed cubic config-
uration is typically paramagnetic (because electron orbits of particular atoms over-cover each other) while
sparsely packed cubic configuration is typically ferromagnetic) in analogy with cubic austenite and tetragonal
martensite in NiMnGa. Counting this analogy, one can assembly a model from already existing particular
models for the martensitic transformation of the Souza-Auricchio type as e.g. in [1, 27], for the ferro-to-para
magnetic transformation as in [36] in combination (and ignoring gyromagnetic effects) as in [46], and for the
metal/hydride transformation under diffusion as above in (3.10). When considering the magnetic variation
slow and thus neglecting all induced electrical effects and when neglecting also the self-induced demagnetis-
ing field, one can consider the (vector-valued) phase field χ = (λ,m) composed by the volume fraction λ
related to the metal/hydride transformation and m the magnetization vector. Magnetization hysteresis ef-
fects due to magnetic-domain pinning effects can be accounted for through the nonsmooth potential ζ, cf.
[37, 38, 47, 51]. Again, damage is an important phenomenon which can even pulverize such materials due to
markable volume changes during the cubic-to-cubic structural transformation. Combining [46, 48, 50], the
free energy can be considered as

ϕ
TOT

(E, χ, c, d, θ) =
1

2
C(d)E:E +

k

2

∣∣a(λ)−c
∣∣2+ φ1(c) + φ2(θ) +

a0
2
(θ−θc)|m|2+ b0

4
|m|4+ α1(θ)λ
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=
1

2
C(d)E:E +

b0
4
|m|4

︸ ︷︷ ︸
=: ϕ

ME

+
k

2

∣∣a(λ)−c
∣∣2 + φ1(c)

︸ ︷︷ ︸
=: ϕ

CH

+ φ2(θ) +
a0
2
(θ−θc)|m|2 + α1(θ)λ

︸ ︷︷ ︸
=: ϕ

TH

(6.1)

and with θc > 0 the Curie temperature above which the ferromagnetic phase does not exists, a0, b0 > 0, and
α1 the temperature-dependent latent-heat density of the medium. Now κ1

2 |∇χ|2 occurring in (3.4) involves

also κ1

2 |∇m|2 which is called an exchange energy in magnetism. Further considerations may go beyond
the ansatz in Section 2 by involving global effects through a demagnetising field as in [36, Remark 11]
or dynamical electro-magnetic effects including Joule heating through the Maxwell system, possibly in an
eddy-current approximation as in [46].

Example 6.2 (Water and heat propagation in concrete). An important application in civil engineering is wa-
ter/vapor and heat transport in concrete undergoing damage and creep. The creep strain is most influenced
by the moisture and temperature distribution. The model would be quite similar to (3.13) although some
microscopical mechanisms behind the free energy and some dissipation mechanisms are different. In partic-
ular, c would be again interpreted as water concentration and µ as pressure. Moreover, the decomposition
(1.1) would be adapted to the form considered in models of concrete that take into account creep, shrinkage
and thermal strains [2, 17], namely, ε(u) = E +Ecr +Esh +Eth, where Ecr would be the creep strain, Esh

would be the shrinkage strain caused by change of moisture, and Eth would be the thermal strain. Of course,
since direct coupling with c and θ is not included in our analysis, we would resort to a penalization like in
(3.10) for c and a similar one for θ, cf. Remark 6.4 below. Furthermore, in this case the constraint χ ∈ K
would be dropped, that is, we would set K = RN . Moreover, the dissipation potential ζ would be smooth at
.
πpl = 0 because, in contrast to plasticity, the creep is typically not an activated processes. Also the ageing
mechanisms play a role, influencing the activation threshold α of damage. There is a lot of phenomenological
models in literature, although typically not based on rational thermomechanics to be directly fitted in the
framework (3.7); cf. e.g. [28].

Remark 6.3 (Poro-elastic model revisited). In order to apply our existence Theorem to the poroelastic model
of Example 3.2, we need to slightly depart from the assumptions typically made in the modeling literature.
To begin with, the Biot modulus M is usually assumed to be affine (cf. [20, 31]), a feature that would make
the functional φ 7→ ψ non-convex (even equi-semiconvexity (4.1i) cannot be expected, which would make
technical troubles in using time discretisation). Yet, (4.1i) does not necessarily mean M or G or λ to be
constant. More importantly, a small modification of the free energy complying with the growth/coercivity
restriction (4.1d) is needed for facilitating the analysis. In fact, the energy functional (3.13) from the poro-
elastic example does not comply with the second condition in (4.1d) unless λ, G, and M are independent
of d. Also, (3.13) is incompatible with (4.1i) in general, although one could weaken this condition and then
make a finer splitting in the time-discretisation in Section 5 by considering (φ, γ) separately from (E, πpl) in
(5.1); here it however depends on the dissipation which should allow this separation. Anyhow, due to (4.1d),
the example (3.13) has to be slightly modified. One option is to pose:

ϕ
TOT

(E, φ, γ, c, d, θ) =
1

2

λ(φ, d)(trE)2√
1+ǫ(trE)2

+G(φ, d)
|E|2√
1+ǫ|E|2

+
1

2
M(φ, d)

|βtrE−γ+φ|2√
1+ǫ(trE)2

+
1

2
λ0(trE)2 +G0|E|2 + 1

2
k|γ − c|2 + cvθ(lnθ−1) (6.2)

with ǫ > 0 a presumably small regularizing parameter and with λ0 ≥ 0 and G0 > 0. Then (4.1d) is
satisfied. However, the papers [20, 21, 31] as a matter of fact (although not explicitly) consider cross-effects
in dissipation of damage and porosity; here these effects must be neglected as otherwise there would be
a coupling of (5.1) and (5.2) and stronger separate semi-convexity qualification likely not compatible with
(3.13). Moreover damage was considered reversible in [20, 21, 31], which is important in particular for longer-
time scale processes in rocks, and moreover a phenomenological flow rule for πpl was not governed directly
by the free energy.

Remark 6.4 (A general treatment of swelling or thermal expansion). Some models would rather need, instead
of (1.1), a more general form

ε(u) = E + Eχ+ s(c)Esw + r(θ)Eex (6.3)
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with some Esw and Eex swelling and thermal-expansion tensors and some (possibly even nonlinear)
mappings s, r : R → R modeling swelling or thermal expansion effects, respectively. Thermal ex-
pansion would influence also the entropy: in fact, (2.4) is no longer valid and, in the spirit of Re-
mark 2.2, we should rather consider ϕ

ME
(ε(u)−Eχ−r(θ)Eex, χ, d) which gives an additional contribution

r′(θ)E⊤
ex∂EϕME

(ε(u)−Eχ−r(θ)Eex, χ, d) to the enthalpy and also a corresponding contribution to the heat

capacity −θ∂2θθψ (unless the dependence on ϕ
ME

on strain in quadratic). Furthermore, the positivity of tem-
perature in the proof of Lemma 5.1 would fail, unless appropriate restrictions are imposed on the function
θ. Additional troubles have already been mentioned in Remark 4.3. To fit such more general situations to
our ansatz, we can little modify the particular problem by introducing additional phase-field variables, say
χ1 and χ2, and augment appropriately the free-energy parts ϕ

CH
or ϕ

TH
. More specifically, ϕ

CH
can be

augmented by 1
2k|s−1(χ1)−c|2 or ϕ

TH
by 1

2k|r−1(χ2)−θ|2 − 1
2kθ

2; actually, the term − 1
2kθ

2 balances this
contribution to avoid its influence on the heat capacity.In fact, we already used the former term in (3.10),
(3.13), and (6.1), too. Considering a presumably large constant k makes χ1 and χ2 approximate, respectively,
s(c) and r(θ). Then, instead of (6.3), we then take

ε(u) = E + Eχ+ χ1Esw + χ2Eex, (6.4)

which complies with (1.1). Note that the positive definiteness ∂2ccϕCH
is kept and the heat capacity

−θ∂2θθϕTH
(χ, θ) is not affected by this modification. The energy balance (2.1e) is then affected through

non-thermal terms, which exhibits similar modeling effects but makes the analysis easier.

Example 6.5 (Damage by freezing water). Application of thermal expansion discussed in Remark 6.4 can be
modeling a very common phenomenon that water propagating in porous medium expands during water-ice
phase transformation and may cause damage. This happens e.g. in concrete or in poroelastic rocks discussed
above. Other occurrence is in polymer membranes in fuel cells [58], etc. The thermal expansion is now
(approximately) proportional to the overall amount of ice, i.e. cλ where c is the water concentration and λ
the volume fraction of ice versus liquid water. Naturally, λ = λ(θ). Like in Remark 6.4, we consider rather
the linear splitting ε(u) = E + βEex with β and γ new phase-field variables which are expectedly close to
λ(θ)c and c, respectively. This can be achieved e.g. by adding terms like 1

2k|θ−λ−1(β/γ)|2− 1
2kθ

2+ 1
2k|γ−c|2

to ϕ
TH

+ϕ
CH

. As ice practically cannot move, the mobility of water M = M(θ) falls to very small values if θ

is below freezing point θ
F
. The heat capacity cv(γ, θ) = −θ∂2θθϕTH

(γ, θ) also depends on the water content γ
and, moreover, may contain a Dirac distribution supported at the freezing point, i.e. cv(χ, θ) = cv,0+γLδθ

F
(θ)

with L the latent heat of the water/ice phase transition. This is called the Stefan problem, cf. e.g. [42, 56],
and then the upper bound C in the first condition in (4.1f) and also in (4.6) is ∞ and the graph of ϑ(χ, ·)
from (4.5) has a horizontal segment of the length γL at the height θ

F
. Some arguments we use in our proof

must be then slightly generalized as such ϑ(χ, ·) with now χ = (β, γ) is not invertible and smooth; important,
(5.28) and the corresponding ∇θ-estimate holds for such generalization, too. In fact, λ should depend on
the enthalpy w rather than on temperature θ, cf. also Definition 4.1, but anyhow a fine regularization of the
Stefan problem seems to be needed to overcome the singular character of this problem.

Remark 6.6 (Other applications). Beside, there are a lot of applications without considering any diffusion or
without any damage, i.e. c or d is void (not used). For example magnetostriction in magnetic shape-memory
alloys as in [46] with no damage and no diffusion, or plasticity in metals with damage but no diffusion, and or
a combination of inelastic processes with some more complex rheologies involving additional internal variables
in χ as eg. Jeffreys’ model involving a creep strain, i.e. it combines the Maxwell rheology (responsible for
creep) with the Kelvin-Voigt one, etc., cf. also Remark 2.1.

Remark 6.7 (Some restrictions). Within our approach, we cannot unfortunately handle the dependence of
the coefficients in the gradient terms, i.e. of κ2 and κ1, on damage d or on χ, which would be natural in
some application. This dependence would give rise the higher-order L1-type terms in (4.9b) and (4.9d) which
would destroy the regularity (5.34d) without which also (5.71) could not be proved.

Remark 6.8. [The partly decoupled ansatz (3.4)] The analysis carried out so far excludes certain couplings
that would make our ansatz more general. We here list some generalization that, although appealing from
the modeling viewpoint, appear to be incompatible with our strategy of proof.

1. If θ and E were generally be coupled in (2.3), in general a concept of non-simple material, whose consti-
tutive equations involve higher spatial derivatives of the displacement field (as opposed to constitutive
equations for simple materials, which involve only the first derivatives), would be needed to have a
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control on ∇E, cf. [45]. An exception would be if θ would appear linearly, i.e. a term like θϕ(E), which
then would not contribute to the heat capacity, cf. e.g. [50].

2. If c and E were generally be coupled in (2.3), then the chemical potential µ = ∂cϕ from (2.5f) with
(3.1c) would depend on E and again the estimate (5.21) of ∇c would need a control of ∇E, i.e. the
concept of nonsimple materials. Some alternative option would be introduce a gradient of c into the
free energy, i.e. capillarity concept, see also Remark 6.10.

3. If d and θ were be coupled in (2.3), then the adiabatic heat term ∂2cθϕ(...., θ)
.
d would occur but

.
d is a

measure and θ tends typically to jump exactly at the points where
.
d concentrates, and such term would

not be analytically well defined.
4. If c and θ were generally be coupled in (2.3), the adiabatic heat term ∂2cθϕ

.
c would occur in the right-

hand side of the heat-transfer equation, cf. (3.7e), but we will not have any estimate on
.
c except the

“dual” estimate (5.34c), so this term would not be controlled as a measure.

5. If c and d were generally be coupled in (2.3), we would see a term ∂dϕCH
(χ, d, c)

.
d in (5.72). However,

the term ∂dϕCH
(χ, d, c) would be not continuous, because of the aforementioned lack of continuity of c,

and hence its combination with the measure
.
d would not be well defined.

These five requirements led us to make the partly decoupled ansatz (3.4).

Remark 6.9 (Damageable viscosity). One may want to include damageable viscosity in the model through a

constitutive equation of the form Sd = D(d)
.
E for the viscous part of the stress. With this modification, when

performing the integration by parts in (5.51), the additional term −
∫
Q

∂
∂tD(dτ )Eτ : Eτ dxdt would appear.

Passage to the limit through lower semicontinuity would still be possible if the tensor ∂
∂tD(dτ ) is non-positive.

This could rely on the unidirectional evolution of d adopted in this paper and monotone dependence of D
on damage, in the sense of the so-called Löwner ordering, namely (D(d1)−D(d2))E : E ≤ 0 if d1 < d2.

Remark 6.10 (Decoupling between concentration and strain). Our assumption (3.4) rules out any direct
coupling between strain and concentration. We need a decoupling between concentration and strain to avoid
an explicit dependence of chemical potential on strain, which would lead to the appearance of the gradient
of strain in the formulation. Indeed, in order to pass to the limit in the nonlinear equation:

µ = ∂cϕCH
(χ, c) (6.5)

which defines chemical potential, we exploit the strong convergence of c in a suitable Lp space, cf. (5.36d)
above. In order to obtain such convergence, we rely on the standard Aubin-Lions compactness theorem,
whose application requires estimates on

.
c and ∇c. The natural energetic estimate provides us with a control

on ∇µ (cf. (5.15e)), but not on ∇c. To control of the latter (cf. estimate (5.15d) above) we take the gradient
of (6.5) at the approximation level, see (5.21) in the proof of Lemma 5.3. If we were allowed ∂2cEϕ 6= 0,
then ∇E would have appeared in that estimate. To give a concrete example, let us consider a toy model
with no phase field χ, no damage variable d, and no temperature θ. Let us assume that the following strain
decomposition:

ε(u) = E + cE (6.6)

holds, where E is a constant second-order symmetric tensor. In this case, the dissipation inequality takes the
form .

ψ − µ
.
c ≤ S :

.
E + S : E

.
c − h · ∇µ. (6.7)

Then, the application of the Coleman-Noll argument yields, for chemical potential, a constitutive equation
of the form

µ = ∂cψ(E, c) + S : E. (6.8)

Suppose that we take ψ = 1
2CE : E. Then, if we rule out viscoelastic dissipation, the constitutive equation

for the stress is S = CE. From (6.8) we have

∂2ccψ(E, c)∇c = ∇µ− E
⊤ : C∇E (6.9)

Clearly, there is no hope to control the second term on the right-hand side of (6.9), unless we have some
control on∇E, which however cannot be expected. This issue may be circumvented by allowing a dependence
of free energy on ∇c, for instance by adding a term proportional to |∇c|2. As discussed, for instance, in [14],
this term describes capillarity effects, and would lead to a system of Cahn–Hilliard type [7], similar to those
studied in [16]. Alternatively, one might think of reformulating the model in the framework of non-simple
materials, by allowing for instance the free energy to depend on ∇E and by introducing hyperstress. In this
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case, however, issues would arise from the choice of traction boundary conditions in non-smooth domains
[39].

Remark 6.11 (Quasistatic and inviscid model). Some models in literature neglect inertia and viscosity by
putting both ̺ = 0 and D = 0, see e.g. [5, 23]. The semi-implicit scheme can then be split naturally into
five fractional steps, each of them for each variable u, χ, d, c, and θ separately by replacing χk

τ in (5.1a) by
χk−1
τ . Instead of (4.1i), it would suffice to require ϕ

ME
(·, χ, d) and ϕ

ME
(E, ·, d)+ 1

2M | · |2 convex. In this case,
however, we would have to remove the dependence of ζ on E because we would lose estimate (5.59), which

relies on viscosity. Also e.g. thermal expansion leading usually to adiabatic terms containing
.
E would have

to be excluded, although some particular studies resulting to spatially constant temperature does exist, cf.
[30].

Remark 6.12 (Viscous damage and higher regularity of displacements). We already pointed out that in the
case of rate-dependent evolution of damage (i.e. if the dissipation pseudopotential ξ would be quadratic), the
variable d may be incorporated into the vectorial variable χ, which would still obey an evolution equation
having the structure of (3.7b). This variant has recently been investigated in [41] in the case of thermal
coupling. It is worth pointing out that its mathematical analysis would however require L2(Q) regularity of
the term ∂dϕME

(E, χ, d). Such regularity would in general not be compatible with the quadratic growth of

ϕ
ME

with respect to E. In order to better elucidate this point, let us take ϕ
ME

= 1
2C(d)E:E. In order to

guarantee the above-mentioned regularity, we would need L4(Q) regularity of E, which in general cannot
be expected without additional assumptions. Yet, higher regularity of displacements may be proved through
a sophisticated technique based on testing the standard-force balance by −div(ε(

.
u)), as in [6], and also in

[41]. This estimate would however require the assumption that acceleration vanishes on the whole boundary,
which in turn would restrict the applicability of the model to affine-in-time Dirichlet boundary conditions
for u.
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[33] A. Mielke, T. Roub́ıček, and U. Stefanelli. Γ-limits and relaxations for rate-independent evolutionary problems.
Calc. Var. Part. Diff. Eq., 31:387–416, 2008.
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[49] T. Roub́ıček and G. Tomassetti. Thermodynamics of shape-memory alloys under electric current. Z. Angew.

Math. Phys., 61:1–20, 2010.
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