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ABSTRACT. We prove that if C is a family of separable Banach
spaces which is analytic with respect to the Effros-Borel structure
and none X ∈ C is isometrically universal for all separable Banach
spaces, then there exists a separable Banach space with a mono-
tone Schauder basis which is isometrically universal for C but still
not for all separable Banach spaces. We also establish an analo-
gous result for the class of strictly convex spaces.

1. INTRODUCTION AND MAIN RESULTS

Let C be a class of Banach spaces. We say that a Banach space X
is isomorphically (isometrically) universal for C if it contains an isomor-
phic (isometric) copy of every member of C.

The present paper, as well as two author’s recent papers [18, 19],
establishes isometric counterparts of results concerning universality
questions in separable Banach space theory and their natural con-
nection with descriptive set theory (see [5, 1, 3, 4, 2, 10, 7, 8, 15, 17]).
These three papers together give a solution of a problem posed by
G. Godefroy [14] if there exists any isometric version of the amalga-
mation theory of S. A. Argyros and P. Dodos [2] which would pro-
vide isometrically universal spaces for small, or regular, isometric
classes of Banach spaces.

For a class C of separable Banach spaces, it is a natural question
whether C is “generic” in the sense that every separable Banach space
which is isomorphically (isometrically) universal for C is also iso-
morphically (isometrically) universal for all separable Banach spaces.
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Employing methods from descriptive set theory, J. Bourgain [5]
strengthened a well-known result of W. Szlenk [21] and proved that
the answer is positive for the class of separable reflexive spaces (in
the isomorphic setting). The result was revisited by B. Bossard [4]
who proved that any analytic set of separable Banach spaces (de-
fined below) that contains every separable reflexive space up to iso-
morphism must also contain an element which is isomorphically
universal for all separable Banach spaces.

These two results motivated the authors of [2] to introduce two
corresponding concepts of the Bourgain genericity and the Bossard
genericity. It is easy to show that a Bossard generic class is Bour-
gain generic, because the set of all spaces which can be embedded
isomorphically into a separable Banach space X is analytic. The op-
posite implication, conjectured in [2], was proved only for classes of
spaces with a basis.

To drop the reliance on basis, P. Dodos [7] developed a param-
eterized version of a construction of L∞-spaces due to J. Bourgain
and G. Pisier [6]. This enabled to prove the equivalence between the
Bourgain genericity and the Bossard genericity at last.

In the present work, we find an isometric counterpart of a result
from [7]. We prove the following theorem.

Theorem 1.1. Let C be an analytic set of Banach spaces none of which is
isometrically universal for all separable Banach spaces. Then there exists a
Banach space E with a monotone basis which is isometrically universal for
C but still not for all separable Banach spaces.

It follows from this theorem and from [13, Lemma 7(ii)] that the
two considered genericities coincide in the isometric setting as well.

Corollary 1.2. For a class P of separable Banach spaces, the following
assertions are equivalent:

(a) A separable Banach space which is isometrically universal for P is
also isometrically universal for all separable Banach spaces.

(b) Every analytic set C of separable Banach spaces containing all mem-
bers of P up to isometry must also contain an element which is isometrically
universal for all separable Banach spaces.

We do not use the Bourgain-Pisier construction, as P. Dodos did
in [7], which is not surprising, simply because the isomorphic and
the isometric universality are quite different notions. Nevertheless,
there are still analogies between our methods and methods from
[7]. The main analogy is that the result has been already proved
for classes of spaces with a monotone basis (see [18, Theorem 1.2])
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and so our task is to find an embedding of a general separable space
into a space with a monotone basis. The embedding must preserve
non-universality and must be simple from the descriptive set theo-
retic viewpoint. One may notice that there are also analogies with
the parameterized version of Zippin’s embedding theorem [22] due
to B. Bossard [3] (see also [9, Chapter 5]).

Let us remark that a more general version of Theorem 1.1 holds
(cf. with [18, remark (IV)]). Let H be a separable Banach space for
which there are a ∈ H and a subset D ⊂ H whose closed linear span
contains an isometric copy of H itself and such that ‖a ± d‖ = ‖a‖
for every d ∈ D. Then the theorem holds for the class of spaces
not containing an isometric copy of H. Among the universal space
H = C(2N), the property is fulfilled e.g. by the spaces H = c0 and
H = `1.

The basic property of our embedding is that it creates no new line
segments in the unit sphere. For this reason, the method works at
the same time for the class of strictly convex spaces.

Theorem 1.3. Let C be an analytic set of separable strictly convex Banach
spaces. Then there exists a strictly convex Banach space E with a monotone
basis which is isometrically universal for C.

It was proved by E. Odell and Th. Schlumprecht [20] that there
exists a separable reflexive space which is isomorphically universal
for separable uniformly convex spaces (actually, there exists an iso-
metrically universal space, see [19]). Since the set of all separable
uniformly convex spaces is Borel (see [10, Corollary 5]), we obtain
the following result.

Corollary 1.4. There exists a separable strictly convex Banach space which
is isometrically universal for all separable uniformly convex Banach spaces.

2. PRELIMINARIES

By a basis we mean a Schauder basis. A basis x1, x2, . . . is said to
be monotone if the associated partial sum operators Pn : ∑

∞
k=1 akxk 7→

∑
n
k=1 akxk satisfy ‖Pn‖ ≤ 1.
A Polish space (topology) means a separable completely metrizable

space (topology). A set P equipped with a σ-algebra is called a stan-
dard Borel space if the σ-algebra is generated by a Polish topology on
P. A subset of a standard Borel space is called analytic if it is a Borel
image of a Polish space.

The following result can be found e.g. in [16, p. 297].
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Theorem 2.1 (Arsenin, Kunugui). Let X be a standard Borel space, Y a
Polish space and R ⊂ X × Y a Borel set such that all its sections Rx =
{y ∈ Y : (x, y) ∈ R}, x ∈ X, are σ-compact. Then the projection πX(R)
of R is Borel and there exists a Borel mapping f : πX(R) → Y with
f (x) ∈ Rx for every x ∈ πX(R).

For a topological space X, the set F (X) of all closed subsets of X
is equipped with the Effros-Borel structure, defined as the σ-algebra
generated by the sets

{F ∈ F (X) : F ∩ U 6= ∅}
where U varies over open subsets of X. If X is Polish, then, equipped
with this σ-algebra, F (X) forms a standard Borel space.

We will need the following basic fact (see e.g. [16, p. 76]).

Theorem 2.2 (Kuratowski, Ryll-Nardzewski). Let X be a Polish space.
Then there exists a sequence d1, d2, · · · : F (X) → X of Borel mappings
such that d1(F), d2(F), . . . is dense in F for each non-empty F ∈ F (X).

The standard Borel space of subspaces of a separable Banach space A is
defined by

SE(A) =
{

F ∈ F (A) : F is linear
}

and considered as a subspace of F (A).
By an analytic set of separable Banach spaces we mean an analytic

subset of SE(C([0, 1])). It is well known that the spaces C([0, 1]) and
C(2N) are isometrically universal for all separable Banach spaces.

At the end of this short section, we recall a classical result from
Banach space theory (see e.g. [11, p. 125]).

Theorem 2.3 (Banach, Dieudonné). Let X be a Banach space and M be
a convex subset of X∗. If M ∩ nBX∗ is w∗-closed for every n ∈ N, then M
is w∗-closed.

3. FIRST LEMMA

Lemma 3.1. Let A be a separable Banach space. Then there exist an isom-
etry I : A → C([0, 1]) and a sequence p1, p2, . . . of Borel functions
pn : SE(A) → [0, 1] such that the following properties are valid for every
X ∈ SE(A):

(i) p1(X) = 0 and p2(X) = 1,
(ii) pn(X) 6= pm(X) for n 6= m,
(iii) the sequence p1(X), p2(X), . . . is dense in [0, 1],
(iv) the subspace IX of C([0, 1]) is closed in the topology generated by

the points p1(X), p2(X), . . . .
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To provide an isometry I, we follow a standard method. Let ϕ :
[0, 1] → (BA∗ , w∗) be a continuous surjection and let

(Ia)(t) = ϕ(t)(a), a ∈ A, t ∈ [0, 1].

In several steps, we show that the choice of I works and a suitable
sequence p1, p2, . . . of Borel functions exists.

Claim 3.2. IA is closed in the pointwise topology.

Proof. Assume that f ∈ C([0, 1]) belongs to the closure of IA in the
pointwise topology. We show first that there is a function h : BA∗ →
[−‖ f‖, ‖ f‖] such that

f = h ◦ ϕ.

We just need to check that ϕ(u) = ϕ(v) ⇒ f (u) = f (v). Given u, v ∈
[0, 1] with ϕ(u) = ϕ(v), we obtain for every a ∈ A that (Ia)(u) =
ϕ(u)(a) = ϕ(v)(a) = (Ia)(v). Since f belongs to the closure of IA in
the pointwise topology, we get f (u) = f (v).

We have h(0) = 0. Indeed, choosing u ∈ [0, 1] with ϕ(u) = 0,
we obtain (Ia)(u) = ϕ(u)(a) = 0 for a ∈ A, and so 0 = f (u) =
h(ϕ(u)) = h(0).

Further, h is affine. Consider a∗, b∗ ∈ BA∗ and α, β ∈ [0, 1] with
α + β = 1. Choose u, v, w ∈ [0, 1] with ϕ(u) = a∗, ϕ(v) = b∗ and
ϕ(w) = αa∗ + βb∗. We have

(Ia)(w) = ϕ(w)(a) = (αa∗ + βb∗)(a) = αa∗(a) + βb∗(a)

= αϕ(u)(a) + βϕ(v)(a) = α(Ia)(u) + β(Ia)(v)

for a ∈ A, and so

f (w) = α f (u) + β f (v),

h(ϕ(w)) = αh(ϕ(u)) + βh(ϕ(v)),

h(αa∗ + βb∗) = αh(a∗) + βh(b∗).

Finally, h is w∗-continuous. Let a∗1 , a∗2 , . . . be a sequence in BA∗

converging to some a∗ in the w∗-topology. We need to check that
h(a∗n) → h(a∗). Assume the opposite. Then there is a subsequence
a∗nk

such that h(a∗nk
) → c 6= h(a∗). For all k ∈ N, let us consider

uk ∈ [0, 1] such that ϕ(uk) = a∗nk
. There is a subsequence ukl

which

converges to some u. Since ϕ is continuous, we have ϕ(ukl
) → ϕ(u),

and, using ϕ(uk) = a∗nk
→ a∗, we obtain ϕ(u) = a∗. Since f is con-

tinuous, we have f (ukl
) → f (u), and, using f (ukl

) = h(ϕ(ukl
)) =

h(a∗nkl
) → c, we obtain f (u) = c. Consequently, f (u) = c 6= h(a∗) =

h(ϕ(u)) = f (u), which is a contradiction.
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We have shown that h is w∗-continuous, affine and h(0) = 0. So, h
can be extended to a linear functional on A∗ which is w∗-continuous
by Theorem 2.3. Consequently, there is a ∈ A such that h(a∗) =
a∗(a) for all a∗ ∈ BA∗ . Then f = Ia, and the proof of the claim is
finished. �

Claim 3.3. There is a sequence of numbers v1, v2, . . . that is dense in [0, 1]
and generates a topology in which IA is closed.

Proof. By Claim 3.2, every f ∈ C([0, 1]) \ IA has a neighborhood
U f ⊂ C([0, 1]) \ IA of the form

U f =
{

g ∈ C([0, 1]) : |g(uk)− f (uk)| < ε, 1 ≤ k ≤ n
}

for some suitable ε, n and u1, . . . , un. Since C([0, 1]) \ IA can be cov-
ered by countably many such neighborhoods, it is possible to collect
all rational numbers and all numbers uk associated to the members
of this covering. �

Claim 3.4. For every open ball U ⊂ A, the set

R =
{

(X, a∗) ∈ SE(A) × BA∗ : a∗(x) = 0, x ∈ X, a∗(x) > 0, x ∈ U
}

is Borel in SE (A) × (BA∗ , w∗) and all its sections RX , X ∈ SE(A), are
σ-compact.

Proof. Let a be the center of U. Since every a∗ 6= 0 maps open balls
onto open intervals, we have

(X, a∗) ∈ R ⇔ a∗(x) = 0, x ∈ X, a∗(x) ≥ 0, x ∈ U, a∗(a) > 0.

The dual unit ball BA∗ is compact in the w∗-topology. As a∗(a) > 0
if and only if a∗(a) ≥ 1/j for some j ∈ N, it follows that the sections
RX, X ∈ SE(A), are σ-compact.

Let x1, x2, . . . be dense in U and let d1, d2, · · · : F (A) → A be Borel
selectors provided by Theorem 2.2. Using the equivalence

(X, a∗) ∈ R ⇔ a∗(dn(X)) = 0, a∗(xn) ≥ 0, n ∈ N, a∗(a) > 0

and the continuity of (a∗, x) ∈ (BA∗ , w∗)× A 7→ a∗(x), we see that R
is Borel. �

Claim 3.5. There is a sequence s1, s2, . . . of Borel mappings sn : SE (A) →
(BA∗ , w∗) such that, for every X ∈ SE(A) and a ∈ A \ X, there is n ∈ N

with sn(X)(a) 6= 0 and sn(X)(x) = 0 for all x ∈ X.

Proof. Let U1, U2, . . . be a countable basis of the norm topology of A
consisting of open balls. For each n ∈ N, let us consider a set

Rn =
{

(X, a∗) ∈ SE(A)×BA∗ : a∗(x) = 0, x ∈ X, a∗(x) > 0, x ∈ Un

}

.
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By Claim 3.4 and Theorem 2.1, there exists a Borel mapping sn :
SE(A) → (BA∗ , w∗) such that (Rn)X 6= ∅ ⇒ sn(X) ∈ (Rn)X (we
consider a Borel extension of the mapping provided by Theorem 2.1).
Let us check that the mappings sn work.

Let X ∈ SE(A) and a ∈ A \ X. For some n ∈ N, we have a ∈
Un ⊂ A \ X. By the Hahn-Banach theorem, there exists a∗ ∈ BA∗

such that a∗(x) = 0 for x ∈ X and a∗(x) > 0 for x ∈ Un. It means
that (Rn)X is non-empty, and so sn(X) ∈ (Rn)X . Therefore, sn(X)
has the desired property. �

Claim 3.6. There is a sequence p1, p2, . . . of Borel functions pn : SE(A) →
[0, 1] such that (iii) and (iv) are valid for every X ∈ SE(A).

Proof. Let a sequence of numbers v1, v2, . . . be given by Claim 3.3
and a sequence of Borel mappings s1, s2, . . . be given by Claim 3.5.
Let

qn(X) = min ϕ−1(sn(X)), n ∈ N, X ∈ SE(A).

Let us show that the function qn is Borel for every n ∈ N. It is suf-
ficient to check that the mapping a∗ 7→ min ϕ−1(a∗) is Borel from
(BA∗ , w∗) into [0, 1]. For u ∈ [0, 1], the set {a∗ ∈ BA∗ : min ϕ−1(a∗) ≤
u} = ϕ([0, u]) is compact, and thus Borel.

Further, let us show that, for every X ∈ SE(A), the subspace IX is
closed in the topology generated by the points q1(X), q2(X), . . . and
v1, v2, . . . . Given f ∈ C([0, 1]) \ IX, there are two possibilities. If
f /∈ IA, then a property of the sequence v1, v2, . . . guarantees that f
does not belong to the closure of IA (and of IX in particular) in the
considered topology. If f ∈ IA, then we choose a ∈ A with Ia = f .
Necessarily, a /∈ X, and thus there is n ∈ N with sn(X)(a) 6= 0 and
sn(X)(x) = 0 for all x ∈ X. We have

f (qn(X)) = (Ia)(qn(X)) = ϕ(qn(X))(a) = sn(X)(a) 6= 0,

while

(Ix)(qn(X)) = ϕ(qn(X))(x) = sn(X)(x) = 0, x ∈ X.

Hence, f does belong to the closure of IX in the considered topology.
Now, if we define

p2n−1(X) = qn(X), p2n(X) = vn, n ∈ N, X ∈ SE(A),

then, for every X ∈ SE(A), conditions (iii) and (iv) are valid. �

To finish the proof of Lemma 3.1, it remains to realize that a se-
quence from Claim 3.6 can be modified to satisfy (i) and (ii) as well.
If we define p′1(X) = 0, p′2(X) = 1 and p′n(X) = pm(X) where m is
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the least natural number such that |{0, 1, p1(X), . . . , pm(X)}| = n, it
is easy to check that these functions are Borel and satisfy (i)–(iv).

4. SECOND LEMMA

Lemma 4.1. Let A be a separable Banach space. Then there exist a sep-
arable Banach space Z, an isometry J : A → Z, a collection {‖ · ‖X :
X ∈ SE(A)} of norms on Z and a system {QX

n : X ∈ SE(A), n ∈ N}
of projections on Z such that the following properties are valid for every
X ∈ SE(A):

(I) ‖z‖ ≤ ‖z‖X ≤ 2‖z‖ for z ∈ Z,
(II) ‖z‖ = ‖z‖X if and only if z ∈ JX,
(III) the sequence QX

1 , QX
2 , . . . is the sequence of partial sum operators

associated with a basis of Z which is monotone in the sense that ‖QX
n ‖ ≤ 1

and ‖QX
n ‖X ≤ 1.

Moreover,
(IV) the mapping (X, z) 7→ QX

n z is Borel from SE(A) × Z into Z for
every n ∈ N,

(V) the function (X, z) 7→ ‖z‖X is Borel from SE(A) × Z into R.

The proof of this lemma consists of four parts. There are some
analogies with a construction by Ghoussoub, Maurey and Schacher-
mayer [12] and its parameterized version by Bossard [3] (see also [9,
Chapter 5]).

❶ Let us fix an isometry I : A → C([0, 1]) and a sequence p1, p2, . . .
of Borel functions pn : SE(A) → [0, 1] satisfying properties (i)–(iv)
from Lemma 3.1. For every X ∈ SE(A), we define a sequence of
projections PX

n : C([0, 1]) → C([0, 1]). Let (PX
1 f )(t) = f (0) for every

f ∈ C([0, 1]) and t ∈ [0, 1]. Given n ≥ 2 and f ∈ C([0, 1]), let
PX

n f be the piecewise linear function which has the same values in
p1(X), . . . , pn(X) as f and is linear elsewhere.

Using properties (i), (ii) and (iii), we can easily verify the following
properties:

• ‖PX
n f‖ ≤ ‖ f‖,

• PX
n PX

m = PX
m PX

n = PX
min{m,n},

• PX
n C([0, 1]) has dimension n,

• PX
n f → f as n → ∞.

Due to these properties, the sequence PX
1 , PX

2 , . . . is the sequence of
partial sum operators associated with a monotone basis of C([0, 1]).

Claim 4.2. For every n ∈ N, the mapping (X, f ) 7→ PX
n f is Borel from

SE(A) × C([0, 1]) into C([0, 1]).
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Proof. For n ≤ 2, the assertion is clear, as PX
n does not depend on

X. For n ≥ 3, the considered mapping is the composition of the
Borel mapping (X, f ) 7→ (p3(X), . . . , pn(X), f ) and the continuous
mapping which maps (x3, . . . , xn, f ) to the piecewise linear function
which has the same values in 0, 1, x3, . . . , xn as f and is linear else-
where. �

Claim 4.3. Let X ∈ SE(A) and f ∈ C([0, 1]). If f /∈ IX, then there is
n ∈ N such that PX

n f /∈ PX
n IX.

Proof. Property (iv) provides a neighborhood W ⊂ C([0, 1]) \ IX of
f of the form

W =
{

g ∈ C([0, 1]) : |g(pk(X)) − f (pk(X))| < ε, 1 ≤ k ≤ n
}

for a large enough n ∈ N and a small enough ε > 0. It means that
every g ∈ IX satisfies |g(pk(X))− f (pk(X))| ≥ ε for some 1 ≤ k ≤ n.
Since (PX

n g)(pk(X)) = g(pk(X)) and (PX
n f )(pk(X)) = f (pk(X)), it

follows that PX
n g 6= PX

n f . �

❷ For every X ∈ SE(A), we define a sequence of projections QX
i :

`2(C([0, 1])) → `2(C([0, 1])). For f = ( f1, f2, . . . ) ∈ `2(C([0, 1])), let

QX
1 f = (PX

1 f1, 0, 0, 0, . . . ),

QX
2 f = (PX

2 f1, 0, 0, 0, . . . ),

QX
3 f = (PX

2 f1, PX
1 f2, 0, 0, . . . ),

QX
4 f = (PX

3 f1, PX
1 f2, 0, 0, . . . ),

QX
5 f = (PX

3 f1, PX
2 f2, 0, 0, . . . ),

QX
6 f = (PX

3 f1, PX
2 f2, PX

1 f3, 0, . . . ),

QX
7 f = (PX

4 f1, PX
2 f2, PX

1 f3, 0, . . . ),

and so on. In this way, QX
1 , QX

2 , . . . is the sequence of partial sum
operators associated with a monotone basis of `2(C([0, 1])).

Further, let us define an isometry

U : C([0, 1]) → `2(C([0, 1])), f 7→
√

3

2

(

f ,
1

2
f ,

1

4
f , . . .

)

.

This is an isometry indeed, as

‖U f‖2 =
3

4

(

‖ f‖2 +
1

4
‖ f‖2 + . . .

)

= ‖ f‖2, f ∈ C([0, 1]).

Claim 4.4. For every i ∈ N, the mapping (X, f) 7→ QX
i f is Borel from

SE(A) × `2(C([0, 1])) into `2(C([0, 1])).
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Proof. This follows from Claim 4.2 and the definition of QX
i . �

Claim 4.5. Let X ∈ SE(A) and f ∈ `2(C([0, 1])). If f /∈ UIX, then there
is i ∈ N such that QX

i f /∈ QX
i UIX.

Proof. For a general g ∈ `2(C([0, 1])), we will denote its coordinates
by gk or by (g)k . There are two possibilities.

(1) Assume that fk 6= 2 fk+1 for some k ∈ N. Let n ∈ N be such
that PX

n fk 6= 2PX
n fk+1 and i ∈ N be large enough so that nk ≥ n and

nk+1 ≥ n in the expression QX
i g = (PX

nj
gj)

∞
j=1 (we consider PX

0 = 0).

Then

PX
n [(QX

i f)k] = PX
n PX

nk
fk = PX

n fk

6= 2PX
n fk+1 = 2PX

n PX
nk+1

fk+1 = 2PX
n [(QX

i f)k+1],

while, for every g ∈ C([0, 1]) (and, in particular, for every g ∈ IX),

PX
n [(QX

i Ug)k] = PX
n PX

nk
[(Ug)k ] = PX

n [(Ug)k ] =

√
3

2k
PX

n g

= 2PX
n [(Ug)k+1] = 2PX

n PX
nk+1

[(Ug)k+1] = 2PX
n [(QX

i Ug)k+1],

and so QX
i Ug 6= QX

i f.
(2) Assume that fk = 2 fk+1 for all k ∈ N. Then f = U f for f =

(2/
√

3) f1. By our assumption, f /∈ IX, and Claim 4.3 provides n ∈
N such that PX

n f /∈ PX
n IX. Let i ∈ N be large enough so that n1 ≥ n

in the expression QX
i g = (PX

nj
gj)

∞
j=1 (we consider PX

0 = 0). Then, for

every g ∈ IX,

PX
n [(QX

i Ug)1] = PX
n PX

n1
[(Ug)1] = PX

n [(Ug)1] =

√
3

2
PX

n g

6=
√

3

2
PX

n f = PX
n f1 = PX

n PX
n1

f1 = PX
n [(QX

i f)1],

and so QX
i Ug 6= QX

i f. �

Claim 4.6. For X ∈ SE(A) and i ∈ N, we have ‖QX
i U‖ < 1.
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Proof. There is k ∈ N such that points from the range of QX
i are

supported by the first k coordinates. Given f ∈ C([0, 1]), we have

‖QX
i U f‖2 =

(

√
3

2

)2∥
∥

∥

(

Pn1
f ,

1

2
Pn2 f , . . . ,

1

2k−1
Pnk

f , 0, 0, . . .
)
∥

∥

∥

2

=
3

4

(

‖Pn1
f‖2 +

1

4
‖Pn2 f‖2 + · · · + 1

4k−1
‖Pnk

f‖2
)

≤ 3

4

(

‖ f‖2 +
1

4
‖ f‖2 + · · · + 1

4k−1
‖ f‖2

)

=
(

1 − 1

4k

)

‖ f‖2

for some n1, . . . , nk ∈ N ∪ {0}. It follows that ‖QX
i U‖2 ≤ 1 − 1

4k . �

❸ For every X ∈ SE(A), we define

ΩX = co

(

1

2
B`2(C([0,1])) ∪

∞
⋃

i=1

QX
i UIBX

)

.

Let us notice that UIBX ⊂ ΩX and QX
i ΩX ⊂ ΩX for every i ∈ N.

Claim 4.7. The set
{

(X, f) ∈ SE(A) × `2(C([0, 1])) : f ∈ ΩX
}

is Borel.

Proof. Let f1, f2, . . . be dense in B`2(C([0,1])). Let x1, x2, · · · : SE(A) →
BA be Borel mappings such that x1(X), x2(X), . . . is dense in BX

for every X ∈ SE(A) (it is easy to find such sequence using The-
orem 2.2). We have

f ∈ ΩX ⇔ ∀l ∈ N ∃m ∈ N ∃k, n1, . . . , nm ∈ N

∃γ0, γ1, . . . , γm ∈ Q ∩ [0, 1],
m

∑
i=0

γi = 1 :

∥

∥

∥

∥

f −
[1

2
γ0fk +

m

∑
i=1

γiQ
X
i UIxni

(X)
]

∥

∥

∥

∥

<
1

l
.

It remains to note that, by Claim 4.4, the mapping X 7→ QX
i UIxn(X)

is Borel for all i, n ∈ N. �

Claim 4.8. For X ∈ SE(A) and f ∈ `2(C([0, 1])) \ UIX with ‖f‖ = 1,
we have f /∈ ΩX.

Proof. Claim 4.5 provides i ∈ N such that QX
i f /∈ QX

i UIX. Let f∗ ∈
`2(C([0, 1]))∗ be such that ‖f∗‖ = 1 = f∗(f) and let z∗ be a functional
on QX

i `2(C([0, 1])) such that ‖z∗‖ = 1, z∗(QX
i f) > 0 and z∗(QX

i g) =



12 ONDŘEJ KURKA

0 for g ∈ UIX. By Claim 4.6, there is ε ∈ (0, 1] such that ‖QX
j U‖ ≤

1 − ε for 1 ≤ j < i. Let us define

g∗ = f∗ + ε · z∗ ◦ QX
i .

Then

g∗(f) = f∗(f) + ε · z∗(QX
i f) > 1.

We claim that g∗ separates f from ΩX, showing that

g∗(u) ≤ 1, u ∈ ΩX.

If u ∈ 1
2 B`2(C([0,1])), then g∗(u) ≤ ‖g∗‖‖u‖ ≤ (1 + ε) · 1

2 ≤ 1. So, it

remains to show that g∗(u) ≤ 1 for u = QX
j Ug where j ∈ N and g ∈

IBX. If 1 ≤ j < i, then g∗(u) ≤ ‖g∗‖‖QX
j U‖‖g‖ ≤ (1 + ε)(1− ε) ≤ 1.

If j ≥ i, then z∗(QX
i u) = z∗(QX

i QX
j Ug) = z∗(QX

i Ug) = 0 and

g∗(u) = f∗(u) + ε · z∗(QX
i u) = f∗(u) ≤ ‖f∗‖‖QX

j ‖‖Ug‖ ≤ 1,

which completes the verification of f /∈ ΩX. �

❹ Now, we are ready to finish the proof of Lemma 4.1. For every
X ∈ SE(A), we define ‖ · ‖X as the norm on `2(C([0, 1])) which has
ΩX for its unit ball. Let us check that properties (I)–(V) are valid for
the choice Z = `2(C([0, 1])) and J = UI.

(I) This follows from 1
2 B`2(C([0,1])) ⊂ ΩX ⊂ B`2(C([0,1])).

(II) We know that UIBX ⊂ ΩX ⊂ B`2(C([0,1])), which means that

‖f‖ = ‖f‖X for every f ∈ UIX. Assume that f ∈ `2(C([0, 1])) \
UIX. Assume moreover without loss of generality that ‖f‖ = 1. By
Claim 4.8, we have f /∈ ΩX, which means that ‖f‖X > 1 = ‖f‖.

(III) It follows from QX
i ΩX ⊂ ΩX that ‖QX

i ‖X ≤ 1.
(IV) This is already provided by Claim 4.4.
(V) By Claim 4.7, the pre-image of [0, 1] is Borel. Clearly, the pre-

image of [0, r] is also Borel for every r > 0, which gives (V).

5. PROOF OF MAIN RESULTS

Let us consider A = C([0, 1]). Let a separable Banach space Z, an
isometry J : C([0, 1]) → Z, a collection {‖ · ‖X : X ∈ SE(C([0, 1]))}
of norms on Z and a system {QX

n : X ∈ SE(C([0, 1])), n ∈ N} of
projections on Z satisfy properties (I)–(V) from Lemma 4.1.

We are going to apply the same technique as in [18, Section 8]. This

will enable to obtain a new collection {|||·|||X : X ∈ SE(C([0, 1]))} of
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norms on Z with the same properties and with the additional prop-

erty that all line segments contained in the unit sphere of (Z, |||·|||X)
are contained in JX.

Let $ be a norm on R3 such that

• 1
2(|r| + |s|) ≤ $(r, s, t) ≤ max{|r|, |s|, |t|} and, in particular,
the unit sphere contains the line segment [(1, 1,−1), (1, 1, 1)],

• $(r′, s′, t′) ≥ $(r, s, t) for 0 ≤ r ≤ r′, 0 ≤ s ≤ s′, 0 ≤ t ≤ t′,
• $(r, s, t′) > $(r, s, t) for 0 < r < s and 0 < t < t′.

An example provided in [18] is the norm given by

B(R3,$) = co
(

{(±1,±1,±1)} ∪
√

2B
)

,

where B stands for the Euclidean unit ball of R3.
For all X ∈ SE(C([0, 1])), we define (considering QX

0 = 0)

σX(z) =
( ∞

∑
n=1

1

2n+2

∥

∥QX
n z − QX

n−1z
∥

∥

2
)1/2

, z ∈ Z,

and

|||z|||X = $
(

‖z‖, ‖z‖X , σX(z)
)

, z ∈ Z.

Claim 5.1. The following properties take place:
(i) σX is a strictly convex seminorm on Z,

(ii) |||·|||X is a norm on Z,
(iii) σX(z) ≤ ‖z‖,

(iv) ‖z‖ ≤ |||z|||X ≤ 2‖z‖,
(v) σX(QX

n z) ≤ σX(z),

(vi) |||QX
n z|||X ≤ |||z|||X,

(vii) the function (X, z) 7→ σX(z) is Borel,

(viii) the function (X, z) 7→ |||z|||X is Borel.

Proof. (i) As the range of QX
n −QX

n−1 is one-dimensional, there is z∗n ∈
Z∗ such that ‖z∗n‖ ≤ 2 and ‖QX

n z− QX
n−1z‖ = |z∗n(z)| for every z ∈ Z.

Let us consider

T : Z → `2, z 7→
( 1

2(n+2)/2
z∗n(z)

)∞

n=1
.

Then

σX(z) = ‖Tz‖, z ∈ Z.

At the same time, T is injective (if Tz = 0, then QX
n z − QX

n−1z = 0

for all n, and so QX
n z = 0 for all n). Therefore, (i) follows from strict

convexity of `2.
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(ii) Using (i) and a property of $,

|||u + v|||X = $
(

‖u + v‖, ‖u + v‖X , σX(u + v)
)

≤ $
(

‖u‖ + ‖v‖, ‖u‖X + ‖v‖X , σX(u) + σX(v)
)

≤ $
(

‖u‖, ‖u‖X , σX(u)
)

+ $
(

‖v‖, ‖v‖X , σX(v)
)

= |||u|||X + |||v|||X.

The verification of |||λz|||X = |λ||||z|||X is similar.
(iii) We have

σX(z)2 =
∞

∑
n=1

1

2n+2

∥

∥QX
n z − QX

n−1z
∥

∥

2 ≤
∞

∑
n=1

1

2n+2
· (2‖z‖)2 = ‖z‖2.

(iv) Using (I), (iii) and a property of $, we obtain

‖z‖ ≤ 1

2

(

‖z‖ + ‖z‖X
)

≤ $
(

‖z‖, ‖z‖X , σX(z)
)

≤ max
{

‖z‖, ‖z‖X , σX(z)
}

= ‖z‖X ≤ 2‖z‖.

(v) We have

σX(QX
mz) =

( m

∑
n=1

1

2n+2

∥

∥QX
n z − QX

n−1z
∥

∥

2
)1/2

≤ σX(z).

(vi) Using (v) and a property of $, we obtain

|||QX
n z|||X = $

(

‖QX
n z‖, ‖QX

n z‖X , σX(QX
n z)

)

≤ $
(

‖z‖, ‖z‖X , σX(z)
)

= |||z|||X.

(vii) This follows from (IV) and the definition of σX.

(viii) This follows from (V), (vii) and the definition of |||·|||X. �

Claim 5.2. We have |||Jx|||X = ‖x‖ for x ∈ X ∈ SE(C([0, 1])). In

particular, (Z, |||·|||X) contains an isometric copy of X.

Proof. Let us assume that ‖x‖ = 1. Note that ‖Jx‖X = ‖Jx‖ =
‖x‖ = 1 due to (II). At the same time, σX(Jx) ≤ ‖Jx‖ = 1 due to
Claim 5.1(iii). Since the unit sphere S(R3,$) contains the line segment

[(1, 1,−1), (1, 1, 1)], we obtain |||Jx|||X = 1 = ‖x‖. �

Claim 5.3. Let X ∈ SE(C([0, 1])) and let [u, v] be a non-degenerate line

segment in Z such that |||·|||X is constant on [u, v]. Then the segment [u, v]
is contained in JX.
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Proof. It is enough to show that w = 1
2(u + v) ∈ JX (the argument

can be repeated for any subsegment of [u, v]). Assume the opposite,
i.e., w /∈ JX. By Claim 5.1(i),

σX(w) <
1

2

(

σX(u) + σX(v)
)

.

At the same time, ‖w‖ < ‖w‖X by (I) and (II), and a property of $
provides

$
(

‖w‖, ‖w‖X ,
1

2

(

σX(u)+ σX(v)
)

)

> $
(

‖w‖, ‖w‖X , σX(w)
)

= |||w|||X.

The computation

1

2

(

|||u|||X + |||v|||X
)

=
1

2

(

$
(

‖u‖, ‖u‖X , σX(u)
)

+ $
(

‖v‖, ‖v‖X , σX(v)
)

)

≥ $
(1

2

(

‖u‖ + ‖v‖
)

,
1

2

(

‖u‖X + ‖v‖X
)

,
1

2

(

σX(u) + σX(v)
)

)

≥ $
(

‖w‖, ‖w‖X ,
1

2

(

σX(u) + σX(v)
)

)

> |||w|||X

concludes the proof. �

Claim 5.4. (1) (Z, |||·|||X) is isometrically universal for all separable Ba-
nach spaces if and only if X has the same property.

(2) (Z, |||·|||X) is strictly convex if and only if X is strictly convex.

Proof. We check only the implication “⇒” in (1), since other implica-
tions follow from Claims 5.2 and 5.3. Let us denote

∆ = {0, 1}N, ∆(i) = {γ ∈ ∆ : γ(1) = i}, i = 0, 1,

H = C(∆), H(i) = {h ∈ H : γ /∈ ∆(i) ⇒ h(γ) = 0}, i = 0, 1.

Assume that there is an isometry I : H → (Z, |||·|||X) and denote

z = I(1∆(0)).

We claim that the space JX (and therefore the space X by Claim 5.2)
is universal, showing that I maps H(1) into JX.

Given h ∈ H(1) such that ‖h‖ ≤ 1, we observe that ‖1∆(0)‖ =

‖1∆(0) ± h‖ = 1, and so |||z|||X = |||z ± Ih|||X = 1. By Claim 5.3, we
have Ih ∈ JX. �

Our last claim is a statement similar to [7, Theorem 17] and [9,
Theorem 5.19].
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Claim 5.5. The set

R =
{

(X, Y) ∈ SE(C([0, 1]))2 : Y is isometric to (Z, |||·|||X)
}

is analytic.

Proof. Let s1, s2, . . . be a dense sequence in Z. Let us recall that the

function (X, z) 7→ |||z|||X is Borel by Claim 5.1(viii). Therefore, the
set R is a projection of a Borel set in SE(C([0, 1]))2 × ZN, as

(X, Y) ∈ R ⇔ ∃(z1, z2, . . . ) ∈ ZN :
[

(

∀k ∈ N ∀l ∈ N ∃n ∈ N : ‖sk − zn‖ <
1

l

)

&
(

∀m ∈ N ∀γ1, . . . , γm ∈ Q :

∣

∣

∣

∣

∣

∣

∣

∣

∣

m

∑
n=1

γnzn

∣

∣

∣

∣

∣

∣

∣

∣

∣

X
=

∥

∥

∥

m

∑
n=1

γndn(Y)
∥

∥

∥

)

]

where a sequence of mappings d1, d2, · · · : F (C([0, 1])) → C([0, 1])
is provided by Theorem 2.2. �

Let us finish the proof of Theorems 1.1 and 1.3. Depending on the
theorem we want to prove, let P denote the property of being not iso-
metrically universal for all separable Banach spaces or the property
of being strictly convex.

By [18, Theorem 1.2], the theorems have been already proved un-
der the assumption that the members of C have a monotone basis.
Therefore, it is sufficient to show the following.

Let C be an analytic set of separable Banach spaces which satisfy P. Then
there exists an analytic set C ′ of Banach spaces which satisfy P such that
every member of C ′ has a monotone basis and such that an isometric copy
of every member of C is contained in a member of C ′.

Given such C, the set

C ′ =
{

Y ∈ SE(C([0, 1])) : Y isometric to (Z, |||·|||X) for some X ∈ C
}

is analytic by Claim 5.5, since it is a projection of the analytic set
R∩ (C × SE(C([0, 1]))).

Let us check that C ′ works. By Claim 5.4, every Y ∈ C ′ satisfies P.
By Claim 5.1(vi), every Y ∈ C ′ has a monotone basis. Finally, every
X ∈ C is contained in some Y ∈ C ′ by Claim 5.2.
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