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O Introduction

Pilsen MOR 2015, | 2/55



> Key technologies require Modeling, Simulation, and
Optimization (MSO) of complex dynamical systems.

> Most real world systems are multi-physics systems, with
different accuracies and scales in components.

> Modeling today becomes exceedingly automatized, linking
subsystems together.

> Modeling, analysis, numerics, control and optimization
techniques should go hand in hand.

> Most real world (industrial) models are too complicated for
optimization and control. Model reduction is a key issue.

> We need to be able to quantify errors and uncertainties in the
reduction process.
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0 Applications (More in talk Ill)
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Automatic transmission

Model/software based control of automatic transmission.
Project with Daimler AG
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A current half-toroid model
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Ly Technological Application

> Modeling of coupled dynamical multi-physics model:
multi-body system, elasticity, hydraulics, friction, . ...

> Development of control/optimization methods for coupled
system.

> Model reduction to make control/optimization feasible.
> Real time control software for transmission on board
computer.

Ultimate goals: Decrease fuel consumption, save money on
production, improve switching.
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Ly Drop size distributions

with S. Schmelter and M. Kraume (Chemical Eng., TU Berlin)
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Ly Technological Application, Tasks

Chemical industry: pearl polymerization and extraction
processes
> Modeling of coalescence and breakage in turbulent flow.

> Numerical methods for simulation of coupled system of
population balance equations/fluid flow equations.

> Development of optimal control methods for large scale
coupled systems.

> Model reduction and observer design.
> Feedback control of real configurations via stirrer speed.
Goal: Achieve specified average drop diameter and small

standard deviation for distribution by real time-control of
stirrer-speed.
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Ly Mathematical system components

> Navier Stokes equation (flow field) (— Film).

> Population balance equation (drop size distribution).
> One or two way coupling.

> Initial and boundary conditions.

Space discretization leads to an extremely large control system
of nonlinear DAEs.
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Hy Active flow control

Project in SFB 557 Control of complex shear flows, with F.
Troltzsch, M. Schmidt

Navier-Stokes equations

; + boundary conditions
speaker/@{‘ i e o o

input output
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Ly Technological Application, Tasks

Control of detached turbulent flow on airline wing

> Test case (backward step to compare experiment/numerics.)
> Modeling of turbulent flow.

> Development of control methods for large scale coupled
systems.

> Model reduction.

> Optimal feedback control of real configurations via blowing
and sucking of air in wing.

Ultimate goal: Force detached flow back to wing.
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% Controlled flow

Movement of recirculation bubble following reference curve.
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Ly Brake Squeal

> Disc brake squeal is a frequent and annoying phenomenon
(with cars, trains, bikes).

> Important for customer satisfaction, even if not a safety risk.
> Nonlinear effect that is hard to detect in experiments.

> The car industry is trying for decades to improve this, by
changing the designs of brake and disc.

Pilsen MOR 2015, | 14 /55



Ly Model based approach

Interdisciplinary project with car manufacturers + SMEs
Supported by German Minist. of Economics via AlF foundation.
University: N. Grabner, U. von Wagner, TU Berlin, Mechanics,
N. Hoffmann, TU Hamburg-Harburg, Mechanics,

S. Quraishi, C. Schroder, TU Berlin Mathematics.

Goals:

> Develop model of brake system with all effects that may cause
squeal. (Friction, circulatory, gyroscopic effects, etc).

> Simulate brake behavior for many different parameters (disk
speed, material geometry parameters).

> Our task: Model reduction, solution of eigenvalue problems.

> Long term: Stability/bifurcation analysis for a given parameter
region.
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O Model reduction
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Hy What is model reduction

... replace a big complicated (computational) model with a
smaller and simpler (but still accurate) one.
> Everybody does this. (Also called Science)

> One wants to have the most simple model for analysis,
simulation, optimization and control.

> Ideally the reduced model should have good fidelity compared
to reality.
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What is a small and simple?

> Small and simple model to do analysis;

> small and simple model for computational simulation
(parameter studies);

> small and simple model for optimization (of design
parameters);

> small and simple model to do (real time) control;
> small nonlinear vs. large linear model?
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O Data based approach

Pilsen MOR 2015, | 19/55



Ly Data based approach

Classical and successful approach in control engineering:
> Build prototype or high fidelity simulator for dynamical system.

> Generate input-output sequences (u;);, (¥;); by measurement
or solving forward problem.

> Generate input-output map (transfer function in frequency
domain) that interpolates input-output sequence.

> Realize input-output map as a linear finite dimensional system
x =Ax + Bu, y = Cx

with (typically large) matrices A, B, C.
> Reduce model to small model x, = A.x; + B.u, y, = C;x, with
small error ||y — y|| < ||ul|tol.

> Build a (feedback) controller from small linear model and
apply it in the full physical model.
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Transfer function

Physical
System

l

G:u—y

U —actuators— ——sensors—— )/

Figure: 1/0 map (transfer function) for physical system.
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Reduced transfer function

Reduced
System

l

\G,:u»—>yr\

U —actyators— sensors— Yy

Figure: 1/0 map (transfer function) for reduced system.

Iy =yl < IGu - Gul| < [|G — Gill]u]
So want good approximation of transfer function.
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O Model based approach
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Ly Model based approach

Physical system

VAR

Modeling Modeling
\’ \

ODE/DAE +— semidiscr. PDE
1

Mod. reduction
1
Reduced ODE /DAE — Sim.,-Control
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% MOR in Control

> Semidiscretization in space using FV, FE, FD — large scale
ODE/DAE-control problem.

> Model reduction to reduce state dimension.

> Computation of (feedback) control for reduced model using
standard software.

> Apply computed control in large semi-discretized model
infinite dimensional or real physical model.
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Ly MOR in PDE constrained optimization

Given a PDE constraint control or optimization problem.
Different approaches.

> First semi-discretize (in space), then reduce continuous time
model, then optimize and control. (POD, Balanced truncation,
DEIM, IRKA, ...).

> Discretize (in space and time) as optimization or control
problem in adaptive way (reduced basis).

> Discretize optimality conditions (forward and adjoint problem)
in adaptive way (adaptive FE, FD, FV).

> Combinations of all of these.
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O Semi-discretized systems
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Ly Model reduction state space

Replace system

F(t,x,x,u) = 0, x(t)=x°
y(t) = g(x)
with x € R”, u € R™, and y € RP, by a reduced model

Fo(t, X, X%, u) = 0, x/(fp) = x°
y(t) = g(x)

with x, € R™, n, << n.

Goals
> Approximation error ||y — y,|| small, global error bounds;
> Preservation of physics: stability, passivity, conservation laws;

> Stable and efficient method for model reduction.



O Model reduction techniques
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Ly Model reduction techniques

Modal truncation

Balanced truncation (BT)

Hankel approximation

Principal orthogonal decomposition (POD)
Discrete empirical interpolation (DEIM)
lterative rational Krylov method (IRKA)
Moment matching

Reduced basis methods

v VvV VvV VvV Vv VvV Vv V
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Ly Model reduction techniques

SVD (singular value decomposition) based methods

> Balanced truncation (linear) Antoulas, Benner, Li, Moore,
Penzl, Stykel, Sorensen, Varga, Wang, White, ...

> Principal orthogonal decomposition (POD), (linear/nonlinear)
Banks, Benner, Hinze, King, Kunisch, Tréltzsch, Volkwein, ...

> DEIM (nonlinear) Chaturantabut, Maday, Sorensen, ...

Interpolation based methods

> IRKA (linear) Antoulas, Beattie, Gugercin, ...

Krylov methods

> Moment matching, (linear) Bai, Boley, Freund, Gallivan,
Gragg, Grimme, Van Dooren, ...

> Modal truncation (linear) Bampton, Craig, Guyan, Rommes...

Reduced basis methods

> (linear/nonlinear) Haasdonk, Ohlberger, Patera, Quateroni,
Rozza, ...
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O Linear control systems
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Linear control systems

Replace

X(t) = AX(t)—l—BU(t), X(to)ZXo
y(t) = Cx(1)

by

X (1) = Ax(t)+Bu(t), x(t)=x°
yi(t) = Cx(t),

with x, € R™, n, << n.
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% Error measure

Laplace transformation and approximation in frequency domain.

y = C(sl— A "B
= G(s)u,

with rational matrix valued transfer function G(s) in Hardy space
of functions that are analytic and bounded in the right half of
complex plane.

1G - Gilln. = Sup 1G(iw) — Gi(iw)]|

and approximate transfer function G,(s) = C,(sl — A;)"'B..
(G(iw) : “frequency response matrix”)
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O Krylov methods
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Ly Petrov-Galerkin approach

Common idea in most methods: Galerkin or
Petrov-Galerkin-type projection of state-space onto
low-dimensional subspace V along subspace W (biorthogonal)

> x~ VWTx =: x,, where WTV = |..
> Then, with x, = WTx, we obtain x ~ Vx, and

I = xe[| = lIx = Vx|
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% Modal truncation

Choose V as matrix of eigenvectors associated with dominant
eigenvalues of A.

T-1AT = diag(Ar, A2), T-'B = {

G — G| < conds>(T Ball2—
I . < conda(T)||Callz]| 2H2m|n)\ea(A2) [Re(\)|
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Hy Analysis of Modal Truncation

Fast and easy to use.

Works for very large scale problems.

Eigenvalues contain only limited information.

What is dominant. Dominant pole algorithm. Rommes
Error bound hard to compute in large scale case.
Combination with adaptive FEM possible (talk )

v Vv Vv Vv Vv V
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Ly Moment matching

Moment matching, Pade’ via Lanczos
Expand the transfer function G(s) at point s

G(S) = My + My(s — sp) + Ma(s — 5p)% + . ..
and find approximate C, B, A so that in the expansion of
C(sl — AY'B = My + My(s — s5) + Ma(s — 50)% + . ..

as many terms as possible are matched.

> Sg = oo: partial realization, Pade” approximation. Solution via
Lanzcos or Arnoldi method.

> S € C rational interpolation. Solution via rational Lanczos.
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Ly Analysis of Moment Matching

> Fast and easy to use.

> Works for very large scale problems.

> Very successful in practice, VLSI simulation.

> Preservation of passivity, Freund, Sorensen, Reis.
> Choice of expansion point s,?

> Computation of moments is problematic.

> No global error bound.

> Possible breakdown of Lanczos.
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% Balanced truncation

x=Ax+Bu, y=_Cx

Consider Lyapunov equations:

AXg + XgAT = —BBT (Xg controllab. Gramian)
ATXc+XcA = —C'C (X observab. Gramian).

> If Ais stable and the system is controllable and observable,
then Xg, X¢ are positive definite.

> ldea: Make the system balanced, Xz = X diagonal, and
truncate small components (hard to control and observe).

> Every controllable and observable system can be balanced by
a change of basis X = Tx.
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Hy Balanced truncation algorithm

1. Compute Gramians, Cholesky factors. Xg = LgL[, Xc = LcLL.
2. Compute the SVD of UL VT = LLLc with

Y = diag(oy,...0n) = {21 5, ]

(Hankel sing. val.). X, = diag(osi1,---,0n), Oatt,--.,0n0 < tOI.
3. Set T=x"2UTLg' =5~ "2VTLL
4. Set X = Tx and partition matrices as X.
Ay A
TAT—1 — 11 12 :| _
[ Aot A |7

B
B>

B — { ],07—1:[01 C 1.

5. Reduced system
)'(r = A1 X, + B u,y= Cix;.



Ly Analysis of balanced truncation

> Very good approximation properties.
> Exact error estimates.

1G = Gl = 2(0n4+1 + ...+ 0n).

Stability is preserved. Passivity with modification.
Energy interpretation.

Not feasible for general large sparse problems from
semi-discretized PDEs.

Expensive to solve large scale Lyapunov equations.

However, often the Lyapunov solution has fast decaying
eigenvalues.

> Very good large scale, parallel methods for this case, ADI, or
Krylov methods. Benner, Li, Penzl, Saak, ...
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Ky IRKA

Iterative rational Krylov algorithm (IRKA) Antoulas, Beattie,
Gugercin.

For a transfer function G(s) = C(s/ — A)~'B and a prescribed
reduced system order r, find a local minimizer G, for the H.
model reduction problem

G~ Grllw,= min [|G~Glln,
dim(G)=r

6@l = (5 [ leitas)

where
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Ly Algorithm

H, optimal tangential interpolation.

1. Make an initial selection of shifts ¢; that is closed under
conjugation and initial tangent directions by, ..., b, ¢y,...,Cr
and a convergence tolerance tol.

2. Choose V, = [(o01/ — A)"'Bby, ..., (o] — A" 'Bb/],

W, = [(o1/ - AT)'Cq,..., (0,1 — AT)"'Cc,] and
biorthogonalize so that WV, = I.
3. while (relative change in {o;} > tol)
) A W AV, B,_W B, B, = CV,.
) Dlagonallze Y*A X = diag(\;).

c) Assign aj < —\j, bf < e Y*B,, ci < C/ Xejfori=1,....r

d) Choose V, = [(o1/ — A)~ 1Bb1,...,(arl— A)~'Bby],

W, = [(c1/ — AT)'Ccy,..., (6,1 — AT)"'Cc,] and
bi-orthogonalize so that W,T V. =]
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Ly Analysis of IRKA

> Optimal approximation in H.

> Error estimates

> Convergence analysis. Beattie/Gugercin

> Trust region descent method Beattie/Gugercin.

> Feasible for large sparse problems from semi-discretized
PDEs, as long as Krylov subspace methods picks up right
space.

> System has to be stable, new ideas for unstable case
Gugercin.
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Q Nonlinear MOR
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&y Proper Orthogonal Decomposition (POD)

F(t,x,x,u) = 0, x(f)=x°
y(t) = 9(x)

> Consider snapshots for some control u, i.e. determine

X = [ X(t1) X(tg) X(tN) ]
> SVD X = UNEnV) = U, Z,, V] with & = diag(o4, ..., 0n)
> Truncate small singular values o, i = n,,...,N, n, << n

> Reduced system
Fr(t, Uanr, Unr).(r, U) - U,Z;F(t, Uanr, Unr).(r, U) - O

> Requires evaluation of F still on big vector.
> To reduce work, discrete empirical interpolation
Chaturantabut, Maday, Sorensen.
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Ly Discrete empirical interpolation

DEIM: Consider system with reduced state:
Fr(T) = UI'Z;F(t7 Uanr, Unr).(r, U) - O
and interpolate
Fi(7) =~ Wz,(7)

with a fixed small m-dimensional basis W.

To determine z,(7) select m rows (by a selection matrix PT) from
F.(7) = WZ,(7) such that PT W is invertible and well conditioned
and approximate

Fr(t, Xr, )’(r, U) - W(PTW)i‘I PTFr(t, PTUn,Xr, PTUn,Xr, U)

Can be combined with off-line computation.
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Ly Analysis of POD

> Cheap and easy to use.

> ‘Works’ for nonlinear systems.

> Successful in practice.

> How to choose u(t) for snapshots?

> Quite heuristic.

> DEIM necessary.

> A posteriori error estimates: Kunisch/Troltzsch/Volkwein.
> Usually no preservation of physical properties.

> Does not work well for transport dominated problems.
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o Conclusion
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% Conclusion |

> Many aspects of model reduction;

> Linear constant coefficient case well understood;

> Approximation errors, fast methods, tunability of model quality;
> Nonlinear case essentially POD and reduced basis method.
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Thank you very much
for your attention.
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Ly Books/surveys

> A.C. Antoulas, D.C. Sorensen, and S. Gugercin. A survey of
model reduction methods for large-scale systems. Structured
Matrices in Operator Theory, Numerical Analysis, Control,
Signal and Image Processing, Contemporary Mathematics,
AMS publications, 280: 193-219, 2001.

> A. C. Antoulas. Approximation of Large-Scale Dynamical
Systems. SIAM, Philadelphia, PA, 2005.

> U. Baur, P. Benner, L. Feng. Model order reduction for linear
and nonlinear systems: a system-theoretic perspective, MPI
Magdeburg, 2014

> P. Benner, V. Mehrmann, and D.C. Sorensen, (Eds).
Dimension Reduction of Large-Scale Systems. LECTURE
NOTES IN COMPUTATIONAL SCIENCE AND ENGINEERING Vol.
45, Springer Verlag, Heidelberg, 2005.
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Ly Books/surveys

> R. Freund. Model reduction methods based on Krylov
subspaces. Acta Numerica 12, 267-319, 2003.

> A. Quarteroni, A. Manzoni, F. Negri Reduced Basis Method for
Partial Differential Equations Springer, Unitext Series, vol. 92,
2015.

> A. Quarteroni, G. Rozza (Eds.) Reduced Order Methods for
modeling and computational reduction, Springer, 2013.

Pilsen MOR 2015, | 55/55



	Introduction
	Applications (More in talk III)
	Model reduction
	Data based approach
	Model based approach
	Semi-discretized systems
	Model reduction techniques
	Linear control systems
	Krylov methods
	Nonlinear MOR
	Conclusion

