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0 Introduction
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Ly Model based approach
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Ay Parametric MOR

How to get a reduced order model depending on parameters?

> Semidiscretization in space using FV, FE, FD — large scale
ODE/DAE-control problem (with parameters).

> Project on a subspace that captures the dynamics in a large
range of the parameters.

> We can use all the methods as before, survey by Benner,
Gugercin, Willcox, enriched by sampling of the parameter
space.

> Reduced basis approach, books A. Quarteroni, A. Manzoni, F.
Negri, A. Quarteroni, G. Rozza
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Ly Sparse representation of PDE solutions

Given PDE model that describes the space-time behavior.

> Numerical solution of PDE Ly = f, with differential operator L
in a domain Q ¢ RY with boundary I and BC on I'. Data and
solution depending on parameters (controls).

> Let V be an ansatz function space in which we know or expect
the solution to be, (depending on parameters, controls).

> Choose another (or the same) space WV as test space.

> Classical Galerkin or Petrov-Galerkin approach: Seek solution
y in some finite dimensional ansatz space V, C V (spanned

by) B = {1,...,¢n},ie. y = > 1, yidi and (Ly — f,w) = 0 or
(Ly —f,w)| <eforallwe W.

How sparse can we get?
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Ky Different Questions

> What is a good space V, so that y can be sparsely
represented/approximated in V (for a large parameter range)?

> Good space for forward or for optimization/control problem?

> What is a good basis of V, so that u can be sparsely
represented/approximated.

> What are conditions for the basis so that the finite dimensional
version L.y, = f, is easy to solve for many parameters?

> Is there a ’eierlegende Wollmilchsau’, a swiss army knife?
Can only be answered for specific application.
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O Brake Squeal Model
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Brake Squeal

> Disc brake squeal is a frequent and annoying phenomenon
(with cars, trains, bikes).

> Important for customer satisfaction, even if not a safety risk.

> Nonlinear effect that is hard to detect in experiments.

> The car industry is trying for decades to improve this, by
changing the designs of brake and disc.

Can we do this model based?
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Ly Model based approach

Interdisciplinary project with car manufacturers + SMEs
Supported by German Minist. of Economics via AlF foundation.
University: N. Grabner, U. von Wagner, TU Berlin, Mechanics,
N. Hoffmann, TU Hamburg-Harburg, Mechanics,

S. Quraishi, C. Schroder, TU Berlin Mathematics.

Goals:

> Develop model of brake system with all effects that may cause
squeal. (Friction, circulatory, gyroscopic effects, etc).

> Simulate brake behavior for many different parameters (disk
speed, material geometry parameters).

> Our task: Model reduction, solution of eigenvalue problems.

> Long term: Stability/bifurcation analysis for a given parameter
region.
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Ly Experiment

(mm/s)

Betriebsschwingform (1750 Hz)

Gitter der Messpunkte

> Experiments indicate nonlinear behavior (subcritical Hopf
bifurcation) — film.

'Institute f. Mechanics, TU Berlin
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Ly Modeling on microscale

Atomistic scale: Many damped harmonic oscillators: Langevin
equation.

mq(t) + dq(t) + kq(t) = &(1),
> m mass, k stiffness.

> d describes damping and dissipation effects, (very difficult to
model in practice).

> ¢ is the Langevin complementary force random force, d and ¢
are frequency dependent.

Not a good model for simulation and definitely not for
optimization.
Errors and uncertainties very hard to quantify.
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& Modeling in industrial practice, macroscale
Multi-body system based on Finite Element Modeling (FEM)

> Write displacements of structure z(x, t) as linear combination
of basis functions (e.g. but not always piecewise polynomials),

N

z2(x,t) = Y qi(t)i(x. 1).

i=1
> Integrate against test functions (Petrov Galerkin) —
discretized model for the vibrations in weak form.

> Add friction and damping as macroscopic surrogate model
fitted from experimental data.

> Simplifications: Remove some nonlinearities, asymptotic
analysis for small parameters, etc.

> Produce reduced order model for large parameter set?
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Ly FE model

Figure: View of the brake model

2Institut fir Mechanik, TU Berlin



Ly Brake pad
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Figure: View of the brake model

3Institute f. Mechanics TU HH
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Ay Mathematical model details

Large differential-algebraic equation (DAE) system and evp
dep. on parameters (here only disk speed displayed).

Mg+ (Ci + -~ Cr+ —Ca)g + (Ki + Ka + (—)?Ka)q = f.
w w,‘ Wr

M symmetric, pos. semidef., singular matrix (constraints),
C, symmetric matrix, material damping,
Cg skew-symmetric matrix, gyroscopic effects,

v Vv VvV V

Cg symmetric matrix, friction induced damping,
(phenomenological)

> Ki symmetric stiffness matrix,

> Kg nonsymmetric matrix modeling circulatory effects,
> Kg symmetric geometric stiffness matrix.

> w rotational speed of disk with reference velocity w;.
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Ay Nature of FE matrices

n=2842,638, w, =5 w =17 x 27

i C1
matrix | pattern | 2-norm f;;ukctural D
M Symm 5e-2 842,623 nz:g:ZJrO? nz:?éi+02
C; symm | 1e-19 160
Cq skew 1.5e-1 | 217500 nzgo 5 nz;élgoél
Cr symm | 7e-2 2120 K, K
Ki symm | 2e13 full D
KR - 364 21 1 O nz:4e+0? nz="1e+05
Ks symm | 40 842,623 Koo

nz="1e+07
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Ly Model evaluation, challenges

This is really a hierarchy and mixture of models.

> FE Model hierarchy: grid hierarchy, type of ansatz functions,
component and domain decomposition.

> Coupled with surrogate model for friction and damping?
Challenges

> Are the simplifications: nonlinear/linear, expansion of small
parameters justified?

> We do not really have a PDE, error estimates, adaptivity?

> Parametric reduced model for optimization, control, bifurcation
analysis?

> Good subspace in function space or coordinate space?
This is a wave problem, eigenspaces seem a good choice.
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O Parameterized Model Reduction
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% Modal truncation

> Ansatz g(t) = eu gives a quadratic eigenvalue problem
(QEP):
P,(\u = (AM + \C(w) + K(w))u = 0.
> Want evs with positive real part (few, ideally one, since squeal
is mono-frequent) and corresponding evecs.
> Likelihood of a brake to squeal is correlated with magnitude of
positive real part of eigenvalue.

> Objective: Efficient method to compute evs in right half plane
for many parameter values e.g. w € (27, 27 x 20).
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Ly Projection approach

Determine subspace spanned by columns of matrix Q,

> Project QEP: P,(A\)x = (\2M + A\C(w) + K(w))x =0 or
dynamical system into small d-dimensional subspace that is
independent of w.

> projected QEP
» P,(\)=Q"P,(\)Q=XQTMQ + Q" C(w)Q+ QTK(w)Q

> How to choose Q7?
» Sufficiently accurate approximation of evs with positive real part
» Ideally Q should contain good approximations to the desired

evecs for all parameter values

» One should be able to construct Q in a reasonable amount of
computing time.
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Traditional approach in industry

> Traditional approach to get a subspace Q:

» Qrrap:=dominant eigenvectors (i.e. eigenvectors with smallest
eigenvalues) of generalized evp L(\) = (uM — Ky — Kg)

> Advantages:
» One only has to solve a large, sparse, symmetric, definite GEVP.
> Disadvantages:

» Subspace does not take into account damping and parameter
dependence.
» Often poor approximation of evs/evecs of the full model.
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Ly DMD/POD

Use idea from proper orthogonal decomposition (POD) or
dynamic mode decomposition (DMD).

> Compute matrices of eves X(w;) corresponding to right half

plane evs for full QEP P,(\)x = 0 and sample parameters
Wi,W2,...,Wp

> Construct measurement matrix

X = [X(w1), X(w2), X(ws)--- X(wp)] containing computed
snapshot evecs.

>~ Extract dominant directions in X by a truncated singular
value decomposition.

Same space can also be used with other approaches.
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O Numerical Linear Algebra at Work
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Spectral transformation

Consider full problem P, (\)x = 0.

> Set \.(w) = AM(w) — 7, where 7 is such that det(P,(7)) # 0.
> New parametric QEP

P, (A (w))x(w) = (AT(w)ZMT + A (w)Cr(w) + Ko (w))Xx(w) =0,
where M, =M, C, =2rTM+ Cand K. =M+ 7C+ K is

nonsingular.

> Shift point 7 is chosen in the right half plane, ideally near the
expected eigenvalue location.

> Consider reverse polynomial, then evs near = become large in
modulus, while evs far away from 7 become small.
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Linearization, first order form.

We use classical companion linearization (first order form)
Ar(w)V(w) = prBr(w)v(w)

with

A i Rl A el
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Ly Shift and invert Arnoldi

> Compute ev and evec approximations near shift = via
shift-and-invert Arnoldi method.

> Given vy € C" and W € C™", the Krylov subspace of C" of
order k associated with W is

]Ck(W, Vo) = Span{vo, Wv, W2Vo..., Wk Vo}.
> Arnoldi obtains orthonormal basis Vj of this space and
WV, = ViH + fe,’;,

> Columns of Vi approx. k-dim. invariant subspace of W.

> Evs of Hi approximate evs of W associated to V.

> Apply with shift 7 and frequency w to W = B, (w) A, (w).
Per step we multiply with A, (w) and solve system with B, (w).
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Ly SVD projection

> Construct measurement matrix V € R™ ™ containing
‘'unstable’ evecs for a set of wj,

V = [V(w1), V(wg), V(w3), V(wk)]
> Perform (partial) SVD V = UxZ"

o1
op
V:[a17[]27"'aukm] g3 [217227"'721(171]’-,

Okm

with U, Z unitary.
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> Use approximation

01
o2
V=i, U, ..., Ud 73 (21,2, ..., 24])"

Od

by deleting 041,042, ...0km that are small.
(Actually these are not even computed).

> Choose Q = [y, U, . . ., Ugy] to project P,(\) or dynamical
system.
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Results real brake model
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Ly Assessing ‘accuracy of evs’

Do we believe we got have a good space?

> Forward error: As = |Aexact — Acomputed|

> Backward error: smallest in norm perturbation A, to M, C, K
such that v, \ satisfies QEVP defined by perturbed matrices
M C K

> Computation of backward error: Ap(\) = \A|y|(|?/12|,|\ﬁ;|ﬁc+||,i)|l|l;<n

> The pseudospectrum gives the level curves of Apy(\).
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&y Pseudospectrum of a toy brake model
Brake model with 5000 dof, one of the springs had stiffness 10'8.

Pseudospectrum
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Ly Pseudospectrum of a toy brake model

Brake model corrected with modeling high stiffness as rigid link.

Pseudospectrum
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Ay Results with new POD method

Industrial model 1 million dof
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> Solution for every w

» Solution with 300 dimensional TRAD subspace ~ 30 sec
» Solution with 100 dimensional POD subspace ~ 10 sec

Pilsen MOR 2015, IlI 33/60



Ly Intermediate Conclusions

> New POD approach captures modal information better than
traditional one, but slower.

> Current numerical linear algebra methods are not efficient (in
particular those in commercially codes).

> Discrete FE and quasi-uniform grids followed by expensive
model reduction is really a waste.

> Can we combine FE modeling and eigenvalue computation for
modal truncation or other MOR methods?

> Can we get error estimates and adaptivity? (AFEM , AMLS).
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O Adaptive Finite Elements for evp
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Ly Adapative Finite Element Method

> Adaptive Finite Element methods refine the mesh where
necessary, and coarsen where solution is well represented.

> They use a priori and a posteriori error estimators to get
information about the discretization error.

> They are well established for PDE boundary value problems.

> But here we want to use them for PDE eigenvalue problems,
which is much harder.

> And in the brake problem we do not have a PDE.
> Furthermore we have a parametric problem.
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Ly Adaptive FEM

Solve — Estimate — Mark — Refine
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Ly Model problem: Elliptic PDE evp

Consider a model problem like the disk brake without damping,
gyroscopic, circulatory terms and reasonable geometry.

Au = \u inQ
u = 0 onoQ

This is just the traditional approach that is used in industry.
(Note —\? in brake problem).
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% Weak formulation

Weak formulation:
Determine ev/e.-function pair (A\,u) € R x V :=R x H'(Q; R)
with b(u,u) = 1 and
a(u,v) =b(u,v) foralveV,
where the bilinear forms a(-, -) and b(-, -) are defined by

a(u, v) ::/Vu-Vvdx, b(u, v) ::/uvdx foru,ve V.
Q Q

Induced norms ||-[| := ||y on V and ||-|| := ||-[liz() on L*(R).
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Ly Discrete/algebraic evp

Determine ev./e.-function pair (A, u;) € R x V, with b(u, uy) = 1
and

a(ug, vo) = \eb(ug, vy) forall v, € V,.
Use coordinate representation to get finite-dim. generalized evp
Ang = )\ngXg

with stiffness matrix A, = [a(vi, ¥))]ij=1,..n,, MaAsSS matrix
B, = [b(wi, ¥j))ij=1....n,, in nodal basis V, = {¢1,...,¢n,}-
Discrete eigenvector: x, =: [X¢1,. .., Xen,] -
Approximated eigenfunction:

N,

U= Xekpr € Vi

k=1
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% Error estimation

This approach includes several errors:

> Model error (PDE model vs. Physics)

> Discretization error (finite dim. subspace)

> Error in eigenvalue solver (iterative method)
> Roundoff errors in finite arithmetic.

An error estimator 7, is called efficient and reliable if there exist
mesh-size independent constants C.;; C, such that

Ceffnﬂ S |||U - UZm S CrelTM-
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Ay A posteriori error estimate

Estimate the error a posteriori via
A= Aol + llu = uel® S = Nues — .

Here < denotes an inequality that holds up to a multiplicative

constant.
A posteriori error estimators for Laplace eigenvalue problem

Grubisic/Ovall 2009, M./Miedlar 2011, Neymeyr 2002
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Ay AFEMLA M./Miedlar 2011

> Compute approx. eigenpair (Ay, X4) on the coarse mesh,
> use iterative solver, i.e. Krylov subspace method,

> but do not solve very accurately, stop after a few steps or
when tolerance tol is reached.

> Balance residual vector and error estimate Miedlar 2011.

adaptive discretization adaptive discretization

Y

o, o, Q, 9, 0, Q,

solution of eigenvalue problem

solution of eigenvalue problem

Standard AFEM AFEMLA
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Conv. history AFEMLA
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Conwv. first 3 evs, L-shape domain.
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Ky Intermediate Conclusion

> For purely elliptic problems we can compute evs and
efunctions very efficiently.

> Can be used to compute the subspace for the traditional
approach.

> We have a priori/a posteriori error estimates which allow to
adapt the mesh to the solution behavior.

> With the AFEMLA approach we can even work in a purely
algebraic way if the underlying PDE is not available.

> It works also for several evs at a time (invariant subspaces).

> Proof of convergence M./Miedlar 2011 if saturation property
holds. Proof Carstensen/Gedicke/M./Miedlar 2013.

> So we can do the traditional approach also with adaptivity and
tune in to the dominant evs.

> But we want this for the full model.
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Ay Non-selfadjoint problems

> Gan we modify ideas for general problem?

> We need to deal with left and right evecs, complex evs, Jordan
blocks.

> What are the right spaces and norms?
> Let us bring the nonsymmetry in via homotopy.

H(t)=(1—1t)Lo+tLy forte0,1],

where Lou := —Au.
Discrete homotopy for the model eigenvalue problem:

Ho(t) = (Ac+ C)(1) = (1 — A + t(A; + C)) = A, + {Cy.
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Ly A non-self-adjoint model problem

Carstensen/Gedicke/M./Miedlar 2012
Convection-diffusion eigenvalue problem:

—Au+~v-Vu=X\uinQ and u=0on0Q2
Discrete weak primal and dual problem:

a(ug, vo) + c(up, vo) = \ob(up, v,) forall v, € V,,
a(Wg, U;) + C(Wg, Uz) = )\_;b(Wg, Uz) for all w, € V,.

Generalized algebraic eigenvalue problem:
(Ag -+ Cg)Ug = )\ngUg and UE(A@ + Cg) = )\EU;BE

Smallest real part ev. is simple and well separated Evans "00.
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Ay A posteriori error estimator

Theorem (Carstensen/Gedicke/M./Miedlar 2012)

For model problem, the difference between the approx. ev. \(t)
in the homotopy H,(t) and the ev. \(1) of the original problem
can be estimated via

INT) = XDl S v(helt), Te(t), T (
+ P (Ne(t), Tu(t), T

) +n?(Ae(t), Ge(t), T (1))
(1)

in terms of

v(Ral), Be(0), BE(D)) = (1 = D17 le (1B + 1B )
£ (1= Dl (nCa(0), B0, TE() + (D), (D), T(1) )
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Ly Adaptive homotopy algorithms

Algorithm 1: Balances the homotopy, discretization, iteration
errors but uses fixed stepsize in homotopy.

Algorithm 2: Adaptivity in homotopy and iteration via stepsize
control, discretization error is not decreased.

Algorithm 3: Adaptivity in the homotopy error, the discretization
error, the iteration error including step size control.

e e
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Convergence History
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Figure: Conv. history of Algorithm 1, 2 and 3 with respect to #DOF.
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Convergence History
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Ly Intermediate Conclusions

> Extension of backward error analysis to PDE case Miedlar
2011/2014

> Error estimates for hp-finite elements for non-self-adjoint PDE
evps Giani/Grubisic/Miedlar/Ovall 2014

> Multiple evs self-adjoint case Galistil 2014

> No results on multiple, complex evs, Jordan blocks in
non-self-adjoint case.

> Highly oscillatory eigenfunctions can only be captured with
fine grids.
> Can we enrich the ansatz space with these eigenfunctions?
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‘ Automated multilevel substructuring
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Ly AMLS

Compute smallest evs of self-adjoint evp (AM — K)x = 0 with
M. K pos. def. as in traditional approach. Bennighof-Lehougq
2004

> Use symmetric reordering of matrix to block form or use
directly domain decomposition partition. (AM — K)x = 0, with

B
=]

EE ]
structure Bl

> Compute block Cholesky factorization of M = LDLT and form
K=L"'KLT.

> Gompute smallest evs and evecs of 'substructure’ evps
(A\D; — Kjj)X; and project large problem (modal truncation).

> Solve projected evp.
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Ly Analysis of AMLS

> This produces locally global (spectral) ansatz functions in
substructure.

> This is a domain decomposition approach, where efunctions
are used in substructures.

> Substructure efunctions are sparsely represented in FE basis.

> Analysis only for self-adjoint case and real simple evs.

> Works extremely well for mechanical structures with little
damping.

> Does not work for brake problem.
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Ly Conclusions lll, a.

> Using fine mesh and MOR usually works, but is a waste.

> Using evecs, efunctions or singular values can be combined
with other MOR approaches.

> Error estimates are needed for non-self-adjoint case, multiple
evs, complex evs, in combination with MOR methods.

> Enrich FEM ansatz space with approximate/substructure
eigenfunctions?
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% Conclusions Il b.

> MOR is a topic to stay.
> Need to identify which problem we want to solve.

> Combination of adaptive FEM and AMLS type approaches
with MOR methods.
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Thank you very much
for your attention.
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