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We discuss aspects of implementation and performance of parallel iterative solution techniques applied
to low Reynolds number flows around fixed and moving rigid bodies. The incompressible Navier-Stokes
equations are discretised with Taylor-Hood finite elements in combination with a semi-implicit pressure-
correction method. The resulting sequence of convection-diffusion and Poisson equations are solved with
preconditioned Krylov subspace methods. To achieve overall scalability we consider new auxiliary algorithms
for mesh handling and assembly of the system matrices. We compute the flow around a translating plate and
a rotating insect wing to establish the scaling properties of the developed solver. The largest meshes have up
to 132 x 10 hexahedral finite elements leading to around 3.3 x 10° unknowns. For the scalability runs the
maximum core count is around 65.5 x 103, We find that almost perfect scaling can be achieved with a suit-
able Krylov subspace iterative method, like conjugate gradients or GMRES, and a block Jacobi preconditioner
with incomplete LU factorisation as a subdomain solver. In addition to parallel performance data, we provide
new highly-resolved computations of flow around a rotating insect wing and examine its vortex structure

and aerodynamic loading.

© 2015 The Authors. Published by Elsevier Ltd.
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1. Introduction

The implicit computation of three-dimensional flow problems
often requires parallel computing. In presence of highly resolved
no-slip boundaries the discretisation of the incompressible Navier-
Stokes equations can lead to linear systems of equations with sev-
eral hundred millions to a few billion unknowns. In the course of a
transient simulation these systems of equations have to be solved
several thousand times. Hence, in order to achieve reasonable sim-
ulation turnaround times each system has to be solved within a few
minutes. In combination with this computing time requirement, the
large memory needs make it essential to use domain decomposition
techniques and distributed-memory parallel computing platforms.
As known, Krylov subspace iteration methods with efficient precon-
ditioners are the only viable solvers on parallel computers with large
processor counts [21,48,56]. In practice, efficient parallel algorithms
for mesh handling and system matrix assembly are also relevant.
The most efficient combination of iterative and preconditioning tech-
niques usually depends on the specific application at hand. Finding
a suitable combination can be greatly facilitated through the use of
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parallel linear algebraic solver libraries such as PETSc [4] or Trilinos
[30]. In this work we make use of the PETSc library and compare tech-
niques for the scalable solution of large-scale low Reynolds number
flow problems with up to several billion unknowns.

For computing the flow around a moving rigid body, such as a
rotating insect wing, the Navier-Stokes equations can be expressed
either in a non-inertial body-fixed frame or in an inertial frame us-
ing the arbitrary Lagrangian-Eulerian (ALE) formulation [5,34]. In
both approaches a fixed body-fitted finite element mesh is used and
there is no need to update the mesh. In our computations we use
the ALE formulation and relate the prescribed wing velocity to the
ALE mesh velocity. For the considered range of problems the solu-
tion of the Navier-Stokes equations with pressure-correction meth-
ods can be very efficient. Such methods reduce the solution of the
original discretised Navier-Stokes equations to the solution of several
smaller subproblems that are solved instead of the original equations
[9,28,36,45]. For instance, in the case of Taylor-Hood Q2-Q1 elements
used in this work a mesh with n, elements leads to a system size of
approximately (251, x 25n,). With the pressure-correction method,
three systems of convection-diffusion type of size (8n, x 8n,), one
system of Poisson type of size (ne x ne) and one L,-projection of size
(ne x ne) are solved. Moreover, the preconditioning of this smaller
system matrices is more straightforward and easier to implement

0045-7930/© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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than the preconditioning of the original indefinite system matrix. We
solve each of the five systems with a suitable Krylov subspace method
and investigate the performance of additive Schwarz and block Jacobi
preconditioners with complete and incomplete LU factorisations as
local solvers.

The driving application for the present work is the study of in-
sect flight aerodynamics; see the textbooks [14,50] and review papers
[15-19] for an introduction to flapping flight. The relevant Reynolds
numbers range from about 100 for a fruit fly to about 10 for large in-
sects, such as dragon flies. In order to create sufficient lift insects cru-
cially rely on wings which flap with very high angles of attack (around
35°). This leads to separated flows with periodic vortex generation
and shedding, which are exploited by insects to increase lift. The
study of translating and rotating wings serves as a stepping-stone to-
wards the understanding the more complex three-dimensional flap-
ping flight. Both types of wing motions lead to the formation of a
leading-edge, a trailing-edge and two tip vortices. However, this vor-
tex structure is not stable for a translating wing, and it is periodi-
cally formed and shed, see [54] and references therein. Consequently,
there are large fluctuations in the lift and drag coefficients of the
wing. As first corroborated by the experiments of Ellington et al. [20]
the leading-edge vortex for a rotating wing is stable and remains at-
tached to the wing throughout the rotation. The low pressure zone
at the vortex core immediately above the leading edge leads to a
sustained large lift force. It is believed that the leading-edge vortex
is stabilised by centrifugal and Coriolis accelerations, which create
spanwise flow advecting vorticity from the leading-edge vortex. The
exact mechanisms are however not yet well understood and there is
an extensive amount of experimental studies [2,7,35,44] and some
recent computational studies on the topic [24,25,29]. In this paper
we present several new highly-resolved computations corroborating
previous experimental and numerical findings.

The outline of this paper is as follows. Section 2 begins reviewing
the incompressible Navier-Stokes equations in ALE form for comput-
ing the flow around moving rigid bodies. Subsequently, their solution
with the incremental pressure-correction method and their finite el-
ement discretisation are introduced. Specifically, in Section 2.3 all the
discretised subproblem sizes and types are given. In Section 3 the so-
lution of the obtained discrete problems with parallel preconditioned
iterative solvers is discussed. Efficient and scalable algorithms for par-
titioning of large meshes and assembly of large matrices are given.
Section 4 is dedicated to numerical performance studies and presents
several new highly resolved computations. First, in Section 4.1 the
developed computational approach is validated and verified with
the widely studied flow around an inclined flat plate. Subsequently,
in Section 4.2 the flow around a rotating insect wing is used to
investigate the mathematical and parallel scalability of various pre-
conditioned iterative methods. Finally, the identified most efficient it-
erative methods are used to study the Reynolds number dependence
of the vortex structure around a rotating wing.

2. Pressure-correction method for Navier-Stokes equations in
ALE form

In this section we briefly review the ALE formulation of the in-
compressible Navier-Stokes equations and their finite element dis-
cretisation. The discussion is specialised to the simulation of flows
around rotating rigid bodies, see Fig. 1. For time discretisation we
use the implicit Euler scheme in combination with the semi-implicit
pressure-correction technique. At each time step the solution of the
Navier-Stokes equations is reduced to the solution of a sequence of
convection-diffusion and Poisson problems.
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Fig. 1. Rotating insect wing (2s) with a body fitted fluid mesh. In the used ALE formu-
lation the mesh and the wing rotate with the prescribed angular velocity w.

2.1. Governing equations

We consider the rotation of a rigid body with domain Qg and
boundary I's embedded in a fluid domain 2. The boundary of the
fluid domain I" is comprised of two disjoint parts I's and ', I' =
I's U . The boundary I's is the common interface between fluid
and rigid body and I', is the free-stream boundary. The rotation of
the rigid body is prescribed with the angular velocity vector ®, the
centre of rotation is Xy and the corresponding velocity is

w=wx (X—Xp). (1)

A computationally efficient approach for simulating the flow field
generated by the rigid body is to consider the Navier-Stokes equa-
tions in a domain moving with velocity w, i.e.,

D*u
D +((u-w) - VYu—vAu+Vp=0, (2a)
V.u=0, (2b)

where u is the fluid velocity, v is the kinematic viscosity and p is the
normalised pressure. The time derivative in (2) is the ALE derivative
DAu  du
For further details on the ALE formulation of Navier-Stokes equations
see, e.g., [8,13]. The Navier-Stokes equations are complemented by
the following boundary conditions and the initial condition

u(t,x) =0 onl,
u(t,x) =w onljg, (4)
u(t=0,x)=0 inQ.

2.2. Incremental pressure-correction method

For discretising the Navier-Stokes equations (2) in time, we use
the backward Euler method with constant interval length At. In ad-
dition, we linearise the nonlinear convective term in (2a) with a semi-
implicit approach leading to the discretised equations

iu”*l +((W" —w) - V)u™! —pAu™ 4 Vpl = Lu”,

At At

V.u™! =0, (5)
where the index n indicates the variables associated with the time
step t".

With a view to parallelisation, the time-discretised semi-implicit
Navier-Stokes system (5) can be efficiently solved with a pressure-
correction, or a fractional-step, method [9,36]. A review and math-
ematical analysis of some of the prevalent pressure-correction ap-
proaches can be found, e.g., in [28,45]. The specific method we use
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is the incremental pressure-correction method in rotational form as
discussed in [47] and summarised below. To begin with, we define the
pressure increment Y"1 in order to keep the derivations compact

wnﬂ — pn+1 _ pn + vV . un+1 . (6)

To compute the velocity and pressure fields (u™1, p™+1) at time t"+!
three successive subproblems are considered.

1. First, the velocity field u™*! is obtained by solving the convection-
diffusion problem

Aituwrl + ((un _ W) . V)un+l _ vAuer

1
- —u'—V(p" n
A7 ®"+ v,
u™l' =0 onl,,
ul'=w onTs. (7)
2. Next, the pressure increment ™! is obtained by solving the
Poisson problem

1

A n+1 _ V. n+1’

4 ac
awnﬂ

=0 Mwuls. 8
on on s (8)
3. Finally, the pressure field p™*! is updated with

pn+1 — pn + wnﬂ —_vV.u! (9)

Note that there is only the velocity field u at times t"t! and " in
these three equations. The intermediate and the end-of-step veloc-
ities familiar from conventional pressure-correction methods have
been consolidated to one velocity field, see [28] for details. Further-
more, we do not apply any subiterations within each time step. As
discussed in [47] it is possible to employ subiterations in order to im-
prove the accuracy of the projection scheme.

The weak forms of the three subproblems (7)-(9) are needed for
their finite element discretisation, see e.g. [21,27]. To this end, we in-
troduce the function spaces

V:i={ve[H(Q)P.,v=00nT,, v=wonTy},
Vo:={ve[H(Q)P,v=00nT},

where H!(Q) is the usual Sobolev space.
The weak form of the convection-diffusion equation (7) reads:
find u™! e V such that

1
E(u”“, V) +c™, u™!, w,v) + a(u™!, v)

= @)~ (VYY) Vo eV (10)
with

(un+1’v) :/ unH -vdx,
Q
au™!,v) = v/ Vu't! : Vudx,
Q

c(u™, u™! w, v) =/ (" —w) - V)u™! . vdx.
Q

Notice that the Cartesian components of the momentum equa-
tion (10) are decoupled, and (10) reduces to three independent scalar
convection-diffusion equations. The weak form of the Poisson equa-
tion (8) for the pressure increment reads: find ¥"*1 ¢ H1(Q) such
that

(VY1 V) :_ﬁ(v.un-#l’q) Y qeH(Q). (11)

This is a pure Neumann problem and has a one-dimensional
nullspace consisting of constant functions, which has implications for

its numerical solution, see Section 3.1. Finally, for updating the new
pressure field with (9) we use the L,-projection: find p™*! ¢ H1(Q)
such that

P ="+ ¢y —vV.utl q) VqeH(Q). (12)

This projection is only relevant in the finite element context because
the divergence of the discrete velocity field V - u is in general discon-
tinuous and the discrete pressure p and pressure increment fields i
are continuous.

2.3. Finite element discretisation

The weak form of the incremental pressure-correction equations
are discretised in space with hexahedral finite elements. Although
we use the ALE description of the Navier-Stokes equations, there is
no need to solve for mesh position and velocity since both are pre-
scribed. As known, the basis functions for discretising the velocity
and pressure fields have to be carefully chosen so that they satisfy the
inf-sup, or BabusSka-Brezzi stability, condition, see [21,27]. We use the
Taylor-Hood Q2-Q1 elements discretising the velocity and pressure
fields with tri-quadratic and tri-linear basis functions, respectively.
In the resulting finite element mesh there are n, velocity nodes and
np pressure nodes with their ratio being ny/n, ~ 8. Notably, in our
computations we do not employ any convection stabilisation so that,
in effect, performing a direct numerical simulation.

Let us now investigate the systems of linear equations resulting
from the discretisation of the weak forms (10)-(12) closer. The ap-
proximation of the velocity and pressure fields with the Taylor-Hood
elements reads

1 Ny Uy i n, n,
u'=|ub | = E dilui ] Y= E v p'= E &pi. (13)

h im1 Un s i1 i1

u3 3,i

Here ¢; and &; are the tri-quadratic and tri-linear basis functions, re-
spectively, associated to the finite element node with index i. More-
over, the nodal unknowns are assembled into the global arrays

uy = (ud.lv---’ud.nu)T e R™,
¥=V1..... V) R, (14)

p= (p1,,..,p,1p)T e R™.

With these definitions at hand the weak forms (10)-(12) correspond,
respectively, to the linear equation systems

1
(—M,, +N+ vA,,)ug“

At
_ %M,,ug _P,(p"+¥") withd e {1,2,3), (15)
13
prn#—l _ _E ZBd”ZH’ (16)
=1
3
Myp™! = Mp(p" +9"") v > Bt (17)
=1

with the matrices

Mu:fgqsiq&jdx with i, j=1,...,na, (18a)
M,,:/Qg,»sjdx with i, j=1,....n,, (18b)
N:/Q((u”—w)-ngj)gbidx with i, j=1,.... 0, (18¢)
AH:LV¢i-V¢jdx with i, j=1,....n, (18d)
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Table 1
Summary of the properties of the five linear systems of equations solved in each time step.
Velocities Pressure increment Pressure
Equation Number (10), (15) (11), (16) (12),(17)
Type Convection-diffusion ~ Poisson L,-projection
Unknown(s) ug, Uy, Us v p
Matrix Size Ny X My np x 1p np x 1p
Properties Nonsymmetric Sym. pos. semidefinite  Sym. pos. definite
A, — / V& VEdx with i j=1.....1, (18e) methods on!y_ mgmx-vec.tor products with the system matrix A and
Q the preconditioning matrix P are needed.
9& On a (distributed-memory) parallel computer the equation sys-
P, = / ¢187]dx with i=1,....ny, j=1,...,1p, (18f) tems (19) and (20) are only available in a distributed format. The par-
Q Xd titioning of both equation systems results from the partitioning of the

defé,v%dx with i=1,....,np, j=1,..., My (18g)
o 0xy

Note that for each velocity component one independent equation (15)
is solved. Some properties of the linear equation systems (15)-(17)
relevant to the selection of suitable iterative solution methods are
summarised in Table 1.

3. Parallel iterative solvers and implementation

Next we introduce the solution of the linear systems of equations
resulting from the finite element discretisation of the incremental
pressure-correction method. The considered class of fluid problems
have up to several billions unknowns and the target parallel archi-
tectures have up to hundred thousand processors. For such problems
Krylov subspace methods with efficient preconditioners are the only
suitable solution technique. In practice, the scalability of the overall
finite element technique also depends on the efficiency of the data
structures and algorithms for mesh decomposition and handling, and
assembly of the systems matrices. In our finite element software
openFTL we make extensive use of the C++ STL [10,32,53], METIS [33]
and PETSc [4] libraries in order to achieve efficiency and scalability.
Specifically, the use of PETSc enables us to perform a number of nu-
merical experiments to identify the most suitable combinations of
Krylov subspace methods and preconditioners.

3.1. Parallel preconditioned iterative solvers

We first provide a brief review of the parallel preconditioned
Krylov subspace methods in order to fix terminology and notations.
For details we refer to standard textbooks, e.g., [21,40,48]. Our discus-
sion is restricted to iterative solvers and preconditioning techniques
that are available in PETSc and which we use in our numerical com-
putations.

The linear systems of equations introduced in Section 2.3 are of
the generic form

Au=f. (19)

The symmetry and the specific entries of the system matrix A and
the right-hand side vector f depend on the considered problem. We
use GMRES [49] or BiCGstab [58] for systems with a nonsymmetric
matrix A and the conjugate gradient method [11] for systems with a
symmetric matrix A. Moreover, a preconditioning technique is neces-
sary in order to improve the performance of the iterative solvers. To
this end, we consider the (left-)preconditioned equation system

PAu = Pf, (20)
where P is a suitable preconditioning matrix that approximates A~
(in some sense). The specific choices of preconditioners will be dis-

cussed in the following. For the subsequent discussions, it is also rele-
vant to recall that for implementing preconditioned Krylov subspace

computational domain €2 (and the corresponding triangulation) into
ng possibly overlapping subdomains €2;, withi=1, ..., ny. The over-
lap is a prescribed layer of elements between the subdomains. In our
computations the number of subdomains ny is equal to the number of
available processors. The matrix-vector product with the distributed
system matrix A is straightforward and can be assembled from sub-
domain contributions. The matrix-vector product with P depends on
the specific form of the preconditioner.

In this work, we consider as parallel preconditioners the block
Jacobi and the overlapping additive Schwarz methods available in
PETSc, see, e.g., [46,48,51,57] for details. These one-level methods are
not mathematically scalable for elliptic problems, such as the Pois-
son problem for the pressure increment [57]. It is necessary to use
a two-level method in order to achieve mathematical scalability, i.e.
convergence independent of the number of subdomains in a weak
scaling test. Nevertheless, in our experience, the considered one-level
methods perform reasonably well for the linear systems introduced
in Section 2.3, with the most critical being the Poisson problem for
the pressure increment. The state-of-the-art two-level methods in-
clude BDDC and FETI [12,22,23]. In these methods the challenge is
the scalable solution of the coarse problem, which is an active area
of research, see e.g. [3]. A possible solution is offered by the multi-
level extension of BDDC [41,52]. Nevertheless, the multi-level meth-
ods should be avoided as long as a one-level method performs well,
especially in a massively parallel environment.

In both the block Jacobi and the overlapping additive Schwarz
methods, the preconditioner P is defined as the sum of local subdo-
main matrices P;, i.e.,

Ny
P=>"R'PR; (21)

i=1

where R,»T isa 1 — 0 matrix which maps the local degrees of freedom
in the interior of the subdomain 2; to the global degrees of freedom.
The subdomain matrix P; is an approximation to the inverse of the
local system matrix A; and is defined as

Pi~A" = (RART) . (22)

Applying the inverse of the local system matrix A;” ! represents solv-
ing a local Dirichlet problem because the matrix R; does not include
the degrees of freedom at subdomain boundaries. The multiplication
of a vector r with the preconditioner P can now be established using
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ng ng ng
Pr=> R'PRr=) R'Pri=> R'w, (23)
i=1 i=1 i=1

with the local subdomain specific vectors r; = Rir and w; = P;r;.
Bearing in mind P; ~ A;’ ! the local vector w; is the (possibly approx-
imate) solution of the local problem

Aw;=r;. (24)

This problem is solved independently on each subdomain. The local
solves are performed with a direct method, so that an LU (or LLT) fac-
torisation is performed during the set-up of the preconditioner, and
only backsubstitutions are performed during the subsequent Krylov
iterations. Performing a complete LU factorisation is called exact fac-
torisation. Often one can save both time and memory by using an in-
complete LU factorisation with a prescribed allowed fill-in, see, e.g.,
[48]. In this regard, ILU(0) is the basic approach which discards all
entries of the factors which fall outside the sparsity pattern of the
original matrix. While ILU(1) and ILU(2) improve the approximation
of the inexact factorisation, they require new analysis of the sparsity
structure of the factors and lead to longer times for both factorisation
and back substitution.

A final remark concerns the solution of the pressure-corrector
problem (16) which is a pure Neumann problem for the considered
fluid flow problems with only Dirichlet boundary conditions. The cor-
responding symmetric matrix is singular with the nullspace spanned
by constant vectors. In this case, the problem is solved only in the
orthogonal complement of the nullspace. Namely, if we denote with
z=(1,1,...,1)T the basis vector of null(A), we can construct the or-
thogonal projection on its complementas Q = I — z.}.—zzzT. If this ma-
trix is applied after every multiplication with A and P, the iterations
are confined to the subspace orthogonal to null(A), and the following
modified system is solved

QPQAu = QPQf. (25)

The preconditioned conjugate gradient method in this subspace is re-
ferred to as deflated PCG.

3.2. Implementation details

3.2.1. Domain partitioning

As elucidated in the preceding Section 3.1, the parallel solution
of the discretised finite element equations relies on the partitioning
of the domain into subdomains and assigning them to different pro-
cessors. In general, the number of subdomains is chosen equal to the
number of available processors. In the computations presented in this
paper the discretised domain is a block-structured hexahedral mesh
and is generated with the GMSH mesh generator [26]. The subdo-
mains are obtained by partitioning the mesh with METIS. The size and
shape of each subdomain is chosen such that interprocessor commu-
nication is minimised and each processor is equally utilised.

Algorithm 1 Partitioning of the mesh into subdomains

1. Create the dual graph of the computational mesh.

2. Create a non-overlapping partitioning of elements into subdo-
mains by partitioning the dual graph (using METIS).

3. Derive a partitioning of nodes such that all nodes present in a
single subdomain are local to the processor and randomly assign
shared nodes to subdomains.

4, Assign each node a unique global ID by looping over all subdo-
mains and all nodes in each subdomain.

5. Build overlapping clusters of elements as a union of all elements
contributing to local nodes.

Fig. 2. Partitioning of a mesh into two nonoverlapping subdomain meshes. The nodes
on the subdomain boundaries are uniquely assigned to one of the subdomains.

Our METIS-based mesh partitioning algorithm is shown in
Algorithm 1, see also Fig. 2. As the first step we construct the dual
graph of the finite element mesh. In the dual graph each finite el-
ement is a vertex and the edges of the graph represent two adja-
cent finite elements. Subsequently, we partition the dual graph with
METIS. The partitioned graph gives a partitioning of the finite ele-
ment mesh into nonoverlapping subdomains so that each finite ele-
ment is uniquely assigned to a particular subdomain. Next the finite
element nodes are assigned to subdomains. First, the nodes inside a
subdomain are assigned to the respective subdomain. Subsequently,
the nodes at subdomain boundaries are randomly assigned to the at-
tached subdomains so that each has a similar number of nodes. In
the last step we assign to each node a unique (global) ID by sequen-
tially looping over the subdomains and consecutively numbering the
nodes. Finally, for performance considerations during assembly it is
necessary to form overlapping partitions so that the system matrices
can be assembled without interprocessor communication.

3.2.2. Overlapping partitions for fast assembly

The partitioning of the finite elements and nodes into subdomains
implies a partitioning of the system matrices and vectors into pro-
cessors. Recall that each row of the global system matrix represents a
node in the mesh, or more precisely one of its degrees of freedom.
Moreover, the domain partitioning introduced in Section 3.2.1 en-
sures that the degrees of freedom associated to a domain lie all within
a certain range. Hence, consecutive blocks of rows of the system ma-
trix can be assigned to processors. In PETSc this is achieved with the
MPIAIJ matrix format.

The rows of the global system matrix corresponding to finite ele-
ment nodes at the subdomain boundaries receive contributions from
several subdomains. During the assembly this requires frequent in-
terprocessor communication. In practice, the associated overhead for
assembly turns out to be excessively time consuming and presents
a major performance bottleneck for large problems. In order to re-
solve this issue it is possible to eliminate any interprocessor com-
munication during assembly. This can be achieved by providing each
processor all the elements and nodes necessary for independently as-
sembling its rows of the global system matrix. Therefore, we modify
the partitioning introduced in Section 3.2.1 so that each subdomain
stores in addition to its elements also elements of the neighbouring
subdomains that contribute to local matrix rows, see Fig. 3. Evidently
this leads to the notion of overlapping partitions. This can be accom-
plished using the partitioned dual graph provided by METIS and the
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Part 1 Part 2
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Partition 1 Partition 2

Fig. 3. Partitioning of a mesh with 14 nodes into two overlapping subdomain meshes
and a sketch of the corresponding matrix. The first six rows of the system matrix are
assigned to part one and the remaining eight to part two. The overlapping layer of
elements ensures that the system matrix corresponding to each part can be assembled
independently.

global transposed matrix of element connectivity, i.e. for each node,
the list of elements surrounding it.

3.2.3. On-the-fly assembly and intermediary data container

In our finite element software openFTL, sparse matrices are di-
rectly assembled without determining the sparsity pattern of the
matrix beforehand. The matrix is assembled on-the-fly while loop-
ing over the elements in the mesh and copying their contributions
to an intermediary data container. In the implementation of the in-
termediary data container, we make extensive use of the C++ STL
library, specifically of the std: :pair object, std: :vector con-
tainer and std: : sort algorithm. Similar to the coordinate sparse-
matrix storage format we represent the sparse matrix as a vector
of triplets (i,j,A;;), where Aj; is an entry with the row index i and
column index j. In C++ STL the type of each entry is chosen to
be {std::pair<std::pair<int,int>,double>}. The key
idea of the on-the-fly assembly is that the matrix entries are first
one after the other appended to the end of the vector. The vec-
tor is subsequently sorted and triplets with the same row and col-
umn index (i and j) are combined to one triplet by summing the
values Aj;; of the matrix entries. Note that we could use instead of
the std: :vector container the sorted std: :multi_map con-
tainer. Although this would eliminate the sorting step, the inser-
tion into an std: :multi_map is substantially slower than into
an std::vector. See also [42] for a discussion on the use of
std: :vector versus std: :multi_map.

Algorithm 2 The in-place assembly of the matrix in the coordinate

format

1. Loop over elements while appending each contribution to the
global matrix as a new triplet (i,j,A;;) at the end of the vector.

2. Sort the vector with the std: : sort algorithm primarily according
to the row index i and secondarily according to the column index
Jj (with the standard std: : pair comparison functor).

3. Loop over the vector, sum all entries with the same index pair
(i, j) and store them at the end of the already assembled part of
the vector.

4, Truncate the allocated memory to the actual size of the assembled
vector.

A step-by-step description of the on-the-fly assembly algorithm is
given in Algorithm 2. This algorithm is to be read in conjunction with
Fig. 4. Step 1 of the algorithm is straightforward in the sense that the
matrix entries are appended to the vector with a simple push_back
operation. In step 2 we sort the triplets with the std: : sort which
must have O(nlogn) complexity in C++11, with n being the length of
the vector [32,53]. Subsequently, in step 3 the entries are combined,
i.e. assembled, in linear time, and they are stored at the end of the
assembled part of the same vector, hence the assembly is performed
in-place.

sorted allowed new entry
entries overhead (4,7, Aij)
T 10 1
I ——
unsorted

Fig. 4. Schematic illustration of an insertion into the sparse matrix format. A new en-
try is appended at the end of the vector until the limit of allowed overhead is reached,
and a re-sorting is performed.

Due to memory restrictions, it is usually not possible to process all
matrix contributions in one go. The vector is sorted and assembled
in fixed prescribed intervals. In this way, we control both the mem-
ory overhead and number of sortings. The frequency of the intervals
depends on a user prescribed allowed memory overhead. In Fig. 5a
numerical timing study for the assembly of the system matrix of a
2D and 3D elasticity problem are reported. The study was performed
on a single core of the Intel Core i7 CPU with frequency 2.7 GHz. We
can observe that the time spent by sorting grows very slowly with in-
creasing allowed memory overhead. In contrast, the number of sort-
ings decreases linearly with increasing allowed memory overhead.
Hence, the total time is clearly dictated by the number of sortings
used during the assembly. Therefore, for achieving good performance
the allowed memory overhead should be chosen as large as possible.
Furthermore, it can be seen in Fig. 5 that the time for insertion of en-
tries is mostly lower than the total sorting times and it is independent
of the allowed overhead.

After all the finite element contributions are processed with
Algorithm 2, we obtain a vector of the assembled matrix in the coor-
dinate format, sorted primarily by rows and secondarily by columns.
This allows us to quickly determine the structure of the PETSc ma-
trix on each processor and to perform an exact pre-allocation of
memory. Subsequently, all the vector entries are copied into the
PETSc MPIAIJ matrix (using MatSetValue function with the
INSERT_VALUES flag). Moreover, due to the overlapping parti-
tions discussed in Section 3.2.2, there is no need to transfer stiff-
ness matrix data between the processors. Therefore, the assembly of
the PETSc matrix (by MatAssemblyBegin and MatAssemblyEnd
functions) takes negligible time.

4. Numerical performance studies and results

In this section we first validate and verify our computational
framework by analysing the flow around a low-aspect-ratio inclined
flat plate. Subsequently, we consider the flow around a rotating
insect wing to compare the performance of various Krylov solvers
and their parallel scalability in combination with block Jacobi and
additive Schwarz preconditioners. At the same time, we elucidate
and compare the flow structures and aerodynamic forces for trans-
lating and rotating wings, especially the formation and persistence
of leading-edge vortices. We generate all our finite element meshes
using the GMSH [26] as block-structured boundary-conforming
meshes. However, during the solution process the meshes are con-
sidered as unstructured. As finite elements we use the Taylor-Hood
Q2-Q1 elements. In order to resolve the flow field without needing
convection stabilisation sufficiently fine grids are used.

The considered flows and their numerical solution is strongly de-
pendent on the Reynolds number

UL

Re = - (26)

where u, is the characteristic fluid speed (e.g., free-stream velocity),
Lis the characteristic length of the wing and v is the kinematic viscos-
ity. In our computations the Reynolds number is altered by modifying
the kinematic viscosity.
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Fig. 5. The runtime of the on-the-fly assembly in dependence of the prescribed allowed memory overhead. (a) Bi-quadratic quadrilateral element system matrix of size 722 x 103
with 23.1 x 10 nonzeros (~445 MB) and 29.2 x 10° insertions. (b) Tri-quadratic hexahedral element system matrix of size 207 x 10°> with 37.5 x 10° nonzeros (~801 MB) and

52.5 x 10% insertions.

As the result of our computations we provide plots of the flow
fields in the form of isosurfaces of the Q-value. The Q-value is the
second invariant of the velocity gradient tensor Vu, and it is widely
used to visualise vortices [31]. In incompressible flows the second in-
variant can also be expressed as

_] 2
Q=5(el -

with the antisymmetric vorticity tensor £ = %(Vu —(Vu)T), the
symmetric strain-rate tensor S = %(Vu + (Vu)T) and ||-|| denoting
the Frobenius norm. Informally, in flow regions with Q > 0 the vor-
ticity is larger than the strain rate, which indicates the presence
of vortices (i.e., regions with swirling-type motion). More in-depth
discussion of applicability of the Q-criterion can be found in, e.g.,
[37-39].
We also report the aerodynamic forces acting on the wing in the
form of non-dimensionalised force coefficients
2F

T p2s

ISI1%). (27)

(28)

where Fis a component of the force resultant vector F, p is the density
of the flow and S is the planform of the wing. In all our computations
the flow density is p = 1. The coefficient C represents usually the drag
Cp or lift C; depending on the component of the considered force vec-
tor F. The force resultant F is the integral of the boundary tractions,
ie,

F =/ o(u,p) -ndrl, (29)
r

which is equal to the sum of the reaction forces of all the finite ele-
ment nodes located on the wing.

All performance and scalability studies are performed on the Cray
XEG6 supercomputer HECToR! (Phase 3). This computer is composed of
2816 XE6 compute nodes, each of which has 32GB memory. A com-
pute node contains two AMD 2.3 GHz 16-core processors giving a to-
tal of 90,112 cores, with 65,536 cores being the maximum handled
by the job scheduler. Cray Gemini chips are used for communication
through a high-bandwidth network.

4.1. Flow around an inclined flat plate
4.1.1. Problem definition and discretisation

The inclined flat plate represents some of the flow features
typical for animal locomotion in air and water and has been exper-

T http://www.hector.ac.uk

Fig. 6. Flow around an inclined plate. Computational mesh with the wing and its wake
at Re =300 and an angle of attack of 30°. All the mesh lines and the flat plate are
aligned with the coordinate system.

imentally and numerically studied by a number of authors, includ-
ing Taira and Colonius [54]| and Wang and Zhang [59]. As in these
two references we consider a rectangular thin plate with the chord-
length c = 1 and the span 2c resulting in the aspect ratio & = 2, see

Fig. 6. The thickness of the plate is 0.01875c. The bounding box of
the computational flow domain is a rectangular box with dimensions
[-10, 21] x [-10, 10.01875] x [-5, 7]. From this rectangular box, a
smaller axis-aligned cuboid representing the thin plate is subtracted
in order to obtain the computational fluid domain. The position of the
flat plate in the fluid domain is [0, 1] x [0, 0.01875] x [0, 2].

The outer rectangular box is discretised by 210 x 110 x 120
elements along its length, height and width, respectively. Each of
the cuboidal finite elements in the domain are axis-aligned with the
domain boundaries and become progressively smaller close to the
flat plate. The inner fluid boundary representing the wing is discre-
tised by 100 x 10 x 80 elements along its chord, thickness and span
directions, respectively. This discretisation leads to approximately
2.5 million elements and 20.6 million nodes.

The boundary condition at the plate surface is set to no-slip,
u(t,x) =0, and at the outer surface of the box to free-stream
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Fig. 7. Flow around an inclined plate. Isosurfaces of Q = 2 at different time instants, @ = 30°.

velocity u(t, ) = (U €COS o, Uy sin &, 0)T. The free-stream velocity
magnitude is u., = 1 and the angle of attack is «. Starting impulsively
at t = 0, the time dependent problem is solved for t € [0, 18]. The
time-step size is chosen with At = 0.02 resulting in 901 time steps
in a typical run. The Courant number based on the free stream veloc-
ity is us At/hx ~ 1.64, where hy is the smallest element size along the
chord. Moreover, the change of the angle of attack is achieved through
changing the direction of the flow rather than changing the mesh in
the computations.

4.1.2. Flow characteristics and forces

Before proceeding to validation and verification, we present the
results of our computations for (chord-length based) Re = 100, 300
and 1200 and the angle of attack of 30°. Our aim is to illustrate
the Reynolds number dependence of the flow characteristics and
forces, which in turn determine the spatial and temporal resolution
needs of the discretisation. In Fig. 7 the isosurfaces of the Q-value
are shown. At time t = 1.0, in all plots a leading-edge and two tip
vortices can be identified. Furthermore, for Re = 300 and 1200 also a
convected trailing-edge vortex (starting vortex) is visible, which is for
Re = 100 not strong enough to be shown by the Q = 2 isosurface. For
later times, as a general trend the complexity of the observed vor-
tex structures becomes more pronounced with increasing Reynolds
number due to the decrease in the diffusivity of the flow. At time

t = 3.0 for Re =300 and 1200, there are two columnar tip vortices
and an already pinching off leading-edge vortex is visible. This pro-
cess continues with consecutive formation and shedding of leading-
edge vortices as visible for time t =5.0 and t = 8.0 for Re = 300.
In order to be conclusive about the vortex structures observed for
Re = 1200 att = 5.0 and t = 8.0 computations with finer meshes are
needed.

It is instructive to consider the Q-value plots in Fig. 7 in con-
junction with the history of drag and lift coefficients in Fig. 8. As
an artefact of the impulsive start, the coefficients have a large peak
in the immediate vicinity of t = 0 which is not physically relevant.
The subsequent sustained increase in the lift coefficient occurs while
the leading-edge vortex is formed and the trailing-edge vortex is ad-
vected. This is due to the low pressure zone created by the leading-
edge vortex above the wing. The obtained maximum lift coefficient
becomes larger with increasing Reynolds number. The difference in
the drag coefficients corresponding to the maximum lift coefficients
is far less pronounced. As a result the aerodynamic efficiency (lift
coefficient divided by the drag coefficient) is proportional to the
Reynolds number. After the leading-edge vortex detaches for Re =
100 the lift and drag coefficients reach a steady state. In contrast, for
Re = 300 and Re = 1200 both coefficients continue oscillating in line
with shedding of vortices. For a more in-depth discussion of the rele-
vant flow characteristics we refer to [54].
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Fig. 8. Flow around an inclined flat plate. Comparison of drag (left) and lift (right) coefficients for an angle of attack of 30°, Re = 100, 300, and 1200.

4.1.3. Validation and verification

We compare our results with the experimental and computa-
tional results of Taira and Colonius [54]. They report for Re = 300
only computational and for Re = 100 computational and experimen-
tal drag and lift coefficients for various angles of attack. The same set-
up is also computationally investigated by Wang and Zhang [59] for
Re = 100.In [54] and [59] the discretisation is based on the immersed
boundary method and the plate is assumed to have zero thickness.
Since for Re = 100 the flow quickly reaches a steady state for all con-
sidered angles of attack, it is meaningful to compare the steady state
coefficients. In Fig. 9 our steady state drag and lift coefficients at time
t = 13 and angles of attack o = 10°, 30°, 50°, and 70° are compared
with the ones presented in [54] and [59].

One can observe that for o = 10° and 30° our values are in excel-
lent agreement with the experimental data and other computational
results. The difference in Cp can be attributed to the thickness of the
plate, which is about a half of that used in the experiment, while it
is ignored in other computations. The agreement is slightly worse for
o =50 and 70, where the computation seems to be affected by the
interaction of the wake with coarser mesh above the plate. As men-
tioned, the change of angle of attack is achieved through changing the
direction of the flow. At last, in Table 2 the maximal lift coefficients
and the times at which they are attained are given for Re = 300 and
Re = 1200. Our results are in good agreement with the computational
results in [54] for Re = 300.

4.2. Flow around a rotating insect wing

4.2.1. Problem definition and discretisation
It is well-known that a rotating wing generates a leading-edge
vortex which remains attached to the wing. The attendant sustained

-+ Taira and Colonius, experiment
»  Taira and Colonius, comp.
15| v Wangand Zhang, comp.
* present comp.

05|

o " " " " " " " "
0O 10 20 30 40 50 60 70 80 90
o [deg]

Table 2

Flow around an inclined flat plate. Maximum lift coefficients and
corresponding times for two different Reynolds numbers and an-
gles of attack. For Re = 300 results are compared to [54].

o (deg)  Reference Re =300 Re = 1200
Max. C; t Max. C; t
10 [54] 0.46 163 - -
Ourresult  0.43 14 0.48 2.68
30 [54] 1.29 168 - -
Ourresult  1.25 1.66 1.46 2.88

lift forces are believed to be crucial for the success and efficiency of
flapping flight in nature. In order to study the vortex formation and
forces generated by rotating wings, we consider a fruit fly (Drosophila
melanogaster) wing, as experimentally studied in [43], at an angle of
attack of 40° rotating around a vertical axis near its root, see Fig. 10.
The length of the wing is R; its aspect ratio is /R = R2/S = 3.1, where
S is the planform area; and its thickness is 0.01R.

As shown in Fig. 11, the computational fluid domain consists of a
cylinder with radius 2.9R and an axial hole with radius 0.016R. The
height of the cylinder is 4.7R. The block structured finite element
mesh is generated with GMSH [26] with the block topology depicted
in Fig. 12, although it is handled as unstructured in the solver. The
mesh is refined towards the wing, resulting in 30 x 5 x 30 elements
along the chord, thickness, and span of the wing, respectively, see
Fig. 11. The whole fluid domain contains 266 x 102 x 77 Taylor-Hood
elements along circumference, height, and radius of the cylinder, re-
sulting in approximately 2.1 x 106 elements and 16.8 x 106 nodes.

After a smooth acceleration to the final angular velocity during the
time ¢t € [0, 1], the wing rotates with a constant angular velocity until

1.2 T T T T T T T -
Taira and Colonius, experiment —+

1t Taira and Colonius, comp. =
Wang and Zhang, comp. v

08 present comp. e

S o6t
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Fig. 9. Comparison of steady drag Cp (left) and lift C; (right) coefficients at Re = 100 for different angles of attack « with experimental and computational results by Taira and

Colonius [54], and computational results by Wang and Zhang [59].
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(a) Planform

(b) Isometric view

Fig. 10. Flow around a rotating insect wing. Geometry and prescribed motion of the
Drosophila wing (with r = 0.0625R and o = 40°).
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Fig. 11. Flow around a rotating insect wing. Computational mesh with wing and its
wake at Re = 526 for angle of attack of 40° with approximately 2.1 x 10° finite ele-
ments and 16.8 x 10° nodes.

Fig. 12. Flow around a rotating insect wing. Topology of the 27 blocks of the structured
mesh used for meshing the computational domain. The Drosophila wing geometry is
mapped to the inner block (at the intersection of the dark shaded faces). The mesh is
connected into a ring at the lightly shaded faces.

t =7.7.Att = 7.7 one full revolution is completed. With the uniform
time-step size At = 0.002 the whole computation requires 3850 time
steps. The velocity of the tip of the wing is prescribed with |u;;,| =1,
resulting in |ug,| At/hgp, ~ 0.1, with hy;, denoting the smallest element
size near the tip of the wing. The angular velocity is @ = [u;;,|/R. An

important length is the radius of gyration Rg = /S,/S, where S, is
the second moment of the wing with respect to the axis of rotation
[16,29]. For the considered wing geometry the radius of gyration is
Rg = 0.5255R.

The reported Reynolds numbers are based on the velocity at the
radius of gyration ug, i.e.,
Re — R |uyg| _ RRga)’ (30)

ARV ARV

which is altered by choosing a suitable kinematic viscosity v. In order
to study the flow in laminar and transient regimes we consider four
different Reynolds numbers Re € {105, 263, 526, 1051}2.

4.2.2. Performance comparison of the iterative solvers

To begin with, we aim to identify the most efficient combination
of Krylov subspace methods and preconditioners suitable for solv-
ing the systems of equations resulting from the discretisation of the
Navier-Stokes equations. As summarised in Table 1, in the incremen-
tal pressure-correction approach five linear systems of equations are
solved at every time step. Namely three equations for the update of
the velocity components, one equation for the update of the pressure
increment and one equation for the pressure update. We only con-
sider iterative solvers and preconditioners that are available in PETSc
(version 3.2).

For all numerical studies in this section we use the block-
structured mesh described in the foregoing section and shown in
Fig. 11 (with 2.1 x 10° elements and 16.8 x 10° nodes), unless stated
otherwise. The number of subdomains and utilised processors is cho-
sen to be 2048 and the Reynolds number for the flow is Re = 1051.
The reported iteration counts and times are averaged over the initial
400 time steps, 200 of which are in the acceleration stage.

First, we consider the velocity update which involves three inde-
pendent discrete convection-diffusion type equations (15). Each of
the three equations has the same system matrix. Since these are non-
symmetric we use the GMRES [49] and BiCGstab [58] methods. In
Table 3 the performance of both methods with no preconditioner and
with block Jacobi preconditioner are compared. For solving the sub-
problems of the diagonal blocks in the block Jacobi preconditioner
(see Section 3.1), we use ILU preconditioner with no fill-in ILU(0),

2 The selected values of Reynolds numbers correspond to the tip velocity based

R |ugipl
Reynolds numbers Retip = —x& ., € {200, 500, 1000, 2000}._
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Table 3

Flow around a rotating insect wing. Iteration counts and timings for velocity update using two different Krylov solvers
and a block Jacobi preconditioner with different subdomain solvers. All computations are using the mesh shown in
Fig. 11 and 2048 subdomains. For each case the reported numbers are average values over the initial 400 time steps (of
which 200 are in acceleration phase). The minimal time is emphasised in boldface.

Method Prec. Local sol. ~ Number of iter. Min-max (avg.) Avg. sol. time (s)
uy uy us Uy Uz us
GMRES No - 1-313(259.0)  0-10k(9.8k) 2-1.1k(0.9k) 149 5567 526
bl. Jacobi  ILU(0) 7-14(12.6)  0-13(11.9) 7-15(13.7) 0.20 011 0.12
ILU(1) 7-14(12.6)  0-13(11.7) 7-14(13.4) 3.10 032 036
ILU(2) 7-14(12.0)  0-13(11.0) 7-14(12.7) 29.67 072 082
LU 7-14(12.6)  0-13(11.7) 7-14(13.4) 1.01 027 030
BiCGstab  No - 1-183(151.4) 0-3.5k(2.5k)  1-440(342.5) 134 2149 299
bl. Jacobi  ILU(0) 4-9(7.5) 0-7(6.9) 4-9(8.0) 0.22 012 014
ILU(1) 4-8(7.3) 0-7(6.9) 4-9(8.6) 312 037 045
ILU(2) 4-8(7.2) 0-7(6.8) 4-9(8.1) 29.86 0.87 1.03
LU -8(7.6) 0-7(6.9) 4-9(8.6) 1.06 0.31 0.38
Table 4

Flow around a rotating insect wing. Iteration counts and timings for velocity update using GMRES and dif-
ferent preconditioners and subdomain solvers. The considered preconditioners and their abbreviations are:
block Jacobi (bl. Jacobi) and additive Schwarz method with algebraic overlap 1 (ASM-1) and 2 (ASM-2). All
computations are using the mesh shown in Fig. 11 and 2048 subdomains. For each case the reported numbers
are average values over the initial 400 time steps (of which 200 are in acceleration phase). The minimal time

is emphasised in boldface.

Method Prec. Local sol. ~ Num. iter. Min-max (avg.) Avg. sol. time (s)
Uy up us Uy up Us
GMRES bl Jacobi  ILU(0) 7-14(12.6)  0-13(11.9) 7-15(13.7) 020 011  0.12
GMRES ASM-1  ILU(0) 5-8(7.7) 0-8(7.4) 5-9(86) 180 010 0.1
ILU(1) 3-4(3.7) 0-4(3.7) 3-43.9) 554 019 020
ILU(2) 3-3(3.0) 0-3(2.9) 3-3(3.0) 5701 040 041
LU 3-3(3.0) 0-4(3.1) 3-4(35) 1305 016 018
GMRES  ASM-2  ILU(0) 5-8(7.7) 0-8(7.4) 5-9(8.6) 115 015 017
ILU(1) 3-4(3.6) 0-4(3.6) 3-4(3.6) 875 031 0.31
ILU(2) 2-2(2.0) 0-2(2.0) 2-2(20) 7476 048 049
LU 2-3(2.5) 0-3(2.1) 2-3(20) 508 025 025
with prescribed additional fill-in ILU(1) and ILU(2), and a complete Table 5

sparse LU factorisation. In the last case, the MUMPS direct solver [1]
is used. In all computations, the preconditioner is set up in every time
step once and used for all three velocity components. The time for the
set-up is included in the computational time for the velocity compo-
nent uy.

In Table 3 we can see that GMRES and BiCGstab perform similarly
well, the former being marginally faster. In terms of number of iter-
ations, we recall that two actions of the system matrix as well as of
the preconditioner are performed within each iteration of BiCGstab.
Hence, the number of iterations for BiCGstab should be about one
half of those by GMRES for comparable accuracy. Moreover, it is ev-
ident from Table 3 that a preconditioner is crucial. It is interesting
that the convergence of the preconditioned methods does not signif-
icantly improve with better approximation of the incomplete factors,
moving from ILU(0) to ILU(2), while it increases the cost of the solve
for the first velocity component drastically. Surprisingly the full LU
factorisation of the diagonal blocks with MUMPS is faster than ILU(1)
and ILU(2), but still more expensive than ILU(0). As a conclusion, the
ILU(0) appears to be the best local solver in combination with the
block Jacobi preconditioner for the velocity components. Our most
recent studies indicate that even a simple diagonal Jacobi precondi-
tioner appears to be competitive in terms of computing time.

Continuing with the velocity update, we also investigate the al-
gebraic versions of the additive Schwarz method (ASM) with one or
two elements of overlap. In the PCASM preconditioner of PETSc the
clusters of overlapping elements are reconstructed from the graph of
the local matrices without overlaps. The ASM simplifies to the block
Jacobi preconditioner when no overlap is used. The corresponding re-

Flow around a rotating insect wing. Iteration counts and timings for pressure incre-
ment v update using deflated PCG with block Jacobi preconditioner and different
subdomain solvers. All computations are using the mesh shown in Fig. 11 and 2048
subdomains. For each case the reported numbers are average values over the initial
400 time steps (of which 200 are in acceleration phase). The minimal time is empha-
sised in boldface.

Method Prec. Local sol. Num. iter. Avg. sol.
Min-max (avg.) time (s)
Defl. PCG bl. Jacobi ILU(0) 144-249(195.9) 0.13
ILU(1) 127-216(172.9) 0.14
ILU(2) 151-207(188.6) 0.18
LU 122-194(163.4) 0.31

sults are presented in Table 4. It can be observed that an overlap is
capable of improving the preconditioner (cf. results for block Jacobi
preconditioner in Table 4) by significantly reducing the number of it-
erations. However, in terms of computational time, the time spent on
the set-up of the preconditioner is too high to be amortised by the
slightly faster solution times of the ASM method with one element
overlap.

Next, we consider the update of the incremental pressure field
Y by solving the Poisson problem (16) with pure Neumann bound-
ary conditions, see Table 5 for results. Our study is restricted to the
deflated preconditioned conjugate gradient (PCG) method using the
block Jacobi preconditioner and different local solvers. As Table 5 sug-
gests, the solution times are comparable to those necessary for solv-
ing for one component of velocity. However, the equation system for
velocity component is around eight times larger than the one for the



176 J. Sistek, E. Cirak / Computers and Fluids 122 (2015) 165-183

—— 'IL1
Uo 1
—v— Uug
—e- )

___e———e-—'° -t p

=
|»

e--—06-—-"9

number of iterations
9\;

10 EE;:%!-E | |
167 10° 10 10°

number of processors

— U1 ‘ ‘
» 103 FF—a— uz
5 —v— ug &¢---6---0---6---0
g | v
] P
S 10
(0]
Ke)
£
=}
S =
10 N ;
167 10° 10 10°

number of processors

(b) Mesh B

(a) Mesh A
—— Uq ‘
8 103 F—a— uz
9 —— U3
8 | v
g |
S 10?
()
e}
S
>S5
c
10" | ‘
10 10°

e c— a—
164 10°

number of processors

(¢) Mesh C

Fig. 13. Flow around a rotating insect wing. Iteration counts for meshes A, B and C (see Table 8) and different number of subdomains. Problems for velocity components solved
with GMRES, problems for pressure increment and for pressure with CG, all with block Jacobi preconditioner and ILU(0) as the local solver. See Table A.10 in the Appendix for

numerical values.

Table 6

Flow around a rotating insect wing. Iteration counts and timings for the L,-projection
of the pressure p using PCG with block Jacobi preconditioner and different subdomain
solvers. All computations are using the mesh shown in Fig. 11 and 2048 subdomains.
For each case the reported numbers are average values over the initial 400 time steps
(of which 200 are in acceleration phase). The minimal time is emphasised in boldface.

Method Prec. Local sol. Num. iter. Avg. sol.
Min-max (avg.) time (s)
PCG bl. Jacobi ILU(0) 11-12(11.5) 0.009
ILU(1) 11-12(11.0) 0.010
ILU(2) 11-12(11.1) 0.014
LU 11-12(11.1) 0.022

incremental pressure update, cf. Section 2.3. Overall, similar to ve-
locity problems, the lowered number of iterations by better (or even
exact) LU factorisation is, for this case, not sufficient to save compu-
tational time. The simplest ILU(0) factorisation of the local problems
remains the most efficient method.

For the sake of completeness, we also perform a similar study
for the L,-projection of pressure p, cf. (17), see Table 6 for results.
It should be stressed that this problem is by an order of magnitude
faster to solve than the velocity update (15) and the auxiliary pres-
sure update (16). Consequently, savings for this problem do not lead
to any significant gain in the overall algorithm. The fast convergence
of all considered methods is reported in Table 6.

4.2.3. Parallel scalability of the iterative solvers
We now investigate the parallel scalability of the preconditioned
iterative solvers identified as most efficient in the foregoing section,

Table 7
Flow around a rotating insect wing. The identified most efficient combination of Krylov
solver, preconditioner and subdomain solver.

Problem Velocity components Pressure increment  Pressure

Ui, Up, Us w p
Krylov method GMRES Deflated PCG PCG
Preconditioner block Jacobi block Jacobi block Jacobi
Subdomain solver  ILU(0) ILU(0) ILU(0)

see Table 7. The velocity components u4, U, and us are updated with
GMRES, the pressure increment  is updated with deflated PCG, and
PCG is used for L,-projection of the pressure p. In each case the block
Jacobi preconditioner with ILU(0) local solver is used. The Reynolds
number of the flow is Re = 1051 for all computations. We study both
the weak and strong scalability of the iterative solvers. During the
weak scaling runs the problem size grows with the number of pro-
cessors while keeping the load on each processor approximately con-
stant. In contrast, during the strong scaling runs the problem size is
fixed and only the number of processors is increased. An algorithm is
optimally scalable when the solution time is constant during a weak
scaling test and when the solution time is halved each time the num-
ber of processors is doubled during a strong scaling test.

For the weak scaling runs, we use two additional meshes gener-
ated by octasecting the hexahedral elements of the computational
mesh described in Section 4.2.2, see also Fig. 11. During each refine-
ment the problem size increases approximately by factor eight. The
sizes of the considered three meshes are given in Table 8.

Figs. 13 and 14 show the average number of iterations and aver-
age solution times per time step in dependence of number of utilised
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Fig. 14. Flow around a rotating insect wing. Timings (left) and speed-ups (right) for meshes A, B and C (see Table 8) and different number of subdomains. Problems for velocity
components solved with GMRES, problems for pressure increment and for pressure with CG, all with block Jacobi preconditioner and ILU(0) as the local solver. See Table A.11 in the
Appendix for numerical values. The line ‘step’ presents the average total time for a time step.

processors, respectively. The reported numbers are averaged over 400
time steps, 200 of which are in the initial acceleration phase. In addi-
tion, in Fig. 14 we also report the parallel speed-up

— npref tref

Sn, tn

(31)

P

where np, . is the lowest number of utilised processors, tr is the cor-
responding time, and tp,, is the time on np processors.

In Fig. 13 one can see that for each given mesh the number of it-
erations is almost independent of the number of processors, only for
the pressure increment ¥ the number of iterations increases slightly
with increasing processor numbers. Moreover, the number of iter-
ations for the pressure increment are significantly higher than the
ones for the other problems. Therefore, in Fig. 14 the pressure in-
crement update requires on average a comparable time like the up-
date of the velocity components, despite having considerably less de-
grees of freedom. The worsening strong scalability of the pressure
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Fig. 15. Flow around a rotating insect wing. Weak scaling plots. Iteration counts (left) and timings (right) for meshes A, B and C (see Table 8) and different numbers of subdomains.
Lines from the lower right to the upper left corner correspond to approximately 1000, 2000, 4000, 8000 and 16,000 finite elements per subdomain. Problems for velocity component
uy solved with GMRES, problems for pressure increment with CG, all with block Jacobi preconditioner and as the ILU(0) local solver. See Table A.10 in the Appendix for numerical

values.

Table 8
Flow around a rotating insect wing. Description of the computational meshes for the
scaling runs.

Reference Description #elements  # velocity # pressure
nodes nodes

MeshA  Mesh described in 2.1 x 106 16.8 x 106 2.1 x 106
Sec.4.2.2

Mesh B Uniform refinement of 16.6 x 108 134 x 106 16.8 x 106
Mesh A

MeshC  Uniform refinement of 133 x 106 1.07 x 10° 134 x 106
Mesh B

increment update suggests that the local work on subdomains is too
small to balance the cost of communication. The scalability begins to
deviate slightly from optimal going from 2000 elements to 1000 el-
ements per core and is lost when computing with 500 elements per
core. A similar effect is seen for the L,-projection of the pressure p, al-
though we again emphasise, that this problem is by an order of mag-
nitude quicker to solve than the others. In Fig. 14, we also present the
average total time for one time step, including the time for comput-
ing and assembling the matrices, computing aerodynamic forces and
output of results. Although these operations are embarrassingly par-
allel, as the plots indicate they can take significant amount of time.
Hence, optimisation of these parts of the computation should be per-
formed next.

Finally, in Fig. 15 the number of iterations and computational
times for Meshes A, B and C are combined in order to illustrate weak
scalability. It can be inferred from Fig. 15 that with increasing mesh
size the number of iterations approximately doubles for the velocity
problem. The increase is even higher for the pressure increment. This
behaviour is common to all one-level domain decomposition tech-
niques including the block Jacobi method. Therefore, weak scalabil-
ity cannot be expected, although the solution times remain accept-

Table 9

able. Looking at the computational times in Fig. 15 we can see that
the time required for the update of the pressure increment y is now
comparable to that of the update of the first velocity component u;.
For 32,768 and 65,536 subdomains, the pressure corrector problem
already dominates the solution process, and a better two-level pre-
conditioner may become beneficial.

4.2.4. Reynolds number dependence of the iterative solvers

We compute one entire revolution of the Drosophila wing for four
different Reynolds numbers (based on the velocity at the radius of gy-
ration) Re € {105, 263, 526, 1051}. The time step increment is chosen
constant such that one entire revolution requires 3000 time steps. In
accordance with Table 7, the velocity components uq, u; and us are
updated with GMRES, the pressure increment 1 is updated with de-
flated PCG, and PCG is used for L,-projection of the pressure p. In each
case the block Jacobi preconditioner with ILU(O) as the local solver is
used. For all computations we use Mesh A, see Table 8, and the num-
ber of utilised processors is 2048.

In Table 9 the minimum, maximum and average numbers of itera-
tions over an entire revolution are given. The prescribed tolerance of
the relative residual is 10~6. We can see that the number of iterations
for the update of velocity components decreases significantly with
increasing Reynolds number. We recall here that the velocities are
updated by solving a convection-diffusion equation and it is known
that the ILU preconditioner performs best for convection-dominated
problems, see [21,51]. Interestingly, the number of iterations for ob-
taining the pressure increment 1 also becomes smaller with higher
Reynolds number. The number of iterations for the L,-projection of
pressure is very low and independent of the Reynolds number.

4.2.5. Flow characteristics and forces

The vortex structures exhibited by a rotating wing and the corre-
sponding aerodynamic forces are very different from the ones for a
translating wing. At high angles of attack both trajectories generate a

Flow around a rotating insect wing. Number of iterations in dependence on the Reynolds
number for solving for velocity components (u;, uy, u3), pressure increment ¥ and pres-
sure p. For each Reynolds number the number of iterations over an entire revolution of
the wing (3000 time steps) is reported. The format of the entries is ‘minimum-maximum
(average) number of iterations. All computations are using the mesh shown in Fig. 11 and

2048 subdomains.

Re Uy U us 2 p
105 23-20(266) 21-27(258) 24-29(272)  100-242(168.6)  7-7(7.0)
263 18-22(19.9)  15-21(19.8)  18-22(203)  93-229(1504)  7-7(7.0)
526 14-17(160) 12-17(166) 14-18(163)  61-181(106.5) 6-8(7.0)
1051 11-15(139)  10-15(14.8)  13-17(14.3) 33-178(73.9)  6-8(6.8)
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Fig. 16. Flow around a rotating insect wing. Isosurfaces of Q = 3 at different time instants, & = 40°, Re = 105 (left) and Re = 263 (right).

large leading-edge vortex. As it is known, whereas the leading-edge
vortex of a translating wing is periodically shed (cf. Section 4.1.2), it
remains attached for a rotating wing (under insect-like flight condi-
tions). However, for higher aspect ratios and larger Reynolds numbers
the leading-edge vortex may not be so well defined and breaks down
near the tip [24,29]. The presence of the attached leading-edge vortex
and the associated low pressure zone leads to a sustained lift force.
Although this has been extensively discussed in the animal flight and
engineering literature, its computational study became feasible only
recently. Due to the truly three-dimensional nature of the flow, the
size of the discretised problem becomes very large, especially when
a direct numerical simulation is performed.

In Figs. 16 and 17 the Q-criterion isosurfaces with Q = 3 are used
to visualise the flow. All snapshots show a vortex loop consisting of a
leading-edge, trailing-edge and two tip vortices, see also the experi-
mental results in [35,44]. The segments of the loop not connected to
the wing have a downward velocity. Importantly, throughout the ro-
tation the leading-edge vortex remains attached to the wing. For all
the considered Reynolds numbers, the leading-edge vortex is com-
pact close to the wing root and becomes larger and then lifts up
nearer to the wing tip. Moreover, with increasing Reynolds number
it is slightly tighter in the vicinity of the wing root. As to be expected
the complexity of the observed vortex structures becomes more
pronounced with increasing Reynolds number due to the decrease in
the diffusivity of the flow. In particular, for Re = 526 and Re = 1051
we can see finger-like subvortices emanating from the wing tip and

spiralling around the leading-edge vortex. As also observed in [25],
the orientational sense of this spiralling appears to be opposite to the
rotation of the vortex. Although not shown in Figs. 16 and 17 there
is a significant spanwise flow, with its maximum comparable to the
radial velocity, from the root to the tip of the wing. As initially postu-
lated in [20] the spanwise flow and the corresponding vorticity flux
limits an unbounded growth of the leading-edge vortex and prevents
its shedding.

Finally, we present the history of aerodynamic coefficients in
Fig. 18. The lift, drag, and spanwise force coefficients are computed
according to (28) with the planform S = R?/ /R and uy = Rgw, the
final velocity at the radius of gyration. It is helpful to recall that the
wing is initially accelerated until t = 1 and then rotates with constant
angular velocity o until one full revolution is completed at t = 7.7.
After a slight dip immediately after the acceleration phase, the co-
efficients are steady throughout the revolution even for the high-
est Reynolds number. Moreover, towards the end of the simulation
when a full rotation is completed, the coefficients become slightly
smaller. This is most likely due to the interaction of the tip vortices
with the previously generated vortices. As can be seen in Fig. 18a
and b both drag and lift coefficients become larger with increasing
Reynolds number. However, the lift coefficient is much more sensi-
tive to the Reynolds number than the drag coefficient. Especially, for
an increase from Re = 105 to Re = 263 there is a sudden jump in the
lift forces. The obtained drag and lift coefficients show similar trends
as recently reported by Harbig et al. [29]. The lift-to-drag ratio (or,
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Fig. 17. Flow around a rotating insect wing. Isosurfaces of Q = 3 at different time instants, o« = 40°, Re = 526 (left) and Re = 1051 (right).

aerodynamic efficiency) in Fig. 18d indicates also a sudden increase
going from Re = 105 to Re = 263. The force in the spanwise (root-to-
tip) direction plotted in Fig. 18c is by an order of magnitude lower
than drag and lift, and it becomes lower with increasing Reynolds
number.

5. Conclusions

We considered the implicit parallel computation of three-
dimensional low Reynolds number flows on stationary and rotating
domains. The scalability of the overall finite element technique de-
pends on the suitable formulation of the physical problem, the data
structures, the algorithms for data handling and the preconditioned
iterative solver. To this end, we introduced efficient and scalable tech-
niques for domain partitioning, system matrix assembly and precon-
ditioned iterative solution. In our implementation we make extensive
use of open source libraries METIS, C++ STL and PETSc. The resulting
software is very efficient and it is able to solve systems with ~ 3.34 x
10° unknowns (of the corresponding coupled Navier-Stokes system)
in around thirty seconds on 65,536 processors.

The discretisation of the Navier-Stokes equations with the
pressure-correction method leads to one convection-diffusion prob-
lem with three different right-hand sides, one Poisson problem and
one L,-projection. We find that it is most efficient to precondition
each subproblem with the block Jacobi preconditioner using ILU(0)
on subdomains and to solve each with a suitable Krylov subspace it-
erative method, namely GMRES for nonsymmetric and PCG for sym-

metric problems. This gives an overall solution technique with almost
perfect scaling even for very large problems and processor counts.
The block Jacobi preconditioner with ILU(0) exhibits perfect scalabil-
ity in case of the convection-diffusion problems and the considered
discretisations with up to 1.07 x 10° velocity nodes and 65,536 pro-
cessors. Moreover, it was observed that the number of iterations is
inversely proportional to the Reynolds number of the flow. Although
for larger processor counts the solution of the Poisson problem for
the pressure increment becomes a bottleneck, it has only limited in-
fluence on overall solution time. The size of the discretised Poisson
problem is only about 1/8 of the size of the discretised convection-
diffusion problem. The discretised L,-projection problem is of the
same size as the discretised Poisson problem. However, it can be
solved with much fewer iterations due to its better conditioning.
In order to compute on larger processor counts, especially with a
view to peta-scale computing platforms, it appears to be crucial to
improve the scalability of the solution of the Poisson problem. To
this end, the most promising techniques appear to be two-level or
multilevel BDDC and FETI domain decomposition methods, see e.g.
[12,22,23,52].

In order to make the developed approach truly useful for the
study of flapping-flight aerodynamics, it is necessary to consider flex-
ible wings. The used ALE approach with rigidly rotating meshes is
however only suitable for rigid bodies and not applicable to flexible
wings. In case of flexible wings it is in principle possible to use either
non-boundary-fitting immersed grids [47], boundary-fitted meshes
[55] or a combination of both [6]. When a partitioned (or, block
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Fig. 18. Flow around a rotating insect wing. Aerodynamic coefficients during one revolution for different Reynolds numbers.

Gauss-Seidel) approach is used for solving the resulting fluid-
structure interaction problem, the approach developed here can be
used for solving the fluid problem.
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Appendix A.

The following two tables give the data for the Figs. 13 and 14 in-
troduced in Section 4.2.3.

Flow around a rotating insect wing. Iteration counts for meshes A, B and C (see Table 8) and different number of
subdomains. Problems for velocity components uy, u; and u3 solved with GMRES, problems for pressure increment
and for pressure p with CG, all with block Jacobi preconditioner and ILU(0) as the local solver.

Num. processors Number of iterations

ug U us ¥ p
Mesh A 128 7-12(11.0) 0-11(10. 7-14(13.1) 119-198(157.2) 11-11(11.0)
256 7-13(12.1) 0-13(11. 7-15(13.2) 125-205(164.6) 11-11(11.0)
512 7-13(11.6) 0-13(11. 7-14(12.9) 130-217(175.4) 11-11(11.0)
1024 7-13(12.4)  0-13(12. 8-14(13.5) 138-234(186.5) 11-12(11.7)
2048 7-14(12.6) 0-13(11. 7-15(13.7) 144-249(195.9) 11-12(11.5)
4096 8-14(13.4)  0-13(12. 8-16(14.5) 157-269(213.5)  12-12(12.0)
Mesh B 1024 11-20(18.4) 0-18(16. 11-24(21.9) 369-680(529.7)  12-12(12.0)
2048 10-22(19.6) 0-19(17. 11-25(23.0) 373-688(534.4)  12-12(12.0)
4096 10-22(19.6)  0-20(17.6 10-25(22.9) 382-696(543.9)  12-12(12.0)
8192 11-27(23.4)  0-24(20.9 11-30(26.5) 385-704(550.5)  12-12(12.0)
16 384 10-24(21.7)  0-22(18.9 11-28(24.7) 394-712(558.4)  12-12(12.0)
Mesh C 8192 18-43(36.4)  0-38(31.1 19-48(40.9)  820-1425(1175.9)  12-12(12.0)
16 384 19-42(37.0)  0-38(324 20-47(41.6)  832-1437(1150.6)  12-12(12.0)
32768 19-44(38.1)  0-39(32.7)  21-49(42.8)  836-1452(1163.2)  12-12(12.0)
65536 19-44(36.9)  0-38(30.9 20-49(42.1)  855-1472(1254.6)  12-12(12.0)
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Table A.11

Flow around a rotating insect wing. Average times for solving the linear systems and the total time per step for meshes
A, B and C (see Table 8) with different number of subdomains. Problems for velocity components uy, u; and u3 solved
with GMRES, problems for pressure increment ¥ and for pressure p with CG, all with block Jacobi preconditioner and
ILU(0) as the local solver. The number of processes (the same as cores) is denoted with ‘num. proc.” and the average

number of finite elements per subdomain with ‘loc. size’ .

Num. proc.  Loc. size ( x 10%)  Solution time (s) Time per step (s)
uy U us ¥ p
Mesh A 128 16 5198 1.552 1.952 1238  0.092  220.640
256 8 2.703 0.832 0.971 0.621 0.045 86.915
512 4 0.789 0.413 0.479 0.304 0.023 39.801
1024 2 0392 0220 0.242 0190 0.014 19.127
2048 1 0.193 0.105 0.120 0.129 0.009 9.876
4096 0.5 0.101 0.055 0.064 0.134 0.009 6.286
Mesh B 1024 16 5139 2.577 3.538 4.286 0.105 231.137
2048 8 2.585 1.337 1.810 2.087 0.051 91.739
4096 4 1152  0.656  0.867 0907  0.026 42.604
8192 2 0.630 0.377 0.487 0.518 0.014 21.857
16 384 1 0.289 0.169 0.222 0.368 0.010 12.439
Mesh C 8192 16 10.559 5.188 6.972 10.085 0.113 251.728
16 384 8 5139 2.614 3423 5.013 0.066 100.716
32768 4 1.961 1.268 1.688 2.625 0.039 50.968
65536 2 0941 0587 0.820 1.721 0.029 33.112
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