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Outline

As is well-known, one can derive formally incompressible models
such as the incompressible Navier-Stokes equations from the com-
pressible ones when the Mach number is small.

Aim of this talk: justify rigorously the low Mach number limit (sin-
gular limit) for the planar compressible ideal magnetohydrodynamic
equations.

• Outline:
1. Formulation of the problem

2. Results on the MHD equations

3. Planar ideal MHD flows, general data
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1. Formulation of the problem

Magnetohydrodynamics (MHD) studies the dynamics of compress-
ible quasi-neutrally ionized fluids under the influence of electromag-
netic fields.

The applications of MHD cover a very wide range of physical ob-
jects: liquid metals, astrophysics, geophysics, plasma physics, etc.

The three-dimensional full MHD equations for ideal gases
(P = Rρθ, e = cVθ, setting R = cV = 1 for simplicity),
after a suitable scaling, can be written in the following form of the
Mach number ε:
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1.1. 3D full MHD equations



ρt + div(ρu) = 0,

ρ(ut + u · ∇u) +
∇(ρθ)

ε2
= (∇× H)× H + divΨ,

ρ(θt + u · ∇θ) + ρθdivu
= ε2ν|∇ × H|2 + ε2Ψ : ∇u + κ∆θ,

Ht −∇× (u × H) = −∇× (ν∇× H), divH = 0,

(1)

where ρ: Density, u ∈ R3: Velocity, H ∈ R3: Magnetic field,
θ: Temperature, ε: Mach number, ν > 0: Magnetic diffusivity,

Ψ = µ(∇u +∇uT ) + λ divu Id: Viscous stress tensor,

λ, µ: Viscosity coefficients, κ > 0: Heat conductivity,
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Aim: to study limit as ε→ 0.

Two approaches in the study of the limit as ε→ 0:

1) Global weak solutions, global convergence in the weak sense;
2) Local smooth solutions, local convergence in the strong sense.

Here we shall employ the 2nd approach.

Main features for system (1):
• Highly oscillations (in time) due to acoustic waves
• Strong coupling of the fluid and magnetic fields
• Require uniform in ε local existence, uniform estimates of higher
order derivatives
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2. Results on MHD equations (non-exhaustive)

Isentropic case:

• Klainerman-Majda ’81: strong convergence for smooth local so-
lutions with well-prepared initial data, by using theory of symmetric
hyperbolic systems in delicate weighted norms and applying a fixed
point argument.

• Wang-Hu ’09: weak convergence for global weak solutions with
general data by a weak convergence argument.

• J-Li-Ju ’10: Weak solutions → strong solutions for general data,
explicit convergence rate for well-prepared data by using modulated
energy method and refined energy analysis.
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Full MHD equations

• Feireisl, Novotný, Kukučka, Ruzicka, Thäter, Kwon,
Trivisa ’10-’11, · · · · · · : Convergence in the framework of variational

solutions.

• Strong convergence for smooth solutions

(i) small variations on ρ and θ, well-prepared data

Ansatz:

ρ = 1 + εqε, θ = 1 + εφε, u = uε, H = Hε, (2)

and rewrite system (1) in the form of (qε, φε, uε,Hε):
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qεt + uε · ∇qε +
1
ε

(1 + εqε)divuε = 0, (3)

(1 + εqε)(uεt + uε · ∇uε) +
1
ε

[
(1 + εqε)∇φε + (1 + εφε)∇qε

]
−Hε ·∇Hε +

1
2
∇(|Hε|2) = 2µdiv(D(uε)) + λ∇(trD(uε)), (4)

(1 + εqε)(φεt + uε · ∇φε) +
1
ε

(1 + εqε)(1 + εφε)divuε

= κ∆φε + ε
{

2µ|D(uε)|2 + λ(trD(uε))2}+ εν|∇ × Hε|2, (5)

Hεt + uε ·∇Hε + divuεHε−Hε ·∇uε = ν∆Hε, divHε = 0, (6)

where D(u) := (∇u +∇uT )/2.
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The formal limit of (3)–(6) as ε → 0, assuming (uε,Hε) → (w ,B),
reads as (incompressible MHD):

∂tw + w · ∇w +∇π + 1
2∇(|B|2)− B · ∇B = µ∆w ,

∂tB + w · ∇B − B · ∇w = ν∆B,
divw = 0, divB = 0.

(7)

Consider systems (3)–(6) and (7) in the torus T3 or in the whole
space R3 with initial data

(qε, uε,Hε, φε)|t=0 = (qε0 , u
ε
0,H

ε
0 , φ

ε
0), and (8)

(w ,B)|t=0 = (w0,B0), divw0 = divB0 = 0, (9)

respectively. One can prove
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J-Ju-Li ’11: Let s > 2 + 3
2 , (w ,B): a smooth solution to (7), (9) with

(w ,B) ∈ C([0, T ∗],Hs+2) ∩ C1([0, T ∗],Hs), T ∗ > 0. Assume

‖qε0 , u
ε
0 − w0,Hε0 − B0, φ

ε
0‖Hs = O(ε).

Then ∃ ε0 > 0, such that for ε ≤ ε0, the system (3)–(6), (8) has a
unique smooth solution (qε, uε,Hε, φε) ∈ C([0, T ∗],Hs) satisfying

sup
t∈[0,T∗]

∥∥∥{(qε, uε,Hε, φε)−
( ε

2
π,w ,B,

ε

2
π
)}

(t)
∥∥∥

Hs
≤ Kε.
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Remarks: i) From the above theorem, we see that the full MHD equa-
tions (3)–(6), (8) admits a unique smooth solution on the same time
interval where a smooth solution of the incompressible MHD equa-
tions exists.

ii) The approach is still valid for the ideal non-isentropic compress-
ible MHD equations, e.g., µ, λ, ν, κ = 0.

Proof ideas: The main ingredients in the proof:
energy estimates for symmetrizable quasilinear hyperbolic-parabolic

systems
compact arguments and a convergence-stability lemma due to Brenier-

Yong �
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(ii) Large variations on ρ and θ, general data

Consider the full MHD system (1) in the physical regime:

P ∼ 1 + O(ε), u ∼ O(ε), H ∼ O(ε). ∇θ ∼ O(1),

Introduce the transforms to ensure positivity of P and θ
(Métivier-Schochet):

P(x, t) = eεp
ε(x,εt), θ(x, t) = eθ

ε(x,εt),

which gives ρ(x, t) = eεp
ε(x,εt)−θε(x,εt)

Taking the scalings:

H(x, t) = εHε(x, εt), u(x, t) = εuε(x, εt),

µ = εµε, λ = ελε, ν = ενε, κ = εκε.

Thus, system (1) takes the form:
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pεt + (uε · ∇)pε +
1
ε

div(2uε − κεe−εp
ε+θε

∇θε) (10)

= εe−εp
ε

[νε|curlHε|2 + Ψ(uε) : ∇uε] + κεe−εp
ε+θε

∇pε ·∇θε,

e−θ
ε

[uεt + (uε · ∇)uε] +
∇pε

ε

= e−εp
ε

[(curlHε)× Hε + divΨ(uε)], (11)

Hεt − curl(uε × Hε)− νε∆Hε = 0, divHε = 0, (12)

θεt + (uε · ∇)θε + divuε = κεe−εp
ε

div(eθ
ε

∇θε)

+ ε2e−εp
ε

[νε|curlHε|2 + Ψ(uε) : ∇uε]. (13)
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Formally, as ε→ 0, assuming (uε,Hε, θε)→ (w ,B, ϑ) and
(µε, λε, νε, κε)→ (µ̄, λ̄, ν̄, κ̄), then system (10)–(13) tends to

div(2w − κ̄ eϑ∇ϑ) = 0, (14)

e−ϑ[wt + (w · ∇)w ] +∇π = (curlB)× B + divΦ(w), (15)

Bt − curl(w × B)− ν̄∆B = 0, divB = 0, (16)

ϑt + (w · ∇)ϑ + divw = κ̄ div(eϑ∇ϑ), (17)

with some function π.
Supplement system (14)–(17) with initial data

(pε, uε,Hε, θε)|t=0 = (pεin, u
ε
in,H

ε
in, θ

ε
in)(x), x ∈ R3, (18)

and for simplicity, assume (µε, νε, κε, λε) ≡ (µ̄, ν̄, κ̄, λ̄).

Song Jiang Low Mach number limit for full MHD system



Notation: denote

‖(pε, uε,Hε, θε − θ̄)(t)‖s,ε

:= sup
τ∈[0,t]

{
‖(pε, uε,Hε)(τ )‖Hs + ‖(εpε, εuε, εHε, θε − θ̄)(τ )‖Hs+2

ε

}
+
{ ∫ t

0
[‖∇(pε, uε,Hε)‖2

Hs + ‖∇(εuε, εHε, θε)‖2
Hs+2

ε
](τ )dτ

}1/2
,

where ‖v‖Hσ
ε

:= ‖v‖Hσ−1 + ε‖v‖Hσ
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J-Ju-Li-Xin ’12 (1) Uniform solutions. Let s ≥ 4 and

‖(pεin, u
ε
in,H

ε
in, θ

ε
in − θ̄)(t)‖s,ε ≤ L0, ∀ε ∈ (0, 1]

for some constants θ̄, L0. Then, ∃ T0 and ε0 < 1, such that for ∀ε ∈
(0, ε0], the problem (10)–(13), (18) has a unique solution (pε, uε,Hε, θε)
on [0, T0] satisfying

‖(pε, uε,Hε, θε − θ̄)(t)‖s,ε ≤ L, ∀ t ∈ [0, T0], ε ∈ (0, ε0].

(2) Convergence. Assume further that

|θε0(x)− θ̄| ≤ N0|x|−1−ζ, |∇θε0(x)| ≤ N0|x|−2−ζ, ∀ε ∈ (0, 1],(
pεin, curl(e−θ

ε
inuεin),Hεin, θ

ε
in
)
→ (0,w0,B0, ϑ0) in Hs,

where N0 and ζ are constants.
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Then, (pε, uε,Hε, θε)→ (0,w ,B, ϑ) weakly in L∞(0, T0; Hs) and strongly
in L2(0, T0; Hs2

loc) ∀ 0 ≤ s2 < s, where (w ,B, ϑ) solves (14)–(18) with
(w ,B, ϑ)|t=0 = (w0,B0, ϑ0).

Proof ideas: ? Exploit effect of dissipation (viscosity, magnetic diffu-
sion, heat conductivity)
? Div-Curl decomposition of u
? Refined energy estimates
? Weak compactness arguments
? Detailed analysis of the oscillation equations (dispersive estimates)
(Some ideas from Métivier-Schochet’01, Alazard’06, Levermore-Sun-
Trivisa’12 are used)
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Ideal MHD flows

Ideal MHD flows, µ, λ, ν, κ = 0

ρt + div(ρu) = 0,

ρ(ut + u · ∇u) +
∇(ρθ)

ε2
= (∇× H)× H,

ρ(θt + u · ∇θ) + ρθdivu = 0,

Ht −∇× (u × H) = 0, divH = 0.

(19)

If omitting H, (19) reduces to Euler equations, the limit of which
was investigated by Métivier-Schochet’01 (exploiting structure of the
system, e.g., control curlu, ...)

When the magnetic effect is taken into account, these arguments
do not work directly, since nice structure used to control some cross-
terms is destroyed. Limit as ε→ 0 still open !
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3. Planar ideal MHD flows, general data

However, in the planar flow case, the cross terms can be carefully
controlled, using some weighted estimates, and we can show the low
Mach number limit for general data.

This is the next goal of this talk.

Planar ideal compressible MHD equations:

Take the pressure p as an unknown, write ρ = R(p,S) where S:
Entropy, u ∈ R: Longitudinal velocity, ~w ∈ R2: Transverse velocity,
~z ∈ R2: Transverse magnetic field,
then, the planar ideal compressible MHD equations read as
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A(S, p)(pt + upx ) + ux = 0,

R(S, p)(ut + uux ) + px + ~z · ~zx = 0,

R(S, p)(~wt + u~wt )− ~zt = 0,

~zt + (u~z)x − ~wx = 0,

St + uSx = 0,

with

A(S, p) :=
1

R(S, p)

∂R(S, p)

∂p
.

Introduce the scalings

p(x, t) = pε(x, εt), S(x, t) = Sε(x, εt),

u(x, t) = εuε(x, εt), ~w(x, t) = ε~wε(x, εt), ~z(x, t) = ε~zε(x, εt),

and the transform pε(x, εt) = peεq
ε(x,εt) for some positive constant p

to arrive at
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a(Sε, εqε)(qεt + uεqεx ) +
1
ε

uεx = 0, (20)

r(Sε, εqε)(uεt + uεuεx ) +
1
ε

qεx + ~zε · ~zεx = 0, (21)

r(Sε, εqε)(~wε
t + uε~wε

x )− ~zεx = 0, (22)

~zεt + (uε~zε)x − ~wε
x = 0, (23)

Sεt + uεSεx = 0, (24)

where

a(Sε, εqε) := A(Sε, peεq
ε

)peεq
ε

=
peεq

ε

R(Sε, peεqε)
·
∂R(Sε, ξ)

∂ξ

∣∣∣
ξ=peεqε

, r(Sε, εqε) :=
R(Sε, peεq

ε

)

peεqε
.
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Suppose (Sε, qε, uε, ~wε,~zε) → (S̄, q̄, ū, ~̄w , ~̄z). Formally, as ε → 0
⇒ q̄x = ūx = 0. The limiting equations of (22)-(24) take the form

r(S̄, 0)(~̄wt + ū ~̄wx )− ~̄zx = 0, (25)

~̄zt + ū~̄zx − ~̄wx = 0, (26)

S̄t + ūS̄x = 0. (27)

We want to to establish this limit rigorously in a one-dimensional
torus T1. Supplement system (20)–(24) with initial data:

(Sε, qε, uε, ~wε,~zε)|t=0 =
(
Sε0, q

ε
0 , u

ε
0, ~w

ε
0 ,~z

ε
0

)
, x ∈ T1. (28)
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Thm. 1.1. Let ‖(Sε0, q
ε
0 , u

ε
0, ~w

ε
0 ,~z

ε
0 )‖H2(T1) ≤ M0. Then, there is a

T > 0, such that for any ε ∈ (0, 1], ∃! solution (qε, uε, ~wε,~zε,Sε) ∈
C0([0, T ],H2(T1)) to (20)–(23), (28), satisfying

‖(qε, uε, ~wε,~zε,Sε)(t)‖H2(T1), ‖(~wε
t ,~z

ε
t ,S

ε
t )(t)‖H1(T1)≤ N

for ∀ t ∈ [0, T ]. Moreover, if

(qε0 , u
ε
0, ~w

ε
0 ,~z

ε
0 ,S

ε
0)→ (q0

0 , u
0
0 , ~w

0
0 ,~z

0
0 ,S

0
0) in H2(T1),

then (qε, uε, ~wε,~zε,Sε) converges to the limit (q̄, ū, ~̄w , ~̄z, S̄, ), where

q̄ ≡
∫
T1 a(S0

0(x), 0)q0
0(x)dx∫

T1 a(S0
0(x), 0)dx

, ū ≡
∫
T1 r(S0

0(x), 0)u0
0(x)dx∫

T1 r(S0
0(x), 0)dx

,

and (S̄, ~̄w , ~̄z) is the unique solution of (25)–(27) with initial data

(S̄, ~̄w , ~̄z)|t=0 = (S0
0 , ~w

0
0 ,~z

0
0 ).
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Proof Steps: Main ingredients:
• uniform estimates of higher order derivatives
• averaging analysis to treat acoustic wave (no dispersive property)

Step I. Uniform estimates
If one directly works on system (20)–(24), then this involves 2nd-
order derivatives of S which we cannot control uniformly. Instead,
we rewrite (20)–(23) to avoid this.

Song Jiang Low Mach number limit for full MHD system



? For 1st-order derivative estimate, denote

qε1 = qεx/r(Sε, εqε), uε1 = uεx/a(Sε, εqε),

~wε
1 = ~wε

x/a(Sε, εqε), ~zε1 = ~zεx/r(Sε, εqε),

and write (20)–(23) by differentiating as

r(Sε, εqε)(∂tqε1 + uε∂xqε1) +
1
ε
∂xuε1 = f ε1 , (29)

a(Sε, εqε)(∂tuε1 + uε∂xuε1) +
1
ε
∂xqε1 + ∂x

{
~zε · ~zε1

}
= f ε2 , (30)

a(Sε, εqε)(∂t ~wε
1 + uε∂x ~wε

1 )− ∂x~zε1 = ~f ε3 , (31)

r(Sε, εqε)
a(Sε, εqε)

∂t~zε1 + ∂x

{
uε1~z

ε +
uε~zεx

a(Sε, εqε)

}
− ∂x ~wε

1 = ~f ε4 , (32)

with f ε1 = · · · , f ε2 = · · · , ...
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? For 2nd-order derivative estimate, denote

qε2 = ∂xqε1/a(Sε, εqε), uε2 = ∂xuε1/r(Sε, εqε),

~wε
2 = ∂x ~wε

1/r(Sε, εqε), ~zε2 = ∂x~zε1/a(Sε, εqε),

and write (29)–(32), by differentiating, as

a(Sε, εqε)(∂tqε2 + uε∂xqε2) +
1
ε
∂xuε2 = gε1 , (33)

r(Sε, εqε)(∂tuε2 + uε∂xuε2) +
1
ε
∂xqε2 + hε1 = gε2 , (34)

r(Sε, εqε)(∂t ~wε
2 + uε∂x ~wε

2 )− ∂x~zε2 = ~gε3 , (35)

∂t~zε2 − ∂x ~wε
2 + ~hε2 = ~gε4 , (36)

with gε1 = · · · , gε1 = · · · , ..., hε1 = · · · , ~hε2 = · · · , ...
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Systems (29)–(32), and (33)–(36) still keep good structure, then we
can use careful energy estimates to control the 1st- and 2nd-order
derivatives (only 1st-order derivatives of S are involved), such that
we can close the estimates to get finally

Lemma 1. ∃ an increasing function C(·) : [0,∞) 7→ [0,∞) indepen-
dent of ε, such that

Mε(T ) ≤ C0 + TC(Mε(T )), (37)

where
Mε(T ) = sup

t∈[0,T ]
‖(qε, uε, ~wε,~zε,Sε)(t)‖H2(T1).

⇒ Uniform a priori estimates in the theorem
⇒ Local existence uniform in ε
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Step II. Take limit (averaging analysis)

(qε, uε, ~wε,~zε) ⇀ (q̄, ū, ~̄w , ~̄z) weakly- ∗ in L∞(0, T ; H2(T1)),

(Sε, ~wε,~zε)→ (S̄, ~̄w , ~̄z) strongly in C([0, T ],Hs′(T1), ∀ s′ < 2.

thus, (20)–(24)⇒ ∂x q̄ = ∂x ū = 0 (i.e., q̄(x, t) = q̄(t), ū(x, t) = ū(t)),
and S̄, ~̄w , ~̄z satisfy

r(S̄, 0)(∂t ~̄w + ū∂x ~̄w)− ∂x~̄z = 0, (38)

∂t~̄z + ū∂x~̄z − ∂x ~̄w = 0, (39)

∂t S̄ + ū∂x S̄ = 0, in D. (40)

Averaging analysis ⇒ d
dt q̄ = 0. In fact, by equations (20), (24),

we have
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∂ta(Sε, εqε) = −uε∂xa(Sε, εqε)− d(Sε, εqε)∂xuε. (41)

where
d(Sε, εqε) :=

1
a(Sε, εqε)

∂a(Sε, ξ)

∂ξ
|ξ=εqε .

Denoting

〈〈 · 〉〉 :=
1
|T1|

∫
T1
· dx,

and taking the average of (41) and integrating by parts⇒

d
dt
〈〈 a(Sε, εqε) 〉〉 = 〈〈 [a(Sε, εqε)− d(Sε, εqε)]∂xuε 〉〉 (42)

Taking limit⇒
d
dt
〈〈 a(S̄, 0) 〉〉 = 0.
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Now, equations (20) and (41) gives

∂t{a(Sε, εqε)qε}+ uε∂x{a(Sε, εqε)qε}+
1
ε
∂xuε

+d(Sε, εqε)qε∂xuε = 0. (43)

Taking the average of (43) and using (20) to eliminate ∂xuε⇒

d
dt
〈〈 a(Sε, εqε)qε 〉〉

= −
ε

2
d
dt
〈〈 [a(Sε, εqε)− d(Sε, εqε)]a(Sε, εqε)(qε)2 〉〉

+
ε

2
〈〈 (qε)2∂t{[a(Sε, εqε)− d(Sε, εqε)]a(Sε, εqε)} 〉〉

−ε〈〈 [a(Sε, εqε)− d(Sε, εqε)]a(Sε, εqε)qεuε∂xqε 〉〉

⇀ 0. (44)
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⇒ (recalling d
dt 〈〈 a(S̄, 0) 〉〉 = 0, a(S̄, 0) > 0)

d
dt
〈〈 a(S̄, 0)q̄ 〉〉 = 0 ⇒

d
dt

q̄ = 0. �

⇒

〈〈 a(S̄(x, 0), 0)q̄(0) 〉〉 = 〈〈 a(S̄(x, t), 0)q̄(t) 〉〉
= q̄(t)〈〈 a(S̄(x, t), 0) 〉〉 = q̄(0)〈〈 a(S̄(x, 0), 0) 〉〉

⇒

q̄(t) ≡ q̄(0) =
〈〈 a(S̄(x, 0), 0)q̄(0) 〉〉
〈〈 a(S̄(x, 0), 0) 〉〉

=

∫
T1 a(S0

0(x), 0)q0
0(x)dx∫

T1 a(S0
0(x), 0)dx

.

Similarly,

ū(t) ≡ ū(0) =

∫
T1 r(S0

0(x), 0)u0
0(x)dx∫

T1 r(S0
0(x), 0)dx

.
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Since the limiting system (38)–(40) has a unique solution
(S∗, ~w∗,~z∗) ∈ C([0, T ],H2(T1))⇒ the convergence results hold for
the full sequence of (Sε, ~wε,~zε). �

Remark. In numerical simualtion of MHD with small ε, traditional nu-
merical schemes require the cell size h = O(ε) in order to resolve the
solution. Now, a new scheme, Asymptotic Preserving (AP) scheme, is
under development, for which h can be independent of ε, and which
is valid for ε → 0. (1D case, OK). The successful construction of
a AP scheme requires the knowledge on the limiting equations and
propagation of oscillations. The study of zero Mach number limit will
contribute to this.

Future study:

Multi-dimensional case
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THANK YOU !
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