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Project MORE

• Implicitly constituted material models: from theory through model reduction to
efficient numerical methods (5 year ERC-CZ project MORE financed by the
Ministry of Education, Youth and Sports since September 2012)

• Team members: M. Bulíček, E. Feireisl, J. Hron, V. Pr ‌uša, I. Pultarová,
O. Souček, E. Süli (Oxford), Z. Strakoš, M. Vohralík (INRIA), M. T ‌uma

• Advisory board members: M. Benzi (Atlanta), K.R. Rajagopal (Texas A&M
University), R. Rannacher (Heidelberg), G. Seregin (Oxford, St. Petersburg)

• two postdoc positions since February 2013 taken by 6 postdocs in 2013:
Y. Lu, G. Tierra, M. Pokojovy

• six Ph.D. scholarships: J. Blechta, T. Gergelits, A. Janečka, J. Papež,
M. Řehoř, J. Žabenský [M. Netušil, V. Orava, K. T ‌uma]
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Fluid and Solid Mechanics

• concept of continuum
• balance of equations

• conservation of mass, energy

• principles of classical Newtonian mechanics applied to subsets of the body:
d
dt

(mv) = F with v = dχ
dt

• boundary conditions
• initial conditions

Insufficient to predict the deformation/flow/evolution of the body
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Contents

• Examples of standard linear constitutive equations

• Implicit constitutive theory and its advantages

• Commercial break

• Impact of implicit constitutive theory on PDE analysis of initial and
boundary value poblems
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A. Compressible Navier-Stokes equations

∂ρ

∂t
+ div (ρv) = 0

∂(ρv)

∂t
+ div (ρv ⊗ v) = divT + ρb

T = −p(ρ)I + 2νD + λ(div v)I

T is the Cauchy stress D = 1
2

[
(∇v) + (∇v)T

]

m :=
1
3
TrT S := T− 1

3
(TrT)I Aδ := A− 1

3
(TrA)I

m + p(ρ) =
2ν + 3λ

3
div v m + p(ρ) ∼ div v

S = 2νDδ S ∼ Dδ
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B. Incompressible Navier-Stokes equations

div v = 0

ρ

(
∂v
∂t

+ div (v ⊗ v)

)
= divT + ρb = ∇m + div S + ρb

S = 2νD S ∼ D

Boundary conditions

• v · n = 0 on ∂Ω

• constitutive equation involving vτ and/or (−Tn)τ

s := (−Tn)τ zτ := z− (z · n)n

Tδ = 2ν∗D with ν∗ > 0 S ∼ D Navier-Stokes fluid
s = γ∗vτ with γ∗ > 0 s ∼ vτ Navier’s slip boundary condition
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C. Compressible elastic neo-Hookean solid

∂ρ

∂t
+ div (ρv) = 0

∂(ρv)

∂t
+ div (ρv ⊗ v) = divT + ρb

T = µ(B− I) T ∼ B
∂B
∂t

+∇B · v − (∇v)B− B(∇v)T = O

B is the left Cauchy-Green stretch tensor B = (I +∇u)
(
I + (∇u)T

)

For static problems assuming |∇u| = δ << 1

divT = 0

T = 2µ ε(u) + σ(div u)I ε(u) = 1
2

(
∇u + (∇u)T

)
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D. Flows through porous rigid media

∂ρf

∂t
+ div

(
ρf vf

)
= 0

∂ρs

∂t
+ div (ρsvs) = 0

∂(ρf vf )

∂t
+ div

(
ρf vf ⊗ vf

)
= divTf + ρf b + m

∂(ρsvs)
∂t

+ div (ρsvs ⊗ vs) = divTs + ρsb−m

Simplifications leading to Brinkman-Darcy model

• solid is rigid

• density of the fluid is constant

div v = 0

ρ

(
∂v
∂t

+ div (v ⊗ v)

)
= ∇m + div S + m + ρb

S = 2ν∗D with ν∗ > 0 S ∼ D
m = α∗v with α∗ > 0 m ∼ v
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Constitutive relations

Linear constitutive relations

• compressible Navier-Stokes fluids m + p(%) ∼ div v Tδ ∼ Dδ
• incompressible Navier-Stokes fluids Tδ ∼ D
• Navier’s slip boundary conditions s ∼ vτ
• compressible neo-Hookean solid T ∼ B
• Brinkman-Darcy’s equation Tδ ∼ D m ∼ v

Implicit constitutive relations

• compressible fluids g(m + p(%), div v) = 0 g(Tδ,Dδ) = O
• incompressible fluids g(Tδ,D) = O
• boundary conditions h(s, vτ ) = 0

• compressible solid g(T,B) = O
• flows through porous media g(Tδ,D) = O h(m, v) = 0

Is this apparently simple generalization useful?
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Implicit constitutive theory includes two explicit
Standard approach:
Stress/force is a function of kinematical variables.

T = g(B) S = f(D) s = h(vτ )

Approach via implicit constitutive theory provides a useful alternative:
Kinematical variable is a function of stress/force.

B = g(T) D = f(S) vτ = h(s)

K. R. Rajagopal: On implicit constitutive theories, Appl. Math., Vol. 48, pp. 279–319 (2003)

K. R. Rajagopal: Elasticity of elasticity, Z. Angew. Math. Phys., Vol. 58, pp. 309–417 (2007)

K. R. Rajagopal: On the nonlinear elastic response of bodies in the small strain range, Acta
Mechanica, Vol. 225, pp. 1545–1553 (2014)

K. R. Rajagopal, A. R. Srinivasa: On the thermodynamics of fluids defined by implicit constitutive
relations, Z. Angew. Math. Phys., Vol. 59, pp. 715–729 (2008)

J. Málek, K. R. Rajagopal: Compressible generalized Newtonian fluids, Z. Angew. Math. Phys.,
Vol. 61, pp. 1097–1110 (2010)

S. Srinivasan, K. R. Rajagopal: A thermodynamic basis for the derivation of the Darcy,
Forchheimer and Brinkman models for flows through porous media and their generalizations,
International J. Non-linear Mechanics, Vol. 58, pp. 162–166 (2014)
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Examples where an alternative approach is very useful

• incompressible fluids with pressure dependent viscosity (and porosity)

• solids with bounded linearized strain

• compressible fluids with bounded divergence of the velocity

• activated materials such as Bingham fluids

• stick-slip boundary conditions

Further examples of nonlinear incompressible fluids (by graphs and formulas),
paying a special attention to symmetric role of S and D
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Incompressible fluids with pressure dependent
viscosity

S = 2µ∗ exp(α∗p)D - Barus fluids (1893) p = m := 1
3 TrT

T = f(D) =⇒ T = ΦI + f̂(D)
=⇒ the viscosity can depend only on TrD2 and TrD3 !!!

D = f(T) =⇒ the viscosity can depend TrT , TrT2 and TrT3
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Solids with bounded linearized strain

Is it possible to have models with a nonlinear relation between T and ε(u)?
Why?

• behavior of brittle materials near the crack tip

• concentrated loads resulting at small strain deformation

• to capture response analogous to mechanical analogs:

Spring

Wire

F

Spring

Wire

F

σ

ε

σ

ε

K. R. Rajagopal: Elasticity of Elasticity, Z. Angew. Math. Physics, Vol. 58, pp. 309–317 (2007)
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Solids with bounded linearized strain

Is it possible to have models with a nonlinear relation between T and ε(u)?

T = f(B) =⇒ linear Hooke’s elastic solid !!!

B = f(T) and |∇u| = δ << 1 =⇒ ε(u) = f̂(T)

Rajagopal’s “strain-limiting" model

ε(u) = β

(
1− exp

−λTrT
(1 + |T|b)1/b

)
I +

T
2µ (1 + κ|T| a)1/a

a, b, β, λ, µ, κ are positive constants

Linearization gives Hooke’s linear elasticity model

A. D. Freed: Soft Solids: A Primer to the Theoretical mechanics of Materials (2012)
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Compressible fluids with bounded div v

Implicit relations

g(m + p(%), div v) = 0 g(Tδ,Dδ) = O

includes

div v =
1
b

m + p(ρ)

(1 + |m + p(ρ)|a)1/a
a > 0, b > 0

g(Tδ,Dδ) = O

which implies

| div v| < 1
b

Consequently,

0 < ρ∗ ≤ ρ(0, ·) ≤ ρ∗ =⇒ 0 < ρ∗ exp(− t

b
) ≤ ρ(t, ·) ≤ ρ∗ exp(− t

b
)

E. Feireisl, X. Liao, J. Málek: Global weak solutions to a class of non-Newtonian compressible

fluids online first in Mathematical Methods in the Applied Sciences (2015)
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Bingham fluids

Standard description

|S| ≤ τ∗ ⇔ D = O
|S| > τ∗ ⇔ S = τ∗

D
|D| + 2ν∗D

is equivalent to

D =
1
2ν∗

(|S| − τ∗)+

|S|
S

x+ = max{x , 0}, ν∗ > 0, τ∗ ≥ 0

f(S,D) = D− 1
2ν∗

(|S| − τ∗)+

|S|
S
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Stick-slip boundary conditions

Threshold slip condition usually written as s := (Sn)τ

|s| ≤ σ∗ ⇔ vτ = 0

|s| > σ∗ ⇔ s = σ∗
vτ
|vτ |

+ γ∗vτ

can be equivalently rewritten as

γ∗vτ =
(|s| − σ∗)+

|s| s

x+ = max{x , 0}, γ∗ > 0, σ∗ ≥ 0

h(s, vτ ) = γ∗vτ −
(|s| − σ∗)+

|s| s
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Examples of constitutive relations

S = D
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Examples of constitutive relations

S = (1+ |D|2)
p−2
2 D
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Examples of constitutive relations

D = S+ (1+ |S|2)
2−p

2(p−1)S
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G. Tierra
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Examples of constitutive relations

D = (|S|−σ∗)+

|S| S
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Experimental data for colloidal suspensions

Can one describe such non-monotone response of fluid-like materials?

C. B. Holmes, M. E. Cates, M. Fuchs, P. Sollich: Glass transitions and shear thickening

suspension rheology, J. Rheology, Vol. 49, pp. 237–269 (2005)
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(Data fitted by Adam Janečka, Tereza Perlácová and Vít Pr‌uša.)

T. Perlácová, V. Pr ‌uša: Tensorial implicit constitutive relations in mechanics of incompressible

non-Newtonian fluids , J. Non-Newton. Fluid Mech., Vol. 216, pp. 13–21 (2015)
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Commercial break

• link PDE via functional
analysis description with the
finite dimensional computation

• preconditioning viewed as a
natural object of functional
analysis

• conjugate gradient method
viewed as a model reduction of
the original infinite dimensional
problem to n-dimensional
algebraic problem matching the
first 2n moments

• un-preconditioned conjugate
gradient method is understood
as an oxymoron
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Results of PDE analysis

PROBLEM

div v = 0
∂v
∂t

+ div(v ⊗ v)− div S = −∇p + b

f(S,D) = O

}
in QT

v · n = 0

h(s, vτ ) = 0

}
on ΣT

v(0, ·) = v0 in Ω

DATA

I Ω ⊂ Rd bounded open connected set with ∂Ω ∈ C1,1(d = 3)

I T > 0 and QT := (0,T )× Ω, ΣT := (0,T )× ∂Ω

I v0, b

I f and h - constitutive functions in QT and on ΣT

Plzeň/Pilsen J. Málek Implicitly constituted materials
25/42



Main questions addressed

UNKNOWNS triplet (v, p, S) defined on QT and s defined on ΣT

AIM
I To define object useful for computation and show its existence
I To establish large data existence of solution for any set of data (Ω, T , v0, b)
and for robust class of constitutive equations described by f and h
I To develop theory towards the class of models described through

D = α(TrT,Tr S2, trD2)S

I To develop a theory with integrable p
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Implicit formulation - maximal monotone r-graph
setting

(S,D) ∈ A ⇐⇒ f(S,D) = O

Assumptions (A is a maximal monotone r -graph with r = 2):

(A1) (O,O) ∈ A
(A2) Monotone graph: For any (S1,D1), (S2,D2) ∈ A

(S1 − S2) · (D1 − D2) ≥ 0

(A3) Maximal monotone graph: Let (S,D) ∈ Rd×d
sym × Rd×d

sym .

If (S− S̃) · (D− D̃) ≥ 0 ∀ (S̃, D̃) ∈ A then (S,D) ∈ A

(A4) r -graph with r = 2: There are α∗ > 0, c∗ ≥ 0 so that for any (S,D) ∈ A

S · D ≥ α∗
(
|D|r + |S|r

′)
− c∗
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Implicit formulation - maximal monotone 2-graph
setting

(s, vτ ) ∈ B ⇐⇒ h(s, vτ ) = 0

(B1) B contains the origin. (0, 0) ∈ B.
(B2) B is a monotone graph.

(s1 − s2) · (v1τ − v2τ ) ≥ 0 for all (s1, v1τ ), (s2, v2τ ) ∈ B.

(B3) B is a maximal monotone graph. Let for some (s, u) holds:

If (s̄− s) · (v̄τ − u) ≥ 0 for all (s̄, v̄τ ) ∈ B then (s, u) ∈ B.

(B4) B is a 2-graph. There are d∗ > 0 and n∗ ≥ 0 such that

s · vτ ≥ −c∗ + d∗(|vτ |2 + |s|2) for all (s, vτ ) ∈ B .

No-slip boundary condition is excluded by (B4).
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The existence theory for a Bingham fluid with threshold slip

Theorem
Let Ω ⊂ Rd be a C1,1 domain. Then for any v0 ∈ L20,div there exists

v ∈ L∞(0,T ; L2(Ω)d) ∩ L2(0,T ;W 1,2
n,div)

S ∈ L2(QT )d×d
sym , s ∈ L2(ΣT )d

p1 ∈ L2(QT ), p2 ∈ L
d+2
d+1 (0,T ;W 1, d+2

d+1 (Ω))

solving for almost all time t ∈ (0,T ) and for all w ∈W 1,∞
n

〈v′,w〉 −
∫

Ω

(v ⊗ v) · ∇w +

∫
Ω

S · D(w) +

∫
∂Ω

s · w =

∫
Ω

(p1 + p2) divw

and fulfilling

f(S,D(v)) = O a.e. in QT and h(s, vτ ) = 0 a.e. in ΣT

M. Bulíček, J. Málek: On unsteady internal flows of Bingham fluids subject to threshold slip on
the impermeable boundary, accepted for publication in "Recent Developments of Mathematical
Fluid Mechanics", series: Advances in Mathematical Fluid Mechanics, Birkhauser-Verlag (2014),
Preprint MORE/2013/06.
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Implicit formulation - maximal monotone ψ-graph
or r-graph setting

(S,D) ∈ A ⇐⇒ f(S,D) = O

Assumptions (A is a maximal monotone ψ-graph):

(A1) (O,O) ∈ A
(A2) Monotone graph: For any (S1,D1), (S2,D2) ∈ A

(S1 − S2) · (D1 − D2) ≥ 0

(A3) Maximal monotone graph: Let (S,D) ∈ Rd×d
sym × Rd×d

sym .

If (S− T̃δ) · (D− D̃) ≥ 0 ∀ (T̃δ, D̃) ∈ A then (S,D) ∈ A

(A4) ψ-graph: There are α∗ > 0, c∗ ≥ 0 so that for any (S,D) ∈ A

S · D ≥ α∗ (ψ(|D|) + ψ∗(|S|))− c∗
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Main result

Theorem
Let Ω ⊂ Rd and A satisfy the assumptions (A1)–(A4) with ψ fulfilling

c1s
r − c2 ≤ ψ(s) ≤ c3s

r̃ + c4 with r >
2d

d + 2

Then for any Ω ∈ C1,1 and T ∈ (0,∞) and for arbitrary

v0 ∈ L20,div, b ∈ L2(0,T ; L2(Ω)d) and σ∗ ≥ 0, γ∗ > 0

there exists weak solution to Problem.

M. Bulíček, P. Gwiazda, J. Málek, A. Świerczewska-Gwiazda: On Unsteady Flows of Implicitly
Constituted Incompressible Fluids, SIAM J. Math. Anal., Vol. 44, No. 4, pp. 2756–2801 (2012)

L. Diening, Ch. Kreuzer, E. Süli: Finite element approximation of steady flows of incompressible
fluid with implicit power-law-like rheology, SIAM J. Numer. Anal., Vol. 51, pp. 984-1015 (2013)
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Comments to the result

Novel tools:

• Structural assumptions (A1)–(A4) on f(S,D) = O
• Convergence lemma (its local character) =⇒ strict monotonicity not

needed

• Understanding the interplay between the chosen boundary conditions and
global integrability of p

• Lipschitz approximations of Sobolev-Orlicz and Bochner functions

D. Breit, L. Diening, S. Schwarzacher: Solenoidal Lipschitz truncation for parabolic PDE’s
Mathematical Models and Methods in Applied Sciences (M3AS), Vol. 23, No. 14, pp. 2671-2700
(2013)
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Generalized Minty’s method - Convergence lemma

Lemma
Let U ⊂ QT be arbitrary (measurable) and r ∈ (1,∞). Assume that

• A is a maximal monotone graph (satisfying (A2)–(A3))

• {Sn}∞n=1 and {Dn}∞n=1 satisfy

(Sn,Dn) ∈ A for a.a. (t, x) ∈ U

Dn ⇀ D weakly in Lr (U)d×d

Sn ⇀ S weakly in Lr′(U)d×d

lim sup
n→∞

∫
U

Sn · Dn dx dt ≤
∫
U

S · D dx dt.

Then
(S,D) ∈ A almost everywhere in U.

I Local version
I Last assumption suggests to use energy (entropy) inequality
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Generalized Darcy-Forchheimer’s equations

To find (m, v, p):

∇p + m = f in Ω

div v = 0 in Ω

h(m, v, p) = 0 in Ω

(v − v0) · n = 0 on Γ1

p − p0 = 0 on Γ2

• Example: m = α0 exp(α1p)|v|v

Theorem
Let Ω ⊂ Rd be Lipschitz and the implicit relation (parametrized by p) generate
maximal monotone r -graph with r ∈ (1,∞). Then there is a weak solution to
the problem.
Evenmore, if f = ∇g and the graph is strictly monotone at the origin, v0 · n = 0
on Γ1, then the pressure is bounded.

M. Bulíček, J. Málek, J. Žabenský: A generalization of the Darcy-Forchheimer equation involving
an implicit, pressure-dependent relation between the drag force and the velocity J. Math. Anal.
Appl., Vol. 424, No. 1, pp. 785-801 (2015)
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Generalized evolutionary Brinkman’s-Darcy
equations

∂tv − div(2ν(p, |D(v)|2)D(v)) +∇p + α(p, |v|, |D(v)|2)v = f in Ω

div v = 0 in Ω

(v − v0) · n = 0 on Γ1

p − p0 = 0 on Γ2

M. Bulíček and J. Žabenský
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Limiting strain model
Rajagopal’s limiting strain model

ε(u) = β

(
1− exp

−λTrT
(1 + |T|b)1/b

)
I +

T
2µ (1 + κ|T| a)1/a

a, b, β, λ, µ, κ are positive constants

Simplification

ε(u) =
T

(1 + |T| a)1/a
=⇒ ε(u) ∈ L∞ T ∈ L1

Problem formulation

− divT = 0, ε(u) =
T

(1 + |T| a)1/a
in B

Tν = g on ∂B

Compatibility condition - B simply connected open bounded subset

ε =
∇u + (∇u)T

2
⇐⇒ curlcurlε = 0
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Anti-Plane Stress Problem - Crack III Mode

Ω

g

g

ν

B = Ω× R and Ω ⊂ R2 is simply connected open set

u = u(x1, x2) = (0, 0, u(x1, x2)), g = (0, 0, g)

T =

 0 0 T13(x1, x2)
0 0 T23(x1, x2)

T13(x1, x2) T23(x1, x2) 0

 .
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Result
Introducing for i = 1, 2 the notation Di := ∂

∂xi
we say that U : Ω→ R solves

Problem P

−Di

(
DiU

(1 + |∇U|a)
1
a

)
= 0 in Ω

U = U0 on ∂Ω

Theorem
Let Ω ⊂ R2 be a simply connected domain with C 0,1 boundary consisting of two
parts: one is ’convex’ and the other is composed of finite number of flat parts
such that U0 is piecewisely constant there. Let further Ũ0 ∈W 1,∞(Ω) be such
that Ũ0|∂Ω = U0. Let a ∈ (0, 2). Then there is a unique weak solution
U ∈W 2,2

loc (Ω) to Problem P satisfying

U − Ũ0 ∈W 1,1
0 (Ω) ,(

∇U
(1 + |∇U|a)

1
a

,∇φ

)
= 0 for all φ ∈W 1,1

0 (Ω) .

M. Bulíček, J. Málek, K. R. Rajagopal, J. Walton: Existence of solutions for the anti-plane stress

for a new class of “strain-limiting" elastic bodies online in Calc. Var. (2015)
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Boundary conditions

U[Γ1] = a0 , (1a)

U[Γ2] = a0 , (1b)

U[Γ3] = a0 + F (
h

2
− x1) , (1c)

U[Γ4] = a0 + Fh , (1d)

U[Γ5] = a0 − F (x1 −
h

2
) , (1e)

U[Γ6] = a0 , (1f)

U[Γ7] = a0 . (1g)

For the computations we set F = 1,
a0 = 0.
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Numerical results - Stress distribution

Comparison of T23 for linear (left) and nonlinear (right) model.
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Numerical results - Strain distribution

Comparison of ε(u)23 for linear (left) and nonlinear (right) model.

V. Kulvait, J. Málek, K. R. Rajagopal: Anti-plane stress state of a plate with a V-notch for a new

class of elastic solids Int. J. Fract 179 (2013) 59–73.

L. Beck, M. Bulíček, E. Süli
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Conlusion

• implicit constitutive theory is a very useful framework from
modeller point of view

• generates new classes of systems of nonlinear PDEs of the first
order (mixed formulation)

• gives alternative way how to study problems, different
qualitative feature of involved quantities

• aim is to specify the concept of solution suitable for computer
simulations

• show in what precise sense this object exists
• general data and three-dimensional deformations/flows
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