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Outline

Lecture 1: Mathematical aspects of POD

Motivation

Why Model Order Reduction?

Proper Orthogonal Decomposition (POD)

POD for Time and/or parameter dependent PDEs

Error estimates
Treatment of nonlinearities → DEIM

Further issues with POD

Lecture 2: Optimization with POD surrogate models

Basic approach in PDE constrained optimization

Input dependence of POD model → POD basis updates

Snapshot choice in optimal control

Numerical analysis of POD in PDE constrained optimization

Further aspects of POD in applications

Lecture 3: Towards parametric MOR for nonlinear PDE systems in networks
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Motivation

We have a validated mathematical model for physical process (here a pde
system)

We intend to use this model to tailor and/or optimize the physical process.

This might be computationally very expensive!
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Motivation: ∞-dimensional optimization problem with pde constraints

min
(y,u)∈W×Uad

J(y , u)

s.t.
∂y

∂t
+Ay + G(y) = Bu in Z∗

y(0) = y0 in H.

Central tasks:

Develop solution strategies which obey the rule

E�ort of optimization = K × E�ort of simulation

with K small,

Propose surrogate models for the pde and quantify their errors,

Present a complete (numerical) analysis.
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Examples of pde systems

Find y ∈ W (0,T ) = {v ∈ L2(0,T ;V ), yt ∈ L2(0,T ;V ∗)} which solves

∂y

∂t
+Ay + G(y) = Bu in Z(= L2(0,T ;V ))

y(0) = y0 in H.

1 Heat equation: A := −∆.

2 Burgers: A := −∆, G(y) := yy ′,

3 Ignition (Bratu): A := −∆, G(y) := −δey , δ > 0,

4 Navier�Stokes: A := −P∆, G(y) := P[(y∇)y ], P Leray projector,

5 Boussinesq Approximation:

A :=

[
−P∆ −Gr~g
0 −∆

]
, G(y) = G(v , θ) :=

[
P[(v∇)v ]

(v∇)θ

]
.
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DOF diagram

Time Horizon

Spatial
Discretization

DOF for full
optimization

DOF for Moving
Horizon Approach

DOF for ModelDOF for Moving Horizon combined
with Model Reduction Reduction Approach
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Motivation: parametrized PDEs

Consider for µ = (µ1, µ2) > 0

−div (A(x ;µ)∇y) = f in Ω, y = 0 on ∂Ω,

with

A(x ;µ) =

{
µ1, x ∈ R,
µ2, x ∈ Ω \ R.

Aim: �nd a surrogate model

−div (Ã∇y) = f in Ω, y = 0 on ∂Ω,

which represents the parameter dependent problem su�ciently well over the
parameter domain.

→ question will be touched in lecture III.
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The beginning of snapshot POD with Sirovich '87: MOR in �ow control

Navier-Stokes equations

∂y

∂t
+ (y · ∇)y − ν∆y +∇p = f in Q = (0,T )× Ω,

−div y = 0 in Q,

y(t, ·) = g on Σ = (0,T )× ∂Ω,

y(0, ·) = y0 in Ω.

Aim: Reduced description of the Navier-Stokes equations

α̇ + Aα + n(α) = r in (0,T )

α(0) = a0
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1. Construction and validation of the reduced model
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System reduction: Expansions w.r.t. base �ows

Let ȳ denote a base �ow and Φi , i = 1, . . . , n Modes.
Ansatz for the �ow:

y = ȳ +
n∑
i=1

αiΦ
i

Possibilities:

ȳ stationary solution of Navier-Stokes system, Φi eigenfunctions of the
Navier-Stokes system linearized at ȳ .

ȳ mean value of instationary Navier-Stokes solution, Φi eigenfunctions of
the Navier-Stokes system linearized at ȳ .

ȳ mean value of instationary Navier-Stokes solution, Φi normalized Modes
obtained from snapshot form of Proper Orthogonal Decomposition.



Mathematical aspects of proper orthogonal decomposition
M. Hinze

12/57

Snapshot form of POD

Let's take snapshots:
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POD with Snapshots

Let y1, . . . , yn denote an ensemble of snapshots (of the �ow or the dynamical
system). Build mean ȳ and modes Φi as follows:

1 Compute mean ȳ = 1

n

n∑
i=1

y i

2 Build correlation matrix K = kij , kij = 〈y i − ȳ , y j − ȳ〉

3 Compute eigenvalues λ1, . . . , λn and eigenvectors v1, . . . , vn of K

4 De�ne modes Φi :=
n∑
j=1

v ij (y j − ȳ)

5 Normalize modes Φi = Φi

‖Φi‖

Properties:

The modes are pairwise orthogonal w.r.t. inner product 〈•, •〉

No other basis can contain more information in fewer elements (Information
w.r.t. the norm induced by 〈•, •〉).



Mathematical aspects of proper orthogonal decomposition
M. Hinze

14/57

First 10 Modes containing 99.99 % of the information
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Galerkin projection

Ansatz for the �ow

y = ȳ +
n∑
i=1

αiΦ
i

Galerkin method with basis Φ1, . . . ,Φn yields reduced system

α̇ + Aα + n(α) = r α(0) = a0.

Here, 〈•, •〉 denotes the L2 inner product.

A =
(
ai ,j
)n
i=1

, ai ,j = ν

∫
Ω

∇Φi∇Φj dx, n(α) =

∫
Ωc

(y∇y)Φi dx


n

i=1,

r = −ν

∫
Ω

∇ȳ∇Φi + f Φi dx

n

i=1

and a0 =

∫
Ω

y0Φi dx

n

i=1.

Note that Φ1, . . . ,Φn are solenoidal.
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Long�time behaviour of the POD model

Amplitudes of the �rst mode in [34,44] when using N modes in the POD model
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Cylinder �ow at Re = 100, reduced versus full model, 50 snapshots
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What did Sirovich propose?

Take snapshots y(t1), . . . , y(tn),

perform a singular value decomposition with

Y := [y(t1), . . . , y(tn)] = ΦΣV t ,

where Σ = diag(
√
λi ),

perform a Galerkin method with those modes Φ1, . . . ,Φl as basis elements
which carry as much information as required (say 99%, say).
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Todays point of view

Find a basis Φ1, . . . ,Φl ∈ V such that

{Φ1, . . . ,Φl} = argmin

T∫
0

‖y(t)−
l∑

i=1

〈y(t),Φi 〉Φi‖2V dt.

On the discrete level we solve instead (y(tj ) are N−vectors, so are Φj )

min
Φ1,...,Φl

n∑
j=0

βj

∥∥∥∥∥y(tj )−
l∑

i=1

〈y(tj ),Φi 〉Φi

∥∥∥∥∥
2

s.t. 〈Φj ,Φi 〉 = δij for 1 ≤ i , j ≤ l ,

where βj are nonnegative quadrature weights for
T∫
0

·dt.

The projection error then satis�es

n∑
j=0

βj

∥∥∥∥∥y(tj )−
l∑

i=1

〈y(tj ),Φi 〉Φi

∥∥∥∥∥
2

=
n∑

i=l+1

λi .
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Some remarks

The choice of the snapshots is very important.

Generation of snapshots with time-adaptivity.

Snapshots should comply with physical properties of the underlying
dynamical system, like periodicity of the �ow, say.

The Galerkin basis depends on the input (initial state y0, rhs Bu).



Mathematical aspects of proper orthogonal decomposition
M. Hinze

21/57

Error estimate (Kunisch and Volkwein (Numer. Math. 2001, SINUM 2002))

The error analysis for POD reduced systems is now along the lines of error
analysis for Galerkin approximations of time dependent problems;

Let y(t1), . . . , y(tn) denote snapshots taken on an equidistant time grid of [0,T ]
with gridsize δt. Let λ1 > · · · > λd > 0 denote the strictly positive eigenvalues
of the correlation matrix K . For l ≤ d let Vl = 〈Φ1, . . . ,Φl 〉. Further set

Yk :=
l∑

i=1

αi (tk)Φi .

Then

δt
n∑
i=1

|Yi − y(ti )|2H ≤ C


d∑

i=l+1

|〈y0,Φi 〉V |2 +
1

δt2

d∑
i=l+1

λi + δt2

 .
This result also extends to the case of distinguish time and snapshot grids.

Improvements of reduced models and error estimate by di�erent weighting
of snapshots (include derivative information).
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Wave equations (Herkt, H. Pinnau, ETNA 2013)

Let V ↪→ H = H′ ↪→ V ′ denote a Gelfand triple. Consider the linear wave
equation

〈ẍ(t), φ〉H + D〈ẋ(t), φ〉H + a (x(t), φ) = 〈f (t), φ〉H
for all φ ∈ V and t ∈ [0,T ],

〈x(0), ψ〉 = 〈x0, ψ〉H for all ψ ∈ H,

〈ẋ(0), ψ〉 = 〈ẋ0, ψ〉H for all ψ ∈ H,

Then POD based on the Newark scheme delivers an error estimate of the form

∆t

m∑
k=1

∥∥∥X k − x(tk)
∥∥∥2
H
≤

≤ CI

(∥∥∥X 0 − P l x(t0)
∥∥∥2
H

+
∥∥∥X 1 − P l x(t1)

∥∥∥2
H

+ ∆t
∥∥∥∂X 0 − P l ẋ(t0)

∥∥∥2
H

+ ∆t
∥∥∥∂X 1 − P l ẋ(t1)

∥∥∥2
H

+ ∆t4 +

(
1

∆t4
+

1

∆t
+ 1

) d∑
j=l+1

λIj


In general only linear decay of modes.

Critical dependence on ∆t can be avoided by including derivative
information into the snapshot set.
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Decay of singular values for POD with parabolic equations

Linear heat equation with y0 ≡ 0 and inhomogeneous boundary data.
FE-solution {yh(tj )}mj=0

computed on equi�distant time grid.

Snapshots:

yj =


yh(tj−1) for 1 ≤ j ≤ m + 1,

yh(tj−m−1)− yh(tj−m−2)

∆t
for m + 2 ≤ j ≤ 2m + 1.

Correlation matrix
(kij )

2m+1

i ,j=1
, kij = 〈yi , yj 〉V

Expected decay of its eigenvalues:

λi = λ1e
−α(i−1) for i ≥ 1.

Experimental order of decay:

Q(`) = ln
‖y` − y‖2L2(0,T ;X )

‖y`+1 − y‖2L2(0,T ;X )

⇒ EOD :=
1

`max

`max∑
k=1

Q(k) ≈ α.
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Decay of eigenvalues and of norms
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POD for wave equation - decay of modes and error

Decay of eigenvalues; without damping (left), and with damping (right)

Errors: H-modes (left) and V-modes (right), compared to Fourier analysis.
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Shortcomings of POD - non-smooth systems

The Cahn-Hilliard system

∂tϕ− m∆µ + v · ∇ϕ = 0,

−σε∆ϕ + σε−1F ′(ϕ) = µ.
(CH)

weak form:
〈∂tϕ,Φ〉 + 〈v · ∇ϕ,Φ〉 + m〈∇µ,∇Φ〉 = 0

−〈µ,Ψ〉 + σε〈∇ϕ,∇Ψ〉 +
σ

ε
〈F ′(ϕ),Ψ〉 = 0︸ ︷︷ ︸

=:〈F (ϕ,µ),(Φ,Ψ)〉

relaxed Double Obstacle Energy:

F(ϕ) =
1

2

(
1− ϕ2

)
+

s

k
(max (ϕ− 1, 0) + |min (ϕ + 1, 0) |)k k ∈ N
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Decay of modes depends on the smoothness of the potential
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Figure: Singular values: φ (left), µ (right)
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Nonlinearities - DEIM by Chaturantabut and Sorensen (SISC 2010)

POD projects the nonlinearity G(y) in the PDE as follows:

G`(α(t)) ≡ Φt︸︷︷︸
`×N

G(Φα(t))︸ ︷︷ ︸
N×1

.

Here, Φ is N × `, with N the dimension of the �nite element space, G has N
components, and in the evaluation of every of its components may touch every
component of its N−dimensional argument. This evaluation thus has complexity
O(`N).
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DEIM-idea

Approximate the nonlinear function G(Φα(t)) by projecting it onto a subspace
that approximates the space generated by the nonlinear function and that is
spanned by a basis of dimension m << N.
Here: perform a SVD with Y := [G(y(t1)), . . . ,G(y(tn))] and use the �rst m
modes U := [u1, . . . , um] to interpolate

G(Φα(t)) ≈ Uc(t).

This system is overdetermined.
Now DEIM selects m rows ρ1, . . . , ρm from this system by a greedy procedure;

PtG(Φα(t)) ≈ (PtU)c(t), where P := [eρ1 , . . . , eρm ] ∈ RN×m,

with PtU invertible, so that c(t) is uniquely determined.
This gives

G`(α(t)) ≈ ΦtU(PtU)−1︸ ︷︷ ︸
`×m

PtG︸︷︷︸
m evals

(Φα(t))︸ ︷︷ ︸
N×`

=: Ĝ`(α(t))

with the error bound

‖G` − Ĝ`‖2 ≤ ‖(PtU)−1‖2‖(I − UUt)G`‖2.

Serkan's talk → improve error bound through modifying P, and thus DEIM.
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‖G` − Ĝ`‖2 ≤ ‖(PtU)−1‖2‖(I − UUt)G`‖2.

Serkan's talk → improve error bound through modifying P, and thus DEIM.
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Upcoming: Optimization with POD surrogate models

The beginnings of POD-based �ow control

Motivation: PDE constrained optimization

Mathematical setting

Construction of the POD spaces

Basic approach in PDE constrained optimization

Snapshot choice in optimal control

Numerical analysis of POD in PDE constrained optimization

Further aspects of POD in applications

Thank you for attending!
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Optimization with the reduced model - the beginnings

Model optimization problem:

min
(y,u)∈W×U

J(y , u) :=
1

2

∫
Qo

|y − z|2 dxdt +
γ

2
‖u‖2U

s.t.
∂y

∂t
+ (y · ∇)y − ν∆y +∇p = Bu in Q = (0,T )× Ω,

−div y = 0 in Q,

y(t, ·) = 0 on Σ = (0,T )× ∂Ω,

y(0, ·) = y0 in Ω.

Here, B : U → L2(0,T ;H−1(Ω)d ) denotes the control operator. It is also
possible to consider the initial values as control.

Typical control operator is extension
B : L2(0,T ; L2(Ωc)d )→ L2(0,T ;H−1(Ω)d ). Observation cylinder is given by
Qo := (0,T )× Ωo .
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POD model as pde surrogate in the optimization problem

Ansatz for state (and the desired state)

y = ȳ +
n∑
i=1

αiΦi , z = ȳ +
n∑
i=1

αz
i Φi .

Optimization problem with POD surrogate model

min
(y,u)

J(y , u) = J(α, u) =
1

2

∫ T

0

(α− αz )tM1(α− αz ) dt +
γ

2
‖u‖2U

s.t.

α̇ + Aα + n(α) = r + Bu,
α(0) = a0.
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Validity of surrogate model

Fact:
Control changes system dynamics.

Consequence:
Mean and modes should be suitably modi�ed during the optimization process.

Idea:
Adaptively modify the surrogate model and thus, the reduced optimization
problems.
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Adaptive POD control � Afanasiev, Hinze 1999

1 Snapshots y0i , i = 1, . . . ,N0 given, u0 given control, δ ∈ [0, 1] required
relative information content, j=0.

2 Compute M = argmin

{
I(M) :=

M∑
k=1

λk /
N∑
k=1

λk ; I(M) ≥ δ
}
.

3 Compute POD modes and solve

(ROM)

 min J(α, u)
s.t.
α̇ + Aα + n(α) = Bu, α(0) = a0.

for u j .

4 Compute y j corresponding to Bu j and new snapshots

y
j+1

i , i = N j + 1, . . . ,Nj+1 to the snapshot set y ji , i = 1, . . . ,Nj .

5 While ‖u j+1 − u j‖U is large, j = j+1 and goto 2.
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Numerical comparison

Flow around a circular cylinder at Re=100. Control gain: Tracking of Stokes �ow
(or mean �ow) ȳ in an observation volume Ωobs behind the cylinder by applying
a volume force in the control volume Ωc .
Cost functional:

J(y , u) =
γ

2

T∫
0

∫
Ωc

|u|2 dxdt +
1

2

T∫
0

∫
Ωobs

|y − ȳ |2 dxdt

CPU time needed to compute the suboptimal controls ≈ 40 times smaller than
that needed to compute the optimal open loop control. But the quality of the
controls is very similar.

Runtime(Optimization Problem) = 6 � 8 × Runtime(PDE)
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Uncontrolled �ow, target �ow = mean �ow, controlled �ow at t = 3.4.
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Numerical results cont.

Control cost, Ωo = Ω = Ωc , tracking of mean �ow
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Motivation: optimization problem with pde constraints

min
(y,u)∈W×Uad

J(y , u) s.t.

∂y

∂t
+Ay + G(y) = Bu in Z∗

y(0) = y0 in H.

Approach: Solve this problem by using a POD surrogate model;

min
(y l ,u l )∈W l×Uad

J l (y l , u l ) s.t.

∂y l

∂t
+Al y l + Gl (y l ) = Bu l in (Z l )∗

y l (0) = y l0 in H l .

Tasks:

Error estimation,

adaption of the POD surrogate model during the optimization loop.
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Mathematical setting, state equation

V ,H separable Hilbert spaces, (V ,H = H∗,V ∗) Gelfand triple.

a : V × V → R bounded, coercive and symmetric. Set

〈•, •〉V := a(•, •).

U Hilbert space, B : U → L2(U, L2(V ∗)) linear control operator, y0 ∈ H.

State equation

d
dt

(y(t), v)H + a(y(t), v) = 〈(Bu)(t), v〉V ,V∗ , t ∈ [0,T ], v ∈ V ,
(y(0), v)H = (y0, v)H , v ∈ V .

For every u ∈ U the solution y = y(u) ∈ W := {w ∈ L2(V ),wt ∈ L2(V ∗)}
is unique.
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Optimization problem

Cost functional

J(y , u) :=
1

2
‖y − z‖2

L2(H)
+
α

2
‖u‖2U .

Admissibility: u ∈ Uad ⊆ U closed, convex, y ≡ y(u) unique solution of
state equation associated to u, i.e.

d
dt

(y(t), v)H + a(y(t), v) = 〈(Bu)(t), v〉V ,V∗ , t ∈ [0,T ], v ∈ V ,
(y(0), v)H = (y0, v)H , v ∈ V .

Minimization problem:

(P) min
(y,u)∈W (0,T )×Uad

J(y , u) s.t. Admissibility.

(P) admits a unique solution (y , u) ∈ W × Uad.
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Optimality conditions

With the reduced cost functional Ĵ(u) := J(y(u), u) there holds(
Ĵ′(u), v − u

)
≥ 0 for all v ∈ Uad.

Here
Ĵ′(u) = αu + B∗p(y(u)).

The function p solves the adjoint equation

− d
dt

(p(t), v)H + a(v , p(t)) = (y − z, v)H , t ∈ [0,T ], v ∈ V ,
(p(T ), v)H = 0, v ∈ V .

Variational inequality equivalent to nonsmooth operator equation

u = PUad

(
−

1

α
B∗p(y(u))

)
with PUad

denoting the orthogonal projection onto Uad.
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Discrete concept for the state equation

For l ∈ N choose a POD subspace V l := 〈χ1, . . . , χl 〉 of V with the
property

‖y(t)−
l∑

k=1

(y(t), χk)V χk‖
2

W (0,T ) ∼
∞∑

k=l+1

λk .

Galerkin semi-discretization y l of state y using subspace V l :

d
dt

(
y l (t), v

)
H

+ a(y l (t), v) = 〈(Bu)(t), v〉V ,V∗ , t ∈ [0,T ], v ∈ V l ,

(y(0), v)H = (y0, v)H , v ∈ V l .

If needed, de�ne similarly a Galerkin semi-discretization pl of p;

− d
dt

(
pl (t), v

)
H

+ a(v , pl (t)) =
(
y l − z, v

)
H
, t ∈ [0,T ], v ∈ V l ,(

pl (T ), v
)
H

= 0, v ∈ V l .
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Optimization problem with POD surrogate model

Discrete minimization problem:

(P̂ l ) min
u∈Uad

Ĵ l (u) := J(y l (u), u).

(P̂ l ) admits a unique solution u l ∈ Uad.

Optimality condition:(
Ĵ l
′
(u), v − u l

)
≥ 0 for all v ∈ Uad.

Here
Ĵ l
′
(u) = αu + B∗pl (y l (u)).

The function pl solves the adjoint equation

− d
dt

(
pl (t), v

)
H

+ a(v , pl (t)) =
(
y l − z, v

)
H
, t ∈ [0,T ], v ∈ V l ,(

pl (T ), v
)
H

= 0, v ∈ V l .

Variational inequality equivalent to nonsmooth operator equation

u l = PUad

(
−

1

α
B∗pl (y l (u))

)
.
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Error estimate

Theorem: Let u, u l denote the unique solutions of (P) and (P̂ l ), respectively.
Then

‖u − u l‖2U ≤
1

α

{(
B∗(p(y(u))− pl (y(u))), u l − u

)
U

+

+

T∫
0

(
y l (u l )− y l (u), y(u)− y l (u)

)
H
dt


Using the analysis of Kunisch and Volkwein for POD approximations one gets

‖u − u l‖U ∼ ‖y0 − P l y0‖H +

√√√√ ∞∑
k=l+1

λk+

+ ‖yt −P`yt‖L2(0,T ;V ′) + ‖p(y(u))− P l (p(y(u)))‖W (0,T )
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Conclusions from the analysis

Get rid of ‖(y −P`y)t‖
2

L2(0,T ;V ′) → include derivative information into

your snapshot set.

Get rid of ‖p −P`p‖2W (0,T ) → include adjoint information into your

snapshot set.

Recipe:

For l ∈ N choose a POD subspace V l := 〈χ1, . . . , χl 〉 of V with the property

‖y(t)−
l∑

k=1

(y(t), χk)V χk‖
2

W (0,T ) ∼
∞∑

k=l+1

λk ,

and if one intends to solve optimization problems, also ensure

‖p(t)−
l∑

k=1

(p(t), χk)V χk‖
2

W (0,T ) ∼
∞∑

k=l+1

λk ,
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Error between state and and its orthogonal projection
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Error between co-state and its orthogonal projection
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Neumann boundary control of the heat equation

0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

t−axis

Comparison of the optimal controls

uh

u15 for ψ
i
1

u15 for ψ
i
2

u15 for ψ
i
3

0.2 0.4 0.6 0.8 1

−0.2

0

0.2

t−axis

Comparison of uh−u15

uh−u15 for ψ
i
1

uh−u15 for ψ
i
2

uh−u15 for ψ
i
3



Mathematical aspects of proper orthogonal decomposition
M. Hinze

50/57

Snapshot location for parabolic (mother) optimal control problem

We consider optimal distributed control of the linear heat equation. If the data
of the optimal control problem is smooth enough we have αu + p = 0 and
1. the optimal state y satis�es

−
∂2y

∂t2
+ ∆2y +

1

α
y =

1

α
z in ΩT ,

y = 0 on ΣT ,

∆y = 0 on ΣT ,

(
∂y

∂t
−∆y)(T ) = 0 in Ω,

y(0) = y0 in Ω,

2. while p solves

−
∂2p

∂t2
+ ∆2p +

1

α
p = −

∂z

∂t
+ ∆z in ΩT ,

p = 0 on ΣT ,

∆p = z on ΣT ,

(
∂p

∂t
+ ∆p)(0) = yd (0)− y0 in Ω,

p(T ) = 0 in Ω.
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Snapshot location in parabolic optimal control

With y , p and yk , pk time-discrete approximations to y , p we have

‖y − yk‖22,1,ΩT
≤ Cη2y ,

where

η2y =
∑
n

k2n

∫
In

‖
1

α
yd +

∂2yk

∂t2
−

1

α
yk −∆2yk‖20,Ω +

∑
n

∫
In

‖∆yk‖20,Γ,

and
‖p − pk‖22,1,ΩT

≤ Cη2p,

where

η2p =
∑
n

k2n

∫
In

‖−
∂yd

∂t
+∆yd +

∂2pk

∂t2
−

1

α
pk−∆2pk‖20,Ω +

∑
n

∫
In

‖yd−∆pk‖20,Γ.

Idea: go for an adaptive time grid, based on a coarse discretization in space, and
use this time-grid as snapshot grid for the optimal control problem.
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Snapshot location in parabolic optimal control - numerical example
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Figure 8. Test 6.2: Space-time grid with dof = 37 according to the strategy in [5] with
Δx = 1/100 (left) and Δx = 1/5 (middle), respectively, and equidistant grid (right)

Δt εyabs εuabs dof εyabs εuabs
1/24 8.5101 · 10+00 6.1244 · 10−01 25 2.5927 · 10+00 2.0417 · 10−01

1/36 5.5089 · 10+00 3.9009 · 10−01 37 4.1726 · 10−01 2.9296 · 10−02

1/76 2.2935 · 10+00 1.5923 · 10−01 77 1.9320 · 10−01 2.0327 · 10−02

1/148 1.1526 · 10+00 8.0239 · 10−02 149 4.8640 · 10−02 1.9035 · 10−02

Table 2. Test 6.2: Absolute errors between the exact optimal solution and the POD subopti-
mal solution depending on the time discretization (equidistant: columns 1-3, adaptive: columns
4-6)
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Recent developments�TRPOD by Arian, Fahl and Sachs 2000�

Idea: Use a POD surrogate model as model function in the Trust�Region
process. Let

J(u) = J(y(u), u), Ĵ(u) = J(ŷ(u), u),

with ŷ(u) the response of the POD surrogate model.
Pseudo Algorithm:

1 Given u, compute POD model

2 Compute s∗ = argmin‖u−s‖≤∆ Ĵ(u + s)

3

ρ :=
J(u + s∗)− J(u)

Ĵ(u + s∗)− Ĵ(u)

 large: u = u + s∗, increase ∆
moderate: u = u + s∗, decrease ∆
small: keep u, decrease ∆

Global convergence under standard TR assumptions plus
‖J′(u)−Ĵ′(u)‖
‖Ĵ′(u)‖

su�ciently small.
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Recent developments�OSPOD by Kunisch and Volkwein 2006

Idea: Include choice of trajectory dependent POD modes as subsidiary condition
into the optimization problem. This reads

(P l
OSPOD)



minα,Φ,u Ĵ(α,Φ, u) s.t.
M(Φ)α̇ + A(Φ)α + n(Φ)(α) = B(Φ)u,
M(Φ)α(0) = α0(Φ),
yt +Ay + G(y) = Bu,
y(0) = y0,
R(y)Φi = λiΦi for i = 1, . . . , l ,
‖Φi‖X = 1 for i = 1, . . . , l .

Here Φ = [Φ1, . . . ,Φl ], y
l =

l∑
i=1

αi (t)Φ, and

R(y)(z) :=

T∫
0

〈y(t), z〉X y(t)dt for z ∈ X .

A very similar approach is proposed by Ghattas, van Bloemen Waanders and
Willcox 2005.
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How many snapshots?

Meyer, Matthies, Heuveline, H.

How many snapshots? −→ iterative goal oriented procedure.

Goal: Resolve J(y)

Start on coarse equi-distant time grid and compute snapshots

Build POD model and compute yh and adjoint zh of reduced dynamics

Becker and Rannacher: J(y)− J(yh) ≈ η(yh, zh)

η(yh, zh) > tol: double number of snapshots (re-computation)
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Where to take snapshots?

Where to take snapshots? −→ time-step adaption via sensitivity of POD model.

Goal: Optimal time-grid for system dynamics

Start on coarse (equi-distant) time grid and compute snapshots

Build POD model and compute yh and adjoint zh of reduced dynamics

Becker, Johnson, Rannacher: η(yh, zh) =
∑
Ij

ρlocj (yh)ωloc
j (zh)

New time-grid: equi-distribute ρlocj (yh)ωloc
j (zh)
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Further developments and improvements

E�cient treatment of nonlinearities → Chaturantabut, Sorensen (2010)

MOR for the input�output map → Heiland, Mehrmann

A posteriori POD concept → Tröltzsch and Volkwein (2010)

Which modes? → DWR concepts (Matthies, Meyer 2003)

How many snapshots? → iterative goal oriented DWR procedure

Were take snapshots? → time�step adaption via sensitivity of the POD
model

POD in the context of space�mapping

Sampling of parameter (≡ control) space → Greedy sampling by Patera
and Rozza (2007)

Use of linear MOR techniques for nonlinear problems → SQP context,
semi�linear time integration, domain decomposition

Thank you for your attention
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