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Model based approach

Physical system
↙ ↘

Modeling Modeling

↓ ↓

ODE/DAE ←− semidiscr . PDE

↓
Mod. reduction

↓

Reduced ODE/DAE −→ Sim., Control
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Model reduction

Replace system

F (t , x , ẋ ,u) = 0, x(t0) = x0

y(t) = g(x)

with x ∈ Rn, u ∈ Rm, and y ∈ Rp, by a reduced model

Fr (t , xr , ẋr ,u) = 0, xr (t0) = x0
r

yr (t) = gr (xr )

with xr ∈ Rnr , nr << n.
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Ultimate Goals

. Small approximation error in input/output map;

. Small approximation error in outputs;

. Error bounds, estimates;

. preservation of physical properties such as stability, passivity,
conservation of constraints (energy, impulse, . . . );

. Cheap method to produce reduced order model;

. Integration of model reduction in multi-physics modeling,
control and optimization;

. . . .
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Open loop vs. closed loop control
Open loop control:
. In open loop control we consider the problem as an

optimization problem.
. We either discretize everything and then solve a large scale

optimization problem or we derive optimality conditions for the
infinite dimensional problem and then discretize the necessary
optimality conditions.

. This is great because one can use e.g. gradient information
from codes, but it is not good for fast nonlinear dynamics

Closed loop control:
. In closed loop control we derive feedback solutions u = g(x).
. This works very well if one can get a reduced model that

captures the dynamics and can be implemented for real time
control.
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Active flow control

Project in SFB 557 Control of complex shear flows, with F.
Tröltzsch, M. Schmidt
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Control of Stokes/Navier-Stokes

∂v
∂t

= ∇(K (∇v)) +∇p + Bu(t),

0 = div v .

Formally looking at semi-discretization in space gives nonlinear
descriptor system

dvh

dt
= ∇h(Kh∇hvh(t)) +∇hph(t) + Bhu(t),

0 = divhvh(t),

where vh is the semi-discretized vector of velocities and ph is the
semi-discretized vector of pressures.
Linearization and robust H∞ control to take care of nonlinearity.
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Difficulties in MOR

. Preservation of constraints 0 = div v , 0 = divhvh(t).

. Transfer function?

. Error measures?

. Feedback or optimization?
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Linear descriptor systems

Eẋ(t) = Ax(t) + Bu(t), x(t0) = x0

y(t) = Cx(t)

Replace by

Er ẋr (t) = Ar xr (t) + Br u(t), x(t0) = x0
r

yr (t) = Cr xr (t),

If E is singular (but sE − A regular), then

G(s) = C(sE − A)−1B = Gp(s) + P(s),

where Gp(s) is the proper rational part and P(s) is the
polynomial part, associated with the singular part of E . (H∞
norm not defined.)
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Gramians for descriptor systems
Stykel, Diss. ’02 Let Pl ,Pr be left, right spectral projectors onto
deflating subspace of λE − A to finite eigenvalues.
. EXpcAT + AXpcET = −PlBBT PT

l , Xpc = Pr Xpc

proper controllability Gramian.
. ET XpoA + AT XpoE = −PT

r CT CPr Xpc = XpcPl

proper observability Gramian.
. AXicAT − EXicET = (I − Pl)BBT (I − Pl)

T , Pr Xic = 0
improper controllability Gramian.

. AT XioA− ET XioE = (I − Pr )T CT C(I − Pr ) XpcPl = 0
improper observability Gramian.

Proper Hankel singular values:
ξj =

√
λj(XpcET XpoE), j = 1, . . . ,nf .

Improper Hankel singular values:
θj =

√
λj(XicAT XioA), j = 1, . . . ,n∞.
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BT for descriptor systems
. Compute (low rank) Cholesky factors

Xpc = RpRT
p ,Xpo = LT

p Lp,Xic = RiRT
i ,Xio = LT

i Li

. Form singular value decompositions

LpERp =
[

U0 U1
] [ Σ1 0

0 Σ0

] [
V0 V1

]T
with Σ1 = diag(ξ1, . . . , ξñf ), ñf << nf and

LiERi =
[

U2 U3
] [ Θ1 0

0 0

] [
V2 V3

]T
with Θ1 = diag(θ1, . . . , θñ∞) invertible.

. (Ẽ , Ã, B̃, C̃) = (W T
l ETl ,W T

l ATl ,W T
l B,CTl) , where

Wl = [LT
p U1Σ

−1/2
1 ,LT

i U2Θ
−1/2
1 ] , Tl = [RT

p V1Σ
−1/2
1 ,RT

i V2Θ
−1/2
1 ]
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Analysis of method

. Balancing for dynamic and algebraic part.

. Reduction for dynamic and deflation of nullspace for algebraic
part.

. Good approximation properties.

. Exact error estimates if polynomial part (constraint) is exactly
preserved P(s) = Pr (s):

‖G −Gr‖H∞ = ‖Gp −Gr ,p‖H∞2(ξñf+1 + . . . + ξnf ).

. Stability is preserved. Passivity with modification.

. Low Rank methods for large scale generalized Lyapunov
equations Stykel ’04.
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Stokes Example
Discretization with FEM.

E =

[
I 0
0 0

]
, A =

[
∆h ∇h

divh 0

]
,

B =

[
B1

0

]
, C =

[
0 C2

]
,

Pr = PT
l =

[
Π 0

−(∇T
h divh)−1∇T

h ∆hΠ 0

]
,

Π = I − divh(∇T
h div h)−1∇T

h

. We need only solutions with discrete Laplace ∆h.

. Projectors Pl ,Pr are easy to get.

. Reduced models are ‘discretizations’ of Stokes.

. Recent work avoids projection Heinkenschloss Sorensen
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Numerical results
Semidiscretized model with n = 19520, nf = 6400 and
n∞ = 13120.
Approximation with ñ = 11, ñf = 10, ñ∞ = 1.

Approximate proper Hankel singular values for the
semidiscretized Stokes equation.
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Errors

Absolute error plots and error bound for the semi-discretized
Stokes equation.
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Limits of the approach

. Experiments are costly or not feasible

. Simulators are typically for the forward problem, they usually
use very fine grids.

. Commercial codes cannot always be used well.

. Adaptive methods adapt for the error in the forward simulation.

. Space discretization leads to a very large dynamical system.

. Model reduction is expensive.

. Preservation of physical properties is difficult.
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Energy based modeling

Common scheme
. Multibody dynamics
. quantum mechanics
. Electrical circuit simulation
. Optimality systems in optimal control of ODEs/DAEs/PDEs
. fluid dynamics
. . . .
Variational principle, Hamiltonian like system with dissipation, . . .
Survey Van der Schaft 2013.
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Port-Hamiltonian systems

ẋ = (J− R)∇xH(x) + (B− P)u(t),

y(t) = (B + P)T∇xH(x) + (S + N)u(t).

. H : Rn × Rn → [0,∞) continuously differentiable - the
Hamiltonian,

. J = −JT ∈ Rn×n is the structure matrix describing the
interconnection of energy storage elements in the system;

. R = RT is the n × n dissipation matrix describing energy
dissipation/loss in the system,

. B± P ∈ Rn×m are the port matrices, describing how energy
enters and exits the system, and

. S + N with S = ST ,N = −NT ∈ Rm,m feed-through term.
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Further properties

. Typically the matrix

K =

[
R P
PT S

]
is symmetric positive-semidefinite;

. Port-Hamiltonian systems are stable and passive.

. The connection of port-Hamiltonian systems is again
port-Hamiltonian.
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Conservation of energy

. Standard port Hamiltonian systems generalize the classical
notion of Hamiltonian systems, in our notation ẋ = J∇xH(x),

. The analog of the conservation of energy for standard
Hamiltonian systems takes the form of a dissipation inequality

H(x(t1))− H(x(t0)) ≤
∫ t1

t0
y(t)T u(t) dt ,

which means that the change in internal energy of the system
H, is bounded by the total work done on the system.

. The dissipation inequality holds also if J, R, B, P, M and D
depend on x or explicitly on time, t .
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MOR for port-Hamiltonian systems

Beattie/Gugercin/Polyuga/van der Schaft 2009
Goal: Reduce state space dimension without degrading
input-output response;

. Keep advantageous system features (port-Hamiltanion
structure.)

. Maintain high fidelity and physical consistency (structure).

. Error estimates.
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Petrov-Galerkin

Determine subspaces Vr and Wr so that x(t) ≈ Vr xr (t) and
∇xH(x(t)) ≈Wr hr (t) which implies

V T
r Wr hr (t) ≈ V T∇xH(Vr x(t)) = ∇xr Hr (xr (t))

with reduced energy:

Hr (xr (t)) = H(Vr x(t)).

So, if biorthogonal bases for Vr and Wr are chosen ( V T
r Wr = I)

then
hr (t) = ∇xr Hr (xr (t))

and port-Hamiltonian structure is preserved.
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Port-Hamiltonian POD

1. Generate trajectory x(t), and snapshot matrix:

X = [x(t0), x(t1), x(t2), ..., x(tN)].

2. Truncate SVD of snapshot matrix, to get POD basis, Ṽr , for
the state variables. Then approximate x(t) ≈ Ṽr x̃r (t).

3. Collect associated force snapshots:

F = [∇xH(x(t0)),∇xH(x(t1)), . . . ,∇xH(x(tN))]

4. Truncate SVD of F to get a second POD basis, W̃r .
5. Change to bi-orthogonal bases Wr and Vr such that W T

r Vr = I.
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Numerical example
Example of Beattie et al MOR for nonlinear ladder network.
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Analysis of method

. Energy based modeling leads to port-Hamiltonian structure.

. POD for port-Hamiltonian structure easy.

. Stability, passivity, structure preserved.

. Balanced truncation, IRKA etc can be done analogously.

. But still one first discretizes, then reduces.
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Abstract framework
Heiland/M./Schmidt 2012
. Input space U , Output space Y, State space Z.
. System governed by instationary linear or nonlinear PDE

∂tz(t) = Az + Bu(t), in Ω× [0,T ],

z(0) = z0 + boundary conditions,
y(t) = Cz(t),

with operators

B ∈ L(U ,Z), C ∈ L(Z,Y)

A = Z → Z,

u ∈ U = L2([0,T ],U), y ∈ Y = L2([0,T ],Y )

and Hilbert spaces for the spacial dependence U, Z , Y .
. System maps inputs u to outputs y .
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Illustration framework

u actuators //

��

Physical
System

��

sensors //

��

y

G : u 7→ y

Figure: I/O map for a physical system, mathematical model.

Classical frequency domain approach usually cannot be applied.
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Discretization of I/O maps

Suppose we have a solution formula.

y(t) = (Gu)(t) =

∫ T

0
CS(t − s)Bu(s) ds

with kernel
K (t − s) = CS(t − s)B ∈ L(U,Y )

Here S is the solution operator for the PDE.
Approximate G ∈ L(U ,Y) in two steps.
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Two step procedure

1. Approximation of input-output signals, by restricting to finite
dimensional subspaces in U,Y .

2. Approximation of the dynamics/kernel

K (t) ≈ K̃tol

by approximate solution of PDEs for a basis in input space to
the needed tolerance.
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Discretization of I/O signals

u ∈ U , y ∈ Y

Finite dimensional subspaces, tensor product approach.

Uh1 = span(µ1(Θ), . . . , µp(Θ)) ⊂ U
Rτ1 = span(φ1(t), . . . , φr (t))

Uh1,τ1 = span(µi(Θ)φj(t))

Yh2 = span(ν1(ξ), . . . , νp(ξ)) ⊂ Y
Yh2,τ2 = span(νi(ξ)ψj(t))

leads to approximation

GS(h1, τ1,h2, τ2) = PY,h2,τ2GPU ,h2,τ2 .
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Error in two step procedure

Approximation error when G is approximated by GDS

1.
u ∈ U → PU ,h1,τ1u ∈ Uh1,τ1 → u ∈ Rpr

y ∈ Y → PY,h2,τ2y ∈ Yh2,τ2 → y ∈ Rms

2.
K (t) ≈ K̃tol

via discretization of PDE solution operator
Global approximation error:

‖G−GDS(h, tol)‖ ≤ eS(h1,h2, τ1, τ2) + eD(tol).

The two errors can be balanced.
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Application to PDE const. optimization

Determine (open loop) control u that give outputs y such that

J (y ,u)→ min
subject to F (y ,u) = 0,

where F is a PDE constraint.
If the system is represented by an I/O operator G via y = Gu,
then we can turn the problem into an unconstrained optimization
problem.
Determine controls u such that

J (Gu,u)→ min .
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Discretization of signals
Matrix representation of GS = PYGPU . Setting

PU(u)(t ; Θ) =
r∑

j=1

p∑
`=1

u`j φj(t)µ`(Θ),

GS(u)(t ; ξ) =
s∑

i=1

q∑
k=1

yk
i ψi(t)νj(ξ),

and testing against (ψmνn) we obtain

s∑
i=1

q∑
k=1

yk
i (ψiνk , ψmνn)(0,T )×YGS(u)(t ; ξ)

=
r∑

i=1

p∑
`=1

u`j (G(φjµ`, ψmνn)(0,T )×Y .
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Tensor representation

The weak formulation can be written as

MYy = Hu, Gh = M−1
Y H,

with block-structured matrices

MY = MY ⊗MS , Hkl
ij = (νkψi ,G(µ`φj)(0,T )×Y ).
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Kronecker product representation

Hkl
ij = (νkψi ,G(µ`φj))(0,T )×Y

=

∫ T

0
(νkψi(t),

∫ T

0
K (t − s)φj(s)µ` ds)Y dt

=

∫ T

0

∫ T

0
ψi(t)φj(s)(νk ,K (t − s)µ` ds dt

=

∫ T

0
Wij(t)Kkl(t) dt
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Computational effort

H = MYGh =

∫ T

0
K(t)⊗W(t) dt

with matrix valued functions

Wij(t) =

∫ T−t

0
ψi(t + s)φj(s) ds

that we can calculate exactly and

Kkl(t) = (νk ,K (t)µ`)Y

which we have to approximate numerically.
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Calculation of norm

The operator norm
‖G‖L(U ,Y)

can be computed via weighted norm of matrix representation

‖G‖L(U ,Y) = ‖Gh‖h := sup
u∈Rpr

‖Ghu‖qs;w

‖u‖pr ;w

= ‖MY,h2,τ2GhMU ,h1,τ1‖qs,pr
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Observations

. K (t) can be calculated column-wise,

. Parallelization is easy.

. No storage of state trajectories is necessary.

. Accuracy only needed in the observations of excited states
not in full state.

. One can easily deal with non-smooth initial transients.

. Approximate error estimation is possible, e.g. via
Dual-Weighted Residuals
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System dynamics error

Lemma
The system dynamics error εD = ‖GS −GDS‖L(U ,Y) satisfies

εD ≤
√

T‖K− K̃‖L2([0,T ],Rp,q)

Error in the observations may be very small, even if state error is
large.
Dual weighted residual method to control the output error, if one
can solve the adjoint error equation.
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Further reduction

. We can further reduce the I/O dimension by computing the
singular value decomposition (SVD) of the transfer matrix.

. Delete the inputs/outputs associated to negligible singular
values.

. SVD approximation error can be incorporated in error bounds.

. Can be interpreted as POD Baumann/Heiland/Schmidt 2015.
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Extension to flow control

. The techniques can be applied to linear flow systems Stokes,
Oseen, linearized Navier-Stokes.

. The error bounds are more difficult, but partially available.

. We need a semigroup representation.

. For Navier-Stokes the theory is open, the methods work well
for moderate Reynolds numbers.
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Linearized Navier-Stokes

Linearization of Navier-Stokes along a reference velocity V∞

Vt + (V∞ · ∇)V + (V · ∇)V∞ +∇P − 1
Re
4V =

(V∞ · ∇)V∞ + f + Bu,
∇ · V = 0,

y = CV .

together with appropriate initial and boundary conditions.

This linear model, together with discrete input and output
spaces, enables the construction of a finite dimensional discrete
linear I/O-operator.
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Semidiscr. linearized Navier-Stokes

Space discretized linearized Navier Stokes equation.[
M 0
0 0

]
d
dt

[
v(t)
p(t)

]
+

[
D −JT

J Q

] [
v(t)
p(t)

]
=

[
f1(t)
f2(t)

]
, for t ∈ (0,T ],

v(0) = v0 ∈ Rnv .

Set

Ê =

[
E11 0
E21 0

]
:=

[
(I − D−1JT S−1J)D−1M 0

−S−1JD−1M 0

]
.

with the Schur complement S := Q + JD−1JT .
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Explicit solution operator

Theorem (Emmrich/M. 2013)

[
v(t)
p(t)

]
=

[
exp(−ED

11t)ED
11E11qv

E21 exp(−ED
11t)(ED

11)2E11qv

]
+

∫ t

0

[
exp(−ED

11(t − s))ED
11f̂1(s)

E21 exp(−ED
11(t − s))(ED

11)2f̂1(s)

]
ds +

+

[
[I − ED

11E11]f̂1(t)

−E21ED
11f̂1(t) + f̂2(t)

]
+

[
[E11 − ED

11E2
11]f̂1

(1)
(t)

[E21 − E21ED
11E11]f̂1

(1)
(t)

]
,

assuming that the vector qv belongs to a given consistent initial
value v0. Here D is the Drazin inverse.
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Explicit I/O map

y(t) =

C
{[

exp(−ED
11t)ED

11E11qv
E21 exp(−ED

11t)(ED
11)

2E11qv

]
+
∫ t

0

[
exp(−ED

11(t − s))ED
11 f̂1(s)

E21 exp(−ED
11(t − s))(ED

11)
2 f̂1(s)

]
ds

+

[
[E11 − ED

11E2
11][M

−1f1(t) + [I − E11ED
11]R0f2(t)]

E21[I − ED
11E11]M−1f1(t) + [S−1 − E21ED

11R0]f2(t)]

]

+

[
[E11 − ED

11E2
11]R0 ḟ2(t)

E21[E11 − ED
11E2

11]M
−1 ḟ1(t) + [E21 − E21ED

11E11]R0 ḟ2(t)

]}


:= y0

+ C
{∫ t

0

[
exp(−ED

11(t − s))ED
11E11M−1B1u(s)

E21 exp(−ED
11(t − s))(ED

11)
2E11M−1B1u(s)

]
ds +

+

[
[E11 − ED

11E2
11]M

−1B1u(t)
E21[I − ED

11E11]M−1B1u(t)

]
+

[
0

E21[E11 − ED
11E2

11]M
−1(B1u)(1)(t)

]}
 := Gu(t).

The linear I/O map is defined via G : U → Y , u 7→ Gu, by
subtracting the vector y0.
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Requirements

To obtain a well-defined I/O map, one needs
. B1u(0) has to be consistent with the initial condition v0,
. the function B1u : [0,T ]→ Rnv has to be sufficiently smooth.
. U ⊂ C1([0,T ],U) in the case that the nilpotency index of

E11 = 2 or
. U ⊂ C([0,T ],U) if the nilpotency index E11 = 1 or if only the

velocity is considered for the output .
In both cases the output space Y is a subspace of C([0,T ],Y ).
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Driven cavity flow
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Optimal control
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Figure: System response for input ū computed with IFISS to match
output y∗ = [1 0]T . (a) and (b) show time evolution. Plot (c) shows
velocities and streamlines at t = 0.1.
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Optimal control
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Figure: System response for input ū computed with IFISS to match
output y∗ = [0 1]T . (a) and (b) show time evolution of the output signal.
Plot (c) shows velocities and streamlines at t = 0.1.
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Optimal control, Smooth
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Optimal control discrete
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Analysis of method

. Direct discretization of I/O map possible if transfer map is
available/computable.

. Allows open loop, optimal control, optimization.

. Adaptivity in input and output space is possible and can be
balanced with error in transfer operator.
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Conclusion II

. Incorporation of constraints and structure into model reduction
techniques;

. Port Hamiltonian structure is easy to preserve;

. Direct discretization of transfer function I/O map.
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Thank you very much
for your attention.
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