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Model based approach

Physical system
↙ ↘

Modeling Modeling

↓ ↓

ODE/DAE ←− semidiscr . PDE

↓
Mod. reduction

↓

Reduced ODE/DAE −→ Sim., Control
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Parametric MOR

How to get a reduced order model depending on parameters?
. Semidiscretization in space using FV, FE, FD =⇒ large scale

ODE/DAE-control problem (with parameters).
. Project on a subspace that captures the dynamics in a large

range of the parameters.
. We can use all the methods as before, survey by Benner,

Gugercin, Willcox, enriched by sampling of the parameter
space.

. Reduced basis approach, books A. Quarteroni, A. Manzoni, F.
Negri, A. Quarteroni, G. Rozza
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Sparse representation of PDE solutions

Given PDE model that describes the space-time behavior.
. Numerical solution of PDE Ly = f , with differential operator L

in a domain Ω ⊂ Rd with boundary Γ and BC on Γ. Data and
solution depending on parameters (controls).

. Let V be an ansatz function space in which we know or expect
the solution to be, (depending on parameters, controls).

. Choose another (or the same) spaceW as test space.

. Classical Galerkin or Petrov-Galerkin approach: Seek solution
y in some finite dimensional ansatz space Vn ⊂ V (spanned
by) B = {φ1, . . . , φn}, i.e. y =

∑n
i=1 yi φi and (Ly − f ,w) = 0 or

|(Ly − f ,w)| < ε for all w ∈W .
How sparse can we get?
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Different Questions

. What is a good space V, so that y can be sparsely
represented/approximated in V (for a large parameter range)?

. Good space for forward or for optimization/control problem?

. What is a good basis of Vn so that u can be sparsely
represented/approximated.

. What are conditions for the basis so that the finite dimensional
version Lnyn = fn is easy to solve for many parameters?

. Is there a ’eierlegende Wollmilchsau’, a swiss army knife?

Can only be answered for specific application.
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Brake Squeal

. Disc brake squeal is a frequent and annoying phenomenon
(with cars, trains, bikes).

. Important for customer satisfaction, even if not a safety risk.

. Nonlinear effect that is hard to detect in experiments.

. The car industry is trying for decades to improve this, by
changing the designs of brake and disc.

Can we do this model based?
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Model based approach

Interdisciplinary project with car manufacturers + SMEs
Supported by German Minist. of Economics via AIF foundation.
University: N. Gräbner, U. von Wagner, TU Berlin, Mechanics,
N. Hoffmann, TU Hamburg-Harburg, Mechanics,
S. Quraishi, C. Schröder, TU Berlin Mathematics.
Goals:
. Develop model of brake system with all effects that may cause

squeal. (Friction, circulatory, gyroscopic effects, etc).
. Simulate brake behavior for many different parameters (disk

speed, material geometry parameters).
. Our task: Model reduction, solution of eigenvalue problems.
. Long term: Stability/bifurcation analysis for a given parameter

region.
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Experiment

1

. Experiments indicate nonlinear behavior (subcritical Hopf
bifurcation)→ film.

1Institute f. Mechanics, TU Berlin
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Modeling on microscale

Atomistic scale: Many damped harmonic oscillators: Langevin
equation.

mq̈(t) + dq̇(t) + kq(t) = ξ(t),

. m mass, k stiffness.

. d describes damping and dissipation effects, (very difficult to
model in practice).

. ξ is the Langevin complementary force random force, d and ξ
are frequency dependent.

Not a good model for simulation and definitely not for
optimization.
Errors and uncertainties very hard to quantify.
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Modeling in industrial practice, macroscale
Multi-body system based on Finite Element Modeling (FEM)

. Write displacements of structure z(x , t) as linear combination
of basis functions (e.g. but not always piecewise polynomials),

z(x , t) ≈
N∑

i=1

qi(t)φi(x , t).

. Integrate against test functions (Petrov Galerkin)→
discretized model for the vibrations in weak form.

. Add friction and damping as macroscopic surrogate model
fitted from experimental data.

. Simplifications: Remove some nonlinearities, asymptotic
analysis for small parameters, etc.

. Produce reduced order model for large parameter set?
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FE model

2

Figure: View of the brake model

2Institut für Mechanik, TU Berlin
Pilsen MOR 2015, III 13 / 60



Brake pad

3

Figure: View of the brake model

3Institute f. Mechanics TU HH
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Mathematical model details
Large differential-algebraic equation (DAE) system and evp
dep. on parameters (here only disk speed displayed).

Mq̈ + (C1 +
ωr

ω
CR +

ω

ωr
CG)q̇ + (K1 + KR + (

ω

ωr
)2KG)q = f ,

. M symmetric, pos. semidef., singular matrix (constraints),

. C1 symmetric matrix, material damping,

. CG skew-symmetric matrix, gyroscopic effects,

. CR symmetric matrix, friction induced damping,
(phenomenological)

. K1 symmetric stiffness matrix,

. KR nonsymmetric matrix modeling circulatory effects,

. KG symmetric geometric stiffness matrix.

. ω rotational speed of disk with reference velocity ωr .
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Nature of FE matrices

n = 842,638, ωr = 5, ω = 17× 2π
matrix pattern 2-norm structural

rank
M symm 5e-2 842,623
C1 symm 1e-19 160
CG skew 1.5e-1 217500
CR symm 7e-2 2120
K1 symm 2e13 full
KR - 3e4 2110
KG symm 40 842,623
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Model evaluation, challenges

This is really a hierarchy and mixture of models.
. FE Model hierarchy: grid hierarchy, type of ansatz functions,

component and domain decomposition.
. Coupled with surrogate model for friction and damping?
Challenges
. Are the simplifications: nonlinear/linear, expansion of small

parameters justified?
. We do not really have a PDE, error estimates, adaptivity?
. Parametric reduced model for optimization, control, bifurcation

analysis?
. Good subspace in function space or coordinate space?
This is a wave problem, eigenspaces seem a good choice.
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Modal truncation

. Ansatz q(t) = eλtu gives a quadratic eigenvalue problem
(QEP):

Pω(λ)u = (λ2M + λC(ω) + K (ω))u = 0.

. Want evs with positive real part (few, ideally one, since squeal
is mono-frequent) and corresponding evecs.

. Likelihood of a brake to squeal is correlated with magnitude of
positive real part of eigenvalue.

. Objective: Efficient method to compute evs in right half plane
for many parameter values e.g. ω ∈ (2π, 2π × 20).
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Projection approach

Determine subspace spanned by columns of matrix Q,
. Project QEP: Pω(λ)x = (λ2M + λC(ω) + K (ω))x = 0 or

dynamical system into small d-dimensional subspace that is
independent of ω.

. projected QEP
I P̃ω(λ) = QT Pω(λ)Q = λ2QT MQ + λQT C(ω)Q + QT K (ω)Q

. How to choose Q?
I Sufficiently accurate approximation of evs with positive real part
I Ideally Q should contain good approximations to the desired

evecs for all parameter values
I One should be able to construct Q in a reasonable amount of

computing time.
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Traditional approach in industry

. Traditional approach to get a subspace Q:
I QTRAD:=dominant eigenvectors (i.e. eigenvectors with smallest

eigenvalues) of generalized evp L(λ) = (µM − K1 − KG)

. Advantages:
I One only has to solve a large, sparse, symmetric, definite GEVP.

. Disadvantages:
I Subspace does not take into account damping and parameter

dependence.
I Often poor approximation of evs/evecs of the full model.

Pilsen MOR 2015, III 21 / 60



DMD/POD

Use idea from proper orthogonal decomposition (POD) or
dynamic mode decomposition (DMD).
. Compute matrices of eves X (ωi) corresponding to right half

plane evs for full QEP Pω(λ)x = 0 and sample parameters
ω1, ω2, ..., ωp

. Construct measurement matrix
X̃ = [X (ω1), X (ω2), X (ω3) · · · X (ωp)] containing computed
snapshot evecs.

. Extract dominant directions in X̃ by a truncated singular
value decomposition.

Same space can also be used with other approaches.
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Spectral transformation

Consider full problem Pω(λ)x = 0.
. Set λτ (ω) = λ(ω)− τ , where τ is such that det(Pω(τ)) 6= 0.
. New parametric QEP

Pω,τ (λ(ω))x(ω) = (λτ (ω)2Mτ + λτ (ω)Cτ (ω) + Kτ (ω))x(ω) = 0,

where Mτ = M, Cτ = 2τM + C and Kτ = τ 2M + τC + K is
nonsingular.

. Shift point τ is chosen in the right half plane, ideally near the
expected eigenvalue location.

. Consider reverse polynomial, then evs near τ become large in
modulus, while evs far away from τ become small.
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Linearization, first order form.

We use classical companion linearization (first order form)

Aτ (ω)v(ω) = µτBτ (ω)v(ω)

with[
Kτ (ω) 0

0 In

] [
v(ω)

µτ (ω)v(ω)

]
= µτ (ω)

[
−Cτ (ω) −Mτ

In 0

] [
v(ω)
µτv(ω)

]
.
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Shift and invert Arnoldi
. Compute ev and evec approximations near shift τ via

shift-and-invert Arnoldi method.
. Given v0 ∈ Cn and W ∈ Cn×n, the Krylov subspace of Cn of

order k associated with W is

Kk (W , v0) = span{v0,Wv0,W 2v0...,W k−1v0}.

. Arnoldi obtains orthonormal basis Vk of this space and

WVk = VkHk + fe∗k ,

. Columns of Vk approx. k -dim. invariant subspace of W .

. Evs of Hk approximate evs of W associated to Vk .

. Apply with shift τ and frequency ω to W = Bτ (ω)−1Aτ (ω).
Per step we multiply with Aτ (ω) and solve system with Bτ (ω).

Pilsen MOR 2015, III 26 / 60



SVD projection

. Construct measurement matrix V ∈ Rn,km containing
’unstable’ evecs for a set of ωi ,

V = [V (ω1),V (ω2),V (ω3), ...V (ωk )]

. Perform (partial) SVD V = UΣZ H

V = [ũ1, ũ2, . . . , ũkm]


σ1

σ2

σ3
. . .

σkm

 [z̃1, z̃2, . . . , z̃km]H

with U,Z unitary.
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Compression

. Use approximation

Ṽ ≈ [ũ1, ũ2, . . . , ũd ]


σ1

σ2

σ3
. . .

σd

 [z̃1, z̃2, . . . , z̃d ]H

by deleting σd+1, σd+2, ...σkm that are small.
(Actually these are not even computed).

. Choose Q = [ũ1, ũ2, . . . , ũd ] to project Pω(λ) or dynamical
system.
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Results real brake model
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Assessing ’accuracy of evs’

Do we believe we got have a good space?
. Forward error: ∆f = |λexact − λcomputed |
. Backward error: smallest in norm perturbation ∆b to M,C,K

such that ṽ , λ̃ satisfies QEVP defined by perturbed matrices
M̃, C̃, K̃

. Computation of backward error: ∆b(λ) = ‖(λ2M+λC+K )‖
|λ|2‖M‖+|λ|‖C‖+‖K‖

. The pseudospectrum gives the level curves of ∆b(λ).
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Pseudospectrum of a toy brake model
Brake model with 5000 dof, one of the springs had stiffness 1018.
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Pseudospectrum of a toy brake model
Brake model corrected with modeling high stiffness as rigid link.
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Results with new POD method
Industrial model 1 million dof

. Solution for every ω
I Solution with 300 dimensional TRAD subspace ∼ 30 sec
I Solution with 100 dimensional POD subspace ∼ 10 sec
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Intermediate Conclusions

. New POD approach captures modal information better than
traditional one, but slower.

. Current numerical linear algebra methods are not efficient (in
particular those in commercially codes).

. Discrete FE and quasi-uniform grids followed by expensive
model reduction is really a waste.

. Can we combine FE modeling and eigenvalue computation for
modal truncation or other MOR methods?

. Can we get error estimates and adaptivity? (AFEM , AMLS).
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Adapative Finite Element Method

. Adaptive Finite Element methods refine the mesh where
necessary, and coarsen where solution is well represented.

. They use a priori and a posteriori error estimators to get
information about the discretization error.

. They are well established for PDE boundary value problems.

. But here we want to use them for PDE eigenvalue problems,
which is much harder.

. And in the brake problem we do not have a PDE.

. Furthermore we have a parametric problem.
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Adaptive FEM

Solve→ Estimate→ Mark→ Refine
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Model problem: Elliptic PDE evp

Consider a model problem like the disk brake without damping,
gyroscopic, circulatory terms and reasonable geometry.

∆u = λu in Ω
u = 0 on ∂Ω

This is just the traditional approach that is used in industry.
(Note −λ2 in brake problem).

Pilsen MOR 2015, III 38 / 60



Weak formulation

Weak formulation:
Determine ev/e.-function pair (λ,u) ∈ R× V := R× H1(Ω;R)
with b(u,u) = 1 and

a(u, v) = λb(u, v) for all v ∈ V ,

where the bilinear forms a(·, ·) and b(·, ·) are defined by

a(u, v) :=

∫
Ω

∇u · ∇v dx , b(u, v) :=

∫
Ω

uv dx for u, v ∈ V .

Induced norms |||·||| := |·|H1(Ω) on V and ‖·‖ := ‖·‖L2(Ω) on L2(Ω).
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Discrete/algebraic evp
Determine ev./e.-function pair (λ`,u`) ∈ R× V` with b(u`,u`) = 1
and

a(u`, v`) = λ`b(u`, v`) for all v` ∈ V`.

Use coordinate representation to get finite-dim. generalized evp

A`x` = λ`B`x`

with stiffness matrix A` = [a(ϕi , ϕj)]i,j=1,...,N`
, mass matrix

B` = [b(ϕi , ϕj)]i,j=1,...,N`
, in nodal basis V` = {ϕ1, . . . , ϕN`

}.
Discrete eigenvector: x` =: [x`,1, . . . , x`,N`

]T .
Approximated eigenfunction:

u` =

N∑̀
k=1

x`,kϕk ∈ V`.
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Error estimation

This approach includes several errors:
. Model error (PDE model vs. Physics)
. Discretization error (finite dim. subspace)
. Error in eigenvalue solver (iterative method)
. Roundoff errors in finite arithmetic.
An error estimator η` is called efficient and reliable if there exist
mesh-size independent constants Ceff Crel such that

Ceffη` ≤ |||u − u`||| ≤ Crelη`.
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A posteriori error estimate

Estimate the error a posteriori via

|λ− λ`|+ |||u − u`|||2 . η2
` := |||u`−1 − u`|||2.

Here . denotes an inequality that holds up to a multiplicative
constant.
A posteriori error estimators for Laplace eigenvalue problem
Grubisic/Ovall 2009, M./Miedlar 2011, Neymeyr 2002
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AFEMLA M./Miedlar 2011
. Compute approx. eigenpair (λ̃H , x̃H) on the coarse mesh,
. use iterative solver, i.e. Krylov subspace method,
. but do not solve very accurately, stop after a few steps or

when tolerance tol is reached.
. Balance residual vector and error estimate Miedlar 2011.

Standard AFEM AFEMLA
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Conv. history AFEMLA
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Conv. first 3 evs, L-shape domain.
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Intermediate Conclusion
. For purely elliptic problems we can compute evs and

efunctions very efficiently.
. Can be used to compute the subspace for the traditional

approach.
. We have a priori/a posteriori error estimates which allow to

adapt the mesh to the solution behavior.
. With the AFEMLA approach we can even work in a purely

algebraic way if the underlying PDE is not available.
. It works also for several evs at a time (invariant subspaces).
. Proof of convergence M./Miedlar 2011 if saturation property

holds. Proof Carstensen/Gedicke/M./Miedlar 2013.
. So we can do the traditional approach also with adaptivity and

tune in to the dominant evs.
. But we want this for the full model.
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Non-selfadjoint problems

. Can we modify ideas for general problem?

. We need to deal with left and right evecs, complex evs, Jordan
blocks.

. What are the right spaces and norms?

. Let us bring the nonsymmetry in via homotopy.

H(t) = (1− t)L0 + tL1 for t ∈ [0,1],

where L0u := −∆u.
Discrete homotopy for the model eigenvalue problem:

H`(t) = (A` + C`)(t) = (1− t)A` + t(A` + C`) = A` + tC`.
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A non-self-adjoint model problem

Carstensen/Gedicke/M./Miedlar 2012
Convection-diffusion eigenvalue problem:

−∆u + γ · ∇u = λu in Ω and u = 0 on ∂Ω

Discrete weak primal and dual problem:

a(u`, v`) + c(u`, v`) = λ`b(u`, v`) for all v` ∈ V`,

a(w`,u?` ) + c(w`,u?` ) = λ?`b(w`,u?` ) for all w` ∈ V`.

Generalized algebraic eigenvalue problem:

(A` + C`)u` = λ`B`u` and u?`(A` + C`) = λ?`u
?
`B`

Smallest real part ev. is simple and well separated Evans ’00.
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A posteriori error estimator

Theorem (Carstensen/Gedicke/M./Miedlar 2012)

For model problem, the difference between the approx. ev. λ̃`(t)
in the homotopy H`(t) and the ev. λ(1) of the original problem
can be estimated via

‖λ(1)− λ̃`(t)‖ . ν(λ̃`(t), ũ`(t), ũ?` (t)) + η2(λ̃`(t), ũ`(t), ũ?` (t))

+ µ2(λ̃`(t), ũ`(t), ũ?` (t))

in terms of

ν(λ̃`(t), ũ`(t), ũ?` (t)) := (1− t)‖γ‖∞ (|||ũ`(t)|||+ |||ũ?` (t)|||)

+ (1− t)‖γ‖∞
(
η(λ̃`(t), ũ`(t), ũ?` (t)) + µ(λ̃`(t), ũ`(t), ũ?` (t))

)
.
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Adaptive homotopy algorithms
Algorithm 1: Balances the homotopy, discretization, iteration
errors but uses fixed stepsize in homotopy.
Algorithm 2: Adaptivity in homotopy and iteration via stepsize
control, discretization error is not decreased.
Algorithm 3: Adaptivity in the homotopy error, the discretization
error, the iteration error including step size control.
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Figure: Conv. history of Algorithm 1, 2 and 3 with respect to #DOF.
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Figure: Conv. history of Algorithm 1, 2 and 3 with respect to CPU time.
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Intermediate Conclusions

. Extension of backward error analysis to PDE case Miedlar
2011/2014

. Error estimates for hp-finite elements for non-self-adjoint PDE
evps Giani/Grubisic/Miedlar/Ovall 2014

. Multiple evs self-adjoint case Galistil 2014

. No results on multiple, complex evs, Jordan blocks in
non-self-adjoint case.

. Highly oscillatory eigenfunctions can only be captured with
fine grids.

. Can we enrich the ansatz space with these eigenfunctions?
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AMLS
Compute smallest evs of self-adjoint evp (λM − K )x = 0 with
M,K pos. def. as in traditional approach. Bennighof-Lehouq
2004
. Use symmetric reordering of matrix to block form or use

directly domain decomposition partition. (λM̃ − K̃ )x = 0, with

structure
. Compute block Cholesky factorization of M̃ = LDLT and form

K̂ = L−1K̃ L−T .
. Compute smallest evs and evecs of ’substructure’ evps

(λDii − K̂ii)xi and project large problem (modal truncation).
. Solve projected evp.
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Analysis of AMLS

. This produces locally global (spectral) ansatz functions in
substructure.

. This is a domain decomposition approach, where efunctions
are used in substructures.

. Substructure efunctions are sparsely represented in FE basis.

. Analysis only for self-adjoint case and real simple evs.

. Works extremely well for mechanical structures with little
damping.

. Does not work for brake problem.
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Conclusions III, a.

. Using fine mesh and MOR usually works, but is a waste.

. Using evecs, efunctions or singular values can be combined
with other MOR approaches.

. Error estimates are needed for non-self-adjoint case, multiple
evs, complex evs, in combination with MOR methods.

. Enrich FEM ansatz space with approximate/substructure
eigenfunctions?
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Conclusions III b.

. MOR is a topic to stay.

. Need to identify which problem we want to solve.

. Combination of adaptive FEM and AMLS type approaches
with MOR methods.
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Thank you very much
for your attention.
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