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Outline

@ Lecture 1: Mathematical aspects of POD
Motivation
Why Model Order Reduction?
Proper Orthogonal Decomposition (POD)
POD for Time and/or parameter dependent PDEs

Error estimates
Treatment of nonlinearities — DEIM

Further issues with POD

@ Lecture 2: Optimization with POD surrogate models
Basic approach in PDE constrained optimization
Input dependence of POD model — POD basis updates
Snapshot choice in optimal control
Numerical analysis of POD in PDE constrained optimization
Further aspects of POD in applications

@ Lecture 3: Towards parametric MOR for nonlinear PDE systems in networks
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Motivation

We have a validated mathematical model for physical process (here a pde
system)

We intend to use this model to tailor and/or optimize the physical process.

This might be computationally very expensive!
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Motivation: oo-dimensional optimization problem with pde constraints

i J
@i,y 70
s.t.
By . *
E+Ay+g(y) = BuinZ
y(0) = yinH.

Central tasks:
@ Develop solution strategies which obey the rule
Effort of optimization = K X Effort of simulation
with K small,
@ Propose surrogate models for the pde and quantify their errors,

@ Present a complete (numerical) analysis.
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Examples of pde systems

Findy € W(0,T) = {v € L2(0, T; V), y: € L2(0, T; V*)} which solves

% +Ay+G(y) = Buin Z(=L2(0,T; V))
y(o) = ypin H.
© Heat equation: A := —A.
© Burgers: A:= —A, G(y) :=yy’,

@ Ignition (Bratu): A := —A, G(y) := —de¥, § >0,
© Navier-Stokes: A := —PA, G(y) := P[(yV)y], P Leray projector,
© Boussinesq Approximation:

a=| 708 TG o =aw.0= | P .
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DOF diagram
Spatial DOF for full
Discretization optimization

@) DOF for Moving
Horizon Approach

DOF for Moving Horizon combined DOF for Model
with Model Reduction Reduction Approach
o
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Motivation: parametrized PDEs

Consider for p = (p1, p2) > 0

—div (A(x; p)Vy) =finQ, y =0 o0n 0992,
with
. _ m1, x €R,
A(x,p,)_{ 2, x € Q\R.

Aim: find a surrogate model
—div (AVy) =finQ, y=0o0n 8%,

which represents the parameter dependent problem sufficiently well over the
parameter domain.

— question will be touched in lecture I11.
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The beginning of snapshot POD with Sirovich '87: MOR in flow control

Navier-Stokes equations

0, .
6—};+(y.V)y—VAy+Vp=f in Q=(0,T) x Q,
—divy =20 in Q,
y(t,)=g on X=(0,7) x 89,
y(0,))=y in Q.

Aim: Reduced description of the Navier-Stokes equations

&+ Aa+n(a)=r in (0,7)
a(0) = ap
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1. Construction and validation of the reduced model
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System reduction: Expansions w.r.t. base flows

Let y denote a base flow and ®/, i = 1,...,n Modes.
Ansatz for the flow:

n
y=y+> o

i=1

Possibilities:

@ y stationary solution of Navier-Stokes system, ®' eigenfunctions of the
Navier-Stokes system linearized at y.

o ¥ mean value of instationary Navier-Stokes solution, ®' eigenfunctions of
the Navier-Stokes system linearized at y.

@ y mean value of instationary Navier-Stokes solution, ® normalized Modes
obtained from snapshot form of Proper Orthogonal Decomposition.
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Snapshot form of POD

Let’s take snapshots:
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POD with Snapshots

Let y,...,y" denote an ensemble of snapshots (of the flow or the dynamical
system). Build mean y and modes ®; as follows:

n
= _ 1 H
© Compute mean y = - ‘__E 1y‘
© Build correlation matrix K = k;;, kj = =7,y —§)

© Compute eigenvalues \p, ..., A\, and eigenvectors v1,...,v" of K

, noo
© Define modes ¢’ := > vi(y/ — 7)
=

© Normalize modes ¢’ = ﬁ
Properties:

@ The modes are pairwise orthogonal w.r.t. inner product (e, e)

@ No other basis can contain more information in fewer elements (Information
w.r.t. the norm induced by (e, e)).
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First 10 Modes containing 99.99 % of the information
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Galerkin projection

Ansatz for the flow

n
Y=Y+Zai¢i

i=1
Galerkin method with basis @1, ..., ®, yields reduced system

a+Aa+n(a)=r o(0)=ag.
Here, (o, o) denotes the L? inner product.

A= (a,-,j),f;l , ajj= u/ Vo;Vo;dx, n(a)= /(yVy)tb,- dx
Q Qc

i=1,

n n

r=—v / VyVo; + fo; dx and ag = / yo®; dx
Q

i=1 Q i=1.

Note that ®4,...,®, are solenoidal.



UH
™
n

Mathematical aspects of proper orthogonal decomposition

Long-time behaviour of the POD model

Amplitudes of the first mode in [34,44] when using N modes in the POD model

4.0 T T T T

amplitude

-4.0 L 1 L
34.0 36.0 38.0 40.0 42.0 44.0
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Cylinder flow at Re = 100, reduced versus full model, 50 snapshots

Amplitudes of the first four modes
(DS12 with 50 equidistant snapshots on [0,6,8])

projections
— — predictions

amplitude
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What did Sirovich propose?

@ Take snapshots y(t1),...,y(ta),

o perform a singular value decomposition with
Y = [y(tl)9 oo 7y(tn)] = ¢):Vt,
where X = diag (/).

@ perform a Galerkin method with those modes ®;,..., ®, as basis elements
which carry as much information as required (say 99%, say).
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Todays point of view

Find a basis ®;,...,®; € V such that
T ]
{®1,..., 0} =arg min/ lly(£) =D (y(t), ®:)®; |1}, dt.
0 i=1

On the discrete level we solve instead (y(t;) are N—vectors, so are ®;)
n 1 2
wlmi"d” > Bi |y (g) = D (y(t), i) o;
T j=0 i=1
s.t. <¢j, ¢,'> = 6,'1' for 1 S i j S 1,

T
where 3; are nonnegative quadrature weights for [ -dt.

0
The projection error then satisfies

> 6

j=o

2 n
= > A

i=l+1

1
y(g) =D (y(), ®:);

i=1
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Some remarks

@ The choice of the snapshots is very important.

@ Generation of snapshots with time-adaptivity.

@ Snapshots should comply with physical properties of the underlying
dynamical system, like periodicity of the flow, say.

@ The Galerkin basis depends on the input (initial state yp, rhs Bu).
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Error estimate (Kunisch and Volkwein (Numer. Math. 2001, SINUM 2002))

The error analysis for POD reduced systems is now along the lines of error
analysis for Galerkin approximations of time dependent problems;

Let y(t1),...,y(tn) denote snapshots taken on an equidistant time grid of [0, T]
with gridsize 6t. Let A1 > --- > Ay > 0 denote the strictly positive eigenvalues
of the correlation matrix K. For I < d let V; = (®1,...,®). Further set

1
Y = Za,-(tk)d),-.
i=1
Then

n
Yy < LS on® O+ 5 S A+ ot

i=1 i=I1+1 i=I1+1

@ This result also extends to the case of distinguish time and snapshot grids.

@ Improvements of reduced models and error estimate by different weighting
of snapshots (include derivative information).
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Wave equations (Herkt, H. Pinnau, ETNA 2013)

Let V — H = H’ — V'’ denote a Gelfand triple. Consider the linear wave
equation

(’?(t)’ ¢>H + D<).((t)7 ¢'>H+a(x(t)7 ¢) = (f(t)y ¢>H
forall € Vand t € [0, T],
(x(0),%) = (x0,¢)n forallyp € H,

(%(0), %) (%0, 9)u for all 3 € H,

Then POD based on the Newark scheme delivers an error estimate of the form

m
2
At HX"— t H <
; X(k)H_

< ¢ (Hx“ - P'x(tg)H: + Hxl - P'x(tl)Hi + At Hax“ - P’)'((to)Hi

2 1
1_ pl; 4
+AtH8X P x(tl)HH + 08t + (AH + .t 1> § : A,,)
j=1+1
@ In general only linear decay of modes.

@ Critical dependence on At can be avoided by including derivative
information into the snapshot set.



UH
ifi
n

Mathematical aspects of proper orthogonal decomposition
. Hinze
23/57

Decay of singular values for POD with parabolic equations

Linear heat equation with yg = 0 and inhomogeneous boundary data.
FE-solution {y"(tj)}‘,f';0 computed on equi—distant time grid.
Snapshots:
yh(t_1) for1 <j<m+1,
= yh(tj—m—l) _yh(tj—m—Z)
At

form+2<;<2m+1.

Correlation matrix S
(ki)iTH s ki = (i y)v
Expected decay of its eigenvalues:
A= Ae =D fori > 1.

Experimental order of decay:

2 £
||y‘€ — y” A . 1 max
Q) =In —— LOTX - EoD := = 0k~ a
Ily - }’||1_2(0,'r;x) max g=1
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Decay of the eigenvalues and estimated rates
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Decay of the norms
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Decay of eigenvalues; without damping (left), and with damping (right)

genaes o comelaton i, atz1e-3

olgonvalues of correlation matrix, a=1+rand, it =163
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Shortcomings of POD - non-smooth systems

The Cahn-Hilliard system

Orp—mAp+v-Vo=0
1 , (CH)
—oelp + o™ " F'(p) = p.

weak form:
(Brp, ®) + (v - Ve, ®) + m(Vpu, Vo) =0

— (1, W) + oe(Vep, V) + T (F (), W) = 0

=:(F(¢,u),(®,V))

relaxed Double Obstacle Energy:

F@) =3 (1 ¢2) + 5 (max (o —1,0) + [ min (¢ + LO) D k€N
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Decay of modes depends on the smoothness of the potential

10° 'y 1010
o DOE2
+ DOE3
10°
10°
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10-10
10-15 10-15
0 500 1000 1500 0 500 1000 1500

Figure: Singular values: ¢ (left), p (right)
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Nonlinearities - DEIM by Chaturantabut and Sorensen (SISC 2010)

POD projects the nonlinearity G(y) in the PDE as follows:
Gia(t)) = @F G(Pa(t)).
~N ——

LXN NX1

150

—6&— POD
—&— DEIM t
—*— unreduced

simulation time [sec]

0 500 1000 1500 2000 2500
number of finite elements
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Nonlinearities - DEIM by Chaturantabut and Sorensen (SISC 2010)

POD projects the nonlinearity G(y) in the PDE as follows:
Gia(t)) = @F G(Pa(t)).
~N ——
£XN NX1

Here, ® is N X £, with N the dimension of the finite element space, G has N
components, and in the evaluation of every of its components may touch every
component of its N—dimensional argument. This evaluation thus has complexity
O(LN).

150
—6&— POD
—&— DEIM ol
—— unreduced|

simulation time [sec]

0 500 1000 1500 2000 2500
number of finite elements
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Nonlinearities - DEIM by Chaturantabut and Sorensen (SISC 2010)

POD projects the nonlinearity G(y) in the PDE as follows:
Gia(t)) = @F G(Pa(t)).
~N ——
£XN NX1

Here, ® is N X £, with N the dimension of the finite element space, G has N
components, and in the evaluation of every of its components may touch every
component of its N—dimensional argument. This evaluation thus has complexity
O(LN).

150

—e—POD
—&— DEIM t
—*— unreduced

simulation time [sec]

0 500 1000 1500 2000 2500
number of finite elements

POD versus POD-DEIM in MOR for semiconductors governed by the
Drift-Diffusion model
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DEIM-idea

Approximate the nonlinear function G(®«(t)) by projecting it onto a subspace
that approximates the space generated by the nonlinear function and that is
spanned by a basis of dimension m << N.
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DEIM-idea

Approximate the nonlinear function G(®«(t)) by projecting it onto a subspace
that approximates the space generated by the nonlinear function and that is
spanned by a basis of dimension m << N.

Here: perform a SVD with Y := [G(y(t1)), ..., G(¥(ta))] and use the first m
modes U := [u1, ..., um] to interpolate

G(®a(t)) = Uc(t).

This system is overdetermined.
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DEIM-idea

Approximate the nonlinear function G(®«(t)) by projecting it onto a subspace
that approximates the space generated by the nonlinear function and that is
spanned by a basis of dimension m << N.
Here: perform a SVD with Y := [G(y(t1)), ..., G(¥(ta))] and use the first m
modes U := [u1, ..., um] to interpolate

G(Pa(t)) = Uc(t).

This system is overdetermined.
Now DEIM selects m rows p1, ..., pm from this system by a greedy procedure;

PiG(da(t)) =~ (PtU)c(t), where P :=[ep,,--.,€p,] € RVXM,

with PtU invertible, so that c(t) is uniquely determined.
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DEIM-idea

Approximate the nonlinear function G(®«(t)) by projecting it onto a subspace
that approximates the space generated by the nonlinear function and that is
spanned by a basis of dimension m << N.

Here: perform a SVD with Y := [G(y(t1)), ..., G(¥(ta))] and use the first m
modes U := [u1, ..., um] to interpolate

G(®a(t)) = Uc(t).

This system is overdetermined.
Now DEIM selects m rows p1, ..., pm from this system by a greedy procedure;

PiG(da(t)) =~ (PtU)c(t), where P :=[ep,,--.,€p,] € RVXM,

with PtU invertible, so that c(t) is uniquely determined.
This gives

G (a(t)) = ' U(P'U) ™! P'G (da(t)) =: G4(a(t))
—_——— N ——

£Xm mevals pNxe
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DEIM-idea

Approximate the nonlinear function G(®«(t)) by projecting it onto a subspace
that approximates the space generated by the nonlinear function and that is
spanned by a basis of dimension m << N.

Here: perform a SVD with Y := [G(y(t1)), ..., G(¥(ta))] and use the first m
modes U := [u1, ..., um] to interpolate

G(®a(t)) = Uc(t).

This system is overdetermined.
Now DEIM selects m rows p1, ..., pm from this system by a greedy procedure;

PiG(da(t)) =~ (PtU)c(t), where P :=[ep,,--.,€p,] € RVXM,

with PtU invertible, so that c(t) is uniquely determined.
This gives

G (a(t)) = ' U(P'U) ™! P'G (da(t)) =: G4(a(t))
—_——— N ——
exm mevals Nx¢

with the error bound
164 — GEll2 < II(PEU) Y211 — UUHGE 2.
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DEIM-idea

Approximate the nonlinear function G(®«(t)) by projecting it onto a subspace
that approximates the space generated by the nonlinear function and that is
spanned by a basis of dimension m << N.

Here: perform a SVD with Y := [G(y(t1)), ..., G(¥(ta))] and use the first m
modes U := [u1, ..., um] to interpolate

G(®a(t)) = Uc(t).

This system is overdetermined.
Now DEIM selects m rows p1, ..., pm from this system by a greedy procedure;

PiG(da(t)) =~ (PtU)c(t), where P :=[ep,,--.,€p,] € RVXM,

with PtU invertible, so that c(t) is uniquely determined.
This gives

G (a(t)) = ' U(P'U) ™! P'G (da(t)) =: G4(a(t))
—_——— N ——
exm mevals Nx¢

with the error bound
164 — GEll2 < II(PEU) Y211 — UUHGE 2.

Serkan’s talk — improve error bound through modifying P, and thus DEIM.
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Upcoming: Optimization with POD surrogate models

The beginnings of POD-based flow control

Motivation: PDE constrained optimization

Mathematical setting

Construction of the POD spaces

Basic approach in PDE constrained optimization

Snapshot choice in optimal control

Numerical analysis of POD in PDE constrained optimization

Further aspects of POD in applications
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Upcoming: Optimization with POD surrogate models

The beginnings of POD-based flow control

Motivation: PDE constrained optimization

Mathematical setting

Construction of the POD spaces

Basic approach in PDE constrained optimization

Snapshot choice in optimal control

Numerical analysis of POD in PDE constrained optimization

Further aspects of POD in applications

Thank you for attending!
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Lecture 2: Optimization with POD surrogate models

The beginnings of POD-based flow control

Motivation: PDE constrained optimization

Mathematical setting

Construction of the POD spaces

Basic approach in PDE constrained optimization

Numerical analysis of POD in PDE constrained optimization
Snapshot choice in optimal control

Further aspects of POD in applications
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Lecture 2: Optimization with POD surrogate models

The beginnings of POD-based flow control

Motivation: PDE constrained optimization

Mathematical setting

Construction of the POD spaces

Basic approach in PDE constrained optimization

Numerical analysis of POD in PDE constrained optimization
Snapshot choice in optimal control

Further aspects of POD in applications
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Optimization with the reduced model - the beginnings

Model optimization problem:

. 1
min J(y,u) := E/ ly — z|? dxdt + %||u||%j

(y,u)ewWxu
Qo
s.t.
9y .
5+(y~V)y—uAy+Vp = Buin Q=(0,T) x Q,
—divy = 0in Q,
y(t,) = 0on XT=(0,T) x 89,
y(0,)) = yin Q.

Here, B : U — L%(0, T; H—1(R)?) denotes the control operator. It is also
possible to consider the initial values as control.

Typical control operator is extension
B: L%(0, T; L2(R:)?) — L2(0, T; H-1(R)9). Observation cylinder is given by
Qo :=(0,T) X Q.
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POD model as pde surrogate in the optimization problem

Ansatz for state (and the desired state)

n n
.V=J"+Z a;®;, Z=Y+Z aio;.
i=1

i=1

Optimization problem with POD surrogate model

-
min J(y,u) = J(o,u) = 1 / (a — a®)'My(a — a®) dt + 1||u||i,
(y,u) 2 /o 2

s.t

a+Aa+n(a) = r+ Bu,
Oc((]) = ap.

Hinze

'33/57
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Validity of surrogate model

Fact:
Control changes system dynamics.

Consequence:
Mean and modes should be suitably modified during the optimization process.

Idea:
Adaptively modify the surrogate model and thus, the reduced optimization
problems.
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Adaptive POD control — Afanasiev, Hinze 1999

© Snapshots y,.o,i =1,..., Ny given, u® given control, § € [0, 1] required
relative information content, j=0.

© Compute M = argmin {I(M) = kil e/ é’jl ks (M) > 5}.

© Compute POD modes and solve

min J(a, u)
(ROM) { s.t.
&+ Aa + n(a) = Bu, o(0) = ap.

for ui.

@ Compute yi correspondmg to Bu/ and new snapshots
y{+1,i =N;+1,. N;1 to the snapshot set y’,f =1,..., N

© While ||w/t! — ui||y is large, j = j+1 and goto 2.
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Numerical comparison

Flow around a circular cylinder at Re=100. Control gain: Tracking of Stokes flow
(or mean flow) y in an observation volume Q,,; behind the cylinder by applying
a volume force in the control volume €.
Cost functional:

T

T
1
J(y,u):%//|u|2dxdt+§// ly — 712 dxdt
09 0 9,

c

CPU time needed to compute the suboptimal controls =~ 40 times smaller than
that needed to compute the optimal open loop control. But the quality of the
controls is very similar.

Runtime(Optimization Problem) = 6 — 8 X Runtime(PDE)
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Uncontrolled flow, target flow = mean flow, controlled flow at t = 3.4.
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Numerical results cont.

Control cost, 2, = Q = Q, tracking of mean flow

10
- — - 1 Iteration (ISO)
— — 2 Iteration (ISO)
- 3 Iteration (ISO)
— - - 4 Iteration (ISO)
10" ——— 5 lteration (ISO) i
6 Iteration (1SO)
— — 7 Iteration (1SO)
optimale Kontrolle (NM)
10° |
~
10" |
107 |
Phase 1 Phase 2
107° ! L I
2 4 6

Zeit
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Motivation: optimization problem with pde constraints

min J(y, u) s.t.
(y,u)EW X U,yq (y7 )
o P
8—{+.Ay+g(y) = BuinZ
y(0) = yinH.
Approach: Solve this problem by using a POD surrogate model;
min J(y', u') s.t.
haremixu,, * 0"
) 1
T+ AY 16 = Buin(Z)
y'(0) = yinH.

Tasks:

@ Error estimation,

@ adaption of the POD surrogate model during the optimization loop.
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Mathematical setting, state equation

@ V, H separable Hilbert spaces, (V, H = H*, V*) Gelfand triple.

@ a:V X V — R bounded, coercive and symmetric. Set

(o, 0)y := a(e,e).

@ U Hilbert space, B : U — £2(U, L?(V*)) linear control operator, yo € H.

State equation

% (y(2), v)y + aly(t), v)
(y(o)v V)H

<(Bu)(t)9 V)V,V*’ tec [0, T]’ v E V,
(y07 V)H ) vev.

@ For every u € U the solution y = y(u) € W := {w € L2(V), w; € L2(V*)}
is unique.
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Optimization problem

@ Cost functional

1 a
J(y,u) = E”y - z”iZ(H) + 5”"”%}

@ Admissibility: u € U,q C U closed, convex, y = y(u) unique solution of
state equation associated to u, i.e.

2 (), v)y +aly(), v) ((Bu)(t),v)v,v=, t€[0,T]veV,

(y(O), V)H (.VOa V)H ) vev.

@ Minimization problem:
P i J .t. Admissibility.
(P) (y,u)GVlr/rz(IJ',IT)and (y,u)s missibility

@ (P) admits a unique solution (y,u) € W X Uy.
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Optimality conditions

@ With the reduced cost functional J(u) := J(y(u), u) there holds
(f'(u), v — u) >0 forall v € Uyg.
@ Here .
J'(u) = au + B*p(y(u)).
@ The function p solves the adjoint equation

_% (p(t), v)y + a(v, p(t)) (y—2zv)y, tel0, TLveyv,
(p(T)sV)H 0, vev.

@ Variational inequality equivalent to nonsmooth operator equation

w =Py, (~28°0))

with Py_. denoting the orthogonal projection onto U,g.
ad g g
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Discrete concept for the state equation

@ For I € N choose a POD subspace V! := (x1,...,x;) of V with the
property

] oo
ly(®) = > () xi)v xkllwo, ) ~ D Ak

k=1 k=I1+1

@ Galerkin semi-discretization y' of state y using subspace V':

% (yl(t)a V)H + a(y'(t), v) ((Bu)(t), viv,v=, t€0,T]ve vl
(), v)y = o,y vevh

@ If needed, define similarly a Galerkin semi-discretization p' of p;

—4 (p!(t),v),, +a(v,p'(t)) = (v —zv),, tel0,TlveV,
(p'(T),v)H = 0, vev.
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Optimization problem with POD surrogate model

@ Discrete minimization problem:
(P  min J(u) := J(y'(u), v).
u€Uyg

(P') admits a unique solution u' € U,q.

Optimality condition:
(J‘”(u), v— u’) >0 for all v € Usg.

@ Here »
3" (u) = au + B*p'(y' ().
te[0,T],v eV,

The function p' solves the adjoint equation
vev,

(.yl -2, V)H ’
0,

—& (p!(8), ), + a(v, pl (1))
(p’(T)a V)H =

Variational inequality equivalent to nonsmooth operator equation

]
o = Py, (~ 2B @)
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Error estimate

Theorem: Let u, u' denote the unique solutions of (P) and (P'), respectively.
Then

la = 1y < { (B*(ply() — Py (@), o' — u) +

.
[ () = Y@y - y'w),, de
0

Using the analysis of Kunisch and Volkwein for POD approximations one gets

oo
lu—d'llu ~llyo— Plyolln + | D Xt
k=I+1

+ llye = Plyell 20,17y + llP(y (@) — P'(p(y (@) llwo, T
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Conclusions from the analysis

o Get rid of ||(y — ’Ply)t”iz(o,-,-:vl) — include derivative information into
your snapshot set.

® Get rid of [|p — P*plljy (g 1) — include adjoint information into your
snapshot set.

Recipe:
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Conclusions from the analysis

o Get rid of ||(y — ’Ply)t”iz(o,-,-:vl) — include derivative information into
your snapshot set.

® Get rid of [|p — P*plljy (g 1) — include adjoint information into your
snapshot set.

Recipe:

For I € N choose a POD subspace V' := (x1,...,Xx;) of V with the property

1 oo
”J/(t) - Z (.V(t)a Xk)v Xk“%/l/([),T) ~ Z ks

k=1 k=141
and if one intends to solve optimization problems, also ensure
1

lp(®) = >~ (), xi)v Xklwo,my ~ D Aes

k=1 k=I+1
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Error between state and and its orthogonal projection
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Error between co-state and its orthogonal projection
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Neumann boundary control of the heat equation

N

Comparison of the optimal controls

Comparison of u"-u'®
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Snapshot location for parabolic (mother) optimal control problem

We consider optimal distributed control of the linear heat equation. If the data
of the optimal control problem is smooth enough we have au + p = 0 and
1. the optimal state y satisfies
8%y 2 1 1
——= +A°y+ —y=—z inQ
a2 y ay « T
y = 0 on X7,

Ay=0 onZXy,
(% —Ay)(T)=0 inQ,
y(0) =y inQ,
2. while p solves
8%p

1 o0z
—_—— 2 [e— [ — 1
8le+Ap+ p= Bt+AZ in Qr,

p=0 onZXg,
Ap=z onXr,

9
(50 +8p)O0) = ya(0) —y0 inQ,
p(TM) =0 in Q.
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Snapshot location in parabolic optimal control

With y, p and y,, px time-discrete approximations to y, p we have

2 2
ly — ykll2,1,0, < Cmj,

where
1 82y, 1
_ k2/f+7_f A2 20+ /Az
SR [ gyt i = = Bnla + X [ 1Anl
and ) )
lp = Pll2,1,0, < C7ps
where

8yd a%py 1
o= ap— A+ [ lya— 2l
n n

=2k,

Idea: go for an adaptive time grid, based on a coarse discretization in space, and
use this time-grid as snapshot grid for the optimal control problem.
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Snapshot location in parabolic optimal control - numerical example

0.6 [
I
e
T

0.4 [
I
A

i
i
I
0 02 04 06 08 1

FIGURE 8. Test 6.2: Space-time grid with dof = 37 according to the strategy in [5] with
Az =1/100 (left) and Az =1/5 (middle), respectively, and equidistant grid (right)

At i Eabs Eibs Cabs

1/24 [8.5101- 107 [ 6.1244 - 107 °T || 25 [ 2.5927 - 1070 [ 2.0417 - 10~ "
1/36 | 5.5089 - 1070 | 3.9009 - 107°! || 37 | 4.1726 - 10°! | 2.9296 - 10792
1/76 | 2.2935- 10190 | 1.5923 - 107°1 || 77 | 1.9320- 1079 | 2.0327 - 1092
1/148 | 1.1526 - 10799 | 8.0239 - 10792 || 149 | 4.8640 - 107°% | 1.9035 - 1092

TABLE 2. Test 6.2: Absolute errors between the exact optimal solution and the POD subopti-
mal solution depending on the time discretization (equidistant: columns 1-3, adaptive: columns

46)
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Recent developments—TRPOD by Arian, Fahl and Sachs 2000-

Idea: Use a POD surrogate model as model function in the Trust—Region
process. Let

J(u) = J(y(v),u), J(u) = J(7(u),u),

with y(u) the response of the POD surrogate model.
Pseudo Algorithm:

©Q Given u, compute POD model
© Compute s* = argmin|,_s<a J(u+s)

o
*) _ large: u=u+s*, increase A
= M moderate: u =u+s*, decrease A
J(u+s*) — J(u) small: keep u, decrease A

1’ (u) =" ()|

Global convergence under standard TR assumptions plus DZOI

sufficiently small.
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Recent developments—OSPOD by Kunisch and Volkwein 2006

Idea: Include choice of trajectory dependent POD modes as subsidiary condition
into the optimization problem. This reads

ming o4 J(e, ®,u) s.t.
M(®)& + A(®)a + n(®)(cr) = B(®)u,
, M(®)a(0) = ap(P),
(Pospob) ¥yt + Ay + G(y) = Bu,
y(0) = yo,
R(y)®; = A\i®; fori =1,...,1,
loillx =1fori=1,...,1.

1
Here & = [®1,...,®/], y' = > «;(t)®, and

1=

T
R(y)(2) == /(y(t), z)xy(t)dt for z € X.
0

A very similar approach is proposed by Ghattas, van Bloemen Waanders and
Willcox 2005.
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How many snapshots?

Meyer, Matthies, Heuveline, H.

How many snapshots? — iterative goal oriented procedure.
@ Goal: Resolve J(y)
@ Start on coarse equi-distant time grid and compute snapshots
@ Build POD model and compute y, and adjoint z;, of reduced dynamics
@ Becker and Rannacher: J(y) — J(yn) = n(yn, zn)

® 7)(yh, zn) > tol: double number of snapshots (re-computation)

inze

'55/57
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Where to take snapshots?

Where to take snapshots? — time-step adaption via sensitivity of POD model.
@ Goal: Optimal time-grid for system dynamics
@ Start on coarse (equi-distant) time grid and compute snapshots
@ Build POD model and compute y, and adjoint z, of reduced dynamics

@ Becker, Johnson, Rannacher: n(yn, zp) = > p]’."c(yh)w}“(zh)
Ij

@ New time-grid: equi-distribute p]’."‘(yh)w}"‘(zh)
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Further developments and improvements

o Efficient treatment of nonlinearities — Chaturantabut, Sorensen (2010)
@ MOR for the input—output map — Heiland, Mehrmann

@ A posteriori POD concept — Trbltzsch and Volkwein (2010)

@ Which modes? — DWR concepts (Matthies, Meyer 2003)

@ How many snapshots? — iterative goal oriented DWR procedure

@ Were take snapshots? — time-step adaption via sensitivity of the POD
model

@ POD in the context of space—-mapping

@ Sampling of parameter (= control) space — Greedy sampling by Patera
and Rozza (2007)

@ Use of /inear MOR techniques for nonlinear problems — SQP context,
semi—linear time integration, domain decomposition
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Further developments and improvements

o Efficient treatment of nonlinearities — Chaturantabut, Sorensen (2010)
@ MOR for the input—output map — Heiland, Mehrmann

@ A posteriori POD concept — Trbltzsch and Volkwein (2010)

@ Which modes? — DWR concepts (Matthies, Meyer 2003)

@ How many snapshots? — iterative goal oriented DWR procedure

@ Were take snapshots? — time-step adaption via sensitivity of the POD
model

@ POD in the context of space—-mapping

@ Sampling of parameter (= control) space — Greedy sampling by Patera
and Rozza (2007)

@ Use of /inear MOR techniques for nonlinear problems — SQP context,
semi—linear time integration, domain decomposition

Thank you for your attention



