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Abstract

We show the existence of an energetic solution to a quasistatic
evolutionary model of shape memory alloys. Elastic behavior of each
material phase/variant is described by polyconvex energy density. Ad-
ditionally, to every phase boundary, there is an interface-polyconvex
energy assigned, introduced by M. Šilhavý in [44]. The model con-
siders internal variables describing the evolving spatial arrangement of
the material phases and a deformation mapping with its first-order gra-
dients. It allows for injectivity and orientation-preservation of defor-
mations. Moreover, the resulting material microstructures have finite
length scales.

Keywords: polyconvexity; shape memory materials; rate-independent
problems

1 Introduction

In elasticity theory, it is assumed that experimentally observed patterns are
minimizers or stable states of some energy. Shape memory alloys in particu-
lar have a preferred high-temperature lattice structure called austenite and
a preferred low-temperature lattice structure called martensite. Such shape
memory alloys, as e.g. Ni-Ti, Cu-Al-Ni or In-Th, have various technological
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applications, for an overview see e.g. [24]. The austenitic phase has only one
phase/variant but the martensitic phase exists in many symmetry related
phases/variants; the mixing of these different phases can lead to the forma-
tion of complex microstructure. In the continuum theory, the total energy
of the system is described in terms of a bulk energy which describes elastic
stresses and an interfacial energy, concentrated on the interfaces between
the different phases. We establish existence of quasistationary solutions for
a model, where it is assumed that the bulk part of the energy is polyconvex
while the interfacial part of the energy satisfies a corresponding condition of
interfacial polyconvexity introduced by Šilhavý [44, 45]. The model describes
the evolving spatial arrangement of the material phases and the deforma-
tion of the sample. It allows for injectivity and orientation-preservation of
deformations. Moreover, the resulting material microstructures have finite
length scales.

To investigate the existence of a global minimizer of the energy for static
variational problems from elasticity, different notions of convexity have been
considered. For problems with a single material phase, a well justified no-
tion of convexity which is sufficient to ensure the existence of a minimizer
is the notion of polyconvexity due to Ball [2, 3]. It is also fairly easy to
construct examples of polyconvex functions which makes it attractive for
continuum mechanics of solids. On the other hand, in shape memory alloys,
many different phases might coexist. If interfacial energy is not taken into
account, then global minimizers of the energy in general do not exist. A
way out is to use relaxation methods, searching for the so-called quasicon-
vex envelope of the specific stored energy [18, 41] or using Young measures
[25, 26, 34, 38]. Let us point out some partial results which have been
obtained in this direction: We refer to [7] for a weak* lower semicontinuity
results for sequences of bi-Lipschitz orientation-preserving maps in the plane
and to [6] for an analogous result along sequences of quasiconformal maps.
Then [32] found relaxation including orientation preservation for p < d,
where d is a spatial dimension. Finally, [17] derived a relaxation result for
orientation preserving deformations with an extra assumption on the result-
ing functional, namely that the quasiconvex envelope is polyconvex. There
also exist various phenomenological models of shape memory alloys which
are convenient for numerical computations; see e.g. [8].

On the other hand, models have been considered where interfacial energy
is taken into account. Such models have been e.g. used to estimate the
scaling of the minimal energy and to derive typical length scales of patterns.
The minimal scaling of the energy of an austenite-martensite interface has
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been studied by Kohn & Müller and Conti in [30, 31, 16] for a 2-d model
problem, the three-dimensional case and more realistic models have been
investigated e.g. in [47, 11, 9, 10, 27, 28], for similar analysis on related
models see e.g. [12, 13, 29]. In these models, either a BV -penalization of the
interfacial has been used or a penalization of some Lp–norm for the Hessian
of the deformation function. In general, the specific form of the energy is,
however, not clear from physical considerations. In the literature, necessary
and sufficient conditions for the specific form of the interfacial energy have
been investigated recently which allow for the existence of minimizers [21,
42]. Recently, Šilhavý has introduced a notion of interface polyconvexity and
has proved that this notion is sufficient to ensure existence of minimizers for
the corresponding static problem [44, 45]. In this note, we extend this static
model to a rate-independent evolutionary model and prove existence of an
energetic solution.

In shape memory allows, the stored energy density W : R3×3 → R is min-
imized on wells SO(3)Fi, i = 0, . . . ,M , defined by M positive definite and
symmetric matrices F0, . . . , FM , each corresponding austenite and M vari-
ants of martensite, respectively. By the choice of reference configuration, we
may furthermore assume F0 := Id (the identity), i.e. the stress-free strain of
austenite is described just by the special orthogonal group SO(3). In non-
linear elasticity, the energy density W is usually formulated as a function
of the right Cauchy-Green strain tensor F>F . Note that this tensor maps
the whole group O(3) of orthogonal matrices with determinant ±1 onto the
same point. Thus, for example, F 7→ |F>F − Id | is minimized on two en-
ergy wells, i.e., on SO(3) and also on O(3)\SO(3). However, the latter set is
not acceptable in elasticity since corresponding deformations do not preserve
the orientation. Additionally, notice that, for example, considering arbitrary
Q ∈ O(3) \ SO(3) and an arbitrary R ∈ SO(3) such that Q and R are rota-
tions around the same axis of the Cartesian system then rank(Q− R) = 1,
i.e. Q and R are rank-one connected and determinant changes its sign on
the line segment [Q;R]. Convex combinations of rank-one connected ma-
trices play a key role in relaxation approaches of the variational calculus
[4, 5, 18, 33]. This shows that is it important but also not straightforward
to ensure that solutions of static or evolutionary problems are physically
sound, in the sense that they preserve orientation. This is, in particular,
unclear on models based on quasiconvexification as described above, since
usually there is no closed formula of the envelope at disposal and since
physically justified conditions on deformations as orientation-preservation
and injectivity are not included in these models. On the other hand, our
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solutions are constructed in a way such that the obtained time dependent
deformations are orientation preserving and injective and no additional reg-
ularization of variables is needed if passing from a static to an evolutionary
model. Injectivity and orientation preservation is not very often considered
in the theory of rate-independent processes. We refer to [37] for treatment
of a model in nonlinear elastoplasticity.

Structure of the paper: After introducing used notations, in Section 2, we
first describe our model, the stored elastic energy, loading, and dissipation.
In Section 3, we state and proof our main result, the existence of an energetic
solution. As it is nowadays a standard procedure; cf. e.g., [22] we only sketch
the main steps and pay more attention to injectivity of deformations which
is not frequently treated in the frameworks of rate-independent evolutions.
We refer, however, to [37] for numerical approaches to finite elastoplasticity
including injectivity.

Notation: The spaces W 1,p, 1 ≤ p < ∞, denote the standard Sobolev
space of Lp-functions with weak derivative in Lp. Further, BV stands for
the space of integrable maps with bounded variations, see e.g. [1, 20] for
references. For a (measurable) set E ⊂ R3, we denote its three-dimensional
Lebesgue measure by L3(E) and its two-dimensional Hausdorff measure by
H2(E). The space of vector valued Radon measures on Ω with values in Y
is denoted by M(Ω, Y ).

Let Ω̃ ⊂ Ω ⊂ R3 be Lebesgue measurable sets and let B(x, r) := {a ∈
R3 : |x − a| < r} . For x ∈ Ω we denote the the density of Ω̃ at x by
θ(Ω̃, x) := limr→0 L3(Ω̃∩B(x, r))/L3(B(x, r)) whenever this limit exists. A
point x ∈ Ω is called point of density of Ω̃ if θ(Ω̃, x) = 1. If θ(Ω̃, x) = 0
for some x ∈ Ω, then x is called point of rarefaction of Ω̃. The measure-
theoretic boundary ∂∗Ω̃ of Ω̃ is the set of all points x ∈ Ω such that either
θ(Ω̃, x) does not exist or θ(Ω̃, x) 6∈ {0, 1}. We call Ω̃ a set of finite perimeter
if H2(∂∗Ω̃) < +∞. Let n ∈ R3 be a unit vector and let H(x, n) := {x̃ ∈
Ω : (x̃− x) · n < 0}. We say that n is the (outer) measure-theoretic normal
to Ω̃ at x if θ(Ω̃ ∩ H(x,−n), x) = 0 and θ((Ω \ Ω̃) ∩ H(x, n), x) = 0. The
measure-theoretic normal exists for H2 almost every point in ∂∗Ω̃, see e.g.
[20, 46].

For two matrices A = (aij), B = (bij) ∈ R3×3, we define A : B = aijbij
with Einstein’s sum convention. By A× n we denote the tensor defined by
(A× n)b = A(n× b), i.e. (A× n)kj = ε`ijak`ni, where ε`ij is the Levi-Civita
symbol. One can easily check that the cofactor matrix of A ∈ R3×3 in
terms of the Levi-Civita can be expressed as cof A = 1

2(εik`εjpqakpa`q)ij . In
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particular, we get ∂ak`(cof A)ij = 1
2∂ak`(εik`εjpqakpa`q)ij = εikqεj`paqp. We

refer e.g. to [23] for a definition of the surface gradients ∇S . If n ∈ R3 is
an outer unit normal to the surface S , then ∇S := ∇(Id−n⊗n), where we
recall that Id denotes the unit matrix in R3×3.

2 Model description

2.1 Elastic energy

Admissible States: We assume that the specimen in its reference configu-
ration is represented by a bounded Lipschitz domain Ω ⊂ R3. We consider
a shape memory alloy which allows for M different variants of martensite.
The region occupied by the i-th variant of martensite is described by the set
Ωi ⊂ Ω for 1 ≤ i ≤ M , while the region occupied by austenite is given by
Ω0 ⊂ Ω. We assume that the sets Ωi are open and have finite perimeter. Fur-
thermore, the sets Ωi are pairwise disjoint for 0 ≤ i ≤M and N := Ω\

⋃
i Ωi

is a set of zero Lebesgue measure. The case Ωi = ∅ for some 0 ≤ i ≤ M is
not excluded. The partition of Ω into {Ωi}Mi=0 can be then identified with
a mapping z : Ω → RM+1 such that zi(x) = 1 if x ∈ Ωi and zi(x) = 0 else.
We call z the partition map corresponding to {Ωi}Mi=0. Clearly, with the sets
Ωi chosen as before, we have

∑M
i=0 zi(x) = 1 for almost every x ∈ Ω and the

function z is of bounded variation. We hence consider z ∈ Z, where

Z :=
{
z ∈ BV(Ω, {0, 1}M+1) : zizj = 0 for i 6= j,

M∑
i=0

zi = 1 a.e. in Ω
}
.

In order to describe the state of the elastic material, we also need to intro-
duce the deformation function y ∈ W 1,p(Ω,R3), p > 3, which describes the
deformation of the elastic body with respect to the reference configuration
Ω. We hence consider deformations y ∈ Y, where

Y =
{
y ∈W 1,p(Ω,R3) : det∇y > 0 a.e. ,

∫
Ω

det∇y(x) dx ≤ L3(y(Ω))
}
,

where we will always use the assumption p > 3. The integral inequality to-
gether with the orientation-preservation is the so-called Ciarlet-Nečas condi-
tion which ensures invertibility of y almost everywhere in Ω [14, 15]. In the
following, we will assign to each state of the material (y, z) ∈ Y ×Z an elas-
tic energy E . In our model, the energy consists of a bulk part Eb, penalizing
deformation within the single phases, an interfacial energy Eint, measuring
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deformation of the interfaces between the phases and a contribution L(t, ·)
which measures work of external loads, i.e.

E(t, y, z) := Eb(y, z) + Eint(y, z)− L(t, y). (1)

Here t denotes time to indicate that we will deal with time-dependent prob-
lems. We will specify these three parts of the energy in the following.

Bulk energy: The total bulk energy of the specimen has the form

Eb(y, z) :=

∫
Ω
W (z(x),∇y(x)) dx, (2)

where we assume that the specific energy W : RM+1 × R3×3 → R ∪ {+∞}
of the specimen can be written as

W (z, F ) :=
M∑
i=0

ziŴi(F ) =: z · Ŵ (F ), (3)

where Ŵi, 0 ≤ i ≤ M , is the specific energy related to the i-th phase of
the material and Ŵ := (Ŵ0, . . . , , ŴM ). We will work in the framework of
hyperelasticity, where the first Piola-Kirchhoff stress tensors of austenite and
martensite have polyconvex potentials denoted by Ŵ0 (austenite) and Ŵi,
i = 1, . . . ,M for each variant of martensite, see e.g. [44] and the references
therein. For 0 ≤ i ≤M , we therefore assume

Ŵi(F ) :=

{
hi(F, cof F,detF ) if detF > 0,

+∞ otherwise
(4)

for some convex functions hi : R19 → R. We use the following additional
standard assumptions on the specific bulk energies Ŵi. For 0 ≤ i ≤M and
F ∈ R3×3, we assume that for some C > 0 and p > 3

Ŵi(F ) ≥ C(−1 + |F |p) ∀F ∈ R3×3 , (5)

Ŵi(RF ) = Ŵi(F ) ∀R ∈ SO(3), F ∈ R3×3 , (6)

lim
detF→0+

Ŵi(F ) = +∞ . (7)

Interfacial energy: We consider the interfacial energy in the form introduced
by Šilhavý in [44, 45]: We hence assume that the specific interfacial energy

6



fij between the two different phases i, j ∈ {0, . . . ,M} can be written in the
form

1

2
fij(F, n) = gi(F, n) + gj(F, n), (8)

where F ∈ R3×3 and n ∈ R3 is a unit vector such that Fn = 0, We assume

gi(F, n) := Ψi(n, F × n, cof F n), (9)

where the functions Ψi : R15 → R are nonnegative convex and positively
one-homogeneous for i = 0, . . . ,M . Here, F × n : R3 → R3 is for any
F ∈ R3×3 and any n, a ∈ R3 defined as (F × n)a := F (n × a). As in [44],
we assume for 0 ≤ i ≤M , ∀F ∈ R3×3, ∀n ∈ S2

gi(RF, n) = gi(F, n) ∀R ∈ SO(3), (10)

gi(F, n) = gi(F,−n), (11)

As in [44], we assume that there is some c > 0 such that

Ψi(A) ≥ c|A| . (12)

for all 0 ≤ i ≤M and all A ∈ R15. We introduce a subspace Q ⊂ Y × Z of
functions with “finite interfacial energy”, using a slightly modified version
of [44, Def. 3.1]. It is given as follows:

Definition 2.1 (Interfacial energy). For any pair (y, z) ∈ Y × Z let Si =
∂∗Ωi ∩Ω where Ωi := supp zi and ∂∗Ωi is the measure-theoretic boundary of
Ωi with outer (measure-theoretic) normal ni. We denote by Q ⊂ Y ×Z the
set of all pairs (y, z) ∈ Y × Z such that for every 0 ≤ i ≤ M there exists a
measure Ji := (ai, Hi, ci) ∈M(Ω;R15) with

ai := niH2
|Si
, Hi := ∇Siy × niH2

|Si
and ci := (cof∇Siy)n|Si

. (13)

The interfacial energy is then defined as

Eint(y, z) :=


M∑
i=0

∫
Ω

Ψi

(
dJi

d|Ji|

)
d|Ji| for (y, z) ∈ Q,

∞ else.

(14)

Here |Ji| denotes the total variation of the measure Ji.
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We recall that the function fij is called interface quasiconvex if∫
S
f(∇Sy, n)dH2 ≥ H2(T )f(G,m) (15)

for every surface deformation gradient G, every unit vector m with Gm =
0, every planar two-dimensional region T with normal m, every (curved)
surface S with normal n and every smooth map y : S → R3 with bd =
bdT (where bdS = bdT denote the relative boundaries of the two two-
dimensional surfaces) and such that y = Gx for x ∈ bdT , see [44, 45].
A surface energy is called Null-Lagrangian if (15) is satisfied with equality.
Furthermore, it has been shown in [43] that f is an interface Null-Lagrangian
if and only if f is a linear function of n, F×n and cof Fn. This motivates the
definition of interface polyconvexity (8)–(9), in the analogy to the definition
of the standard notion of polyconvexity. The set of configurations Q in
Definition 2.1 is the natural space where an energy of type (8)–(9) can be
defined. Let us remark that the measures Hi and ci can be expressed as∫

Ω
v dHi =

∫
Ωi

∇y (∇× v) dx,

∫
Ω
v · dci =

∫
Ωi

(cof∇y) : ∇v dx (16)

for all v ∈ C∞0 (Ω;R3). Indeed, for k ∈ {1, 2, 3} and 0 ≤ i ≤M , we have∫
Ωi

[∇y(∇× v)]k =

∫
Ωi

[∂jykεj`m∂`vm]dx =

∫
∂Ωi

[n`∂jykεj`mvm]dx

=

∫
∂Ωi

[∇v]kj [n× v]jdx =

∫
∂Ωi

[(∇y × n)v]kdx,

since ∇×∇y = 0. With the notation (cof∇y)ij = bij , we also have∫
Ωi

(cof∇y) : (∇v)dx =

∫
Ωi

[bkj∂jvk]dx = −
∫

Ωi

[∂jbkjvk]dx+

∫
∂Ωi

[njbkjvk]dx

=

∫
∂Ωi

[(cof∇y)n]kvkdx =

∫
∂Ωi

(cof∇y)n · vdx,

where we used the Piola identity ∇ · (cof∇y) = 0.

We also note that by the assumption (12), we have the bound

‖Dz‖M(Ω;R(M+1)×3) ≤ CEint(y, z). (17)

for some constant C < ∞. Consequently, the norm ‖z‖BV(Ω;RM+1) is con-
trolled in terms of the interfacial energy in our setting. On the other hand,
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the norm ‖Dz‖M(Ω;R(M+1)×3) satisfies the conditions in Definition 2.1. In-
deed, this follows from the choice gi(F, n) = α|F | = α|F × n| for α > 0.
Another example of an interfacial energy which is included in the Definition
(2.1) is given by the choice gi(F, n) = α| cof Fn|, see [45] for more details.
Notice that the first example penalizes surface gradients which are noncon-
stant along interfaces while the latter one increases with the area of the
interface.

Body and surface loads: We assume that the body is exposed to possible
body and surface loads, and that it is elastically supported on a part Γ0 of
its boundary. The part of the energy related to this loading is given by a
functional L ∈ C1([0, T ];W 1,p(Ω;R3)) in the form

L(t, y) :=

∫
Ω
b(t) · y dx+

∫
Γ1

s(t) · y dH2(x) +
K

2

∫
Γ0

|y − yD(t)|2 dH2(x).

(18)

Here, b(t, ·) : Ω → R3 represents the volume density of some given external
body forces and s(t, ·) : Γ1 ⊂ ∂Ω→ R3 describes the density of surface forces
applied on a part Γ1 of the boundary. The last term in (18) with yD(t, ·) ∈
W 1,p(Ω;R3) represents energy of a spring with a spring stiffness constant
K > 0. Thus our specimen is elastically supported on Γ0 in such a way, that
for K →∞ y is forced to be close to yD on Γ0 in the sense of the L2(Γ0;R3)
norm. A term of this type already appeared in [35] and its static version also
in [38]. Namely, prescribing a boundary condition from W 1−1/p,p(∂Ω;R3)
[36], it is generally not known whether it can be extended to the whole Ω
in such a way that the extension lives in Y. It is, to our best knowledge, an
unsolved problem in three dimensions and therefore it is generically assumed
in nonlinear elasticity that such an extension exists; cf. [14], for instance.
The last term in (18) overcomes this drawback. Namely, if yD cannot be
extended from the boundary as an orientation-preserving map the term in
question will never be zero regardless values of K > 0.

2.2 Dissipation

Evolution is typically connected with dissipation of energy. Experimental
evidence shows that it is a reasonable approximation in a wide range of rates
of external loads to anticipate a rate-independent dissipation mechanism. In
order to set up such a process, we need to define a suitable dissipation func-
tion. Since we consider rate-independent processes, this dissipation will be
positively one-homogeneous. We associate the dissipation to the magnitude
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Ω0

Ω1

Ω2

Γ0 Γ1

sb

Figure 1: The domain is decomposed into subdomains according to the
variants of austenite and martensite. At Γ0, an elastic Dirichlet-type condi-
tion is imposed, while it is assumed that a force s acts on the interface Γ1.
Furthermore, a bulk force b acts on Ω.

of the time derivative of z, i.e., to |ż|M+1, where | · |M+1 is a norm on RM+1.
Therefore, the specific dissipated energy associated to a change of the variant
distribution from z1 to z2 is postulated as in [19]

D(z1, z2) := |z1 − z2|M+1. (19)

Then the total dissipation reads

D(z1, z2) :=

∫
Ω
D(z1(x), z2(x)) dx .

The D-dissipation of a curve z : [0, T ]→ BV (Ω, {0, 1}) with [s, t] ⊂ [0, T ] is
correspondingly given by (see e.g. [22])

DissD(z, [s, t]) := sup
{ N∑

j=1

D(z(ti−1), z(ti)) : N ∈ N, s = t0 ≤ . . . ≤ tN = t
}
.

2.3 Energetic solution

Suppose, that we look for the time evolution of t 7→ y(t) ∈ Y and t 7→ z(t) ∈
Z during a process time interval [0, T ] where T > 0 is the time horizon. We
use the following notion of solution from [22], see also [39, 40]: For every
admissible configuration, we ask the following conditions to be satisfied for
all t ∈ [0, T ].
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Definition 2.2 (Energetic solution). We say that (y, z) ∈ Y × Z is an
energetic solution to (E ,D) on the time interval [0, T ] if t 7→ ∂tE(y(t), z(t)) ∈
L1((0, T )) and if for all t ∈ [0, T ], the stability condition

E(t, y(t), z(t)) ≤ E(t, ỹ, z̃) +D(z(t), z̃) ∀(ỹ, z̃) ∈ Q. (20)

and the condition of energy balance

E(t, y(t), z(t)) + DissD(z; [0, t]) = E0 +
∫ t

0
∂E
∂t (s, y(s), z(s)) ds (21)

where E0 = E(0, y(0), z(0)), are satisfied.

An important role in the theory of rate-independent solutions is played by
the so-called stable states defined for each t ∈ [0;T ]. We set

S(t) := {(y, z) ∈ Y × Z : E(t, y, z) ≤ E(t, ỹ, z̃) +D(z, z̃) ∀(ỹ, z̃) ∈ Q}.

Note that by (20), any energetic solution (y, z) is stable for any fixed time.

3 Existence of the energetic solution

A standard way how to prove the existence of an energetic solution is to
construct time-discrete minimization problems and then to pass to the limit.
Before we give the existence proof we need some auxiliary results. For given
N ∈ N and for 0 ≤ k ≤ N , we define the time increments tk := kT/N .
Furthermore, we use the abbreviation q := (y, z) ∈ Q. Assume that at t = 0
there is given an initial distribution of phases z0 ∈ Z and y0 ∈ Y such that
q0 = (y0, z0) ∈ S(0). For k = 1, . . . , N , we define a sequence of minimization
problems

minimize E(tk, y, z) +D(z, zk−1) , (y, z) ∈ Q . (22)

We denote a minimizer of (22) for a given k as (yk, zk) ∈ Q. The following
proposition shows that a minimizer always exists if the elastic energy is not
identically infinite on Q.

Lemma 3.1. Assume that p > 3, (4)-(7), (9), (11)-(12) hold and let L ∈
C1([0, T ];W 1,p(Ω;R3)). Let qN0 := (y0, z0) ∈ Q satisfy E(0, y, z) < +∞.
Then there exists a solution qNk := (yk, zk) to (22) for each 1 ≤ k ≤ N .
Moreover, qNk ∈ S(tk) for all 1 ≤ k ≤ N .
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Proof. The proof follows the same lines as the proof of [44, Thm. 3.3]. We ap-
ply the direct method of the calculus of variations. We denote the elements of
the minimizing sequence by a lower index in brackets in order to distinguish
it from the components of z = (z0, . . . , zM ). Fix k, so that zk−1 ∈ Z is given.
Let {(y(j), z(j))}j∈N ⊂ Q be a minimizing sequence for E(tk, ·, ·)+D(·, zk−1).
Using the growth conditions (5), (10), and in view of the form of L, it follows
that there is C > 0 such that ‖y(j)‖W 1,p(Ω;R3) + ‖z(j)‖BV(Ω;RM+1) ≤ C for all
j ∈ N. Furthermore,

sup
j

(‖ cof∇y(j)‖Lp/2(Ω;R3×3) + ‖det∇y(j)‖Lp/3(Ω)) < +∞,

where p/3 > 1 by our assumption p > 3. Consequently, after taking a
subsequence, we may assume that y(j) ⇀ y in W 1,p(Ω;R3), det∇y(j) ⇀

det∇y in Lp/3(Ω), cof∇y(j) ⇀ cof∇y in Lp/2(Ω;R3×3), and z(j)
∗
⇀ z in

BV(Ω;RM+1). In particular, we have z(j) → z in L1(Ω; {0, 1}M+1) and
z ∈ Z. Moreover, in view of (16), (Ji)(j) converges weakly* in measures
to Ji as j → ∞ for all 0 ≤ i ≤ M . Standard results for polyconvex
materials [2, 14, 44] show lim infj→∞Eb(y(j), z(j)) ≥ Eb(y, z). Similarly,

lim infj→∞ L(tk, y(j)) ≥ L(tk, y) and limj→∞D(z(j), z
k−1) = D(z, zk−1) due

to the strong convergence of z(j) → z in L1(Ω;RM+1). Finally,

lim inf
j→∞

Eint(y(j), z(j)) ≥ Eint(y, z)

due to [1, Thm. 2.38]. Thus, (y, z) ∈ Y×Z. Using weak sequential continuity
of y 7→ cof∇y and y 7→ ∇y we see that the limiting measures Ji have
the form of (13). This together with a limit passage in the Ciarlet-Nečas
condition (see [15, Thm. 5]) shows that (y, z) ∈ Q. Namely, y is injective
almost everywhere in Ω and det∇y > 0 almost everywhere in Ω. From (22),
one furthermore easily sees that qNk ∈ S(tk) for all 1 ≤ k ≤ N .

Denoting by B([0, T ];Y) the set of bounded maps t 7→ y(t) ∈ Y for all
t ∈ [0, T ], we have the following result showing the existence of an energetic
solution.

Theorem 3.2. Let T > 0, p > 3, yD ∈ C1([0, T ];W 1,p(Ω;R3)), (4)-(7),
(9), (11)-(12). Let (y(0), z(0)) ∈ S(0) and Let there be (y, z) ∈ Q such that
E(0, y, z) < +∞. Then there is and energetic solution to the problem (E ,D)
such that y ∈ B([0, T ];Y), z ∈ BV([0, T ];L1(Ω;RM+1) ∩ L∞(0, T ;Z).
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Proof. Let qNk := (yk, zk) be the solution of (22) which exists by Lemma 3.1
and let qN : [0, T ]→ Q be given by

qN (t) :=

{
qNk if t ∈ [tk, tk+1) if k = 0, . . . , N − 1 ,

qNN if t = T .
(23)

Following [22], we get for some C > 0 and for all N ∈ N the estimates

‖zN‖BV (0,T ;L1(Ω;RM+1)) ≤ C, ‖zN‖L∞(0,T ;BV (Ω;RM+1)) ≤ C, (24a)

‖yN‖L∞(0,T ;W 1,p(Ω;R3)) ≤ C, (24b)

as well as the following two-sided energy inequality∫ tk

tk−1

∂tE(θ, qNk ) dθ ≤ E(tk, q
N
k ) +D(zk, zk−1)− E(tk−1, q

N
k−1)

≤
∫ tk

tk−1

∂tE(θ, qNk−1) dθ . (25)

The second inequality in (25) follows since qNk is a minimizer of (22) and by
comparison of its energy with q := qNk−1. The lower estimate is implied by

the stability of qNk−1 ∈ S(tk−1) when compared with q̃ := qNk . Having this
inequality, the a-priori estimates and a generalized Helly’s selection principle
[40, Cor. 2.8] we get that there is indeed an energetic solution obtained as
a limit for N →∞. In particular, the fact that det∇y > 0 a.e. in Ω follows
from the fact that if tj → t, (y(j), z(j)) ∈ S(tj) and (y(j), z(j)) ⇀ (y, z) in

W 1,p(Ω;R3) × BV (Ω;RM+1), then (y, z) ∈ S(t). Indeed, in particular we
have z(j) → z in L1(Ω;RM+1) and hence for all (ỹ, z̃) ∈ Q, we get

E(t, y, z) ≤ lim inf
j→∞

E(tj , y(j), z(j)) ≤ lim inf
j→∞

E(tj , ỹ, z̃) + lim inf
j→∞

D(z(j), z̃)

= E(t, ỹ, z̃) +D(z, z̃) .

In particular, as E(tj , ỹ, z̃) is finite for some (ỹ, z̃) ∈ Q we get E(t, y, z) < +∞
and thus det∇y > 0 a.e. in Ω in view of (4).

Remark 3.3. Adding a term of the form F 7→ | cof F |p/(detF )p−1, which
is polyconvex, to the bulk stored energy density we can even show injectivity
of deformations everywhere in Ω for all time instants. See e.g. [7, Rem. 1.2]
and also [3] where such term already appeared.
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[8] A.-L. Bessoud, M. Kruž́ık, and U. Stefanelli. A macroscopic model
for magnetic shape-memory single crystals. ZAMM Z. Angew. Math.
Phys., 64(2):343–359, 2013.

[9] A. Capella and F. Otto. A rigidity result for a perturbation of the
geometrically linear three-well problem. Comm. Pure Appl. Math.,
62(12):1632–1669, 2009.

14



[10] A. Capella and F. Otto. A quantitative rigidity result for the cubic-
to-tetragonal phase transition in the geometrically linear theory with
interfacial energy. Proc. Roy. Soc. Edinburgh Sect. A, 142(2):273–327,
2012.

[11] A. Chan and S. Conti. Energy scaling and branched microstructures in
a model for shape-memory alloys with SO(2) invariance. Math. Models
Methods Appl. Sci., 25(6):1091–1124, 2015.

[12] R. Choksi and R. Kohn. Bounds on the micromagnetic energy of a
uniaxial ferromagnet. Comm. Pure Appl. Math., 51(3):259–289, 1998.

[13] R. Choksi, R. Kohn, and F. Otto. Domain branching in uniaxial ferro-
magnets: a scaling law for the minimum energy. Comm. Math. Phys.,
201(1):61–79, 1999.

[14] P. G. Ciarlet. Lectures on three-dimensional elasticity. Published for
the Tata Institute of Fundamental Research, Bombay; by Springer-
Verlag, Berlin, 1983. Notes by S. Kesavan.
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and its evolution in shape-memory-alloy single-crystals, in particular in
cualni. Meccanica, 40(4-6):389–418, 2005.
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