
Nečas Center for Mathematical Modeling

Parallel iterative solution of the
incompressible NavierStokes equations
with application to rotating wings

J. Š́ıstek, F. Cirak

Preprint no. 2015-12

http://ncmm.karlin.mff.cuni.cz/

Computers and Fluids 122 (2015) 165–183

Contents lists available at ScienceDirect

Computers and Fluids

journal homepage: www.elsevier.com/locate/compfluid

Parallel iterative solution of the incompressible Navier–Stokes equations

with application to rotating wings

Jakub Šístek a, Fehmi Cirak b,∗

a Institute of Mathematics of the Czech Academy of Sciences, Žitná 25, 115 67 Prague 1, Czech Republic
b Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK

a r t i c l e i n f o

Article history:

Received 19 May 2015

Revised 23 August 2015

Accepted 27 August 2015

Available online 3 September 2015

Keywords:

Navier–Stokes

Incompressible flow

Krylov subspace methods

Preconditioning

PETSc

Rotating insect wing

a b s t r a c t

We discuss aspects of implementation and performance of parallel iterative solution techniques applied

to low Reynolds number flows around fixed and moving rigid bodies. The incompressible Navier–Stokes

equations are discretised with Taylor-Hood finite elements in combination with a semi-implicit pressure-

correction method. The resulting sequence of convection–diffusion and Poisson equations are solved with

preconditioned Krylov subspace methods. To achieve overall scalability we consider new auxiliary algorithms

for mesh handling and assembly of the system matrices. We compute the flow around a translating plate and

a rotating insect wing to establish the scaling properties of the developed solver. The largest meshes have up

to 132 × 106 hexahedral finite elements leading to around 3.3 × 109 unknowns. For the scalability runs the

maximum core count is around 65.5 × 103. We find that almost perfect scaling can be achieved with a suit-

able Krylov subspace iterative method, like conjugate gradients or GMRES, and a block Jacobi preconditioner

with incomplete LU factorisation as a subdomain solver. In addition to parallel performance data, we provide

new highly-resolved computations of flow around a rotating insect wing and examine its vortex structure

and aerodynamic loading.

© 2015 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1

o

n

S

e

t

s

u

m

l

t

A

d

p

f

T

n

a

p

[

n

fl

r

e

i

b

t

t

A

t

o

o

s

[

u

a

t

h

0

. Introduction

The implicit computation of three-dimensional flow problems

ften requires parallel computing. In presence of highly resolved

o-slip boundaries the discretisation of the incompressible Navier–

tokes equations can lead to linear systems of equations with sev-

ral hundred millions to a few billion unknowns. In the course of a

ransient simulation these systems of equations have to be solved

everal thousand times. Hence, in order to achieve reasonable sim-

lation turnaround times each system has to be solved within a few

inutes. In combination with this computing time requirement, the

arge memory needs make it essential to use domain decomposition

echniques and distributed-memory parallel computing platforms.

s known, Krylov subspace iteration methods with efficient precon-

itioners are the only viable solvers on parallel computers with large

rocessor counts [21,48,56]. In practice, efficient parallel algorithms

or mesh handling and system matrix assembly are also relevant.

he most efficient combination of iterative and preconditioning tech-

iques usually depends on the specific application at hand. Finding

suitable combination can be greatly facilitated through the use of
∗ Corresponding author. Tel.: +44 1223 332716; fax: +44 (0)1223 339713.

E-mail addresses: sistek@math.cas.cz (J. Šístek), f.cirak@eng.cam.ac.uk (F. Cirak).

s

(

s

ttp://dx.doi.org/10.1016/j.compfluid.2015.08.026

045-7930/© 2015 The Authors. Published by Elsevier Ltd. This is an open access article unde
arallel linear algebraic solver libraries such as PETSc [4] or Trilinos

30]. In this work we make use of the PETSc library and compare tech-

iques for the scalable solution of large-scale low Reynolds number

ow problems with up to several billion unknowns.

For computing the flow around a moving rigid body, such as a

otating insect wing, the Navier–Stokes equations can be expressed

ither in a non-inertial body-fixed frame or in an inertial frame us-

ng the arbitrary Lagrangian–Eulerian (ALE) formulation [5,34]. In

oth approaches a fixed body-fitted finite element mesh is used and

here is no need to update the mesh. In our computations we use

he ALE formulation and relate the prescribed wing velocity to the

LE mesh velocity. For the considered range of problems the solu-

ion of the Navier–Stokes equations with pressure-correction meth-

ds can be very efficient. Such methods reduce the solution of the

riginal discretised Navier–Stokes equations to the solution of several

maller subproblems that are solved instead of the original equations

9,28,36,45]. For instance, in the case of Taylor-Hood Q2–Q1 elements

sed in this work a mesh with ne elements leads to a system size of

pproximately (25ne × 25ne). With the pressure-correction method,

hree systems of convection–diffusion type of size (8ne × 8ne), one

ystem of Poisson type of size (ne × ne) and one L2-projection of size

ne × ne) are solved. Moreover, the preconditioning of this smaller

ystem matrices is more straightforward and easier to implement
r the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.compfluid.2015.08.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2015.08.026&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:sistek@math.cas.cz
mailto:f.cirak@eng.cam.ac.uk
http://dx.doi.org/10.1016/j.compfluid.2015.08.026
http://creativecommons.org/licenses/by/4.0/

166 J. Šístek, F. Cirak / Computers and Fluids 122 (2015) 165–183

Fig. 1. Rotating insect wing (�S) with a body fitted fluid mesh. In the used ALE formu-

lation the mesh and the wing rotate with the prescribed angular velocity ω.

2

b

fl

�

a

t

c

w

g

t

∇
w

n

F

s

t

2

t

d

i

∇
w

s

N

c

e

p

than the preconditioning of the original indefinite system matrix. We

solve each of the five systems with a suitable Krylov subspace method

and investigate the performance of additive Schwarz and block Jacobi

preconditioners with complete and incomplete LU factorisations as

local solvers.

The driving application for the present work is the study of in-

sect flight aerodynamics; see the textbooks [14,50] and review papers

[15–19] for an introduction to flapping flight. The relevant Reynolds

numbers range from about 100 for a fruit fly to about 105 for large in-

sects, such as dragon flies. In order to create sufficient lift insects cru-

cially rely on wings which flap with very high angles of attack (around

35°). This leads to separated flows with periodic vortex generation

and shedding, which are exploited by insects to increase lift. The

study of translating and rotating wings serves as a stepping-stone to-

wards the understanding the more complex three-dimensional flap-

ping flight. Both types of wing motions lead to the formation of a

leading-edge, a trailing-edge and two tip vortices. However, this vor-

tex structure is not stable for a translating wing, and it is periodi-

cally formed and shed, see [54] and references therein. Consequently,

there are large fluctuations in the lift and drag coefficients of the

wing. As first corroborated by the experiments of Ellington et al. [20]

the leading-edge vortex for a rotating wing is stable and remains at-

tached to the wing throughout the rotation. The low pressure zone

at the vortex core immediately above the leading edge leads to a

sustained large lift force. It is believed that the leading-edge vortex

is stabilised by centrifugal and Coriolis accelerations, which create

spanwise flow advecting vorticity from the leading-edge vortex. The

exact mechanisms are however not yet well understood and there is

an extensive amount of experimental studies [2,7,35,44] and some

recent computational studies on the topic [24,25,29]. In this paper

we present several new highly-resolved computations corroborating

previous experimental and numerical findings.

The outline of this paper is as follows. Section 2 begins reviewing

the incompressible Navier–Stokes equations in ALE form for comput-

ing the flow around moving rigid bodies. Subsequently, their solution

with the incremental pressure-correction method and their finite el-

ement discretisation are introduced. Specifically, in Section 2.3 all the

discretised subproblem sizes and types are given. In Section 3 the so-

lution of the obtained discrete problems with parallel preconditioned

iterative solvers is discussed. Efficient and scalable algorithms for par-

titioning of large meshes and assembly of large matrices are given.

Section 4 is dedicated to numerical performance studies and presents

several new highly resolved computations. First, in Section 4.1 the

developed computational approach is validated and verified with

the widely studied flow around an inclined flat plate. Subsequently,

in Section 4.2 the flow around a rotating insect wing is used to

investigate the mathematical and parallel scalability of various pre-

conditioned iterative methods. Finally, the identified most efficient it-

erative methods are used to study the Reynolds number dependence

of the vortex structure around a rotating wing.

2. Pressure-correction method for Navier–Stokes equations in

ALE form

In this section we briefly review the ALE formulation of the in-

compressible Navier–Stokes equations and their finite element dis-

cretisation. The discussion is specialised to the simulation of flows

around rotating rigid bodies, see Fig. 1. For time discretisation we

use the implicit Euler scheme in combination with the semi-implicit

pressure-correction technique. At each time step the solution of the

Navier–Stokes equations is reduced to the solution of a sequence of

convection–diffusion and Poisson problems.
.1. Governing equations

We consider the rotation of a rigid body with domain �S and

oundary �S embedded in a fluid domain �. The boundary of the

uid domain � is comprised of two disjoint parts �S and �∞, � =
S ∪ �∞. The boundary �S is the common interface between fluid

nd rigid body and �∞ is the free-stream boundary. The rotation of

he rigid body is prescribed with the angular velocity vector ω, the

entre of rotation is xO and the corresponding velocity is

= ω × (x − xO). (1)

A computationally efficient approach for simulating the flow field

enerated by the rigid body is to consider the Navier–Stokes equa-

ions in a domain moving with velocity w, i.e.,

DAu

Dt
+ ((u − w) · ∇)u − ν�u + ∇p = 0, (2a)

· u = 0, (2b)

here u is the fluid velocity, ν is the kinematic viscosity and p is the

ormalised pressure. The time derivative in (2) is the ALE derivative

DAu

Dt
= ∂u

∂t
+ w · ∇u. (3)

or further details on the ALE formulation of Navier–Stokes equations

ee, e.g., [8,13]. The Navier–Stokes equations are complemented by

he following boundary conditions and the initial condition

u(t, x) = 0 on �∞,

u(t, x) = w on �S,

u(t = 0, x) = 0 in �.

(4)

.2. Incremental pressure-correction method

For discretising the Navier–Stokes equations (2) in time, we use

he backward Euler method with constant interval length �t. In ad-

ition, we linearise the nonlinear convective term in (2a) with a semi-

mplicit approach leading to the discretised equations

1

�t
un+1 + ((un − w) · ∇)un+1 − ν�un+1 + ∇pn+1 = 1

�t
un,

· un+1 = 0, (5)

here the index n indicates the variables associated with the time

tep tn.

With a view to parallelisation, the time-discretised semi-implicit

avier–Stokes system (5) can be efficiently solved with a pressure-

orrection, or a fractional-step, method [9,36]. A review and math-

matical analysis of some of the prevalent pressure-correction ap-

roaches can be found, e.g., in [28,45]. The specific method we use

J. Šístek, F. Cirak / Computers and Fluids 122 (2015) 165–183 167

i

d

p

ψ

T

t

N

t

i

b

m

d

p

t

t

V

w

fi

w

N

t

c

t

t

(

T

n

i

p

s

(

T

t

t

a

2

a

w

n

s

a

i

T

fi

I

n

c

i

f

p

e

u

H

s

o

W

r(

A

M

w

M

M

N

A
�

s the incremental pressure-correction method in rotational form as

iscussed in [47] and summarised below. To begin with, we define the

ressure increment ψn+1 in order to keep the derivations compact

n+1 = pn+1 − pn + ν∇ · un+1 . (6)

o compute the velocity and pressure fields (un+1, pn+1) at time tn+1

hree successive subproblems are considered.

1. First, the velocity field un+1 is obtained by solving the convection–

diffusion problem

1

�t
un+1 + ((un − w) · ∇)un+1 − ν�un+1

= 1

�t
un − ∇(pn + ψn),

un+1 = 0 on �∞,

un+1 = w on �S. (7)

2. Next, the pressure increment ψn+1 is obtained by solving the

Poisson problem

�ψn+1 = 1

�t
∇ · un+1,

∂ψn+1

∂n
= 0 on �∞ ∪ �S. (8)

3. Finally, the pressure field pn+1 is updated with

pn+1 = pn + ψn+1 − ν∇ · un+1. (9)

ote that there is only the velocity field u at times tn+1 and tn in

hese three equations. The intermediate and the end-of-step veloc-

ties familiar from conventional pressure-correction methods have

een consolidated to one velocity field, see [28] for details. Further-

ore, we do not apply any subiterations within each time step. As

iscussed in [47] it is possible to employ subiterations in order to im-

rove the accuracy of the projection scheme.

The weak forms of the three subproblems (7)–(9) are needed for

heir finite element discretisation, see e.g. [21,27]. To this end, we in-

roduce the function spaces

V := {v ∈ [H1(�)]3, v = 0 on �∞, v = w on �S},
0 := {v ∈ [H1(�)]3, v = 0 on �},
here H1(�) is the usual Sobolev space.

The weak form of the convection–diffusion equation (7) reads:

nd un+1 ∈ V such that

1

�t
(un+1, v) + c(un, un+1, w, v) + a(un+1, v)

= 1

�t
(un, v) − (∇(pn + ψn), v) ∀v ∈ V 0 (10)

ith

(un+1, v) =
∫
�

un+1 · vdx,

a(un+1, v) = ν

∫
�

∇un+1 : ∇vdx,

c(un, un+1, w, v) =
∫
�

((un − w) · ∇)un+1 · vdx.

otice that the Cartesian components of the momentum equa-

ion (10) are decoupled, and (10) reduces to three independent scalar

onvection–diffusion equations. The weak form of the Poisson equa-

ion (8) for the pressure increment reads: find ψn+1 ∈ H1(�) such

hat

∇ψn+1,∇q) = − 1

�t
(∇ · un+1, q) ∀ q ∈ H1(�). (11)

his is a pure Neumann problem and has a one-dimensional

ullspace consisting of constant functions, which has implications for
ts numerical solution, see Section 3.1. Finally, for updating the new

ressure field with (9) we use the L2-projection: find pn+1 ∈ H1(�)
uch that

pn+1, q) = (pn + ψn+1 − ν∇ · un+1, q) ∀ q ∈ H1(�). (12)

his projection is only relevant in the finite element context because

he divergence of the discrete velocity field ∇ · u is in general discon-

inuous and the discrete pressure p and pressure increment fields ψ
re continuous.

.3. Finite element discretisation

The weak form of the incremental pressure-correction equations

re discretised in space with hexahedral finite elements. Although

e use the ALE description of the Navier–Stokes equations, there is

o need to solve for mesh position and velocity since both are pre-

cribed. As known, the basis functions for discretising the velocity

nd pressure fields have to be carefully chosen so that they satisfy the

nf-sup, or Babuška–Brezzi stability, condition, see [21,27]. We use the

aylor-Hood Q2–Q1 elements discretising the velocity and pressure

elds with tri-quadratic and tri-linear basis functions, respectively.

n the resulting finite element mesh there are nu velocity nodes and

p pressure nodes with their ratio being nu/np ≈ 8. Notably, in our

omputations we do not employ any convection stabilisation so that,

n effect, performing a direct numerical simulation.

Let us now investigate the systems of linear equations resulting

rom the discretisation of the weak forms (10)–(12) closer. The ap-

roximation of the velocity and pressure fields with the Taylor-Hood

lements reads

h =

⎛
⎝uh

1

uh
2

uh
3

⎞
⎠=

nu∑
i=1

φi

⎛
⎝u1,i

u2,i

u3,i

⎞
⎠, ψh =

np∑
i=1

ξiψi, ph =
np∑

i=1

ξi pi. (13)

ere φi and ξ i are the tri-quadratic and tri-linear basis functions, re-

pectively, associated to the finite element node with index i. More-

ver, the nodal unknowns are assembled into the global arrays

ud =
(
ud,1, . . . , ud,nu

)T ∈ R
nu ,

ψ =
(
ψ1, . . . ,ψnp

)T ∈ R
np ,

p =
(

p1, . . . , pnp

)T ∈ R
np .

(14)

ith these definitions at hand the weak forms (10)–(12) correspond,

espectively, to the linear equation systems

1

�t
Mu + N + νAu

)
un+1

d

= 1

�t
Muun

d − Pd(pn + ψ
n
) with d ∈ {1, 2, 3}, (15)

pψ
n+1 = − 1

�t

3∑
d=1

Bdun+1
d

, (16)

p pn+1 = Mp(pn + ψ
n+1

) − ν
3∑

d=1

Bdun+1
d

, (17)

ith the matrices

u =
∫
�

φiφ jdx with i, j = 1, . . . , nu, (18a)

p =
∫
�

ξiξ jdx with i, j = 1, . . . , np, (18b)

=
∫
�

(
(un − w) · ∇φ j

)
φidx with i, j = 1, . . . , nu, (18c)

u =
∫

∇φi · ∇φ jdx with i, j = 1, . . . , nu, (18d)

168 J. Šístek, F. Cirak / Computers and Fluids 122 (2015) 165–183

Table 1

Summary of the properties of the five linear systems of equations solved in each time step.

Velocities Pressure increment Pressure

Equation Number (10), (15) (11), (16) (12), (17)

Type Convection–diffusion Poisson L2-projection

Unknown(s) u1, u2, u3 ψ p

Matrix Size nu × nu np × np np × np

Properties Nonsymmetric Sym. pos. semidefinite Sym. pos. definite

m

t

t

t

c

n

l

c

a

s

d

t

J

P

n

s

a

c

s

m

i

t

c

t

o

l

o

e

m

m

P

w

i

T

l

P

A

i

t

o

Ap =
∫
�

∇ξi · ∇ξ jdx with i, j = 1, . . . , np, (18e)

Pd =
∫
�

φi

∂ξ j

∂xd

dx with i = 1, . . . , nu, j = 1, . . . , np, (18f)

Bd =
∫
�

ξi

∂φ j

∂xd

dx with i = 1, . . . , np, j = 1, . . . , nu. (18g)

Note that for each velocity component one independent equation (15)

is solved. Some properties of the linear equation systems (15)–(17)

relevant to the selection of suitable iterative solution methods are

summarised in Table 1.

3. Parallel iterative solvers and implementation

Next we introduce the solution of the linear systems of equations

resulting from the finite element discretisation of the incremental

pressure-correction method. The considered class of fluid problems

have up to several billions unknowns and the target parallel archi-

tectures have up to hundred thousand processors. For such problems

Krylov subspace methods with efficient preconditioners are the only

suitable solution technique. In practice, the scalability of the overall

finite element technique also depends on the efficiency of the data

structures and algorithms for mesh decomposition and handling, and

assembly of the systems matrices. In our finite element software

openFTL we make extensive use of the C++ STL [10,32,53], METIS [33]

and PETSc [4] libraries in order to achieve efficiency and scalability.

Specifically, the use of PETSc enables us to perform a number of nu-

merical experiments to identify the most suitable combinations of

Krylov subspace methods and preconditioners.

3.1. Parallel preconditioned iterative solvers

We first provide a brief review of the parallel preconditioned

Krylov subspace methods in order to fix terminology and notations.

For details we refer to standard textbooks, e.g., [21,40,48]. Our discus-

sion is restricted to iterative solvers and preconditioning techniques

that are available in PETSc and which we use in our numerical com-

putations.

The linear systems of equations introduced in Section 2.3 are of

the generic form

Au = f . (19)

The symmetry and the specific entries of the system matrix A and

the right-hand side vector f depend on the considered problem. We

use GMRES [49] or BiCGstab [58] for systems with a nonsymmetric

matrix A and the conjugate gradient method [11] for systems with a

symmetric matrix A. Moreover, a preconditioning technique is neces-

sary in order to improve the performance of the iterative solvers. To

this end, we consider the (left-)preconditioned equation system

PAu = P f , (20)

where P is a suitable preconditioning matrix that approximates A−1

(in some sense). The specific choices of preconditioners will be dis-

cussed in the following. For the subsequent discussions, it is also rele-

vant to recall that for implementing preconditioned Krylov subspace
ethods only matrix-vector products with the system matrix A and

he preconditioning matrix P are needed.

On a (distributed-memory) parallel computer the equation sys-

ems (19) and (20) are only available in a distributed format. The par-

itioning of both equation systems results from the partitioning of the

omputational domain � (and the corresponding triangulation) into

d possibly overlapping subdomains �i, with i = 1, . . . , nd . The over-

ap is a prescribed layer of elements between the subdomains. In our

omputations the number of subdomains nd is equal to the number of

vailable processors. The matrix-vector product with the distributed

ystem matrix A is straightforward and can be assembled from sub-

omain contributions. The matrix-vector product with P depends on

he specific form of the preconditioner.

In this work, we consider as parallel preconditioners the block

acobi and the overlapping additive Schwarz methods available in

ETSc, see, e.g., [46,48,51,57] for details. These one-level methods are

ot mathematically scalable for elliptic problems, such as the Pois-

on problem for the pressure increment [57]. It is necessary to use

two-level method in order to achieve mathematical scalability, i.e.

onvergence independent of the number of subdomains in a weak

caling test. Nevertheless, in our experience, the considered one-level

ethods perform reasonably well for the linear systems introduced

n Section 2.3, with the most critical being the Poisson problem for

he pressure increment. The state-of-the-art two-level methods in-

lude BDDC and FETI [12,22,23]. In these methods the challenge is

he scalable solution of the coarse problem, which is an active area

f research, see e.g. [3]. A possible solution is offered by the multi-

evel extension of BDDC [41,52]. Nevertheless, the multi-level meth-

ds should be avoided as long as a one-level method performs well,

specially in a massively parallel environment.

In both the block Jacobi and the overlapping additive Schwarz

ethods, the preconditioner P is defined as the sum of local subdo-

ain matrices Pi, i.e.,

=
nd∑

i=1

RT
i PiRi, (21)

here RT
i is a 1 − 0 matrix which maps the local degrees of freedom

n the interior of the subdomain �i to the global degrees of freedom.

he subdomain matrix Pi is an approximation to the inverse of the

ocal system matrix Ai and is defined as

i ≈ A−1
i =

(
RiART

i

)−1
. (22)

pplying the inverse of the local system matrix A−1
i represents solv-

ng a local Dirichlet problem because the matrix Ri does not include

he degrees of freedom at subdomain boundaries. The multiplication

f a vector r with the preconditioner P can now be established using

J. Šístek, F. Cirak / Computers and Fluids 122 (2015) 165–183 169

P

w

B

i

A

T

s

t

o

i

t

c

[

e

o

o

s

a

p

fl

r

b

o

z

t

t

a

m

Q

T

f

3

3

o

o

c

n

p

a

m

s

n

A

Fig. 2. Partitioning of a mesh into two nonoverlapping subdomain meshes. The nodes

on the subdomain boundaries are uniquely assigned to one of the subdomains.

A

g

e

c

M

m

m

e

s

t

t

t

t

n

n

c

3

i

c

n

M

s

a

t

M

m

s

t

a

a

s

m

p

s

t

s

s

t

p

r =
nd∑

i=1

RT
i PiRir =

nd∑
i=1

RT
i Piri =

nd∑
i=1

RT
i wi, (23)

ith the local subdomain specific vectors ri = Rir and wi = Piri.

earing in mind Pi ≈ A−1
i , the local vector wi is the (possibly approx-

mate) solution of the local problem

iwi = ri. (24)

his problem is solved independently on each subdomain. The local

olves are performed with a direct method, so that an LU (or LLT) fac-

orisation is performed during the set-up of the preconditioner, and

nly backsubstitutions are performed during the subsequent Krylov

terations. Performing a complete LU factorisation is called exact fac-

orisation. Often one can save both time and memory by using an in-

omplete LU factorisation with a prescribed allowed fill-in, see, e.g.,

48]. In this regard, ILU(0) is the basic approach which discards all

ntries of the factors which fall outside the sparsity pattern of the

riginal matrix. While ILU(1) and ILU(2) improve the approximation

f the inexact factorisation, they require new analysis of the sparsity

tructure of the factors and lead to longer times for both factorisation

nd back substitution.

A final remark concerns the solution of the pressure-corrector

roblem (16) which is a pure Neumann problem for the considered

uid flow problems with only Dirichlet boundary conditions. The cor-

esponding symmetric matrix is singular with the nullspace spanned

y constant vectors. In this case, the problem is solved only in the

rthogonal complement of the nullspace. Namely, if we denote with

= (1, 1, . . . , 1)T the basis vector of null(A), we can construct the or-

hogonal projection on its complement as Q = I − 1
zTz

zzT. If this ma-

rix is applied after every multiplication with A and P, the iterations

re confined to the subspace orthogonal to null(A), and the following

odified system is solved

PQAu = QPQ f . (25)

he preconditioned conjugate gradient method in this subspace is re-

erred to as deflated PCG.

.2. Implementation details

.2.1. Domain partitioning

As elucidated in the preceding Section 3.1, the parallel solution

f the discretised finite element equations relies on the partitioning

f the domain into subdomains and assigning them to different pro-

essors. In general, the number of subdomains is chosen equal to the

umber of available processors. In the computations presented in this

aper the discretised domain is a block-structured hexahedral mesh

nd is generated with the GMSH mesh generator [26]. The subdo-

ains are obtained by partitioning the mesh with METIS. The size and

hape of each subdomain is chosen such that interprocessor commu-

ication is minimised and each processor is equally utilised.

lgorithm 1 Partitioning of the mesh into subdomains

1. Create the dual graph of the computational mesh.

2. Create a non-overlapping partitioning of elements into subdo-

mains by partitioning the dual graph (using METIS).

3. Derive a partitioning of nodes such that all nodes present in a

single subdomain are local to the processor and randomly assign

shared nodes to subdomains.

4. Assign each node a unique global ID by looping over all subdo-

mains and all nodes in each subdomain.

5. Build overlapping clusters of elements as a union of all elements

contributing to local nodes.
Our METIS-based mesh partitioning algorithm is shown in

lgorithm 1, see also Fig. 2. As the first step we construct the dual

raph of the finite element mesh. In the dual graph each finite el-

ment is a vertex and the edges of the graph represent two adja-

ent finite elements. Subsequently, we partition the dual graph with

ETIS. The partitioned graph gives a partitioning of the finite ele-

ent mesh into nonoverlapping subdomains so that each finite ele-

ent is uniquely assigned to a particular subdomain. Next the finite

lement nodes are assigned to subdomains. First, the nodes inside a

ubdomain are assigned to the respective subdomain. Subsequently,

he nodes at subdomain boundaries are randomly assigned to the at-

ached subdomains so that each has a similar number of nodes. In

he last step we assign to each node a unique (global) ID by sequen-

ially looping over the subdomains and consecutively numbering the

odes. Finally, for performance considerations during assembly it is

ecessary to form overlapping partitions so that the system matrices

an be assembled without interprocessor communication.

.2.2. Overlapping partitions for fast assembly

The partitioning of the finite elements and nodes into subdomains

mplies a partitioning of the system matrices and vectors into pro-

essors. Recall that each row of the global system matrix represents a

ode in the mesh, or more precisely one of its degrees of freedom.

oreover, the domain partitioning introduced in Section 3.2.1 en-

ures that the degrees of freedom associated to a domain lie all within

certain range. Hence, consecutive blocks of rows of the system ma-

rix can be assigned to processors. In PETSc this is achieved with the

PIAIJ matrix format.

The rows of the global system matrix corresponding to finite ele-

ent nodes at the subdomain boundaries receive contributions from

everal subdomains. During the assembly this requires frequent in-

erprocessor communication. In practice, the associated overhead for

ssembly turns out to be excessively time consuming and presents

major performance bottleneck for large problems. In order to re-

olve this issue it is possible to eliminate any interprocessor com-

unication during assembly. This can be achieved by providing each

rocessor all the elements and nodes necessary for independently as-

embling its rows of the global system matrix. Therefore, we modify

he partitioning introduced in Section 3.2.1 so that each subdomain

tores in addition to its elements also elements of the neighbouring

ubdomains that contribute to local matrix rows, see Fig. 3. Evidently

his leads to the notion of overlapping partitions. This can be accom-

lished using the partitioned dual graph provided by METIS and the

170 J. Šístek, F. Cirak / Computers and Fluids 122 (2015) 165–183

Fig. 3. Partitioning of a mesh with 14 nodes into two overlapping subdomain meshes

and a sketch of the corresponding matrix. The first six rows of the system matrix are

assigned to part one and the remaining eight to part two. The overlapping layer of

elements ensures that the system matrix corresponding to each part can be assembled

independently.

Fig. 4. Schematic illustration of an insertion into the sparse matrix format. A new en-

try is appended at the end of the vector until the limit of allowed overhead is reached,

and a re-sorting is performed.

m

i

o

d

n

2

o

c

c

i

H

u

t

F

t

o

A

d

T

t

m

P

I
t

n

t

f

4

f

fl

i

a

a

a

l

o

u

m

s

Q

c

p

R

w

L

i

t

global transposed matrix of element connectivity, i.e. for each node,

the list of elements surrounding it.

3.2.3. On-the-fly assembly and intermediary data container

In our finite element software openFTL, sparse matrices are di-

rectly assembled without determining the sparsity pattern of the

matrix beforehand. The matrix is assembled on-the-fly while loop-

ing over the elements in the mesh and copying their contributions

to an intermediary data container. In the implementation of the in-

termediary data container, we make extensive use of the C++ STL

library, specifically of the std::pair object, std::vector con-

tainer and std::sort algorithm. Similar to the coordinate sparse-

matrix storage format we represent the sparse matrix as a vector

of triplets (i, j, Aij), where Aij is an entry with the row index i and

column index j. In C++ STL the type of each entry is chosen to

be {std::pair<std::pair<int,int>,double>}. The key

idea of the on-the-fly assembly is that the matrix entries are first

one after the other appended to the end of the vector. The vec-

tor is subsequently sorted and triplets with the same row and col-

umn index (i and j) are combined to one triplet by summing the

values Aij of the matrix entries. Note that we could use instead of

the std::vector container the sorted std::multi_map con-

tainer. Although this would eliminate the sorting step, the inser-

tion into an std::multi_map is substantially slower than into

an std::vector. See also [42] for a discussion on the use of

std::vector versus std::multi_map.

Algorithm 2 The in-place assembly of the matrix in the coordinate

format

1. Loop over elements while appending each contribution to the

global matrix as a new triplet (i, j,Ai j) at the end of the vector.

2. Sort the vector with the std::sort algorithm primarily according

to the row index i and secondarily according to the column index

j (with the standard std::pair comparison functor).

3. Loop over the vector, sum all entries with the same index pair

(i, j) and store them at the end of the already assembled part of

the vector.

4. Truncate the allocated memory to the actual size of the assembled

vector.

A step-by-step description of the on-the-fly assembly algorithm is

given in Algorithm 2. This algorithm is to be read in conjunction with

Fig. 4. Step 1 of the algorithm is straightforward in the sense that the

matrix entries are appended to the vector with a simple push_back
operation. In step 2 we sort the triplets with the std::sort which

must have O(n log n) complexity in C++11, with n being the length of

the vector [32,53]. Subsequently, in step 3 the entries are combined,

i.e. assembled, in linear time, and they are stored at the end of the

assembled part of the same vector, hence the assembly is performed

in-place.
Due to memory restrictions, it is usually not possible to process all

atrix contributions in one go. The vector is sorted and assembled

n fixed prescribed intervals. In this way, we control both the mem-

ry overhead and number of sortings. The frequency of the intervals

epends on a user prescribed allowed memory overhead. In Fig. 5a

umerical timing study for the assembly of the system matrix of a

D and 3D elasticity problem are reported. The study was performed

n a single core of the Intel Core i7 CPU with frequency 2.7 GHz. We

an observe that the time spent by sorting grows very slowly with in-

reasing allowed memory overhead. In contrast, the number of sort-

ngs decreases linearly with increasing allowed memory overhead.

ence, the total time is clearly dictated by the number of sortings

sed during the assembly. Therefore, for achieving good performance

he allowed memory overhead should be chosen as large as possible.

urthermore, it can be seen in Fig. 5 that the time for insertion of en-

ries is mostly lower than the total sorting times and it is independent

f the allowed overhead.

After all the finite element contributions are processed with

lgorithm 2, we obtain a vector of the assembled matrix in the coor-

inate format, sorted primarily by rows and secondarily by columns.

his allows us to quickly determine the structure of the PETSc ma-

rix on each processor and to perform an exact pre-allocation of

emory. Subsequently, all the vector entries are copied into the

ETSc MPIAIJ matrix (using MatSetValue function with the

NSERT_VALUES flag). Moreover, due to the overlapping parti-

ions discussed in Section 3.2.2, there is no need to transfer stiff-

ess matrix data between the processors. Therefore, the assembly of

he PETSc matrix (by MatAssemblyBegin and MatAssemblyEnd
unctions) takes negligible time.

. Numerical performance studies and results

In this section we first validate and verify our computational

ramework by analysing the flow around a low-aspect-ratio inclined

at plate. Subsequently, we consider the flow around a rotating

nsect wing to compare the performance of various Krylov solvers

nd their parallel scalability in combination with block Jacobi and

dditive Schwarz preconditioners. At the same time, we elucidate

nd compare the flow structures and aerodynamic forces for trans-

ating and rotating wings, especially the formation and persistence

f leading-edge vortices. We generate all our finite element meshes

sing the GMSH [26] as block-structured boundary-conforming

eshes. However, during the solution process the meshes are con-

idered as unstructured. As finite elements we use the Taylor-Hood

2–Q1 elements. In order to resolve the flow field without needing

onvection stabilisation sufficiently fine grids are used.

The considered flows and their numerical solution is strongly de-

endent on the Reynolds number

e = u∞L

ν
, (26)

here u∞ is the characteristic fluid speed (e.g., free-stream velocity),

is the characteristic length of the wing and ν is the kinematic viscos-

ty. In our computations the Reynolds number is altered by modifying

he kinematic viscosity.

J. Šístek, F. Cirak / Computers and Fluids 122 (2015) 165–183 171

100

101

102

101 102 103

tim
e

[s
]

allowed memory overhead [MB]

time for all insertions
time for all sortings

time per sorting
total time

(a) 2D case

100

101

102

101 102 103

tim
e

[s
]

allowed memory overhead [MB]

time for all insertions
time for all sortings

time per sorting
total time

(b) 3D case

Fig. 5. The runtime of the on-the-fly assembly in dependence of the prescribed allowed memory overhead. (a) Bi-quadratic quadrilateral element system matrix of size 722 × 103

with 23.1 × 106 nonzeros (∼445 MB) and 29.2 × 106 insertions. (b) Tri-quadratic hexahedral element system matrix of size 207 × 103 with 37.5 × 106 nonzeros (∼801 MB) and

52.5 × 106 insertions.

fi

s

u

v

Q

w

s

t

t

o

d

[

f

C

w

o

t

C

t

i

F

w

m

X

2

p

t

b

t

4

4

t

Fig. 6. Flow around an inclined plate. Computational mesh with the wing and its wake

at Re = 300 and an angle of attack of 30°. All the mesh lines and the flat plate are

aligned with the coordinate system.

i

i

t

l

F

t

[

s

i

fl

e

t

d

fl

t

d

As the result of our computations we provide plots of the flow

elds in the form of isosurfaces of the Q-value. The Q-value is the

econd invariant of the velocity gradient tensor ∇u, and it is widely

sed to visualise vortices [31]. In incompressible flows the second in-

ariant can also be expressed as

= 1

2
(‖�‖2 − ‖S‖2), (27)

ith the antisymmetric vorticity tensor � = 1
2 (∇u − (∇u)T), the

ymmetric strain-rate tensor S = 1
2 (∇u + (∇u)T) and ‖·‖ denoting

he Frobenius norm. Informally, in flow regions with Q > 0 the vor-

icity is larger than the strain rate, which indicates the presence

f vortices (i.e., regions with swirling-type motion). More in-depth

iscussion of applicability of the Q-criterion can be found in, e.g.,

37–39].

We also report the aerodynamic forces acting on the wing in the

orm of non-dimensionalised force coefficients

= 2F

ρu2∞S
, (28)

here F is a component of the force resultant vector F, ρ is the density

f the flow and S is the planform of the wing. In all our computations

he flow density is ρ = 1. The coefficient C represents usually the drag

D or lift CL depending on the component of the considered force vec-

or F. The force resultant F is the integral of the boundary tractions,

.e.,

=
∫
�
σ(u, p) · n d �, (29)

hich is equal to the sum of the reaction forces of all the finite ele-

ent nodes located on the wing.

All performance and scalability studies are performed on the Cray

E6 supercomputer HECToR1 (Phase 3). This computer is composed of

816 XE6 compute nodes, each of which has 32GB memory. A com-

ute node contains two AMD 2.3 GHz 16-core processors giving a to-

al of 90,112 cores, with 65,536 cores being the maximum handled

y the job scheduler. Cray Gemini chips are used for communication

hrough a high-bandwidth network.

.1. Flow around an inclined flat plate

.1.1. Problem definition and discretisation

The inclined flat plate represents some of the flow features

ypical for animal locomotion in air and water and has been exper-
1 http://www.hector.ac.uk

2

u

mentally and numerically studied by a number of authors, includ-

ng Taira and Colonius [54] and Wang and Zhang [59]. As in these

wo references we consider a rectangular thin plate with the chord-

ength c = 1 and the span 2c resulting in the aspect ratio = 2, see

ig. 6. The thickness of the plate is 0.01875c. The bounding box of

he computational flow domain is a rectangular box with dimensions

−10, 21] × [−10, 10.01875] × [−5, 7]. From this rectangular box, a

maller axis-aligned cuboid representing the thin plate is subtracted

n order to obtain the computational fluid domain. The position of the

at plate in the fluid domain is [0, 1] × [0, 0.01875] × [0, 2].

The outer rectangular box is discretised by 210 × 110 × 120

lements along its length, height and width, respectively. Each of

he cuboidal finite elements in the domain are axis-aligned with the

omain boundaries and become progressively smaller close to the

at plate. The inner fluid boundary representing the wing is discre-

ised by 100 × 10 × 80 elements along its chord, thickness and span

irections, respectively. This discretisation leads to approximately

.5 million elements and 20.6 million nodes.

The boundary condition at the plate surface is set to no-slip,

(t, x) = 0, and at the outer surface of the box to free-stream

http://www.hector.ac.uk

172 J. Šístek, F. Cirak / Computers and Fluids 122 (2015) 165–183

1200=Re300=Re100=Re

t
=

1.
0

t
=

3.
0

t
=

5.
0

t
=

8.
0

Fig. 7. Flow around an inclined plate. Isosurfaces of Q = 2 at different time instants, α = 30◦ .

t

a

c

e

I

R

n

j

a

i

T

t

v

e

b

t

i

c

R

1

R

w

v

velocity u(t, x) = (u∞ cos α, u∞ sin α, 0)T. The free-stream velocity

magnitude is u∞ = 1 and the angle of attack is α. Starting impulsively

at t = 0, the time dependent problem is solved for t ∈ [0, 18]. The

time-step size is chosen with �t = 0.02 resulting in 901 time steps

in a typical run. The Courant number based on the free stream veloc-

ity is u∞�t/hx ≈ 1.64, where hx is the smallest element size along the

chord. Moreover, the change of the angle of attack is achieved through

changing the direction of the flow rather than changing the mesh in

the computations.

4.1.2. Flow characteristics and forces

Before proceeding to validation and verification, we present the

results of our computations for (chord-length based) Re = 100, 300

and 1200 and the angle of attack of 30°. Our aim is to illustrate

the Reynolds number dependence of the flow characteristics and

forces, which in turn determine the spatial and temporal resolution

needs of the discretisation. In Fig. 7 the isosurfaces of the Q-value

are shown. At time t = 1.0, in all plots a leading-edge and two tip

vortices can be identified. Furthermore, for Re = 300 and 1200 also a

convected trailing-edge vortex (starting vortex) is visible, which is for

Re = 100 not strong enough to be shown by the Q = 2 isosurface. For

later times, as a general trend the complexity of the observed vor-

tex structures becomes more pronounced with increasing Reynolds

number due to the decrease in the diffusivity of the flow. At time
= 3.0 for Re = 300 and 1200, there are two columnar tip vortices

nd an already pinching off leading-edge vortex is visible. This pro-

ess continues with consecutive formation and shedding of leading-

dge vortices as visible for time t = 5.0 and t = 8.0 for Re = 300.

n order to be conclusive about the vortex structures observed for

e = 1200 at t = 5.0 and t = 8.0 computations with finer meshes are

eeded.

It is instructive to consider the Q-value plots in Fig. 7 in con-

unction with the history of drag and lift coefficients in Fig. 8. As

n artefact of the impulsive start, the coefficients have a large peak

n the immediate vicinity of t = 0 which is not physically relevant.

he subsequent sustained increase in the lift coefficient occurs while

he leading-edge vortex is formed and the trailing-edge vortex is ad-

ected. This is due to the low pressure zone created by the leading-

dge vortex above the wing. The obtained maximum lift coefficient

ecomes larger with increasing Reynolds number. The difference in

he drag coefficients corresponding to the maximum lift coefficients

s far less pronounced. As a result the aerodynamic efficiency (lift

oefficient divided by the drag coefficient) is proportional to the

eynolds number. After the leading-edge vortex detaches for Re =
00 the lift and drag coefficients reach a steady state. In contrast, for

e = 300 and Re = 1200 both coefficients continue oscillating in line

ith shedding of vortices. For a more in-depth discussion of the rele-

ant flow characteristics we refer to [54].

J. Šístek, F. Cirak / Computers and Fluids 122 (2015) 165–183 173

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 2 4 6 8 10 12 14 16 18

C
D

t

Re = 100
Re = 300

Re = 1200

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 2 4 6 8 10 12 14 16 18

C
L

t

Re = 100
Re = 300

Re = 1200

Fig. 8. Flow around an inclined flat plate. Comparison of drag (left) and lift (right) coefficients for an angle of attack of 30°, Re = 100, 300, and 1200.

4

t

o

t

u

R

b

S

s

c

t

w

l

r

p

i

α
i

t

d

a

R

r

4

4

v

Table 2

Flow around an inclined flat plate. Maximum lift coefficients and

corresponding times for two different Reynolds numbers and an-

gles of attack. For Re = 300 results are compared to [54].

α (deg) Reference Re = 300 Re = 1200

Max. CL t Max. CL t

10 [54] 0.46 1.63 – –

Our result 0.43 1.4 0.48 2.68

30 [54] 1.29 1.68 – –

Our result 1.25 1.66 1.46 2.88

l

fl

f

m

a

T

S

c

h

m

i

m

a

F

e

s

t

F

C

.1.3. Validation and verification

We compare our results with the experimental and computa-

ional results of Taira and Colonius [54]. They report for Re = 300

nly computational and for Re = 100 computational and experimen-

al drag and lift coefficients for various angles of attack. The same set-

p is also computationally investigated by Wang and Zhang [59] for

e = 100. In [54] and [59] the discretisation is based on the immersed

oundary method and the plate is assumed to have zero thickness.

ince for Re = 100 the flow quickly reaches a steady state for all con-

idered angles of attack, it is meaningful to compare the steady state

oefficients. In Fig. 9 our steady state drag and lift coefficients at time

= 13 and angles of attack α = 10◦, 30°, 50°, and 70° are compared

ith the ones presented in [54] and [59].

One can observe that for α = 10◦ and 30° our values are in excel-

ent agreement with the experimental data and other computational

esults. The difference in CD can be attributed to the thickness of the

late, which is about a half of that used in the experiment, while it

s ignored in other computations. The agreement is slightly worse for

= 50 and 70, where the computation seems to be affected by the

nteraction of the wake with coarser mesh above the plate. As men-

ioned, the change of angle of attack is achieved through changing the

irection of the flow. At last, in Table 2 the maximal lift coefficients

nd the times at which they are attained are given for Re = 300 and

e = 1200. Our results are in good agreement with the computational

esults in [54] for Re = 300.

.2. Flow around a rotating insect wing

.2.1. Problem definition and discretisation

It is well-known that a rotating wing generates a leading-edge

ortex which remains attached to the wing. The attendant sustained
 0

 0.5

 1

 1.5

 2

 0 10 20 30 40 50 60 70 80 90

C
D

α [deg]

Taira and Colonius, experiment
Taira and Colonius, comp.
Wang and Zhang, comp.
present comp.

ig. 9. Comparison of steady drag CD (left) and lift CL (right) coefficients at Re = 100 for di

olonius [54], and computational results by Wang and Zhang [59].
ift forces are believed to be crucial for the success and efficiency of

apping flight in nature. In order to study the vortex formation and

orces generated by rotating wings, we consider a fruit fly (Drosophila

elanogaster) wing, as experimentally studied in [43], at an angle of

ttack of 40° rotating around a vertical axis near its root, see Fig. 10.

he length of the wing is R; its aspect ratio is = R2/S = 3.1, where

is the planform area; and its thickness is 0.01R.

As shown in Fig. 11, the computational fluid domain consists of a

ylinder with radius 2.9R and an axial hole with radius 0.016R. The

eight of the cylinder is 4.7R. The block structured finite element

esh is generated with GMSH [26] with the block topology depicted

n Fig. 12, although it is handled as unstructured in the solver. The

esh is refined towards the wing, resulting in 30 × 5 × 30 elements

long the chord, thickness, and span of the wing, respectively, see

ig. 11. The whole fluid domain contains 266 × 102 × 77 Taylor-Hood

lements along circumference, height, and radius of the cylinder, re-

ulting in approximately 2.1 × 106 elements and 16.8 × 106 nodes.

After a smooth acceleration to the final angular velocity during the

ime t ∈ [0, 1], the wing rotates with a constant angular velocity until
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70 80 90

C
L

α [deg]

Taira and Colonius, experiment
Taira and Colonius, comp.

Wang and Zhang, comp.
present comp.

fferent angles of attack α with experimental and computational results by Taira and

174 J. Šístek, F. Cirak / Computers and Fluids 122 (2015) 165–183

(a) Planform

(b) Isometric view

Fig. 10. Flow around a rotating insect wing. Geometry and prescribed motion of the

Drosophila wing (with r = 0.0625 R and α = 40◦).

Fig. 11. Flow around a rotating insect wing. Computational mesh with wing and its

wake at Re = 526 for angle of attack of 40° with approximately 2.1 × 106 finite ele-

ments and 16.8 × 106 nodes.

Fig. 12. Flow around a rotating insect wing. Topology of the 27 blocks of the structured

mesh used for meshing the computational domain. The Drosophila wing geometry is

mapped to the inner block (at the intersection of the dark shaded faces). The mesh is

connected into a ring at the lightly shaded faces.

t

t

s

r

s

i

t

[

R

r

R

w

t

d

4

o

i

N

t

s

t

i

s

(

s

F

o

s

T

4

p

t

s

T

w

p

(

R

= 7.7. At t = 7.7 one full revolution is completed. With the uniform

ime-step size �t = 0.002 the whole computation requires 3850 time

teps. The velocity of the tip of the wing is prescribed with |utip| = 1,

esulting in |utip|�t/htip ≈ 0.1, with htip denoting the smallest element

ize near the tip of the wing. The angular velocity is ω = |utip|/R. An

mportant length is the radius of gyration Rg =
√

S2/S, where S2 is

he second moment of the wing with respect to the axis of rotation

16,29]. For the considered wing geometry the radius of gyration is

g = 0.5255R.

The reported Reynolds numbers are based on the velocity at the

adius of gyration urg, i.e.,

e = R |urg|
A ν

= R Rg ω

A ν
, (30)

hich is altered by choosing a suitable kinematic viscosity ν . In order

o study the flow in laminar and transient regimes we consider four

ifferent Reynolds numbers Re ∈ {105, 263, 526, 1051}2.

.2.2. Performance comparison of the iterative solvers

To begin with, we aim to identify the most efficient combination

f Krylov subspace methods and preconditioners suitable for solv-

ng the systems of equations resulting from the discretisation of the

avier–Stokes equations. As summarised in Table 1, in the incremen-

al pressure-correction approach five linear systems of equations are

olved at every time step. Namely three equations for the update of

he velocity components, one equation for the update of the pressure

ncrement and one equation for the pressure update. We only con-

ider iterative solvers and preconditioners that are available in PETSc

version 3.2).

For all numerical studies in this section we use the block-

tructured mesh described in the foregoing section and shown in

ig. 11 (with 2.1 × 106 elements and 16.8 × 106 nodes), unless stated

therwise. The number of subdomains and utilised processors is cho-

en to be 2048 and the Reynolds number for the flow is Re = 1051.

he reported iteration counts and times are averaged over the initial

00 time steps, 200 of which are in the acceleration stage.

First, we consider the velocity update which involves three inde-

endent discrete convection–diffusion type equations (15). Each of

he three equations has the same system matrix. Since these are non-

ymmetric we use the GMRES [49] and BiCGstab [58] methods. In

able 3 the performance of both methods with no preconditioner and

ith block Jacobi preconditioner are compared. For solving the sub-

roblems of the diagonal blocks in the block Jacobi preconditioner

see Section 3.1), we use ILU preconditioner with no fill-in ILU(0),
2 The selected values of Reynolds numbers correspond to the tip velocity based

eynolds numbers .

J. Šístek, F. Cirak / Computers and Fluids 122 (2015) 165–183 175

Table 3

Flow around a rotating insect wing. Iteration counts and timings for velocity update using two different Krylov solvers

and a block Jacobi preconditioner with different subdomain solvers. All computations are using the mesh shown in

Fig. 11 and 2048 subdomains. For each case the reported numbers are average values over the initial 400 time steps (of

which 200 are in acceleration phase). The minimal time is emphasised in boldface.

Method Prec. Local sol. Number of iter. Min–max (avg.) Avg. sol. time (s)

u1 u2 u3 u1 u2 u3

GMRES No – 1–313(259.0) 0–10k(9.8k) 2–1.1k(0.9k) 1.49 55.67 5.26

bl. Jacobi ILU(0) 7–14(12.6) 0–13(11.9) 7–15(13.7) 0.20 0.11 0.12

ILU(1) 7–14(12.6) 0–13(11.7) 7–14(13.4) 3.10 0.32 0.36

ILU(2) 7–14(12.0) 0–13(11.0) 7–14(12.7) 29.67 0.72 0.82

LU 7–14(12.6) 0–13(11.7) 7–14(13.4) 1.01 0.27 0.30

BiCGstab No – 1–183(151.4) 0–3.5k(2.5k) 1–440(342.5) 1.34 21.49 2.99

bl. Jacobi ILU(0) 4–9(7.5) 0–7(6.9) 4–9(8.0) 0.22 0.12 0.14

ILU(1) 4–8(7.3) 0–7(6.9) 4–9(8.6) 3.12 0.37 0.45

ILU(2) 4–8(7.2) 0–7(6.8) 4–9(8.1) 29.86 0.87 1.03

LU 4–8(7.6) 0–7(6.9) 4–9(8.6) 1.06 0.31 0.38

Table 4

Flow around a rotating insect wing. Iteration counts and timings for velocity update using GMRES and dif-

ferent preconditioners and subdomain solvers. The considered preconditioners and their abbreviations are:

block Jacobi (bl. Jacobi) and additive Schwarz method with algebraic overlap 1 (ASM-1) and 2 (ASM-2). All

computations are using the mesh shown in Fig. 11 and 2048 subdomains. For each case the reported numbers

are average values over the initial 400 time steps (of which 200 are in acceleration phase). The minimal time

is emphasised in boldface.

Method Prec. Local sol. Num. iter. Min–max (avg.) Avg. sol. time (s)

u1 u2 u3 u1 u2 u3

GMRES bl. Jacobi ILU(0) 7–14(12.6) 0–13(11.9) 7–15(13.7) 0.20 0.11 0.12

GMRES ASM – 1 ILU(0) 5–8(7.7) 0–8(7.4) 5–9(8.6) 1.80 0.10 0.11

ILU(1) 3–4(3.7) 0–4(3.7) 3–4(3.9) 5.54 0.19 0.20

ILU(2) 3–3(3.0) 0–3(2.9) 3–3(3.0) 57.01 0.40 0.41

LU 3–3(3.0) 0–4(3.1) 3–4(3.5) 13.05 0.16 0.18

GMRES ASM – 2 ILU(0) 5–8(7.7) 0–8(7.4) 5–9(8.6) 1.15 0.15 0.17

ILU(1) 3–4(3.6) 0–4(3.6) 3–4(3.6) 8.75 0.31 0.31

ILU(2) 2–2(2.0) 0–2(2.0) 2–2(2.0) 74.76 0.48 0.49

LU 2–3(2.5) 0–3(2.1) 2–3(2.0) 5.08 0.25 0.25

w

s

i

s

s

n

w

a

t

H

h

i

t

i

m

f

f

a

I

b

r

t

g

t

c

t

J

Table 5

Flow around a rotating insect wing. Iteration counts and timings for pressure incre-

ment ψ update using deflated PCG with block Jacobi preconditioner and different

subdomain solvers. All computations are using the mesh shown in Fig. 11 and 2048

subdomains. For each case the reported numbers are average values over the initial

400 time steps (of which 200 are in acceleration phase). The minimal time is empha-

sised in boldface.

Method Prec. Local sol. Num. iter. Avg. sol.

Min–max (avg.) time (s)

Defl. PCG bl. Jacobi ILU(0) 144–249(195.9) 0.13

ILU(1) 127–216(172.9) 0.14

ILU(2) 151–207(188.6) 0.18

LU 122–194(163.4) 0.31

s

c

p

e

t

s

o

ψ
a

d

b

g

i

ith prescribed additional fill-in ILU(1) and ILU(2), and a complete

parse LU factorisation. In the last case, the MUMPS direct solver [1]

s used. In all computations, the preconditioner is set up in every time

tep once and used for all three velocity components. The time for the

et-up is included in the computational time for the velocity compo-

ent u1.

In Table 3 we can see that GMRES and BiCGstab perform similarly

ell, the former being marginally faster. In terms of number of iter-

tions, we recall that two actions of the system matrix as well as of

he preconditioner are performed within each iteration of BiCGstab.

ence, the number of iterations for BiCGstab should be about one

alf of those by GMRES for comparable accuracy. Moreover, it is ev-

dent from Table 3 that a preconditioner is crucial. It is interesting

hat the convergence of the preconditioned methods does not signif-

cantly improve with better approximation of the incomplete factors,

oving from ILU(0) to ILU(2), while it increases the cost of the solve

or the first velocity component drastically. Surprisingly the full LU

actorisation of the diagonal blocks with MUMPS is faster than ILU(1)

nd ILU(2), but still more expensive than ILU(0). As a conclusion, the

LU(0) appears to be the best local solver in combination with the

lock Jacobi preconditioner for the velocity components. Our most

ecent studies indicate that even a simple diagonal Jacobi precondi-

ioner appears to be competitive in terms of computing time.

Continuing with the velocity update, we also investigate the al-

ebraic versions of the additive Schwarz method (ASM) with one or

wo elements of overlap. In the PCASM preconditioner of PETSc the

lusters of overlapping elements are reconstructed from the graph of

he local matrices without overlaps. The ASM simplifies to the block

acobi preconditioner when no overlap is used. The corresponding re-
 v
ults are presented in Table 4. It can be observed that an overlap is

apable of improving the preconditioner (cf. results for block Jacobi

reconditioner in Table 4) by significantly reducing the number of it-

rations. However, in terms of computational time, the time spent on

he set-up of the preconditioner is too high to be amortised by the

lightly faster solution times of the ASM method with one element

verlap.

Next, we consider the update of the incremental pressure field

by solving the Poisson problem (16) with pure Neumann bound-

ry conditions, see Table 5 for results. Our study is restricted to the

eflated preconditioned conjugate gradient (PCG) method using the

lock Jacobi preconditioner and different local solvers. As Table 5 sug-

ests, the solution times are comparable to those necessary for solv-

ng for one component of velocity. However, the equation system for

elocity component is around eight times larger than the one for the

176 J. Šístek, F. Cirak / Computers and Fluids 122 (2015) 165–183

101

102

103

102 103 104 105

nu
m

be
r

of
 it

er
at

io
ns

number of processors

u1
u2
u3
ψ
p

(a) Mesh A

101

102

103

102 103 104 105

nu
m

be
r

of
 it

er
at

io
ns

number of processors

u1
u2
u3
ψ
p

(b) Mesh B

101

102

103

102 103 104 105

nu
m

be
r

of
 it

er
at

io
ns

number of processors

u1
u2
u3
ψ
p

(c) Mesh C

Fig. 13. Flow around a rotating insect wing. Iteration counts for meshes A, B and C (see Table 8) and different number of subdomains. Problems for velocity components solved

with GMRES, problems for pressure increment and for pressure with CG, all with block Jacobi preconditioner and ILU(0) as the local solver. See Table A.10 in the Appendix for

numerical values.

Table 6

Flow around a rotating insect wing. Iteration counts and timings for the L2-projection

of the pressure p using PCG with block Jacobi preconditioner and different subdomain

solvers. All computations are using the mesh shown in Fig. 11 and 2048 subdomains.

For each case the reported numbers are average values over the initial 400 time steps

(of which 200 are in acceleration phase). The minimal time is emphasised in boldface.

Method Prec. Local sol. Num. iter. Avg. sol.

Min–max (avg.) time (s)

PCG bl. Jacobi ILU(0) 11–12(11.5) 0.009

ILU(1) 11–12(11.0) 0.010

ILU(2) 11–12(11.1) 0.014

LU 11–12(11.1) 0.022

Table 7

Flow around a rotating insect wing. The identified most efficient combination of Krylov

solver, preconditioner and subdomain solver.

Problem Velocity components Pressure increment Pressure

u1, u2, u3 ψ p

Krylov method GMRES Deflated PCG PCG

Preconditioner block Jacobi block Jacobi block Jacobi

Subdomain solver ILU(0) ILU(0) ILU(0)

s

G

P

J

n

t

w

c

s

fi

o

s

b

a

m

m

s

a

incremental pressure update, cf. Section 2.3. Overall, similar to ve-

locity problems, the lowered number of iterations by better (or even

exact) LU factorisation is, for this case, not sufficient to save compu-

tational time. The simplest ILU(0) factorisation of the local problems

remains the most efficient method.

For the sake of completeness, we also perform a similar study

for the L2-projection of pressure p, cf. (17), see Table 6 for results.

It should be stressed that this problem is by an order of magnitude

faster to solve than the velocity update (15) and the auxiliary pres-

sure update (16). Consequently, savings for this problem do not lead

to any significant gain in the overall algorithm. The fast convergence

of all considered methods is reported in Table 6.

4.2.3. Parallel scalability of the iterative solvers

We now investigate the parallel scalability of the preconditioned

iterative solvers identified as most efficient in the foregoing section,
ee Table 7. The velocity components u1, u2 and u3 are updated with

MRES, the pressure increment ψ is updated with deflated PCG, and

CG is used for L2-projection of the pressure p. In each case the block

acobi preconditioner with ILU(0) local solver is used. The Reynolds

umber of the flow is Re = 1051 for all computations. We study both

he weak and strong scalability of the iterative solvers. During the

eak scaling runs the problem size grows with the number of pro-

essors while keeping the load on each processor approximately con-

tant. In contrast, during the strong scaling runs the problem size is

xed and only the number of processors is increased. An algorithm is

ptimally scalable when the solution time is constant during a weak

caling test and when the solution time is halved each time the num-

er of processors is doubled during a strong scaling test.

For the weak scaling runs, we use two additional meshes gener-

ted by octasecting the hexahedral elements of the computational

esh described in Section 4.2.2, see also Fig. 11. During each refine-

ent the problem size increases approximately by factor eight. The

izes of the considered three meshes are given in Table 8.

Figs. 13 and 14 show the average number of iterations and aver-

ge solution times per time step in dependence of number of utilised

J. Šístek, F. Cirak / Computers and Fluids 122 (2015) 165–183 177

10-2

10-1

100

101

102

103

102 103 104 105

tim
e

[s
]

number of processors

optimal
u1
u2
u3
ψ
p
step

102

103

104

105

102 103 104 105

sp
ee

d-
up

number of processors

optimal
u1
u2
u3
ψ
p
step

(a) Mesh A

10-2

10-1

100

101

102

103

102 103 104 105

tim
e

[s
]

number of processors

optimal
u1
u2
u3
ψ
p
step

102

103

104

105

102 103 104 105

sp
ee

d-
up

number of processors

optimal
u1
u2
u3
ψ
p
step

(b) Mesh B

10-2

10-1

100

101

102

103

102 103 104 105

tim
e

[s
]

number of processors

optimal
u1
u2
u3
ψ
p
step

102

103

104

105

102 103 104 105

sp
ee

d-
up

number of processors

optimal
u1
u2
u3
ψ
p
step

(c) Mesh C

Fig. 14. Flow around a rotating insect wing. Timings (left) and speed-ups (right) for meshes A, B and C (see Table 8) and different number of subdomains. Problems for velocity

components solved with GMRES, problems for pressure increment and for pressure with CG, all with block Jacobi preconditioner and ILU(0) as the local solver. See Table A.11 in the

Appendix for numerical values. The line ‘step’ presents the average total time for a time step.

p

t

t

s

w

r

e

t

w

a

o

c

d

g

rocessors, respectively. The reported numbers are averaged over 400

ime steps, 200 of which are in the initial acceleration phase. In addi-

ion, in Fig. 14 we also report the parallel speed-up

np
= npref

tref

tnp

, (31)

here npref
is the lowest number of utilised processors, tref is the cor-

esponding time, and tnp is the time on np processors.
In Fig. 13 one can see that for each given mesh the number of it-

rations is almost independent of the number of processors, only for

he pressure increment ψ the number of iterations increases slightly

ith increasing processor numbers. Moreover, the number of iter-

tions for the pressure increment are significantly higher than the

nes for the other problems. Therefore, in Fig. 14 the pressure in-

rement update requires on average a comparable time like the up-

ate of the velocity components, despite having considerably less de-

rees of freedom. The worsening strong scalability of the pressure

178 J. Šístek, F. Cirak / Computers and Fluids 122 (2015) 165–183

101

102

103

102 103 104 105

nu
m

be
r

of
 it

er
at

io
ns

number of processors

u1
ψ

10-1

100

101

102 103 104 105

tim
e

[s
]

number of processors

u1
ψ

Fig. 15. Flow around a rotating insect wing. Weak scaling plots. Iteration counts (left) and timings (right) for meshes A, B and C (see Table 8) and different numbers of subdomains.

Lines from the lower right to the upper left corner correspond to approximately 1000, 2000, 4000, 8000 and 16,000 finite elements per subdomain. Problems for velocity component

u1 solved with GMRES, problems for pressure increment with CG, all with block Jacobi preconditioner and as the ILU(0) local solver. See Table A.10 in the Appendix for numerical

values.

Table 8

Flow around a rotating insect wing. Description of the computational meshes for the

scaling runs.

Reference Description # elements # velocity # pressure

nodes nodes

Mesh A Mesh described in

Sec. 4.2.2

2.1 × 106 16.8 × 106 2.1 × 106

Mesh B Uniform refinement of

Mesh A

16.6 × 106 134 × 106 16.8 × 106

Mesh C Uniform refinement of

Mesh B

133 × 106 1.07 × 109 134 × 106

a

t

c

F

a

c

4

d

r

c

a

u

fl

c

u

b

t

t

f

i

u

t

p

t

R

p

4

s

t

increment update suggests that the local work on subdomains is too

small to balance the cost of communication. The scalability begins to

deviate slightly from optimal going from 2000 elements to 1000 el-

ements per core and is lost when computing with 500 elements per

core. A similar effect is seen for the L2-projection of the pressure p, al-

though we again emphasise, that this problem is by an order of mag-

nitude quicker to solve than the others. In Fig. 14, we also present the

average total time for one time step, including the time for comput-

ing and assembling the matrices, computing aerodynamic forces and

output of results. Although these operations are embarrassingly par-

allel, as the plots indicate they can take significant amount of time.

Hence, optimisation of these parts of the computation should be per-

formed next.

Finally, in Fig. 15 the number of iterations and computational

times for Meshes A, B and C are combined in order to illustrate weak

scalability. It can be inferred from Fig. 15 that with increasing mesh

size the number of iterations approximately doubles for the velocity

problem. The increase is even higher for the pressure increment. This

behaviour is common to all one-level domain decomposition tech-

niques including the block Jacobi method. Therefore, weak scalabil-

ity cannot be expected, although the solution times remain accept-
Table 9

Flow around a rotating insect wing. Number of i

number for solving for velocity components (u1

sure p. For each Reynolds number the number

the wing (3000 time steps) is reported. The form

(average)’ number of iterations. All computation

2048 subdomains.

Re u1 u2 u3

105 23–29(26.6) 21–27(25.8) 24–2

263 18–22(19.9) 15–21(19.8) 18–2

526 14–17(16.0) 12–17(16.6) 14–1

1051 11–15(13.9) 10–15(14.8) 13–1
ble. Looking at the computational times in Fig. 15 we can see that

he time required for the update of the pressure increment ψ is now

omparable to that of the update of the first velocity component u1.

or 32,768 and 65,536 subdomains, the pressure corrector problem

lready dominates the solution process, and a better two-level pre-

onditioner may become beneficial.

.2.4. Reynolds number dependence of the iterative solvers

We compute one entire revolution of the Drosophila wing for four

ifferent Reynolds numbers (based on the velocity at the radius of gy-

ation) Re ∈ {105, 263, 526, 1051}. The time step increment is chosen

onstant such that one entire revolution requires 3000 time steps. In

ccordance with Table 7, the velocity components u1, u2 and u3 are

pdated with GMRES, the pressure increment ψ is updated with de-

ated PCG, and PCG is used for L2-projection of the pressure p. In each

ase the block Jacobi preconditioner with ILU(0) as the local solver is

sed. For all computations we use Mesh A, see Table 8, and the num-

er of utilised processors is 2048.

In Table 9 the minimum, maximum and average numbers of itera-

ions over an entire revolution are given. The prescribed tolerance of

he relative residual is 10−6. We can see that the number of iterations

or the update of velocity components decreases significantly with

ncreasing Reynolds number. We recall here that the velocities are

pdated by solving a convection–diffusion equation and it is known

hat the ILU preconditioner performs best for convection-dominated

roblems, see [21,51]. Interestingly, the number of iterations for ob-

aining the pressure increment ψ also becomes smaller with higher

eynolds number. The number of iterations for the L2-projection of

ressure is very low and independent of the Reynolds number.

.2.5. Flow characteristics and forces

The vortex structures exhibited by a rotating wing and the corre-

ponding aerodynamic forces are very different from the ones for a

ranslating wing. At high angles of attack both trajectories generate a
terations in dependence on the Reynolds

, u2, u3), pressure increment ψ and pres-

of iterations over an entire revolution of

at of the entries is ‘minimum–maximum

s are using the mesh shown in Fig. 11 and

ψ p

9(27.2) 100–242(168.6) 7–7(7.0)

2(20.3) 93–229(150.4) 7–7(7.0)

8(16.3) 61–181(106.5) 6–8(7.0)

7(14.3) 33–178(73.9) 6–8(6.8)

J. Šístek, F. Cirak / Computers and Fluids 122 (2015) 165–183 179

Fig. 16. Flow around a rotating insect wing. Isosurfaces of Q = 3 at different time instants, α = 40◦, Re = 105 (left) and Re = 263 (right).

l

v

r

t

t

n

a

A

e

r

s

a

t

l

m

t

t

t

p

n

i

t

p

t

w

s

t

r

i

r

l

l

i

F

a

fi

w

a

A

e

e

w

s

w

a

R

t

a

l

a

arge leading-edge vortex. As it is known, whereas the leading-edge

ortex of a translating wing is periodically shed (cf. Section 4.1.2), it

emains attached for a rotating wing (under insect-like flight condi-

ions). However, for higher aspect ratios and larger Reynolds numbers

he leading-edge vortex may not be so well defined and breaks down

ear the tip [24,29]. The presence of the attached leading-edge vortex

nd the associated low pressure zone leads to a sustained lift force.

lthough this has been extensively discussed in the animal flight and

ngineering literature, its computational study became feasible only

ecently. Due to the truly three-dimensional nature of the flow, the

ize of the discretised problem becomes very large, especially when

direct numerical simulation is performed.

In Figs. 16 and 17 the Q-criterion isosurfaces with Q = 3 are used

o visualise the flow. All snapshots show a vortex loop consisting of a

eading-edge, trailing-edge and two tip vortices, see also the experi-

ental results in [35,44]. The segments of the loop not connected to

he wing have a downward velocity. Importantly, throughout the ro-

ation the leading-edge vortex remains attached to the wing. For all

he considered Reynolds numbers, the leading-edge vortex is com-

act close to the wing root and becomes larger and then lifts up

earer to the wing tip. Moreover, with increasing Reynolds number

t is slightly tighter in the vicinity of the wing root. As to be expected

he complexity of the observed vortex structures becomes more

ronounced with increasing Reynolds number due to the decrease in

he diffusivity of the flow. In particular, for Re = 526 and Re = 1051

e can see finger-like subvortices emanating from the wing tip and
piralling around the leading-edge vortex. As also observed in [25],

he orientational sense of this spiralling appears to be opposite to the

otation of the vortex. Although not shown in Figs. 16 and 17 there

s a significant spanwise flow, with its maximum comparable to the

adial velocity, from the root to the tip of the wing. As initially postu-

ated in [20] the spanwise flow and the corresponding vorticity flux

imits an unbounded growth of the leading-edge vortex and prevents

ts shedding.

Finally, we present the history of aerodynamic coefficients in

ig. 18. The lift, drag, and spanwise force coefficients are computed

ccording to (28) with the planform S = R2/ and u∞ = Rgω, the

nal velocity at the radius of gyration. It is helpful to recall that the

ing is initially accelerated until t = 1 and then rotates with constant

ngular velocity ω until one full revolution is completed at t = 7.7.

fter a slight dip immediately after the acceleration phase, the co-

fficients are steady throughout the revolution even for the high-

st Reynolds number. Moreover, towards the end of the simulation

hen a full rotation is completed, the coefficients become slightly

maller. This is most likely due to the interaction of the tip vortices

ith the previously generated vortices. As can be seen in Fig. 18a

nd b both drag and lift coefficients become larger with increasing

eynolds number. However, the lift coefficient is much more sensi-

ive to the Reynolds number than the drag coefficient. Especially, for

n increase from Re = 105 to Re = 263 there is a sudden jump in the

ift forces. The obtained drag and lift coefficients show similar trends

s recently reported by Harbig et al. [29]. The lift-to-drag ratio (or,

180 J. Šístek, F. Cirak / Computers and Fluids 122 (2015) 165–183

Fig. 17. Flow around a rotating insect wing. Isosurfaces of Q = 3 at different time instants, α = 40◦, Re = 526 (left) and Re = 1051 (right).

m

p

T

i

d

c

i

f

t

fl

p

d

s

s

I

v

i

t

m

[

s

i

h

w

n

[

aerodynamic efficiency) in Fig. 18d indicates also a sudden increase

going from Re = 105 to Re = 263. The force in the spanwise (root-to-

tip) direction plotted in Fig. 18c is by an order of magnitude lower

than drag and lift, and it becomes lower with increasing Reynolds

number.

5. Conclusions

We considered the implicit parallel computation of three-

dimensional low Reynolds number flows on stationary and rotating

domains. The scalability of the overall finite element technique de-

pends on the suitable formulation of the physical problem, the data

structures, the algorithms for data handling and the preconditioned

iterative solver. To this end, we introduced efficient and scalable tech-

niques for domain partitioning, system matrix assembly and precon-

ditioned iterative solution. In our implementation we make extensive

use of open source libraries METIS, C++ STL and PETSc. The resulting

software is very efficient and it is able to solve systems with ≈ 3.34 ×
109 unknowns (of the corresponding coupled Navier–Stokes system)

in around thirty seconds on 65,536 processors.

The discretisation of the Navier–Stokes equations with the

pressure-correction method leads to one convection–diffusion prob-

lem with three different right-hand sides, one Poisson problem and

one L2-projection. We find that it is most efficient to precondition

each subproblem with the block Jacobi preconditioner using ILU(0)

on subdomains and to solve each with a suitable Krylov subspace it-

erative method, namely GMRES for nonsymmetric and PCG for sym-
etric problems. This gives an overall solution technique with almost

erfect scaling even for very large problems and processor counts.

he block Jacobi preconditioner with ILU(0) exhibits perfect scalabil-

ty in case of the convection–diffusion problems and the considered

iscretisations with up to 1.07 × 109 velocity nodes and 65,536 pro-

essors. Moreover, it was observed that the number of iterations is

nversely proportional to the Reynolds number of the flow. Although

or larger processor counts the solution of the Poisson problem for

he pressure increment becomes a bottleneck, it has only limited in-

uence on overall solution time. The size of the discretised Poisson

roblem is only about 1/8 of the size of the discretised convection–

iffusion problem. The discretised L2-projection problem is of the

ame size as the discretised Poisson problem. However, it can be

olved with much fewer iterations due to its better conditioning.

n order to compute on larger processor counts, especially with a

iew to peta-scale computing platforms, it appears to be crucial to

mprove the scalability of the solution of the Poisson problem. To

his end, the most promising techniques appear to be two-level or

ultilevel BDDC and FETI domain decomposition methods, see e.g.

12,22,23,52].

In order to make the developed approach truly useful for the

tudy of flapping-flight aerodynamics, it is necessary to consider flex-

ble wings. The used ALE approach with rigidly rotating meshes is

owever only suitable for rigid bodies and not applicable to flexible

ings. In case of flexible wings it is in principle possible to use either

on-boundary-fitting immersed grids [47], boundary-fitted meshes

55] or a combination of both [6]. When a partitioned (or, block

J. Šístek, F. Cirak / Computers and Fluids 122 (2015) 165–183 181

 0

 0.5

 1

 1.5

 2

 0 1 2 3 4 5 6 7 8

C
D

t

Re = 105
Re = 263
Re = 526

Re = 1051

(a) Drag coefficient

 0

 0.5

 1

 1.5

 2

 0 1 2 3 4 5 6 7 8

C
L

t

Re = 105
Re = 263
Re = 526

Re = 1051

(b) Lift coefficient

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 1 2 3 4 5 6 7 8

-C
Z

t

Re = 105
Re = 263
Re = 526

Re = 1051

(c) Spanwise force coefficient

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0 1 2 3 4 5 6 7 8

C
L
 /

C
D

t

Re = 105
Re = 263
Re = 526

Re = 1051

(d) Lift-to-drag ratio

Fig. 18. Flow around a rotating insect wing. Aerodynamic coefficients during one revolution for different Reynolds numbers.

G

s

u

A

f

s

s

s

G

R

H

2

A

t

auss–Seidel) approach is used for solving the resulting fluid-

tructure interaction problem, the approach developed here can be

sed for solving the fluid problem.

cknowledgement

We are grateful to Charles P. Ellington and Holger Babinsky

or valuable discussions on aerodynamics of insect flight. This re-

earch was supported by the Engineering and Physical Sciences Re-

earch Council (EPSRC) through Grant # EP/G008531/1. Additional
Table A.10

Flow around a rotating insect wing. Iteration counts for mes

subdomains. Problems for velocity components u1, u2 and u3 s

and for pressure p with CG, all with block Jacobi preconditione

Num. processors Number of iterations

u1 u2

Mesh A 128 7–12(11.0) 0–11(10.4)

256 7–13(12.1) 0–13(11.3)

512 7–13(11.6) 0–13(11.0)

1024 7–13(12.4) 0–13(12.2)

2048 7–14(12.6) 0–13(11.9)

4096 8–14(13.4) 0–13(12.2)

Mesh B 1024 11–20(18.4) 0–18(16.4)

2048 10–22(19.6) 0–19(17.5)

4096 10–22(19.6) 0–20(17.6)

8192 11–27(23.4) 0–24(20.9)

16 384 10–24(21.7) 0–22(18.9)

Mesh C 8192 18–43(36.4) 0–38(31.1)

16 384 19–42(37.0) 0–38(32.4)

32 768 19–44(38.1) 0–39(32.7)

65 536 19–44(36.9) 0–38(30.9)
upport was provided by the Czech Science Foundation through

rant 14-02067S, and by the Czech Academy of Sciences through

VO:67985840. The presented computations were performed on

ECToR at the Edinburgh Parallel Computing Centre through PRACE-

IP (FP7 RI-283493).

ppendix A.

The following two tables give the data for the Figs. 13 and 14 in-

roduced in Section 4.2.3.
hes A, B and C (see Table 8) and different number of

olved with GMRES, problems for pressure increment ψ

r and ILU(0) as the local solver.

u3 ψ p

7–14(13.1) 119–198(157.2) 11–11(11.0)

7–15(13.2) 125–205(164.6) 11–11(11.0)

7–14(12.9) 130–217(175.4) 11–11(11.0)

8–14(13.5) 138–234(186.5) 11–12(11.7)

7–15(13.7) 144–249(195.9) 11–12(11.5)

8–16(14.5) 157–269(213.5) 12–12(12.0)

11–24(21.9) 369–680(529.7) 12–12(12.0)

11–25(23.0) 373–688(534.4) 12–12(12.0)

10–25(22.9) 382–696(543.9) 12–12(12.0)

11–30(26.5) 385–704(550.5) 12–12(12.0)

11–28(24.7) 394–712(558.4) 12–12(12.0)

19–48(40.9) 820–1425(1175.9) 12–12(12.0)

20–47(41.6) 832–1437(1150.6) 12–12(12.0)

21–49(42.8) 836–1452(1163.2) 12–12(12.0)

20–49(42.1) 855–1472(1254.6) 12–12(12.0)

182 J. Šístek, F. Cirak / Computers and Fluids 122 (2015) 165–183

Table A.11

Flow around a rotating insect wing. Average times for solving the linear systems and the total time per step for meshes

A, B and C (see Table 8) with different number of subdomains. Problems for velocity components u1, u2 and u3 solved

with GMRES, problems for pressure increment ψ and for pressure p with CG, all with block Jacobi preconditioner and

ILU(0) as the local solver. The number of processes (the same as cores) is denoted with ‘num. proc.’ and the average

number of finite elements per subdomain with ‘loc. size’ .

Num. proc. Loc. size (× 103) Solution time (s) Time per step (s)

u1 u2 u3 ψ p

Mesh A 128 16 5.198 1.552 1.952 1.238 0.092 220.640

256 8 2.703 0.832 0.971 0.621 0.045 86.915

512 4 0.789 0.413 0.479 0.304 0.023 39.801

1024 2 0.392 0.220 0.242 0.190 0.014 19.127

2048 1 0.193 0.105 0.120 0.129 0.009 9.876

4096 0.5 0.101 0.055 0.064 0.134 0.009 6.286

Mesh B 1024 16 5.139 2.577 3.538 4.286 0.105 231.137

2048 8 2.585 1.337 1.810 2.087 0.051 91.739

4096 4 1.152 0.656 0.867 0.907 0.026 42.604

8192 2 0.630 0.377 0.487 0.518 0.014 21.857

16 384 1 0.289 0.169 0.222 0.368 0.010 12.439

Mesh C 8192 16 10.559 5.188 6.972 10.085 0.113 251.728

16 384 8 5.139 2.614 3.423 5.013 0.066 100.716

32 768 4 1.961 1.268 1.688 2.625 0.039 50.968

65 536 2 0.941 0.587 0.820 1.721 0.029 33.112

[

References

[1] Amestoy PR, Duff IS, L’Excellent J-Y. Multifrontal parallel distributed

symmetric and unsymmetric solvers. Comput Methods Appl Mech Eng
2000;184:501–20.

[2] Ansari SA, Phillips N, Stabler G, Wilkins PC, Zbikowski R, Knowles K. Experimen-
tal investigation of some aspects of insect-like flapping flight aerodynamics for

application to micro air vehicles. Exp Fluids 2009;46(5):777–98.
[3] Badia S, Martín A, Principe J. A highly scalable parallel implementation of Balanc-

ing Domain Decomposition by Constraints. SIAM J Sci Comput 2014;36(2):C190–

218.
[4] Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, et al. PETSc

Web page. http://www.mcs.anl.gov/petsc; 2014.
[5] Bazilevs Y, Hughes TJR. NURBS-based isogeometric analysis for the

computation of flows about rotating components. Comput Mech
2008;43(1):143–50.

[6] Bazilevs Y, Korobenko A, Deng X, Yan J. Novel structural modeling and mesh mov-

ing techniques for advanced fluid–structure interaction simulation of wind tur-
bines. Int J Numer Methods Eng 2015;102(3–4):766–83.

[7] Birch J, Dickinson M. Spanwise flow and the attachment of the leading-edge vor-
tex on insect wings. Nature 2001;412:729–33.

[8] Česenek J, Feistauer M, Horáček J, Kučera V, Prokopová J. Simulation of
compressible viscous flow in time-dependent domains. Appl Math Comput

2013;219(13):7139–50.

[9] Chorin AJ. Numerical solution of the Navier-Stokes equations. Math Comput
1968;22:745–62.

[10] Cirak F, Cummings J. Generic programming techniques for parallelizing and ex-
tending procedural finite element programs. Eng Comput 2008;24:1–16.

[11] Concus P, Golub GH, O’Leary DP. A generalized conjugate gradient method for the
numerical solution of elliptic PDE. In: Bunch JR, Rose DJ, editors. Sparse matrix

computations. New York: Academic Press; 1976. p. 309–32.

[12] Dohrmann CR. A preconditioner for substructuring based on constrained energy
minimization. SIAM J Sci Comput 2003;25(1):246–58.

[13] Donea J, Huerta A. Finite element methods for flow problems. John Wiley & Sons;
2003.

[14] Dudley R. The biomechanics of insect flight: form, function, evolution. Princeton,
New Jersey: Princeton University Press; 2000.

[15] Ellington C. The aerodynamics of hovering insect flight. I. The quasi-steady anal-

ysis. Philos Trans R Soc Lond Ser B, Biol Sci 1984;305:1–15.
[16] Ellington C. The aerodynamics of hovering insect flight. II. Morphological param-

eters. Philos Trans R Soc Lond Ser B, Biol Sci 1984;305:17–40.
[17] Ellington CP. The aerodynamics of hovering insect flight. III. Kinematics. Philos

Trans R Soc Lond Ser B, Biol Sci 1984;305:41–78.
[18] Ellington CP. The aerodynamics of hovering insect flight. IV. Aerodynamic mech-

anisms. Philos Trans R Soc Lond Ser B, Biol Sci 1984;305:79–113.
[19] Ellington CP. The aerodynamics of hovering insect flight. V. A vortex theory. Philos

Trans R Soc Lond Ser B, Biol Sci 1984;305:115–44.

[20] Ellington CP, van den Berg C, Willmott AP, Thomas ALR. Leading-edge vortices in
insect flight. Nature 1996;384:626–30.

[21] Elman HC, Silvester DJ, Wathen AJ. Finite elements and fast iterative solvers:
with applications in incompressible fluid dynamics. In: Numerical mathematics

and scientific computation. New York: Oxford University Press; 2005. 978-0-19-
852868-5; 0-19-852868-X.
[22] Farhat C, Lesoinne M, Le Tallec P, Pierson K, Rixen D. FETI-DP: a dual-primal uni-

fied FETI method. I. A faster alternative to the two-level FETI method. Int J Numer
Methods Eng 2001;50(7):1523–44.

[23] Farhat C, Roux F-X. A method of finite element tearing and interconnecting and
its parallel solution algorithm. Int J Numer Methods Eng 1991;32(6):1205–27.

[24] Garmann D, Visbal M. Dynamics of revolving wings for various aspect ratios. J

Fluid Mech 2014;748:932–56.
[25] Garmann DJ, Visbal MR, Orkwis PD. Three-dimensional flow structure

and aerodynamic loading on a revolving wing. Phys Fluids (1994-present)
2013;25(3):034101.

[26] Geuzaine C, Remacle J-F. Gmsh: A 3-D finite element mesh generator with built-in
pre- and post-processing facilities. Int J Numer Methods Eng 2009;79(11):1309–

31.

[27] Girault V, Raviart P-A. Finite element methods for Navier-Stokes equations. Berlin:
Springer-Verlag; 1986.

[28] Guermond JL, Minev P, Shen J. An overview of projection methods for incom-
pressible flow. Comput Methods Appl Mech Eng 2006;195:6011–45.

[29] Harbig R, Sheridan J, Thompson M. Reynolds number and aspect ratio effects
on the leading-edge vortex for rotating insect wing planforms. J Fluid Mech

2013;717:166–92.

[30] Heroux MA, Bartlett RA, Howle VE, Hoekstra RJ, Hu JJ, Kolda TG, et al. An overview
of the Trilinos project. ACM Trans Math Softw 2005;31(3):397–423.

[31] Hunt JCR, Wray AA, Moin P. Eddies, stream, and convergence zones in turbulent
flows. technical report. Center for Turbulence Research; 1988.

[32] Josuttis NM. The C++ standard library: a tutorial and reference. 2nd ed. Addison-
Wesley; 2012.

[33] Karypis G, Kumar V. A fast and high quality multilevel scheme for partitioning

irregular graphs. SIAM J Sci Comput 1998;20(1):359–92.
[34] Kim D, Choi H. Immersed boundary method for flow around an arbitrarily moving

body. J Comput Phys 2006;212(2):662–80.
[35] Kim D, Gharib M. Experimental study of three-dimensional vortex structures in

translating and rotating plates. Exp Fluids 2010;49(1):329–39.
[36] Kim J, Moin P. Application of a fractional-step method to incompressible Navier-

Stokes equations. J Comput Phys 1985;59(2):308–23.

[37] Kolář V. Compressibility effect in vortex identification. AIAA J 2009;47(2):473–5.
[38] Kolář V, Šístek J. Corotational and compressibility aspects leading to a modifica-

tion of the vortex-identification Q-criterion. AIAA J 2015;53(8):2406–10.
[39] Kolář V, Šístek J, Cirak F, Moses P. Average corotation of line segments near a point

and vortex identification. AIAA J 2013;51(11):2678–94.
[40] Liesen J, Strakoš Z. Krylov subspace methods. Oxford University Press; 2013.

[41] Mandel J, Sousedík B, Dohrmann CR. Multispace and multilevel BDDC. Computing
2008;83(2–3):55–85.

[42] Meyers S. Effective STL: 50 specific ways to improve your use of the standard

template library. Pearson Education; 2001.
[43] Nolan GR. Aerodynamics of vortex lift in insect flight. Department of Zoology, Uni-

versity of Cambridge; 2004.
44] Ozen CA, Rockwell D. Three-dimensional vortex structure on a rotating wing. J

Fluid Mech 2012;707:541–50.
[45] Quarteroni A, Saleri F, Veneziani A. Factorization methods for the numerical

appproximation of Navier-Stokes equations. Comput Methods Appl Mech Eng

2000;188:505–26.
[46] Quarteroni A, Valli A. Domain decomposition methods for partial differential

equations. Oxford Science Publications; 1999.

http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0001
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0001
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0001
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0001
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0002
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0002
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0002
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0002
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0002
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0002
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0002
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0003
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0003
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0003
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0003
http://www.mcs.anl.gov/petsc
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0004
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0004
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0004
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0005
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0005
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0005
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0005
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0005
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0006
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0006
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0006
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0007
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0007
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0007
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0007
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0007
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0007
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0008
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0008
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0009
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0009
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0009
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0010
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0010
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0010
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0010
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0011
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0011
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0012
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0012
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0012
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0013
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0013
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0014
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0014
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0015
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0015
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0016
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0016
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0017
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0017
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0018
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0018
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0019
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0019
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0019
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0019
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0019
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0020
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0020
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0020
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0020
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0021
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0021
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0021
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0021
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0021
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0021
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0022
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0022
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0022
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0023
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0023
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0023
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0024
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0024
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0024
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0024
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0025
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0025
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0025
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0026
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0026
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0026
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0027
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0027
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0027
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0027
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0028
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0028
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0028
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0028
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0029
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0029
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0029
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0029
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0029
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0029
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0029
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0029
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0030
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0030
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0030
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0030
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0031
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0031
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0032
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0032
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0032
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0033
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0033
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0033
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0034
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0034
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0034
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0035
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0035
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0035
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0036
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0036
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0037
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0037
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0037
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0038
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0038
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0038
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0038
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0038
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0039
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0039
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0039
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0040
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0040
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0040
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0040
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0041
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0041
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0042
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0042
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0043
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0043
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0043
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0044
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0044
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0044
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0044
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0045
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0045
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0045

J. Šístek, F. Cirak / Computers and Fluids 122 (2015) 165–183 183

[

[

[

[

[
[

[

[

[

[

[47] Rüberg T, Cirak F. A fixed-grid b-spline finite element technique for fluid–
structure interaction. Int J Numer Methods Fluids 2014;74(9):623–60.

48] Saad Y. Iterative methods for sparse linear systems,. 2nd ed. Philadelpha, PA:
SIAM; 2003.

49] Saad Y, Schultz MH. GMRES: a generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM J Sci Stat Comput 1986;7(3):856–69.

50] Shyy W, Lian Y, Tang J, Viieru D, Liu H. Aerodynamics of low Reynolds number
flyers. Cambridge University Press; 2008.

[51] Smith BF, Bjørstad PE, Gropp WD. Domain decomposition: parallel multilevel

methods for elliptic partial differential equations. Cambridge: Cambridge Univer-
sity Press; 1996. ISBN 0-521-49589-X.

52] Sousedík B, Šístek J, Mandel J. Adaptive-multilevel BDDC and its parallel imple-
mentation. Computing 2013;95(12):1087–119.

53] Stroustrup B. The C++ programming language. 4th ed. Addison-Wesley; 2013.
54] Taira K, Colonius T. Three-dimensional flows around low-aspect-ratio flat-plate

wings at low Reynolds numbers. J Fluid Mech 2009;623:187–207.
55] Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar TE. Space–time techniques
for computational aerodynamics modeling of flapping wings of an actual locust.

Comput Mech 2012;50(6):743–60.
56] Tezduyar TE, Sameh A. Parallel finite element computations in fluid mechanics.

Comput Methods Appl Mech Eng 2006;195(13):1872–84.
[57] Toselli A, Widlund OB. Domain decomposition methods—algorithms and theory.

Springer Series in Computational Mathematics, 34. Berlin: Springer-Verlag; 2005.
58] van der Vorst HA. Bi-CGSTAB: a fast and smoothly converging variant of Bi-

CG for the solution of nonsymmetric linear systems. SIAM J Sci Stat Comput

1992;13(2):631–44.
59] Wang S, Zhang X. An immersed boundary method based on discrete stream func-

tion formulation for two- and three-dimensional incompressible flows. J Comput
Phys 2011;230:3479–99.

http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0046
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0046
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0046
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0047
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0047
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0048
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0048
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0048
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0049
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0049
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0049
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0049
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0049
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0049
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0050
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0050
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0050
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0050
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0051
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0051
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0051
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0051
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0052
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0052
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0053
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0053
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0053
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0054
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0054
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0054
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0054
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0054
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0054
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0055
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0055
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0055
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0056
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0056
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0056
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0057
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0057
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0058
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0058
http://refhub.elsevier.com/S0045-7930(15)00302-3/sbref0058

	Parallel iterative solution of the incompressible Navier-Stokes equations with application to rotating wings
	1 Introduction
	2 Pressure-correction method for Navier-Stokes equations in ALE form
	2.1 Governing equations
	2.2 Incremental pressure-correction method
	2.3 Finite element discretisation

	3 Parallel iterative solvers and implementation
	3.1 Parallel preconditioned iterative solvers
	3.2 Implementation details
	3.2.1 Domain partitioning
	3.2.2 Overlapping partitions for fast assembly
	3.2.3 On-the-fly assembly and intermediary data container

	4 Numerical performance studies and results
	4.1 Flow around an inclined flat plate
	4.1.1 Problem definition and discretisation
	4.1.2 Flow characteristics and forces
	4.1.3 Validation and verification

	4.2 Flow around a rotating insect wing
	4.2.1 Problem definition and discretisation
	4.2.2 Performance comparison of the iterative solvers
	4.2.3 Parallel scalability of the iterative solvers
	4.2.4 Reynolds number dependence of the iterative solvers
	4.2.5 Flow characteristics and forces

	5 Conclusions
	 Acknowledgement
	 Appendix A.
	 References

