

Model reduction: analysis, numerical solution and real world applications Lecture I: Model reduction, a survey

Volker Mehrmann
TU Berlin, Institut für Mathematik

DFG Research Center MATHEON *Mathematics for key technologies*

- Applications (More in talk III)
- Nodel reduction
- Model based approach
- Semi-discretized systems
 - Model reduction techniques
- Linear control systems
- Krylov methods
- Nonlinear MOR
- Conclusion

- Key technologies require Modeling, Simulation, and Optimization (MSO) of complex dynamical systems.
- Most real world systems are multi-physics systems, with different accuracies and scales in components.
- Modeling today becomes exceedingly automatized, linking subsystems together.
- Modeling, analysis, numerics, control and optimization techniques should go hand in hand.
- Most real world (industrial) models are too complicated for optimization and control. Model reduction is a key issue.
- ▶ We need to be able to quantify errors and uncertainties in the reduction process.

Data based approach

Model based approach

Model reduction techniques

Linear control systems

Krvlov methods

Nonlinear MOR

Conclusion

Automatic transmission

Model/software based control of automatic transmission.Project with Daimler AG

A current half-toroid model

Pilsen MOR 2015, I 6 / 55

Technological Application

- Modeling of coupled dynamical multi-physics model: multi-body system, elasticity, hydraulics, friction,
- Development of control/optimization methods for coupled system.
- ▶ Model reduction to make control/optimization feasible.
- Real time control software for transmission on board computer.

Ultimate goals: Decrease fuel consumption, save money on production, improve switching.

Drop size distributions

with S. Schmelter and M. Kraume (Chemical Eng., TU Berlin)

Technological Application, Tasks

Chemical industry: pearl polymerization and extraction processes

- Modeling of coalescence and breakage in turbulent flow.
- Numerical methods for simulation of coupled system of population balance equations/fluid flow equations.
- Development of optimal control methods for large scale coupled systems.
- ▶ Model reduction and observer design.
- ▶ Feedback control of real configurations via stirrer speed.

Goal: Achieve specified average drop diameter and small standard deviation for distribution by real time-control of stirrer-speed.

4□ > 4回 > 4 重 > 4 重 > 重 のQで

Pilsen MOR 2015, I 9 / 55

Mathematical system components

- Navier Stokes equation (flow field) (→ Film).
- Population balance equation (drop size distribution).
- One or two way coupling.
- Initial and boundary conditions.

Space discretization leads to an extremely large control system of nonlinear DAEs.

Active flow control

Project in SFB 557 Control of complex shear flows, with F. Tröltzsch, M. Schmidt

Technological Application, Tasks

Control of detached turbulent flow on airline wing

- Test case (backward step to compare experiment/numerics.)
- Modeling of turbulent flow.
- Development of control methods for large scale coupled systems.
- Model reduction.
- Optimal feedback control of real configurations via blowing and sucking of air in wing.

Ultimate goal: Force detached flow back to wing.

4 D > 4 D > 4 E > 4 E > E 990

Controlled flow

Movement of recirculation bubble following reference curve.

4□ ト 4 回 ト 4 豆 ト 4 豆 ト 豆 り 9 0 0

- Disc brake squeal is a frequent and annoying phenomenon (with cars, trains, bikes).
- ▶ Important for customer satisfaction, even if not a safety risk.
- ▶ Nonlinear effect that is hard to detect in experiments.
- ▶ The car industry is trying for decades to improve this, by changing the designs of brake and disc.

Model based approach

Interdisciplinary project with car manufacturers + SMEs Supported by German Minist. of Economics via AIF foundation. University: N. Gräbner, U. von Wagner, TU Berlin, Mechanics,

N. Hoffmann, TU Hamburg-Harburg, Mechanics,

S. Quraishi, C. Schröder, TU Berlin Mathematics.

Goals:

- ▷ Develop model of brake system with all effects that may cause squeal. (Friction, circulatory, gyroscopic effects, etc).
- Simulate brake behavior for many different parameters (disk speed, material geometry parameters).
- Dur task: Model reduction, solution of eigenvalue problems.
- ▶ Long term: Stability/bifurcation analysis for a given parameter region.

4 D > 4 A D > 4 E > 4 E > 9 Q P

- Introduction
 - Applications (More in talk III)
- Model reduction
- Data based approachModel based approach
- Semi-discretized systems
 - Model reduction techniques
- Linear control systems
- Krylov methods
- Nonlinear MOR
- Conclusion

What is model reduction

- ... replace a big complicated (computational) model with a smaller and simpler (but still accurate) one.
- ▷ Everybody does this. (Also called Science)
- One wants to have the most simple model for analysis, simulation, optimization and control.
- Ideally the reduced model should have good fidelity compared to reality.

Pilsen MOR 2015, I 17 / 55

What is a small and simple?

- Small and simple model to do analysis;
- small and simple model for computational simulation (parameter studies);
- small and simple model for optimization (of design parameters);
- > small and simple model to do (real time) control;
- ▷ small nonlinear vs. large linear model?

Pilsen MOR 2015, I 18 / 55

- Introduction
 - Applications (More in talk III)
 - Model reduction
- Data based approach
- Model based approach
- Semi-discretized systems
 - Model reduction techniques
- Linear control systems
- Krylov methods
- Monlinear MOR
- Conclusion

Data based approach

Classical and successful approach in control engineering:

- Build prototype or high fidelity simulator for dynamical system.
- Generate input-output sequences $(u_i)_i$, $(y_i)_i$ by measurement or solving forward problem.
- Generate input-output map (transfer function in frequency) domain) that interpolates input-output sequence.
- Realize input-output map as a linear finite dimensional system

$$\dot{x} = Ax + Bu, y = Cx$$

with (typically large) matrices A, B, C.

- \triangleright Reduce model to small model $\dot{x}_r = A_r x_r + B_r u$, $y_r = C_r x_r$ with small error $||y - y_r|| \le ||u|| tol$.
- Build a (feedback) controller from small linear model and apply it in the full physical model.

Transfer function

Figure: I/O map (transfer function) for physical system.

◄□▶◀圖▶◀불▶◀불▶ 불

Reduced transfer function

Figure: I/O map (transfer function) for reduced system.

$$||y - y_r|| < ||Gu - G_ru|| < ||G - G_r||||u||$$

So want good approximation of transfer function.

Pilsen MOR 2015, I 22 / 55

- Introduction
- Applications (More in talk III)
- Model reduction
 - Data based approach
- Model based approach
- Semi-discretized systems
 - Model reduction techniques
- Linear control systems
- Krylov methods
- Monlinear MOR
- Conclusion

23 / 55

Model based approach

Pilsen MOR 2015, I 24 / 55

- Semidiscretization in space using FV, FE, FD ⇒ large scale ODE/DAE-control problem.
- Model reduction to reduce state dimension.
- Computation of (feedback) control for reduced model using standard software.
- Apply computed control in large semi-discretized model infinite dimensional or real physical model.

MOR in PDE constrained optimization

Given a PDE constraint control or optimization problem. Different approaches.

- ▶ First semi-discretize (in space), then reduce continuous time model, then optimize and control. (POD, Balanced truncation, DEIM, IRKA, ...).
- Discretize (in space and time) as optimization or control problem in adaptive way (reduced basis).
- Discretize optimality conditions (forward and adjoint problem) in adaptive way (adaptive FE, FD, FV).
- Combinations of all of these.

4□ > 4回 > 4 = > 4 = > = 900

- Introduction
- Applications (More in talk III)
- Model reduction
 - Data based approach
 - Model based approach
- Semi-discretized systems
 - Model reduction techniques
- Linear control systems
- Krylov methods
- Nonlinear MOR
- Conclusion

Model reduction state space

Replace system

$$F(t, x, \dot{x}, u) = 0, \quad x(t_0) = x^0$$

 $y(t) = g(x)$

with $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, and $y \in \mathbb{R}^p$, by a reduced model

$$F_r(t, x_r, \dot{x_r}, u) = 0, \quad x_r(t_0) = x_r^0$$

 $y_r(t) = g_r(x_r)$

with $x_r \in \mathbb{R}^{n_r}$, $n_r << n$.

Goals

- \triangleright Approximation error $||y y_r||$ small, global error bounds;
- ▶ Preservation of physics: stability, passivity, conservation laws;
- Stable and efficient method for model reduction.

Pilsen MOR 2015, I 28 / 55

- Introduction
- Applications (More in talk III)
- Model reduction
- Data based approach
 - Model based approach
 - Semi-discretized systems
- Model reduction techniques
- Linear control systems
- Krylov methods
 - Nonlinear MOR
- Conclusion

Model reduction techniques

- Modal truncation
- Balanced truncation (BT)
- Hankel approximation
- Principal orthogonal decomposition (POD)
- Discrete empirical interpolation (DEIM)
- Iterative rational Krylov method (IRKA)
- Moment matching
- Reduced basis methods

Model reduction techniques

SVD (singular value decomposition) based methods

- > Balanced truncation (linear) Antoulas, Benner, Li, Moore, Penzl, Stykel, Sorensen, Varga, Wang, White, ...
- ▶ Principal orthogonal decomposition (POD), (linear/nonlinear) Banks, Benner, Hinze, King, Kunisch, Tröltzsch, Volkwein, ...
- DEIM (nonlinear) Chaturantabut, Maday, Sorensen, ...

Interpolation based methods

▶ IRKA (linear) Antoulas, Beattie, Gugercin, ...

Krylov methods

- Moment matching, (linear) Bai, Boley, Freund, Gallivan, Gragg, Grimme, Van Dooren, ...
- ▶ Modal truncation (linear) Bampton, Craig, Guyan, Rommes...
 Reduced basis methods

▷ (linear/nonlinear) Haasdonk, Ohlberger, Patera, Quateroni, Rozza. ...

Pilsen MOR 2015, I 31 / 5

- Introduction
- Applications (More in talk III)
- Model reduction
- Data based approach
- Model based approach
- Semi-discretized systems
 - Model reduction techniques
- Linear control systems
- Krylov methods
 - Nonlinear MOR
- Conclusion

Linear control systems

Replace

$$\dot{x}(t) = Ax(t) + Bu(t), \quad x(t_0) = x_0$$

 $y(t) = Cx(t)$

by

$$\dot{x}_r(t) = A_r x_r(t) + B_r u(t), \quad x_r(t_0) = x_r^0$$

 $y_r(t) = C_r x_r(t),$

with $x_r \in \mathbb{R}^{n_r}$, $n_r << n$.

Laplace transformation and approximation in frequency domain.

$$\hat{y} = C(sI - A)^{-1}B\hat{u}
= G(s)\hat{u},$$

with rational matrix valued transfer function G(s) in Hardy space of functions that are analytic and bounded in the right half of complex plane.

$$\|G - G_r\|_{H_{\infty}} = \sup_{\omega \in \mathbb{R}} \|G(i\omega) - G_r(i\omega)\|$$

and approximate transfer function $G_r(s) = C_r(sI - A_r)^{-1}B_r$. $(G(i\omega):$ "frequency response matrix")

4 D > 4 P > 4 B > 4 B > B 900

- Introduction
- Applications (More in talk III)
- Model reduction
- Data based approach
- Semi-discretized systems
 - Model reduction techniques
 - Linear control systems
- Krylov methods
- Monlinear MOR
- Conclusion

Petrov-Galerkin approach

Common idea in most methods: Galerkin or Petrov-Galerkin-type projection of state-space onto low-dimensional subspace *V* along subspace *W* (biorthogonal)

- $\triangleright x \approx VW^Tx =: x_r$, where $W^TV = I_r$.
- \triangleright Then, with $x_r = W^T x$, we obtain $x \approx V x_r$ and

$$||x-x_r||=||x-Vx_r||$$

Choose *V* as matrix of eigenvectors associated with dominant eigenvalues of *A*.

$$T^{-1}AT = \operatorname{diag}(A_1, A_2), \ T^{-1}B = \left[egin{array}{c} B_1 \\ B_2 \end{array}
ight], \ CT = \left[egin{array}{c} C_1 & C_2 \end{array}
ight]$$

$$\|G - G_r\|_{H_{\infty}} \leq cond_2(T) \|C_2\|_2 \|B_2\|_2 rac{1}{\min_{\lambda \in \sigma(A_2)} |Re(\lambda)|}$$

Analysis of Modal Truncation

- ▶ Fast and easy to use.
- Works for very large scale problems.
- ▶ Eigenvalues contain only limited information.
- What is dominant. Dominant pole algorithm. Rommes
- ▷ Error bound hard to compute in large scale case.

Moment matching

Moment matching, Pade' via Lanczos

Expand the transfer function G(s) at point s_0

$$G(s) = M_0 + M_1(s - s_0) + M_2(s - s_0)^2 + \dots$$

and find approximate $\tilde{C}, \tilde{B}, \tilde{A}$ so that in the expansion of

$$\tilde{C}(sI-\tilde{A})^{-1}\tilde{B}=\tilde{M}_0+\tilde{M}_1(s-s_0)+\tilde{M}_2(s-s_0)^2+\ldots$$

as many terms as possible are matched.

- $> s_0 = \infty$: partial realization, Pade' approximation. Solution via Lanzcos or Arnoldi method.
- $\gt s_0 \in \mathbb{C}$ rational interpolation. Solution via rational Lanczos.

4 D > 4 A > 4 B > 4 B > B = 400

Analysis of Moment Matching

- Fast and easy to use.
- Works for very large scale problems.
- Very successful in practice, VLSI simulation.
- Preservation of passivity, Freund, Sorensen, Reis.
- \triangleright Choice of expansion point s_0 ?
- Computation of moments is problematic.
- ▶ No global error bound.
- Possible breakdown of Lanczos.

Balanced truncation

$$\dot{x} = Ax + Bu, \ \ y = Cx$$

Consider Lyapunov equations:

$$AX_B + X_BA^T = -BB^T$$
 (X_B controllab. Gramian)
 $A^TX_C + X_CA = -C^TC$ (X_C observab. Gramian).

- ▶ If A is stable and the system is controllable and observable, then X_B , X_C are positive definite.
- ▷ Idea: Make the system balanced, $X_B = X_C$ diagonal, and truncate small components (hard to control and observe).
- \triangleright Every controllable and observable system can be balanced by a change of basis $\tilde{x} = Tx$.

Balanced truncation algorithm

- 1. Compute Gramians, Cholesky factors. $X_B = L_B L_B^T$, $X_C = L_C L_C^T$.
- 2. Compute the SVD of $U\Sigma V^T = L_B^T L_C$ with

$$\Sigma = \operatorname{diag}(\sigma_1, \dots \sigma_n) = \begin{bmatrix} \Sigma_1 & \\ & \Sigma_2 \end{bmatrix},$$

(Hankel sing. val.). $\Sigma_2 = \operatorname{diag}(\sigma_{\tilde{n}+1}, \ldots, \sigma_n), \, \sigma_{\tilde{n}+1}, \ldots, \sigma_n \leq tol.$

- 3. Set $T = \Sigma^{1/2} U^T L_B^{-1} = \Sigma^{-1/2} V^T L_C^T$.
- 4. Set $\tilde{x} = Tx$ and partition matrices as Σ .

$$\begin{array}{rcl} \textit{TAT}^{-1} & = & \left[\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array} \right], \; \textit{Tx} = \left[\begin{array}{cc} x_r \\ \tilde{x}_r \end{array} \right], \\ \ \, \textit{TB} & = & \left[\begin{array}{cc} B_1 \\ B_2 \end{array} \right], \; \textit{CT}^{-1} = \left[\begin{array}{cc} C_1 & C_2 \end{array} \right]. \end{array}$$

5. Reduced system

$$\dot{x}_r = A_{11}x_r + B_1u, \ y = C_1x_r.$$

Pilsen MOR 2015, I 42 / 5

Analysis of balanced truncation

- Very good approximation properties.
- Exact error estimates.

$$\|G-G_r\|_{H_\infty}=2(\sigma_{n_r+1}+\ldots+\sigma_n).$$

- Stability is preserved. Passivity with modification.
- ▶ Energy interpretation.
- Not feasible for general large sparse problems from semi-discretized PDEs.
- Expensive to solve large scale Lyapunov equations.
- ▶ However, often the Lyapunov solution has fast decaying eigenvalues.
- Very good large scale, parallel methods for this case, ADI, or Krylov methods. Benner, Li, Penzl, Saak, . . .

Pilsen MOR 2015, I 43 / 5

Iterative rational Krylov algorithm (IRKA) Antoulas, Beattie, Gugercin.

For a transfer function $G(s) = C(sI - A)^{-1}B$ and a prescribed reduced system order r, find a local minimizer G_r for the H_2 model reduction problem

$$||G-G_r||_{H_2}=\min_{\mathsf{dim}(\tilde{G})=r}||G-\tilde{G}||_{H_2}$$

where

$$||G(s)||_{\mathcal{H}_2} = \left(rac{1}{2\pi}\int_{-\infty}^{\infty}||G(s)||_F^2ds
ight)^{1/2}.$$

 H_2 optimal tangential interpolation.

- 1. Make an initial selection of shifts σ_i that is closed under conjugation and initial tangent directions $b_1, \ldots, b_r, c_1, \ldots, c_r$ and a convergence tolerance *tol*.
- 2. Choose $\tilde{V}_r = [(\sigma_1 I A)^{-1}Bb_1, \dots, (\sigma_r I A)^{-1}Bb_r],$ $\tilde{W}_r = [(\sigma_1 I A^T)^{-1}Cc_1, \dots, (\sigma_r I A^T)^{-1}Cc_r]$ and biorthogonalize so that $W_r^T V_r = I$.
- 3. while (relative change in $\{\sigma_i\} > toI$)
 - (a) $A_r = W_r^T A V_r$, $B_r = W_r^T B$, $B_r = C V_r$.
 - (b) Diagonalize $Y^*A_rX = \operatorname{diag}(\lambda_i)$.
 - (c) Assign $\sigma_i \leftarrow -\lambda_i$, $b_i^* \leftarrow e_i^T Y^* B_r$, $c_i \leftarrow C_r X e_i$ for $i = 1, \dots, r$.
 - (d) Choose $\tilde{V}_r = [(\sigma_1 I A)^{-1} Bb_1, \dots, (\sigma_r I A)^{-1} Bb_r],$ $\tilde{W}_r = [(\sigma_1 I A^T)^{-1} Cc_1, \dots, (\sigma_r I A^T)^{-1} Cc_r]$ and bi-orthogonalize so that $W_r^T V_r = I$

Analysis of IRKA

- Optimal approximation in H₂
- Error estimates
- ▷ Convergence analysis. Beattie/Gugercin
- Trust region descent method Beattie/Gugercin.
- Feasible for large sparse problems from semi-discretized PDEs, as long as Krylov subspace methods picks up right space.
- System has to be stable, new ideas for unstable case Gugercin.

Outline

- Introduction
- Applications (More in talk III)
- Model reduction
- Data based approach
- Model based approach
- Semi-discretized systems
 - Model reduction techniques
 - Linear control systems
 - Krylov methods
- Nonlinear MOR
- Conclusion

47 / 55

Pilsen MOR 2015, I

Proper Orthogonal Decomposition (POD)

$$F(t, x, \dot{x}, u) = 0, \quad x(t_0) = x^0$$

 $y(t) = g(x)$

Consider snapshots for some control u, i.e. determine

$$\mathcal{X} = \begin{bmatrix} x(t_1) & x(t_2) & \dots & x(t_N) \end{bmatrix}$$

- $\triangleright \mathsf{SVD} \; \mathcal{X} = U_N \Sigma_N V_N^T \approx U_{n_r} \Sigma_{n_r} V_{n_r}^T \; \mathsf{with} \; \Sigma = \mathrm{diag}(\sigma_1, \dots, \sigma_N)$
- \triangleright Truncate small singular values σ_i , $i = n_r, \dots, N$, $n_r << n$
- Reduced system

$$F_r(t, U_{n_r}x_r, U_{n_r}\dot{x}_r, u) = U_{n_r}^T F(t, U_{n_r}x_r, U_{n_r}\dot{x}_r, u) = 0.$$

- ▶ Requires evaluation of F still on big vector.
- ▶ To reduce work, discrete empirical interpolation Chaturantabut, Maday, Sorensen.

Pilsen MOR 2015, I 48 / 1

Discrete empirical interpolation

DEIM: Consider system with reduced state:

$$F_r(\tau) := U_{n_r}^T F(t, U_{n_r} x_r, U_{n_r} \dot{x}_r, u) = 0.$$

and interpolate

$$F_r(\tau) \approx Wz_r(\tau)$$

with a fixed small m-dimensional basis W.

To determine $z_r(\tau)$ select m rows (by a selection matrix P^T) from $F_r(\tau) = WZ_r(\tau)$ such that P^TW is invertible and well conditioned and approximate

$$\tilde{F}_r(t, x_r, \dot{x}_r, u) = W(P^T W)^{-1} P^T F_r(t, P^T U_{n_r} x_r, P^T U_{n_r} \dot{x}_r, u).$$

Can be combined with off-line computation.

4D + 4A + 4B + B + 4D +

Analysis of POD

- Cheap and easy to use.
- 'Works' for nonlinear systems.
- Successful in practice.
- \triangleright How to choose u(t) for snapshots?
- Quite heuristic.
- DEIM necessary.
- ▶ A posteriori error estimates: Kunisch/Tröltzsch/Volkwein.
- Usually no preservation of physical properties.
- Does not work well for transport dominated problems.

Pilsen MOR 2015, I

Outline

Conclusion

4 D > 4 B > 4 E > 4 E > 9 Q P

- Many aspects of model reduction;
- Linear constant coefficient case well understood;
- Approximation errors, fast methods, tunability of model quality;
- Nonlinear case essentially POD and reduced basis method.

Thank you very much for your attention.

Pilsen MOR 2015, I 53 / 55

Books/surveys

- A.C. Antoulas, D.C. Sorensen, and S. Gugercin. A survey of model reduction methods for large-scale systems. Structured Matrices in Operator Theory, Numerical Analysis, Control, Signal and Image Processing, Contemporary Mathematics, AMS publications, 280: 193-219, 2001.
- ▶ A. C. Antoulas. Approximation of Large-Scale Dynamical Systems. SIAM, Philadelphia, PA, 2005.
- U. Baur, P. Benner, L. Feng. Model order reduction for linear and nonlinear systems: a system-theoretic perspective, MPI Magdeburg, 2014
- P. Benner, V. Mehrmann, and D.C. Sorensen, (Eds).
 Dimension Reduction of Large-Scale Systems. LECTURE
 NOTES IN COMPUTATIONAL SCIENCE AND ENGINEERING Vol. 45, Springer Verlag, Heidelberg, 2005.

4 □ ▷ < ⑩ ▷ 〈 필 ▷ 〈 필 ▷ 〈 필 ▷ 〈 필 ▷ 〈 필 ▷ 〈 필 ▷ 〈 필 ▷ 〉 및

- R. Freund. Model reduction methods based on Krylov subspaces. Acta Numerica 12, 267-319, 2003.
- ▶ A. Quarteroni, A. Manzoni, F. Negri Reduced Basis Method for Partial Differential Equations Springer, Unitext Series, vol. 92, 2015.
- ▶ A. Quarteroni, G. Rozza (Eds.) Reduced Order Methods for modeling and computational reduction, Springer, 2013.