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Theses

. Key technologies require Modeling, Simulation, and
Optimization (MSO) of complex dynamical systems.

. Most real world systems are multi-physics systems, with
different accuracies and scales in components.

. Modeling today becomes exceedingly automatized, linking
subsystems together.

. Modeling, analysis, numerics, control and optimization
techniques should go hand in hand.

. Most real world (industrial) models are too complicated for
optimization and control. Model reduction is a key issue.

. We need to be able to quantify errors and uncertainties in the
reduction process.
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Automatic transmission

Model/software based control of automatic transmission.
Project with Daimler AG
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A current half-toroid model
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Technological Application

. Modeling of coupled dynamical multi-physics model:
multi-body system, elasticity, hydraulics, friction, . . . .

. Development of control/optimization methods for coupled
system.

. Model reduction to make control/optimization feasible.

. Real time control software for transmission on board
computer.

Ultimate goals: Decrease fuel consumption, save money on
production, improve switching.
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Drop size distributions
with S. Schmelter and M. Kraume (Chemical Eng., TU Berlin)
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Technological Application, Tasks

Chemical industry: pearl polymerization and extraction
processes

. Modeling of coalescence and breakage in turbulent flow.

. Numerical methods for simulation of coupled system of
population balance equations/fluid flow equations.

. Development of optimal control methods for large scale
coupled systems.

. Model reduction and observer design.

. Feedback control of real configurations via stirrer speed.

Goal: Achieve specified average drop diameter and small
standard deviation for distribution by real time-control of
stirrer-speed.
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Mathematical system components

. Navier Stokes equation (flow field) (→ Film).

. Population balance equation (drop size distribution).

. One or two way coupling.

. Initial and boundary conditions.

Space discretization leads to an extremely large control system
of nonlinear DAEs.
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Active flow control

Project in SFB 557 Control of complex shear flows, with F.
Tröltzsch, M. Schmidt
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Technological Application, Tasks

Control of detached turbulent flow on airline wing

. Test case (backward step to compare experiment/numerics.)

. Modeling of turbulent flow.

. Development of control methods for large scale coupled
systems.

. Model reduction.

. Optimal feedback control of real configurations via blowing
and sucking of air in wing.

Ultimate goal: Force detached flow back to wing.
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Controlled flow
Movement of recirculation bubble following reference curve.
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Brake Squeal

. Disc brake squeal is a frequent and annoying phenomenon
(with cars, trains, bikes).

. Important for customer satisfaction, even if not a safety risk.

. Nonlinear effect that is hard to detect in experiments.

. The car industry is trying for decades to improve this, by
changing the designs of brake and disc.
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Model based approach

Interdisciplinary project with car manufacturers + SMEs
Supported by German Minist. of Economics via AIF foundation.
University: N. Gräbner, U. von Wagner, TU Berlin, Mechanics,
N. Hoffmann, TU Hamburg-Harburg, Mechanics,
S. Quraishi, C. Schröder, TU Berlin Mathematics.
Goals:
. Develop model of brake system with all effects that may cause

squeal. (Friction, circulatory, gyroscopic effects, etc).
. Simulate brake behavior for many different parameters (disk

speed, material geometry parameters).
. Our task: Model reduction, solution of eigenvalue problems.
. Long term: Stability/bifurcation analysis for a given parameter

region.
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What is model reduction

... replace a big complicated (computational) model with a
smaller and simpler (but still accurate) one.

. Everybody does this. (Also called Science)

. One wants to have the most simple model for analysis,
simulation, optimization and control.

. Ideally the reduced model should have good fidelity compared
to reality.
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What is a small and simple?

. Small and simple model to do analysis;

. small and simple model for computational simulation
(parameter studies);

. small and simple model for optimization (of design
parameters);

. small and simple model to do (real time) control;

. small nonlinear vs. large linear model?
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Data based approach
Classical and successful approach in control engineering:
. Build prototype or high fidelity simulator for dynamical system.
. Generate input-output sequences (ui)i , (yi)i by measurement

or solving forward problem.
. Generate input-output map (transfer function in frequency

domain) that interpolates input-output sequence.
. Realize input-output map as a linear finite dimensional system

ẋ = Ax + Bu, y = Cx

with (typically large) matrices A,B,C.
. Reduce model to small model ẋr = Ar xr + Br u, yr = Cr xr with

small error ‖y − yr‖ ≤ ||u||tol .
. Build a (feedback) controller from small linear model and

apply it in the full physical model.
Pilsen MOR 2015, I 20 / 55



Transfer function

u actuators //

��

Physical
System

��

sensors //

��

y

G : u 7→ y

Figure: I/O map (transfer function) for physical system.
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Reduced transfer function

u actuators //

  

Reduced
System

��

sensors //

~~

yr

Gr : u 7→ yr

Figure: I/O map (transfer function) for reduced system.

‖y − yr‖ ≤ ‖Gu −Gr u|| ≤ ‖G −Gr ||||u||

So want good approximation of transfer function.
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Model based approach

Physical system
↙ ↘

Modeling Modeling

↓ ↓

ODE/DAE ←− semidiscr . PDE

↓
Mod. reduction

↓

Reduced ODE/DAE −→ Sim., Control
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MOR in Control

. Semidiscretization in space using FV, FE, FD =⇒ large scale
ODE/DAE-control problem.

. Model reduction to reduce state dimension.

. Computation of (feedback) control for reduced model using
standard software.

. Apply computed control in large semi-discretized model
infinite dimensional or real physical model.
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MOR in PDE constrained optimization

Given a PDE constraint control or optimization problem.
Different approaches.

. First semi-discretize (in space), then reduce continuous time
model, then optimize and control. (POD, Balanced truncation,
DEIM, IRKA, . . .).

. Discretize (in space and time) as optimization or control
problem in adaptive way (reduced basis).

. Discretize optimality conditions (forward and adjoint problem)
in adaptive way (adaptive FE, FD, FV).

. Combinations of all of these.
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Model reduction state space
Replace system

F (t , x , ẋ ,u) = 0, x(t0) = x0

y(t) = g(x)

with x ∈ Rn, u ∈ Rm, and y ∈ Rp, by a reduced model

Fr (t , xr , ẋr ,u) = 0, xr (t0) = x0
r

yr (t) = gr (xr )

with xr ∈ Rnr , nr << n.

Goals
. Approximation error ‖y − yr‖ small, global error bounds;
. Preservation of physics: stability, passivity, conservation laws;
. Stable and efficient method for model reduction.
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Model reduction techniques

. Modal truncation

. Balanced truncation (BT)

. Hankel approximation

. Principal orthogonal decomposition (POD)

. Discrete empirical interpolation (DEIM)

. Iterative rational Krylov method (IRKA)

. Moment matching

. Reduced basis methods
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Model reduction techniques
SVD (singular value decomposition) based methods
. Balanced truncation (linear) Antoulas, Benner, Li, Moore,

Penzl, Stykel, Sorensen, Varga, Wang, White, ...
. Principal orthogonal decomposition (POD), (linear/nonlinear)

Banks, Benner, Hinze, King, Kunisch, Tröltzsch, Volkwein, ...
. DEIM (nonlinear) Chaturantabut, Maday, Sorensen, ...
Interpolation based methods
. IRKA (linear) Antoulas, Beattie, Gugercin, ...
Krylov methods
. Moment matching, (linear) Bai, Boley, Freund, Gallivan,

Gragg, Grimme, Van Dooren, ...
. Modal truncation (linear) Bampton, Craig, Guyan, Rommes...
Reduced basis methods
. (linear/nonlinear) Haasdonk, Ohlberger, Patera, Quateroni,

Rozza, ...
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Linear control systems

Replace

ẋ(t) = Ax(t) + Bu(t), x(t0) = x0

y(t) = Cx(t)

by

ẋr (t) = Ar xr (t) + Br u(t), xr (t0) = x0
r

yr (t) = Cr xr (t),

with xr ∈ Rnr , nr << n.
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Error measure

Laplace transformation and approximation in frequency domain.

ŷ = C(sI − A)−1Bû
= G(s)û,

with rational matrix valued transfer function G(s) in Hardy space
of functions that are analytic and bounded in the right half of
complex plane.

‖G −Gr‖H∞ = sup
ω∈R
‖G(iω)−Gr (iω)‖

and approximate transfer function Gr (s) = Cr (sI − Ar )−1Br .
(G(iω) : “frequency response matrix”)
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Petrov-Galerkin approach

Common idea in most methods: Galerkin or
Petrov-Galerkin-type projection of state-space onto
low-dimensional subspace V along subspace W (biorthogonal)

. x ≈ VW T x =: xr , where W T V = Ir .

. Then, with xr = W T x , we obtain x ≈ Vxr and

‖x − xr‖ = ‖x − Vxr‖
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Modal truncation

Choose V as matrix of eigenvectors associated with dominant
eigenvalues of A.

T−1AT = diag(A1,A2), T−1B =

[
B1

B2

]
, CT =

[
C1 C2

]
‖G −Gr‖H∞ ≤ cond2(T )‖C2‖2‖B2‖2

1
minλ∈σ(A2) |Re(λ)|
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Analysis of Modal Truncation

. Fast and easy to use.

. Works for very large scale problems.

. Eigenvalues contain only limited information.

. What is dominant. Dominant pole algorithm. Rommes

. Error bound hard to compute in large scale case.

. Combination with adaptive FEM possible (talk III)
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Moment matching

Moment matching, Pade’ via Lanczos
Expand the transfer function G(s) at point s0

G(s) = M0 + M1(s − s0) + M2(s − s0)2 + . . .

and find approximate C̃, B̃, Ã so that in the expansion of

C̃(sI − Ã)−1B̃ = M̃0 + M̃1(s − s0) + M̃2(s − s0)2 + . . .

as many terms as possible are matched.

. s0 =∞: partial realization, Pade’ approximation. Solution via
Lanzcos or Arnoldi method.

. s0 ∈ C rational interpolation. Solution via rational Lanczos.
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Analysis of Moment Matching

. Fast and easy to use.

. Works for very large scale problems.

. Very successful in practice, VLSI simulation.

. Preservation of passivity, Freund, Sorensen, Reis.

. Choice of expansion point s0?

. Computation of moments is problematic.

. No global error bound.

. Possible breakdown of Lanczos.
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Balanced truncation

ẋ = Ax + Bu, y = Cx

Consider Lyapunov equations:

AXB + XBAT = −BBT (XB controllab. Gramian)
AT XC + XCA = −CT C (XC observab. Gramian).

. If A is stable and the system is controllable and observable,
then XB,XC are positive definite.

. Idea: Make the system balanced, XB = XC diagonal, and
truncate small components (hard to control and observe).

. Every controllable and observable system can be balanced by
a change of basis x̃ = Tx .
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Balanced truncation algorithm
1. Compute Gramians, Cholesky factors. XB = LBLT

B , XC = LCLT
C.

2. Compute the SVD of UΣV T = LT
BLC with

Σ = diag(σ1, . . . σn) =

[
Σ1

Σ2

]
,

(Hankel sing. val.). Σ2 = diag(σñ+1, . . . , σn), σñ+1, . . . , σn ≤ tol .
3. Set T = Σ1/2UT L−1

B = Σ−1/2V T LT
C.

4. Set x̃ = Tx and partition matrices as Σ.

TAT−1 =

[
A11 A12

A21 A22

]
, Tx =

[
xr

x̃r

]
,

TB =

[
B1

B2

]
, CT−1 =

[
C1 C2

]
.

5. Reduced system

ẋr = A11xr + B1u, y = C1xr .
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Analysis of balanced truncation
. Very good approximation properties.
. Exact error estimates.

‖G −Gr‖H∞ = 2(σnr+1 + . . . + σn).

. Stability is preserved. Passivity with modification.

. Energy interpretation.

. Not feasible for general large sparse problems from
semi-discretized PDEs.

. Expensive to solve large scale Lyapunov equations.

. However, often the Lyapunov solution has fast decaying
eigenvalues.

. Very good large scale, parallel methods for this case, ADI, or
Krylov methods. Benner, Li, Penzl, Saak, . . .
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IRKA

Iterative rational Krylov algorithm (IRKA) Antoulas, Beattie,
Gugercin.
For a transfer function G(s) = C(sI − A)−1B and a prescribed
reduced system order r , find a local minimizer Gr for the H2

model reduction problem

||G −Gr ||H2 = min
dim(G̃)=r

||G − G̃||H2

where

||G(s)||H2 =

(
1

2π

∫ ∞
−∞
||G(s)||2F ds

)1/2

.
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Algorithm
H2 optimal tangential interpolation.
1. Make an initial selection of shifts σi that is closed under

conjugation and initial tangent directions b1, . . . ,br , c1, . . . , cr

and a convergence tolerance tol .
2. Choose Ṽr = [(σ1I − A)−1Bb1, . . . , (σr I − A)−1Bbr ],

W̃r = [(σ1I − AT )−1Cc1,. . . , (σr I − AT )−1Ccr ] and
biorthogonalize so that W T

r Vr = I.
3. while (relative change in {σi} > tol)

(a) Ar = W T
r AVr , Br = W T

r B, Br = CVr .
(b) Diagonalize Y ∗Ar X = diag(λi).
(c) Assign σi ← −λi , b∗i ← eT

i Y ∗Br , ci ← Cr Xei for i = 1, . . . , r .
(d) Choose Ṽr = [(σ1I − A)−1Bb1, . . . , (σr I − A)−1Bbr ],

W̃r = [(σ1I − AT )−1Cc1,. . . , (σr I − AT )−1Ccr ] and
bi-orthogonalize so that W T

r Vr = I)]

Pilsen MOR 2015, I 45 / 55



Analysis of IRKA

. Optimal approximation in H2

. Error estimates

. Convergence analysis. Beattie/Gugercin

. Trust region descent method Beattie/Gugercin.

. Feasible for large sparse problems from semi-discretized
PDEs, as long as Krylov subspace methods picks up right
space.

. System has to be stable, new ideas for unstable case
Gugercin.
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Proper Orthogonal Decomposition (POD)

F (t , x , ẋ ,u) = 0, x(t0) = x0

y(t) = g(x)

. Consider snapshots for some control u, i.e. determine

X =
[

x(t1) x(t2) . . . x(tN)
]

. SVD X = UNΣNV T
N ≈ Unr Σnr V T

nr
with Σ = diag(σ1, . . . , σN)

. Truncate small singular values σi , i = nr , . . . ,N, nr << n

. Reduced system

Fr (t ,Unr xr ,Unr ẋr ,u) = UT
nr

F (t ,Unr xr ,Unr ẋr ,u) = 0.

. Requires evaluation of F still on big vector.

. To reduce work, discrete empirical interpolation
Chaturantabut, Maday, Sorensen.
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Discrete empirical interpolation

DEIM: Consider system with reduced state:

Fr (τ) := UT
nr

F (t ,Unr xr ,Unr ẋr ,u) = 0.

and interpolate
Fr (τ) ≈Wzr (τ)

with a fixed small m-dimensional basis W .
To determine zr (τ) select m rows (by a selection matrix PT ) from
Fr (τ) = WZr (τ) such that PT W is invertible and well conditioned
and approximate

F̃r (t , xr , ẋr ,u) = W (PT W )−1PT Fr (t ,PT Unr xr ,PT Unr ẋr ,u).

Can be combined with off-line computation.
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Analysis of POD

. Cheap and easy to use.

. ‘Works’ for nonlinear systems.

. Successful in practice.

. How to choose u(t) for snapshots?

. Quite heuristic.

. DEIM necessary.

. A posteriori error estimates: Kunisch/Tröltzsch/Volkwein.

. Usually no preservation of physical properties.

. Does not work well for transport dominated problems.
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Conclusion I

. Many aspects of model reduction;

. Linear constant coefficient case well understood;

. Approximation errors, fast methods, tunability of model quality;

. Nonlinear case essentially POD and reduced basis method.
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Thank you very much
for your attention.
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