

MOdelling REvisited + MOdel REduction ERC-CZ project LL1202 - MORE

Simulations of flows of fluids characterized by a non-monotone implicit constitutive relation

Giordano Tierra Chica Josef Málek

Mathematical Institute Faculty of Mathematics and Physics Charles University in Prague

Motivation.

Experiments for colloidal and surfactant suspensions:

Figure: Extracted from T. Perlácová and V. Průsa. Tensorial implicit constitutive relations in mechanics of incompressible non-Newtonian fluids. J. Non-Newton. Fluid Mech. **216** (2015) 13-21

Non-Monotone Constitutive Relations.

Figure: Idea: Instead of shear stress depending on shear rate, consider shear rate depending on shear stress

Incompressible Fluids with Non-Monotone Constitutive Relation

The model:

$$\begin{cases}
\rho \frac{D\mathbf{v}}{Dt} = \operatorname{div} \mathbb{T} + \rho \mathbf{b}, \\
\mathbb{D} = \left[\alpha (1 + \beta |\mathbb{T}_{\delta}|^{2})^{s} + \gamma\right] \mathbb{T}_{\delta}, \\
\operatorname{div} \mathbf{v} = \mathbf{0}.
\end{cases} (1)$$

where $\frac{D \cdot}{Dt}$ denotes the material derivative, $\mathbb{D} := 1/2 \Big(\nabla \textbf{\textit{v}} + (\nabla \textbf{\textit{v}})^t \Big)$ and

$$\mathbb{T}_{\delta} := \mathbb{T} - \frac{1}{3} (\operatorname{tr} \mathbb{T}) \mathbb{I}$$
 (for simplicity $\rho = 1$).

Constants $\alpha, \beta > 0$, $\gamma \ge 0$ and $s \in \mathbb{R}$ such that s < -1/2.

[C. Le Roux and K.R. Rajagopal. Shear flows of a new class of power-law fluids. Applications to Mathematics **58** (2013) 153-177]

Figure: Examples of non-monotone constitutive relations given by (1)₂ with $\alpha = 10, \beta = 0.25, s = -0.75$ and $\gamma = 0.001, 0.025, 0.05, 0.075, 0.1$.

Nonlinear viscosity dependent on the shear stress

Idea: Rewrite the constitutive relation using a nonlinear viscosity dependent on the shear stress:

$$\mathbb{T}_{\delta} = \mu(|\mathbb{T}_{\delta}|)\mathbb{D}.$$

where

$$\mu = \mu(|\mathbb{T}_{\delta}|) := \left[\alpha(1+\beta|\mathbb{T}_{\delta}|^2)^s + \gamma\right]^{-1}.$$

Q: What is the improvement of considering this nonlinear viscosity?

A: Viscosity μ is a monotone and bounded function!

Nonlinear viscosity dependent on the shear stress

Viscosity μ is a monotone and bounded function.

Remark

We have balance of energy (0 < $\frac{1}{\alpha + \gamma} \le \mu \le \frac{1}{\gamma}$):

$$rac{d}{dt}\left(rac{1}{2}\int_{\Omega}|oldsymbol{v}|^2
ight)+2\int_{\Omega}\mu|\mathbb{D}|^2=0\,,$$

and the following a priori estimates analogous to the Navier-Stokes system:

$$\mathbf{v} \in L^{\infty}(0, T; L^{2}(\Omega)^{d}) \cap L^{2}(0, T; H_{0}^{1}(\Omega)^{d}),$$

Numerical scheme

For simplicity $\rho = cte = 1$ and we neglect the convective effects in the presentation of the scheme.

- Time Finite Differences
- Space Finite Elements

Compute $(\mathbf{v}^{n+1}, \mathbf{p}^{n+1}, \mu^{n+1})$ as the solution of the following nonlinear scheme:

$$\begin{split} \left(\frac{\boldsymbol{v}^{n+1}-\boldsymbol{v}^n}{\Delta t},\bar{\boldsymbol{v}}\right) + (2\mu^{n+1}\mathbb{D}^{n+1},\overline{\mathbb{D}}) + (\nabla\rho^{n+1},\bar{\boldsymbol{v}}) &= 0\,,\\ (\operatorname{div}\boldsymbol{v}^{n+1},\bar{\rho}) &= 0\,,\\ (\mu^{n+1},\bar{\mu}) - \left(\left[\alpha(1+\beta\,|\mu^{n+1}|^2|\mathbb{D}^{n+1}|^2)^s + \gamma\right]^{-1},\bar{\mu}\right) &= 0\,. \end{split}$$

We recover the discrete version of the balance of energy:

$$\|\boldsymbol{v}^{n+1}\|_{L^2(\Omega)}^2 + 2\Delta t \int_{\Omega} \mu^{n+1} |\mathbb{D}^{n+1}|^2 \leq \|\boldsymbol{v}^n\|_{L^2(\Omega)}^2.$$

Numerical scheme. Iterative algorithm.

Initialization:

Define $(\mathbf{v}^0, p^0, \mu^0) := (\mathbf{v}^n, p^n, \mu^n).$

Step 1:

Given $(\mathbf{v}^l, p^l, \mu^l)$, to find $(\mathbf{v}^{l+1}, p^{l+1})$ such that $\forall (\bar{\mathbf{v}}, \bar{p}) \in \mathbf{V}_h \times P_h$:

$$\left(\frac{\mathbf{v}^{l+1} - \mathbf{v}^n}{\Delta t}, \bar{\mathbf{v}}\right) + (2\mu^l \mathbb{D}^{l+1}, \overline{\mathbb{D}}) + (\nabla p^{l+1}, \bar{\mathbf{v}}) = 0,$$

$$(\operatorname{div} \mathbf{v}^{l+1}, \bar{p}) = 0.$$
(2)

Step 2:

Compute μ^{l+1}

$$\mu^{l+1} = \left[\alpha (1 + \beta |\mu^l|^2 |\mathbb{D}^{l+1}|^2)^s + \gamma \right]^{-1}.$$
 (3)

Numerical scheme. Iterative algorithm.

Step 3:

Compute the residual η

$$\eta = \|\mu'^{+1} - \mu'\|_{L^2(\Omega)} + \|\boldsymbol{v}'^{+1} - \boldsymbol{v}'\|_{L^2(\Omega)}.$$

Then check:

$$\begin{cases} \text{If } \eta > tol \Rightarrow \text{Go to } \textbf{Step 1} \text{ and iterate again }, \\ \text{If } \eta \leq tol \Rightarrow (\boldsymbol{v}^{n+1}, \boldsymbol{p}^{n+1}, \boldsymbol{\mu}^{n+1}) := (\boldsymbol{v}^{l+1}, \boldsymbol{p}^{l+1}, \boldsymbol{\mu}^{l+1}), \end{cases}$$
(4)

where *tol* > 0 represents a tolerance parameter.

Find (**q**-vector, **u**-scalar) such that

$$\begin{cases} u_t - \nabla \cdot \boldsymbol{q} = 0, \\ \nabla u = [\alpha(1 + \beta |\boldsymbol{q}|^2)^s + \gamma]\boldsymbol{q}. \end{cases}$$
 (5)

Constants $\alpha, \beta > 0$, $\gamma \ge 0$ and $s \in \mathbb{R}$ such that s < -1/2.

1 Rewrite the system with a nonlinear viscosity $\tilde{\mu}$

$$\widetilde{\mu} = \widetilde{\mu}(\boldsymbol{q}) := [\alpha(1+\beta|\boldsymbol{q}|^2)^s + \gamma]^{-1}.$$
 (6)

Design Iterative Numerical Scheme as before.

Pilsen - 8/09/2015

Domain:

Boundary Conditions:

$$\left\{ \begin{array}{lll} \boldsymbol{v} & = & \boldsymbol{0} & & \text{on } \Gamma_{top} \cup \Gamma_{bottom} \,, \\ (\mathbb{T}\boldsymbol{n})\boldsymbol{n} & = & \boldsymbol{0} & & \text{on } \Gamma_{right} \,, \\ \boldsymbol{v} & = & \left(f_0(-y^2+y), \boldsymbol{0}\right) & & \text{on } \Gamma_{left} \,, \end{array} \right.$$

Simulation Parameters:

Δt	α	β	s	γ	tol
1.0 <i>e</i> -10	1.0	0.1	-0.75	1.0 <i>e</i> -06	1.0 <i>e</i> -05

Case 1: $f_0 = 0.1$

Case 1: $f_0 = 0.1$

Figure: Approximation of the Constitutive Relation at time t = 1.0e-07 with $f_0 = 0.1$. In continuous red color the Constitutive Relation and in blue triangles the relations obtained in the simulations.

Case 2:
$$f_0 = 1.0$$

Case 2: $f_0 = 1.0$

Figure: Approximation of the Constitutive Relation at time t = 1.0e-07 ($f_0 = 1$).

THANK YOU FOR YOUR ATTENTION!