Netas Center for Mathematical Modeling

. MOdelling REvisited + MOdel REduction

ERC-CZ project LL1202 - MORE

Ko

MINISTRY OF EDUCATION
YOUTH AND SPORTS

Implicitly constituted materials: from modelling

towards PDE-analysis

Josef Malek

Necas Center for Mathematical Modeling
and
Mathematical Institute of Charles University in Prague
Faculty of Mathematics and Physics

September 8, 2015

1
Plzen/Pilsen J. Malek Implicitly constituted materials /42 y



Project MORE

e Implicitly constituted material models: from theory through model reduction to
efficient numerical methods (5 year ERC-CZ project MORE financed by the
Ministry of Education, Youth and Sports since September 2012)

e Team members: M. Bulicek, E. Feireisl, J. Hron, V. Prusa, |. Pultarova,
O. Soucek, E. Siili (Oxford), Z. Strakos, M. Vohralik (INRIA), M. Tuma

e Advisory board members: M. Benzi (Atlanta), K.R. Rajagopal (Texas A&M
University), R. Rannacher (Heidelberg), G. Seregin (Oxford, St. Petersburg)

® two postdoc positions since February 2013 taken by 6 postdocs in 2013:
Y. Lu, G. Tierra, M. Pokojovy

® six Ph.D. scholarships: J. Blechta, T. Gergelits, A. Janecka, J. Papez,
M. Reho¥, J. Zabensky [M. Netusil, V. Orava, K. Tuma]
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Fluid and Solid Mechanics

e concept of continuum
e balance of equations

® conservation of mass, energy
® principles of classical Newtonian mechanics applied to subsets of the body:

%(mv) =F with v= ‘2—’;

e boundary conditions
e initial conditions

Insufficient to predict the deformation/flow/evolution of the body
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Contents
e Examples of standard linear constitutive equations
e Implicit constitutive theory and its advantages
e Commercial break

® Impact of implicit constitutive theory on PDE analysis of initial and
boundary value poblems
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A. Compressible Navier-Stokes equations

ap . .
iy +div(pv) =0
% +div(pv®@v) =divT + pb
T = —p(p)L + 2vD + A(div v)I

T is the Cauchy stress D= 1[(Vv)+(Vv)']

m:= lTrT S::T—E(TrT)]I As ::A—E(TrA)]I
3 3 3
2
m+ p(p) = V+3)\divv m+p(p) ~divv
S = 2vDs S ~ Ds
5
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B. Incompressible Navier-Stokes equations

divv=20

p<%+div(v®v)) =divT + pb = Vm +divS + pb

S =2uvD S~D

Boundary conditions
e v.-n=0on 0N

e constitutive equation involving v~ and/or (—=Tn)

s:=(—Tn), z;:=z—(z-n)n
Ts = 2v, D with v, >0 S ~ D Navier-Stokes fluid
s = 7«V, with 7. >0 s ~ v, Navier’s slip boundary condition
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C. Compressible elastic neo-Hookean solid

dp
ETs +div(pv) =0

+div(pv®v) =divT + pb
T=pB-1) T~B

9(pv)
ot

ng + VB -v— (Vv)B—B(Vv)"

B is the left Cauchy-Green stretch tensor B = (I+ Vu) (I+(Vu)")

For static problems assuming |[Vu| =6 <« 1

divT =0
T = 2u£(u) + o(divu)l c(u) =1 (Vu +(Vu) )
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Flows through porous rigid media

%+d|v< >=0

8t V) =0
D I N A W
ot —|—d|v(pv ®v)—d|v’]I‘ +p'b+m
8(/; )—|—d|v(psvs®v)—d|st—|—psb m

Simplifications leading to Brinkman-Darcy model
e solid is rigid

e density of the fluid is constant

divv =0
ov . .
p<a+d|v(v®v)) =Vm+divS+m+ pb

S = 2v,. D with v, >0 S~D

m = a.,v with a, >0 mn~ v

Plzen/Pilsen
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Constitutive relations

Linear constitutive relations

® compressible Navier-Stokes fluids m+ p(o) ~ divv Ts ~ Ds
® incompressible Navier-Stokes fluids Ts ~D
e Nauvier's slip boundary conditions S~ V.
e compressible neo-Hookean solid T~B
® Brinkman-Darcy's equation Ts ~D m~ v

Implicit constitutive relations

e compressible fluids g(m+ p(p),divv) =0  ¢(Ts,D5) =0
® incompressible fluids 9(Ts,D) =0
® boundary conditions h(s,v.) =0
® compressible solid g(T,B) =0
e flows through porous media g(Ts,D) =0 h(m,v) =0

Is this apparently simple generalization useful?

9
Plzen/Pilsen J. Malek Implicitly constituted materials /42 y



Implicit constitutive theory includes two explicit

Standard approach:
Stress/force is a function of kinematical variables.

T = g(B) S=j§(D)  s=h(v)

Approach via implicit constitutive theory provides a useful alternative:
Kinematical variable is a function of stress/force.

B=g(T) D=f(S) vr=nh(s)

K. R. Rajagopal: On implicit constitutive theories, Appl. Math., Vol. 48, pp. 279-319 (2003)

K. R. Rajagopal: Elasticity of elasticity, Z. Angew. Math. Phys., Vol. 58, pp. 309-417 (2007)

K. R. Rajagopal: On the nonlinear elastic response of bodies in the small strain range, Acta
Mechanica, Vol. 225, pp. 1545-1553 (2014)

K. R. Rajagopal, A. R. Srinivasa: On the thermodynamics of fluids defined by implicit constitutive
relations, Z. Angew. Math. Phys., Vol. 59, pp. 715-729 (2008)

J. Malek, K. R. Rajagopal: Compressible generalized Newtonian fluids, Z. Angew. Math. Phys.,
Vol. 61, pp. 1097-1110 (2010)

S. Srinivasan, K. R. Rajagopal: A thermodynamic basis for the derivation of the Darcy,

Forchheimer and Brinkman models for flows through porous media and their generalizations,
International J. Non-linear Mechanics, Vol. 58, pp. 162-166 (2014)
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Examples where an alternative approach is very useful

incompressible fluids with pressure dependent viscosity (and porosity)
solids with bounded linearized strain

compressible fluids with bounded divergence of the velocity

activated materials such as Bingham fluids

stick-slip boundary conditions

Further examples of nonlinear incompressible fluids (by graphs and formulas),

paying a special attention to symmetric role of S and D

Plzen/Pilsen
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Incompressible fluids with pressure dependent

viscosity

8= 2. exp(a.p)D]| - Barus fluids (1893) p=m:=3TrT

T =§(D) = T = &I+ (D)
= the viscosity can depend only on TrD? and TrD? I

D = §(T) = the viscosity can depend , TrT? and TrT®

12
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Solids with bounded linearized strain

Is it possible to have models with a nonlinear relation between T and e(u)?
Why?
® behavior of brittle materials near the crack tip

® concentrated loads resulting at small strain deformation

® to capture response analogous to mechanical analogs:

4

Spring

\Wire

Spring

€

K. R. Rajagopal: Elasticity of Elasticity, Z. Angew. Math. Physics, Vol. 58, pp. 309-317 (2007)

Implicitly constituted materials

J. Malek
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Solids with bounded linearized strain

Is it possible to have models with a nonlinear relation between T and e(u)?

T=§B) = linear Hooke's elastic solid tm
B=§T)and [Vu| =0 <1 = ¢(u) =j(T)
Rajagopal’s “strain-limiting" model

cw) = (1 ep ATCT T
= P (1+ |T|b)1/b 2#(1+H|T|a)l/a

a, b, B, A\, u, k are positive constants

Linearization gives Hooke's linear elasticity model

A. D. Freed: Soft Solids: A Primer to the Theoretical mechanics of Materials (2012)
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Compressible fluids with bounded divv

Implicit relations

g(m+p(e),divv) =0  g(Ts,D5) =0

includes
, 1 m + p(p)
divv = — a>0,b>0
b (1+|m+ p(p)°)+/>
8(Ts5,D5) = O
which implies
[divv| < 1
b

Consequently,

* t « t
0<pu <p(0,) <p” = 0 < puexp(=) < p(t,) < p"exp(—1)

E. Feireisl, X. Liao, J. Malek: Global weak solutions to a class of non-Newtonian compressible
fluids online first in Mathematical Methods in the Applied Sciences (2015)
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Bingham fluids

Standard description
Tia (k)

IS| > 7 & S= T*I%l + 2v,D
yield stress

shear rate x

is equivalent to

_ +
NS
2v, N

xt =max{x,0}, vx >0, 7. >0

ERGCETA

f(Sv D) =D- 2u, |S|
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Stick-slip boundary conditions

Threshold slip condition usually written as

Is| <o. < v, =0
v

Is| >0'*<=>S:0'*|TT| + YuVr
T

can be equivalently rewritten as

(Isl =)

T

xT = max{x,0}, 7« >0, 0. >0

(sl =)

h T7) = VxVr —
(s,vr) = Yav 5|

17
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Examples of constitutive relations

ISI

250
200
S=D
100|

50|

L L L L
0 50 100 150 200 250 300

S8
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Examples of constitutive relations

1Sl

S=(1+|DP)ZD

S]]
08f

06"

2
D=(1+ |§|2)72(p—p1)8

0.4/

0.2

0 02 0.4 06 08 1
IDI
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Examples of constitutive relations

Isi s
ra
15 s
10
D=S+(1+|SP)% IS
5|
o 25 3 35 o1t
G. Tierra
/a3
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Examples of constitutive relations

ISl
18]
16|
14
O —43f
S|— +
D= (sl S‘T*) S 10
IS| 8
6|
4]
2)
B e RS S s
IS,
6|
5|
_ (Ip[=d)* /
S="pr D 3
2
1
0 5 10 II 15 NS
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Experimental data for colloidal suspensions

Can one describe such non-monotone response of fluid-like materials?

: . ; B E—— .
lUge.0 0 —0 ]
121 ]
e i
e
4
o
,//”0/ —
S 4 1
- —
¢ V=385 N
O V=386 1
® V=387 |
O V:=39
I ) ) .
0.04 0.06 0.08
100 y

C. B. Holmes, M. E. Cates, M. Fuchs, P. Sollich: Glass transitions and shear thickening
suspension rheology, J. Rheology, Vol. 49, pp. 237-269 (2005)

Plzen/Pilsen
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4= (a1 + 8o = oyiad)’)" + 8)(o = oyiad) 4= (a(1 + 8(0 = 0viad)?)" +8)(7 = oviaa)

100 = +
ol = 1812401 ol @ =181.2401 )
£ = 0.0019862 3 = 0.0019862
80 n = -2324.5725 80r  p =-2324.5725 1
ol 0 =324491 2of 0 =324491 ]
Oyietd = 0.22756 Oyild = 0.22756
T, 60 T, 60F q
0 B
g 50 S sof ]
5 §
&5 40 & 4oF 1
30 30+ q
20 20 q
10 10+ q
% 05 1 15 2 25 3 (] 05 1 15 2 25 3
Shear stress [Pa] Shear stress [Pa]

(Data fitted by Adam Janecka, Tereza Perlacova and Vit Prusa.)

@ T. Perlacova, V. Prusa: Tensorial implicit constitutive relations in mechanics of incompressible

non-Newtonian fluids , J. Non-Newton. Fluid Mech., Vol. 216, pp. 13—-21 (2015)
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Commercial break

e link PDE via functional % :
analysis description with the giries

finite dimensional computation

e preconditioning viewed as a
natural object of functional
analysis

e conjugate gradient method
viewed as a model reduction of
the original infinite dimensional
problem to n-dimensional
algebraic problem matching the
first 2n moments

e un-preconditioned conjugate
gradient method is understood
as an oxymoron

24
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Results of PDE analysis

PROBLEM
divv =0
ov . . .
&—}-dlv(v@v)—dle:—Vp—l—b }m Qr
f(S,D) =0
v-n=0 -
h(s,v.) =0 on T
v(0,-) =wvo in Q
DATA

» Q C R bounded open connected set with 9Q € C**(d = 3)
» T>0and Qr:=(0,T)xQ, X7 :=(0,T) x 9Q
» vo, b

» § and h - constitutive functions in Q7 and on X7

25
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Main questions addressed

UNKNOWNS triplet (v, p,S) defined on Qr and s defined on Xt

AIM

» To define object useful for computation and show its existence

» To establish large data existence of solution for any set of data (2, T, vo, b)
and for robust class of constitutive equations described by f and h

» To develop theory towards the class of models described through

D = a(Tr T, TrS?, tr D?)S

» To develop a theory with integrable p

26
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Implicit formulation - maximal monotone r-graph

setting

|(S,]D)) eA <= {S,D) :<0>|

Assumptions (A is a maximal monotone r-graph with r = 2):
(A1) (0,0)c A
(A2) Monotone graph: For any (S', D), (S?,D?) € A

(' -s*)- (D' -D*) >0
(A3) Maximal monotone graph: Let (S,D) € R%L x RIS,
If(S—-8)-(D-D)>0 V(S,D)ec Athen (S,D)c A
(A4) r-graph with r = 2: There are o, > 0, ¢, > 0 so that for any (S,D) € A

$:D>a. (B +18I") - .

27
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Implicit formulation - maximal monotone 2-graph

setting

[(s,v7) €B <= h(s,v,) =0|

(B1) B contains the origin. (0,0) € 5.
(B2) B is a monotone graph.

(s' —s%)-(vi—v3) >0 for all (s',v}), (s*,v2) € B.
(B3) B is a maximal monotone graph. Let for some (s, u) holds:
If (—s)-(V;—u)>0 forall (5,v;) € B then (s,u) € B.
(B4) B is a 2-graph. There are d. > 0 and n, > 0 such that

s-v, > —c +di(jv- > +[s]>) for all (s,v,) € B.

No-slip boundary condition is excluded by (B4).

28
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The existence theory for a Bingham fluid with threshold slip

Theorem
Let Q C RY be a C** domain. Then for any vo € L&div there exists

ve L=, T L3(Q)7) N L0, T; W3
Se LX(Qr)ey, sel*(xr)?
p1 (S Lz(QT), P2 S L%(07 T; Wl)%(ﬂ))

solving for almost all time t € (0, T) and for all w € W™

(v',w)f/ﬂ(v®v)~Vw+/QSo]D(w)+/BQs~w:/Q(p1+p2)divw

and fulfilling
f(S,D(v)) =0 a.e. in Qr and h(s,v;) =0 a.e. in X7

M. Buliéek, J. Malek: On unsteady internal flows of Bingham fluids subject to threshold slip on

the impermeable boundary, accepted for publication in "Recent Developments of Mathematical
Fluid Mechanics", series: Advances in Mathematical Fluid Mechanics, Birkhauser-Verlag (2014),
Preprint MORE/2013/06.
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Implicit formulation - maximal monotone -graph

or r-graph setting

|(S,JD)) eA < {S,D) :<o>|

Assumptions (A is a maximal monotone 1)-graph):
(A1) (0,0) € A
(A2) Monotone graph: For any (S', D), (S?,D?) € A

(8 - %) - (D' —D?) > 0
(A3) Maximal monotone graph: Let (S,D) € RE. x RS,
If(S—T5) - (D-D)>0 V(Ts5,D) € Athen (S,D) € A
(A4) 1-graph: There are a.. > 0, ¢, > 0 so that for any (S,D) € A
S-D = o (Y(ID]) + 7 (IS]) — e«

30
Plzen/Pilsen J. Malek Implicitly constituted materials /42‘



Main result

Theorem
Let Q C R? and A satisfy the assumptions (A1)—-(A4) with ¢ fulfilling

5 2
as' —o<YP(s)<cas +c  withr> d7—|(—12

Then for any Q € C** and T € (0, 00) and for arbitrary
Vo € Lg,di\,, be %0, T; L*(Q)?) and 0. >0,7. >0
there exists weak solution to Problem.

M. Buliek, P. Gwiazda, J. Malek, A. Swierczewska-Gwiazda: On Unsteady Flows of Implicitly
Constituted Incompressible Fluids, SIAM J. Math. Anal., Vol. 44, No. 4, pp. 2756-2801 (2012)

L. Diening, Ch. Kreuzer, E. Siili: Finite element approximation of steady flows of incompressible
fluid with implicit power-law-like rheology, SIAM J. Numer. Anal., Vol. 51, pp. 984-1015 (2013)

Plzen/Pilsen J. Malek
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Comments to the result

Novel tools:
e Structural assumptions (A1)—(A4) on §(S,D) = O
e Convergence lemma (its local character) = strict monotonicity not
needed
e Understanding the interplay between the chosen boundary conditions and
global integrability of p

e Lipschitz approximations of Sobolev-Orlicz and Bochner functions

D. Breit, L. Diening, S. Schwarzacher: Solenoidal Lipschitz truncation for parabolic PDE’s
Mathematical Models and Methods in Applied Sciences (M3AS), Vol. 23, No. 14, pp. 2671-2700
(2013)

32
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Generalized Minty's method - Convergence lemma

Lemma
Let U C Qr be arbitrary (measurable) and r € (1,00). Assume that

e A is a maximal monotone graph (satisfying (A2)—(A3))
o {S"}52; and {D"};2; satisfy

(S",D" e A for a.a. (t,x) € U
D" —~D weakly in L"(U)7*?
S" =S weakly in L (U)?*¢
Iimsup/S"-]D" dx dtg/S-]D)dxdt.
n— o0 U U

Then
(S,D) € A almost everywhere in U.

» Local version

» Last assumption suggests to use energy (entropy) inequality
a2
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Generalized Darcy-Forchheimer’s equations

To find (m, v, p):

Vp+m=Hf in Q
divv =0 in Q
h(m,v,p) =0 in Q
(v—vo)-n=0 on I

p—po=20 on I

34
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Generalized Darcy-Forchheimer’s equations

To find (m, v, p):

Vp+m=Hf in Q
divv =10 in Q
h(m,v,p) =0 in Q
(v—vo)-n=0 on I

p—po=20 on I

e Example: | m = ag exp(azp)|v|v |

Theorem

Let Q C RY be Lipschitz and the implicit relation (parametrized by p) generate
maximal monotone r-graph with r € (1,00). Then there is a weak solution to
the problem.

Evenmore, if f = Vg and the graph is strictly monotone at the origin, vo -n =0
on 1, then the pressure is bounded.

M. Bulicek, J. Malek, J. Zabensky: A generalization of the Darcy-Forchheimer equation involving

an implicit, pressure-dependent relation between the drag force and the velocity J. Math. Anal.
Appl., Vol. 424, No. 1, pp. 785-801 (2015)

Plzen/Pilsen J. Malek
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Generalized evolutionary Brinkman’s-Darcy

equations

dev — div(2v(p, ID(v)*)D(v)) + Vp + a(p, [v|, DW)*lv=f  inQ
divv=20 in Q
(v—vwvo)-n=0 on

p—po=0 on

M. Bulicek and J. Zabensky

35
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Limiting strain model

Rajagopal’s limiting strain model

s(u)—ﬂ(l—exp —ATrT > T
(1+[T|P)/® 24 (14 |T|2)*/?
a, b, B, A\, u, k are positive constants

Simplification

E(U)Z%:>|€(U)ELOO Tel'
(1+[T[°)
Problem formulation
—divT =0, E(u):% in B
(1+]T[2)""*

Tv=g on 0B
Compatibility condition - B simply connected open bounded subset

o Vu+t (Vu)"

5 <= curlcurle =0

36
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Anti-Plane Stress Problem - Crack Il Mode

B=QxRand QCR?is simply connected open set
u=u(x1,x) =(0,0,u(x,x)), g=1(0,0,g)

0 0 T13 (X]_, Xz)
T= 0 0 T23 (X1 5 X2) .
T1s(

X1,X2) T23(X1,X2) 0
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Introducing for i = 1,2 the notation D; := % we say that U : Q — R solves

Problem P
o (—LY _V_o ina
(L+[VUP)}

U= Uy onoQ

Theorem

Let Q C R? be a simply connected domain with C®* boundary consisting of two
parts: one is 'convex’ and the other is composed of finite number of flat parts
such that Uy is piecewisely constant there. Let further Uy € W**°(Q) be such
that Uo|aq = Uo. Let a € (0,2). Then there is a unique weak solution

U € WZ2(Q) to Problem P satisfying

U— U e W'(Q),

vu 1,1
— .V =0 1 W3~ (Q2).
(unm: ¢> for all & € W3 (@)

M. Bulicek, J. Malek, K. R. Rajagopal, J. Walton: Existence of solutions for the anti-plane stress

for a new class of “strain-limiting" elastic bodies online in Calc. Var. (2015)

Plzen/Pilsen J. Malek
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Boundary conditions

7% ] UIr] = ao . ()
! Ulr2] = ao . (1b)
2
h
I, Ulrs] :ao—|—F(§ -x1) , (o)
- UlM4] = a0 + Fh . (1d)
4 (0o1,02) =0 h
U[I'5] = aop — F(X]_ — 5) , (16)
U[Fs] = aop , (1f)
. . ulr7] = ao . (lg)
U5 For the computations we set F =1,
ap = 0.

39
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Numerical results - Stress distribution

Comparison of To3 for linear (left) and nonlinear (right) model.

T, LNE T, NLE
1 3 1 3
0.8- 25 0.8- 25
2 2
0.6- 0.6-
15 15
0.4- 0.4-
1 1
0.2- 0.5 02- 0.5
0 0 0 0
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Numerical results - Strain distribution

Comparison of £(u)23 for linear (left) and nonllnear (right) model.

LNE
= x10°

1- 15 1-
9
0.8 0.8 8
il i
0.6 0.6 6
5
04- 0.4- 4
0.5 3
02- 02 2
1

0 0 02 0.4 0.6 0.8 1 ¢ 0

V. Kulvait, J. Malek, K. R. Rajagopal: Anti-plane stress state of a plate with a V-notch for a new

class of elastic solids Int. J. Fract 179 (2013) 59-73.

L. Beck, M. Bulicek, E. Sili
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Conlusion

Plzen/Pilsen

implicit constitutive theory is a very useful framework from
modeller point of view

generates new classes of systems of nonlinear PDEs of the first
order (mixed formulation)

gives alternative way how to study problems, different
qualitative feature of involved quantities

aim is to specify the concept of solution suitable for computer
simulations

show in what precise sense this object exists

general data and three-dimensional deformations/flows
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