Structure-preserving interpolatory model reduction for linear and nonlinear dynamical systems

Serkan Gugercin

Dept. of Mathematics, Virginia Tech. Interdisciplinary Center for Applied Mathematics, Virginia Tech.

Funding by NSF and NIOSH

Workshop on MOdel REduction, September 6-10, 2015, Plzeň, Czech Republic

Outline and Collaborators

- Optimal Rational Approximation for Linear Dynamical Systems
 - Thanos Antoulas (Rice Univ) and Chris Beattie (Virginia Tech)
 - Input-independent, optimal rational approximation by interpolation
- Structure-preserving Interpolation for Linear Dynamical Systems
 - Chris Beattie (Virginia Tech)
 - Reduced model preserves the internal structure
 - Not-necessarily a rational approximation
- DEIM and Structure-preserving MOR of nonlinear port-Hamiltonian systems
 - Chris Beattie (Virginia Tech), Saifon Chaturantabut (Thammasat Univ) and Zlatko Drmač (Univ. of Zagreb)
 - A new DEIM selection operator
 - Structure-preserving POD-DEIM
 - Enrich the POD subspace
- Dropped from slides: Optimal MOR of bilinear systems via interpolation
 - Garret Flagg (WesternGeco, Schlumberger)
 - Interpolating the Volterra series
 - Interpolation-based optimality conditions
 - See the related poster by Pawan Goyal

Generic Problem Setting

$$\mathbf{E}\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$$

?≈

$$\mathbf{E}_r \dot{\mathbf{x}} = \mathbf{A}_r \mathbf{x}_r(t) + \mathbf{B}_r \mathbf{u}(t)$$
$$\mathbf{y}_r(t) = \mathbf{C}_r \mathbf{x}_r(t)$$

(Original system)

(Reduced system)

- A, $\mathbf{E} \in \mathbb{R}^{n \times n}$, $\mathbf{B} \in \mathbb{R}^{n \times m}$, $\mathbf{C} \in \mathbb{R}^{p \times n}$
- $\mathbf{x}(t) \in \mathbb{R}^n$: states, $\mathbf{u}(t) \in \mathbb{R}^m$: Input, $\mathbf{y}(t) \in \mathbb{R}^p$: Output
- Pick $\mathbf{E}_r, \mathbf{A}_r \in \mathbb{R}^{r \times r}, \mathbf{B}_r \in \mathbb{R}^{r \times m}, \mathbf{C}_r : \mathbb{R}^{p \times r}$; so that $r \ll n$ and
 - $\|\mathbf{y} \mathbf{y}_r\|$ is *small* in an appropriate norm
 - The procedure is computationally efficient.

Model Reduction via Projection

- Choose $V_r = \text{Range}(V_r)$: the r-dimensional right modeling *subspace* (the trial subspace) where $\mathbf{V}_r \in \mathbb{R}^{n \times r}$
- and $\mathcal{W}_r = \text{Range}(\mathbf{W}_r)$, the r-dimensional left modeling subspace (test subspace) where $\mathbf{W}_r \in \mathbb{R}^{n \times r}$
- Approximate $\underbrace{\mathbf{x}(t)}_{n \times 1} \approx \underbrace{\mathbf{V}_r}_{n \times r} \underbrace{\mathbf{x}_r(t)}_{r \times 1}$ by forcing $\mathbf{x}_r(t)$ to satisfy

$$\mathbf{W}_r^T (\mathbf{E} \mathbf{V}_r \dot{\mathbf{x}}_r - \mathbf{A} \mathbf{V}_r \mathbf{x}_r - \mathbf{B} \mathbf{u}) = \mathbf{0}$$
 (Petrov-Galerkin)

Leads to a reduced order model:

$$\mathbf{E}_r = \underbrace{\mathbf{W}_r^T \mathbf{E} \mathbf{V}_r}_{r \times r}, \quad \mathbf{A}_r = \underbrace{\mathbf{W}_r^T \mathbf{A} \mathbf{V}_r}_{r \times r}, \quad \mathbf{B}_r = \underbrace{\mathbf{W}_r^T \mathbf{B}}_{r \times m}, \quad \mathbf{C}_r = \underbrace{\mathbf{C} \mathbf{V}_r}_{p \times r}, \quad \mathbf{D}_r = \underbrace{\mathbf{D}}_{p \times m}$$

Figure: Projection-based Model Reduction

- Once V_r and W_r are selected, S_r is automatically determined.
- In other words: What matters are the $Ran(V_r)$ and $Ran(W_r)$.
- Antoulas, Beattie, Benner, Borggaard, Chaturantabut, Enns, Freund, Glover, Grimme, Haasdonk, Heinkenschloss, Hinze, Iliescu, Kunish, Mehrmann, Mullis, Roberts, Reis, Sorensen, Stykel, van Dooren, Volkwein, Willcox, and many many more

Frequecy Domain and Transfer Functions

•
$$S:$$
 $\mathbf{u}(t) \mapsto \mathbf{y}(t) = (S\mathbf{u})(t) = \int_{-\infty}^{t} h(t-\tau)\mathbf{u}(\tau)d\tau.$

- $\mathbf{H}(s) = (\mathcal{L}h)(s) = \mathbf{C}(s\mathbf{E} \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}.$
- $\mathbf{H}(s)$: matrix-valued $(p \times m)$ rational function in $s \in \mathbb{C}$.
- Similarly: $\mathbf{H}_r(s) = \mathbf{C}_r(s\mathbf{E}_r \mathbf{A}_r)^{-1}\mathbf{B}_r + \mathbf{D}_r$
- $\mathbf{H}(s) = \frac{\alpha_0 s^n + \alpha_1 s^{n-1} + \alpha_2 s^{n-2} + \dots + \alpha_n}{s^n + \beta_1 s^{n-1} + \beta_2 s^{n-2} + \dots + \beta_n}$ (Assuming SISO)
- $\mathbf{H}_r(s) = \frac{\gamma_0 s^r + \gamma_1 s^{r-1} + \gamma_2 s^{r-2} + \dots + \gamma_r}{s^r + n_1 s^{r-1} + n_2 s^{r-2} + \dots + n_r}$ (Assuming SISO)
- Model Reduction = Rational Approximation

Consider the following example from [Antoulas (2006)]:

$$\frac{\partial T}{\partial t}(z,t) = \frac{\partial^2 T}{\partial z^2}(z,t), \quad t \ge 0, \quad z \in [0,1]$$

$$\frac{\partial T}{\partial t}(0,t) = 0 \quad \text{and} \quad \frac{\partial T}{\partial z}(1,t) = u(t)$$

- u(t) is the input function (supplied heat)
- v(t) = T(0,t) is the output.
- Transfer function: $\Re(s) = \frac{Y(s)}{U(s)} = \frac{1}{\sqrt{s} \sinh \sqrt{s}}$
- $\mathcal{H}(s) = \frac{1}{\sqrt{s} \sinh \sqrt{s}} \neq \mathbf{C}(s\mathbf{E} \mathbf{A})^{-1}\mathbf{B}$

- Do not assume the generic first-order structure.
- For example:

•
$$\mathcal{H}(s) = \mathbf{C}(s\mathbf{E} - \mathbf{A}_0 - e^{-\tau_1 s} \mathbf{A}_1 - e^{-\tau_2 s} \mathbf{A}_2)^{-1} \mathbf{B}$$

•
$$\mathcal{H}(s) = e^{-\sqrt{s}}$$

$$\bullet \ \mathcal{H}(s) = (s\mathbf{C}_1 + \mathbf{C}_0)(s^2\mathbf{M} + s\mathbf{D} + \mathbf{K})^{-1}\mathbf{B}$$

•
$$\mathcal{H}(s) = \frac{1}{\sqrt{s} \sinh \sqrt{s}}$$

•
$$\mathcal{H}(s) = \mathcal{C}(s)\mathcal{K}(s)^{-1}\mathbf{B}(s)$$

• New goal: Given the ability to evaluate $\mathcal{H}(s)$:

$$\begin{array}{c|c}
\mathbf{\mathcal{H}}(s) & \overset{?}{\approx} & \mathbf{E}_r \dot{\mathbf{x}} = \mathbf{A}_r \mathbf{x}_r(t) + \mathbf{B}_r \mathbf{u}(t) \\
\mathbf{y}_r(t) = \mathbf{C}_r \mathbf{x}_r(t)
\end{array}$$

Realization independent and data-driven.

Model Reduction by Rational Interpolation

• For simplicity of notation, assume m = p = 1:

$$\mathbf{B} \to \mathbf{b} \in \mathbb{R}^n \quad \mathbf{C} \to \mathbf{c}^T \in \mathbb{R}^n$$

For the MIMO case details, see [Antoulas/Beattie/G,11], [Beattie/G,15].

• Given a transfer function $\mathcal{H}(s)$ together with

left driving frequencies: right driving frequencies:
$$\{\mu_i\}_{i=1}^r \subset \mathbb{C}, \{\sigma_i\}_{i=1}^r \subset \mathbb{C}$$

producing *left responses*: producing *right responses*:

$$\{\mathfrak{H}(\mu_i)\}_{i=1}^r \subset \mathbb{C}, \qquad \qquad \{\mathfrak{H}(\sigma_j)\}_{i=1}^r \subset \mathbb{C}$$

• Find a reduced model $\mathcal{H}_r(s) = \mathbf{c}_r^T (s\mathbf{E}_r - \mathbf{A}_r)^{-1} \mathbf{b}_r$, that is a rational interpolant to $\mathcal{H}(s)$:

$$\mathcal{H}_r(\mu_i) = \mathcal{H}(\mu_i)$$
 and $\mathcal{H}_r(\sigma_j) = \mathcal{H}(\sigma_j)$ for $i = 1, \dots, r$,

Interpolatory Model Reduction via Projection

• Given $\{\sigma_i\}_{i=1}^r$ and $\{\mu_j\}_{i=1}^r$, set

$$\mathbf{V}_r = \left[(\sigma_1 \mathbf{E} - \mathbf{A})^{-1} \mathbf{b}, \ \cdots, \ (\sigma_r \mathbf{E} - \mathbf{A})^{-1} \mathbf{b} \right] \in \mathbb{C}^{n \times r} \text{ and }$$

$$\mathbf{W}_r = \left[(\mu_1 \mathbf{E}^T - \mathbf{A}^T)^{-1} \mathbf{c}^T \ \cdots \ (\mu_r \mathbf{E}^T - \mathbf{A}^T)^{-1} \mathbf{c}^T \ \right] \in \mathbb{C}^{n \times r}$$

• Obtain $\mathcal{H}_r(s)$ via projection as before

$$\mathbf{E}_r = \mathbf{W}_r^T \mathbf{E} \mathbf{V}_r \quad \mathbf{A}_r = \mathbf{W}_r^T \mathbf{A} \mathbf{V}_r, \quad \mathbf{b}_r = \mathbf{W}_r^T \mathbf{b}, \quad \mathbf{c}_r = \mathbf{V}_r^T \mathbf{c}, \quad \mathbf{D}_r = \mathbf{D}$$

Then

$$\mathcal{H}(\sigma_i) = \mathcal{H}_r(\sigma_i),$$
 for $i = 1, \dots, r$,
 $\mathcal{H}(\mu_j) = \mathcal{H}_r(\mu_j),$ for $j = 1, \dots, r$,
 $\mathcal{H}'(\sigma_k) = \mathcal{H}'_r(\sigma_k)$ if $\sigma_k = \mu_k$

- Hermite tangential interpolation without explicit computations of the quantities to be matched.
- [Skelton et. al., 87], [Feldmann/Freund, 95], [Grimme, 97], [Gallivan et. al., 05]

Rational Interpolation from Data [Mayo/Antoulas (2007)]

- Given $\{\sigma_i\}_{i=1}^r$ and $\{\mu_j\}_{j=1}^r$, evaluate or measure $\mathfrak{H}(\sigma_i)$ and $\mathfrak{H}(\mu_j)$
- Construct the Loewner matrix:

$$\mathbb{L}_{ij} = \frac{\mathcal{H}(\mu_i) - \mathcal{H}(\sigma_j)}{\mu_i - \sigma_i}, \quad i, j = 1, \dots, r, \quad (\mathcal{H}(s))$$

Construct the shifted Loewner matrix:

$$\mathbb{M}_{ij} = \frac{\mu_i \mathcal{H}(\mu_i) - \mathcal{H}(\sigma_j) \sigma_j}{\mu_i - \sigma_i}, \quad i, j = 1, \dots, r \quad (s\mathcal{H}(s))$$

• In addition to \mathbb{L} and \mathbb{M} , construct the following vectors from data:

$$\mathbf{z} = \begin{bmatrix} \mathbf{\mathcal{H}}(\mu_1) \\ \vdots \\ \mathbf{\mathcal{H}}(\mu_r) \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} \mathbf{\mathcal{H}}(\sigma_1) \\ \vdots \\ \mathbf{\mathcal{H}}(\sigma_r) \end{bmatrix}$$

Data-Driven Interpolant

Theorem (Mayo/Antoulas,2007)

Assume that $\mu_i \neq \sigma_j$ for all i, j = 1, ..., r. Suppose that $\mathbb{M} - s \mathbb{L}$ is invertible for all $s \in {\sigma_i} \cup {\mu_i}$. Then, with

$$\mathbf{E}_r = -\mathbb{L}, \quad \mathbf{A}_r = -\mathbb{M}, \quad \mathbf{b}_r = \mathsf{z}, \quad \mathbf{c}_r = \mathsf{y},$$

the rational function (reduced model)

$$\mathcal{H}_r(s) = \mathbf{c}_r^T (s\mathbf{E}_r - \mathbf{A}_r)^{-1} \mathbf{b}_r = \mathbf{y}^T (\mathbb{M} - s \,\mathbb{L})^{-1} \mathbf{z}$$

interpolates the data and furthermore is a minimal realization.

- Once the data is collected, one directly writes down $\mathcal{H}_r(s)$.
- For Hermite interpolation, choose $\sigma_i = \mu_i$ and only modify

$$\mathbb{L}_{ii} = \mathcal{H}'(\sigma_i)$$
 and $\mathbb{M}_{ii} = [s\mathcal{H}(s)]'_{s=\sigma_i}$

A brief note on the DAEs

- $\bullet \, \mathcal{H}(s) = \mathcal{H}_{sp}(s) + \mathcal{P}(s).$
- We want $\mathcal{H}_r(s) = \mathcal{H}_{r,sp}(s) + \mathcal{P}_r(s)$ with $\mathcal{P}_r(s) = \mathcal{P}(s)$,
- Problem reduces to: $\mathcal{H}_{r,sp}(s)$ interpolates $\mathcal{H}_{sp}(s)$.
- P_r = the spectral projector onto the right deflating subspace of $(\lambda \mathbf{E} - \mathbf{A})$ corresponding to the finite eigenvalues.
- P_i: Defined similarly for the left deflating subspace.
- W_{∞} and V_{∞} : Span, respectively, the right and left deflating subspaces of $(\lambda \mathbf{E} - \mathbf{A})$ corresponding to the infinite eigenvalues.

Theorem ([G./Stykel/Wyatt,12])

Given are $\mathcal{H}(s) = \mathbf{c}^T (s\mathbf{E} - \mathbf{A})^{-1} \mathbf{b} + \mathbf{D}$, interpolation points $\sigma \in \mathbb{C}$. Define V_f and W_f such that

$$\mathbf{V}_f = \left[(\sigma_1 \mathbf{E} - \mathbf{A})^{-1} \mathbf{P}_l \mathbf{b}, \cdots, (\sigma_r \mathbf{E} - \mathbf{A})^{-1} \mathbf{P}_l \mathbf{b} \right] \in \mathbb{C}^{n \times r} \text{ and }$$

$$\mathbf{W}_f = \left[(\sigma_1 \mathbf{E}^T - \mathbf{A}^T)^{-1} \mathbf{P}_r^T \mathbf{c}^T \cdots (\sigma_r \mathbf{E}^T - \mathbf{A}^T)^{-1} \mathbf{P}_r^T \mathbf{c}^T \right] \in \mathbb{C}^{n \times r}$$

Define $W_r = [W_f, W_{\infty}]$ and $V_r = [V_f, V_{\infty}]$, and construct $\mathcal{H}_r(s)$. Then.

- $\mathbf{O} \mathcal{P}_r(s) = \mathcal{P}(s)$, and
- $\mathfrak{B}(\sigma_i) = \mathfrak{H}_r(\sigma_i), \text{ and } \mathfrak{H}'(\sigma_i) = \mathfrak{H}_r'(\sigma_i) \text{ for } i = 1, 2, \dots, r.$
 - Theorem requires explicit computation of P_t and P_r in general.
 - [G./Stykel/Wyatt,12]: For index-1 and (Stokes-type) index-2 DAEs interpolation with polynomial matching achieves without explicit computation of \mathbf{P}_l and \mathbf{P}_r .

Where to Interpolate: Performance Measures

• How to measure $\mathfrak{H}(s) \approx \mathfrak{H}_r(s)$

$$\|\mathbf{\mathcal{H}} - \mathbf{\mathcal{H}}_r\|_{\mathcal{H}_2} = \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} \|\mathbf{\mathcal{H}}(\imath\omega) - \mathbf{\mathcal{H}}_r(\imath\omega)\|_F^2 d\omega\right)^{1/2}$$

• Make pointwise error $\max_{t>0} \|\mathbf{y}(t) - \mathbf{y}_r(t)\|_{\infty}$ small relative to input energy, $\left(\int_0^{\infty} \|\mathbf{u}(t)\|_2^2 dt\right)^{1/2}$

$$\max_{t>0} \|\mathbf{y}(t) - \mathbf{y}_r(t)\|_{\infty} \le \|\mathcal{H} - \mathcal{H}_r\|_{\mathcal{H}_2} \cdot \left(\int_0^{\infty} \|\mathbf{u}(t)\|_2^2 dt\right)^{1/2}$$

• $2-\infty$ induced norm if m=1 and/or p=1

$$\|\mathbf{\mathcal{H}}\|_{\mathcal{H}_2} = \sup_{\mathbf{u} \neq 0} \frac{\|\mathbf{y}\|_{\infty}}{\|\mathbf{u}\|_2}$$

Interpolatory \mathcal{H}_2 optimality conditions

Theorem ([Meier /Luenberger,67], [G./Antoulas/Beattie,08])

Given $\mathfrak{H}(s)$, let $\mathfrak{H}_r(s)$ be the best stable r^{th} order rational approximation of \mathfrak{H} with respect to the \mathcal{H}_2 norm. Assume \mathfrak{H}_r has simple poles at $\hat{\lambda}_1, \hat{\lambda}_2, \dots \hat{\lambda}_r$. Then

$$\mathfrak{H}(-\hat{\lambda}_k) = \mathfrak{H}_r(-\hat{\lambda}_k)$$
 and $\mathfrak{H}'(-\hat{\lambda}_k) = \mathfrak{H}'_r(-\hat{\lambda}_k)$ for $k = 1, 2, ..., r$.

- Hermite interpolation for \mathcal{H}_2 optimality
- Optimal interpolation points : $\sigma_i = -\hat{\lambda}_i$
- The MIMO conditions: [G./Antoulas/Beattie,08]
- Other MIMO works: [van Dooren et al..08], [Bunse-Gernster et al.,09]
- $\hat{\lambda}_i$ NOT known a priori \Longrightarrow Need iterative steps

An Iterative Rational Krylov Algorithm (IRKA):

• If projection framework is preferred:

Algorithm (G./Antoulas/Beattie [2008])

- **One** $\{\sigma_1, \ldots, \sigma_r\}$
- $\mathbf{v}_r = \left[(\sigma_1 \mathbf{E} \mathbf{A})^{-1} \mathbf{b}, \cdots, (\sigma_r \mathbf{E} \mathbf{A})^{-1} \mathbf{b} \right]$ $\mathbf{W}_r = \left[(\sigma_1 \mathbf{E}^T - \mathbf{A}^T)^{-1} \mathbf{c}^T, \cdots, (\sigma_r \mathbf{E}^T - \mathbf{A}^T)^{-1} \mathbf{c}^T \right].$
- while (not converged)
 - $\mathbf{0} \quad \mathbf{A}_r = \mathbf{W}_r^T \mathbf{A} \mathbf{V}_r, \mathbf{E}_r = \mathbf{W}_r^T \mathbf{E} \mathbf{V}_r$
 - \circ $\sigma_i \longleftarrow -\lambda_i(\mathbf{A}_r, \mathbf{E}_r)$.
 - $\mathbf{3} \quad \mathbf{V}_r = \left[(\sigma_1 \mathbf{E} \mathbf{A})^{-1} \mathbf{b}, \cdots, (\sigma_r \mathbf{E} \mathbf{A})^{-1} \mathbf{b} \right]$
 - $\mathbf{W}_r = \left[(\sigma_1 \mathbf{E}^T \mathbf{A}^T)^{-1} \mathbf{c}^T, \cdots, (\sigma_r \mathbf{E}^T \mathbf{A}^T)^{-1} \mathbf{c}^T \right]$
- $\mathbf{A}_r = \mathbf{W}_r^T \mathbf{A} \mathbf{V}_r$, $\mathbf{E}_r = \mathbf{W}_r^T \mathbf{E} \mathbf{V}_r$, $\mathbf{b}_r = \mathbf{W}_r^T \mathbf{b}$, and $\mathbf{c}_r = \mathbf{V}_r^T \mathbf{c}$, $\mathbf{D}_r = \mathbf{D}$.
 - Optimality conditions upon convergence

Realization Independent IRKA

• If $\mathfrak{H}(s)$ is not rational or only $\mathfrak{H}(s)$ is available

Algorithm (Realization Independent IRKA [Beattie/G., (2012)])

- **1** Choose initial $\{\sigma_i\}$ for $i = 1, \ldots, r$.
- while not converged
 - Evaluate $\mathfrak{H}(\sigma_i)$ and $\mathfrak{H}'(\sigma_i)$ for i = 1, ..., r.
 - **2** Construct $\mathbf{E}_r = -\mathbb{L}$, $\mathbf{A}_r = -\mathbb{M}$, $\mathbf{b}_r = \mathsf{z}$ and $\mathbf{c}_r = \mathsf{y}$
 - **3** Construct $\mathcal{H}_r(s) = \mathbf{c}_r^T (s\mathbf{E}_r \mathbf{A}_r)^{-1} \mathbf{b}_r$
 - $\bullet \quad \sigma_i \longleftarrow -\lambda_i(\mathbf{A}_r, \mathbf{E}_r) \text{ for } i = 1, \dots, r$
- **3** Construct $\mathfrak{H}_r(s) = \mathbf{c}_r^T (s\mathbf{E}_r \mathbf{A}_r)^{-1} \mathbf{b}_r = \mathsf{z}^T (\mathbb{M} s \, \mathbb{L})^{-1} \mathsf{y}$
- Allows infinite order transfer functions !! e.g., $\mathcal{H}(s) = \mathbf{c}^T (s\mathbf{E} - \mathbf{A}_0 - e^{-\tau_1 s} \mathbf{A}_1 - e^{-\tau_2 s} \mathbf{A}_2)^{-1} \mathbf{b}$

- IRKA is not a descent method and global convergence is not quaranteed despite overwhelming numerical evidence.
- Guaranteed convergence: State-space symmetric systems [Flagg/Beattie/G.,2012]
- Newton formulation is possible [G./Antoulas/Beattie,08]
- Globally convergent descent formulation: [Beattie/G.,09]
- Weighted- \mathcal{H}_2 IRKA: For minimizing $\|\mathbf{W}(s) (\mathcal{H}(s) \mathcal{H}_r(s))\|_{\mathcal{H}_2}$: [Anic et al. 12], [Breiten/Beattie/G.,14], [Vuillemin et al., 15]
- IRKA for DAEs: [G./Stykel/Wyatt, 12]
- Extended to bilinear systems: B-IRKA by [Benner/Breiten, 12]. Analogous interpolation conditions for Volterra series [Flagg/G., 15].

Revisit: One-dimensional heat equation

•
$$\Re(s) = \frac{1}{\sqrt{s} \sinh \sqrt{s}} = \frac{1}{s} + \sum_{k=1}^{\infty} \frac{2(-1)^k}{s + k^2 \pi^2} = \frac{1}{s} + \Re(s)$$

- Apply Loewner-IRKA to $\mathfrak{G}(s)$. Then $\mathfrak{H}_r(s)=\mathfrak{G}_r(s)+\frac{1}{s}$
- Optimal points upon convergence: $\sigma_1 = 20.9418$, $\sigma_2 = 10.8944$.

$$\bullet \mathcal{H}_r(s) = \frac{-0.9469s - 37.84}{s^2 + 31.84s + 228.1} + \frac{1}{s}.$$

•
$$\|\mathcal{H} - \mathcal{H}_r\|_{\mathcal{H}_2} = 5.84 \times 10^{-3}, \|\mathcal{H} - \mathcal{H}_r\|_{\mathcal{H}_{\infty}} = 9.61 \times 10^{-4}$$

- $\mathcal{H}_r(s)$ exactly interpolates $\mathcal{H}(s)$
- Balanced truncation of the discretized model:

•
$$n = 10$$
: $\|\mathcal{H} - \mathcal{H}_r\|_{\mathcal{H}_2} = 1.16 \times 10^{-2}$, $\|\mathcal{H} - \mathcal{H}_r\|_{\mathcal{H}_{\infty}} = 1.58 \times 10^{-3}$

•
$$n = 1000$$
: $\|\mathcal{H} - \mathcal{H}_r\|_{\mathcal{H}_2} = 5.91 \times 10^{-3}$, $\|\mathcal{H} - \mathcal{H}_r\|_{\mathcal{H}_{\infty}} = 1.01 \times 10^{-3}$

Intro Intrplt StrcMOR Nonlinear NL-PH Conclusions IntrpltProj DDROM DAEs Measure H2cond IRKA Exmpl

Indoor-air environment in a conference room

Figure: Geometry for our Indoor-air Simulation:

Example from [Borggaard/Cliff/G., 2011], research under EEBHUB

- Four inlets, one return vent
- Thermal loads: two windows, two overhead lights and occupants
- FLUENT to simulate the indoor-air velocity, temperature and moisture.

Finite Element Model of Convection/Diffusion

• A finite element model for thermal energy transfer with frozen velocity field $\overline{\mathbf{v}},$

$$\frac{\partial T}{\partial t} + \overline{\mathbf{v}} \cdot \nabla T = \frac{1}{\text{RePr}} \Delta T + Bu,$$

leading to

$$\mathbf{E}\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t), \quad \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t),$$

with n = 202140, m = 2 inputs

- the temperature of the inflow air at all four vents, and
- 2 a disturbance caused by occupancy around the conference table, and p=2 outputs
 - the temperature at a sensor location on the *max x* wall,
 - 2 the average temperature in an occupied volume around the table,

Conference Room: Reduction by IRKA

- Recall n = 202140, m = 2 and p = 2
- Reduced the order to r = 30 using IRKA.
- Relative errors in the subsystems by IRKA

	From Input [1]	From Input [2]
To Output [1]	6.62×10^{-3}	1.82×10^{-5}
To Output [2]	4.86×10^{-4}	5.40×10^{-7}

Does IRKA pay off? How about some ad hoc selections:

	From Input [1]	From Input [2]
To Output [1]	9.19×10^{-2}	8.38×10^{-2}
To Output [2]	5.90×10^{-2}	2.22×10^{-2}

 One can keep trying different ad hoc selections but this is exactly what we want to avoid.

Structure-preserving model reduction

$$\mathbf{u}(t) \longrightarrow \begin{bmatrix} \mathbf{A}_0 \frac{d^{\ell} \mathbf{x}}{dt^{\ell}} + \mathbf{A}_1 \frac{d^{\ell-1} \mathbf{x}}{dt^{\ell-1}} + \dots + \mathbf{A}_{\ell} \mathbf{x} = \mathbf{B}_0 \frac{d^{k} \mathbf{u}}{dt^{k}} + \dots + \mathbf{B}_{k} \mathbf{u} \\ \mathbf{y}(t) = \mathbf{C}_0 \frac{d^{d} \mathbf{x}}{dt^{d}} + \dots + \mathbf{C}_{q} \mathbf{x}(t) \end{bmatrix} \longrightarrow \mathbf{y}(t)$$

- "Every linear ODE may be reduced to an equivalent first order system" Might not be the best approach ...
- For example

$$\mathbf{C}(s^2\mathbf{M} + s\mathbf{D} + \mathbf{K})^{-1}\mathbf{B} = \mathbf{C}(s\mathbf{E} - \mathbf{A})^{-1}\mathbf{B}$$

where

$$\boldsymbol{\mathcal{E}} = \left[\begin{array}{cc} \boldsymbol{I} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{M} \end{array} \right], \; \boldsymbol{\mathcal{A}} = \left[\begin{array}{cc} \boldsymbol{0} & \boldsymbol{I} \\ -\boldsymbol{K} & -\boldsymbol{D} \end{array} \right], \; \boldsymbol{\mathcal{B}} = \left[\begin{array}{cc} \boldsymbol{0} \\ \boldsymbol{B} \end{array} \right], \; \boldsymbol{\mathcal{C}} = \left[\begin{array}{cc} \boldsymbol{C} & \boldsymbol{0} \end{array} \right]$$

Disadvantages???

- The "state space" is an aggregate of dynamic variables some of which may be internal and "locked" to other variables.
- Refined goal: Want to develop model reduction methods that can reduce selected state variables (i.e., on selected subspaces) while leaving other state variables untouched; maintain structural relationships among the variables.

"Structure-preserving model reduction"

- For the second-order systems, see: [Craig Jr., 1981], [Chahlaoui et.al, 2005], [Bai,2002], [Su/Craig,(1991)], [Meyer/Srinivasan,1996],
- For $\mathcal{H}(s) = \mathbf{c}^T (s\mathbf{M} + \mathbf{D} + \mathbf{K}/s)^{-1} \mathbf{c}$: see [Freund, 2008]
- We will be investigating a much more general framework.

$$\begin{split} & \partial_{tt} \mathbf{w}(x,t) - \eta \, \Delta \mathbf{w}(x,t) - \int_0^t \, \rho(t-\tau) \, \Delta \mathbf{w}(x,\tau) \, d\tau + \nabla \varpi(x,t) = \mathbf{b}(x) \cdot \mathbf{u}(t), \\ & \nabla \cdot \mathbf{w}(x,t) = 0 \quad \text{which determines} \quad \mathbf{y}(t) = [\varpi(x_1,t), \, \ldots, \, \varpi(x_p,t)]^T \end{split}$$

- [Leitman and Fisher, 1973]
- $\mathbf{w}(x,t)$ is the displacement field; $\varpi(x,t)$ is the pressure field; $\rho(\tau)$ is a "relaxation function"

$$\mathbf{M}\ddot{\mathbf{x}}(t) + \eta \mathbf{K} \mathbf{x}(t) + \int_0^t \rho(t - \tau) \mathbf{K} \mathbf{x}(\tau) d\tau + \mathbf{D} \boldsymbol{\varpi}(t) = \mathbf{B} \mathbf{u}(t),$$

$$\mathbf{D}^T \mathbf{x}(t) = \mathbf{0}, \quad \text{which determines} \quad \mathbf{y}(t) = \mathbf{C} \boldsymbol{\varpi}(t)$$

- $\mathbf{x} \in \mathbb{R}^{n_1}$ discretization of \mathbf{w} ; $\boldsymbol{\varpi} \in \mathbb{R}^{n_2}$ discretization of $\boldsymbol{\varpi}$.
- M and K are real, symmetric, positive-definite matrices, $\mathbf{B} \in \mathbb{R}^{n_1 \times m}$. $\mathbf{C} \in \mathbb{R}^{p \times n_2}$. and $\mathbf{D} \in \mathbb{R}^{n_1 \times n_2}$.

Example 1: Incompressible viscoelastic vibration

Transfer function (need not be a rational function!):

$$\mathcal{H}(s) = \begin{bmatrix} \mathbf{0} \ \mathbf{C} \end{bmatrix} \begin{bmatrix} s^2 \mathbf{M} + (\widehat{\rho}(s) + \eta) \mathbf{K} & \mathbf{D} \\ \mathbf{D}^T & \mathbf{0} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{B} \\ \mathbf{0} \end{bmatrix}$$

 Want a reduced order model that replicates input-output response with high fideliety yet retains "viscoelasticity":

$$\mathbf{M}_r \ddot{\mathbf{x}}(t) + \eta \mathbf{K}_r \mathbf{x}_r(t) + \int_0^t \rho(t-\tau) \mathbf{K}_r \mathbf{x}_r(\tau) d\tau + \mathbf{D}_r \boldsymbol{\varpi}_r(t) = \mathbf{B}_r \mathbf{u}(t),$$

$$\mathbf{D}_r^T \mathbf{x}_r(t) = \mathbf{0}, \quad \text{which determines} \quad \mathbf{y}_r(t) = \mathbf{C}_r \boldsymbol{\varpi}_r(t)$$

with symmetric positive semidefinite \mathbf{M}_r , $\mathbf{K}_r \in \mathbb{R}^{r \times r}$, $\mathbf{B}_r \in \mathbb{R}^{r \times m}$, $\mathbf{C}_r \in \mathbb{R}^{p \times r}$, and $\mathbf{D}_r \in \mathbb{R}^{r \times r}$.

 Because of the memory term, both reduced and original systems have infinite-order.

Generalized Coprime Interpolation Setting

$$\mathbf{u}(t) \longrightarrow \boxed{\mathbf{\mathcal{H}}(s) = \mathbf{\mathcal{C}}(s)\mathbf{\mathcal{K}}(s)^{-1}\mathbf{\mathcal{B}}(s)} \longrightarrow \mathbf{y}(t)$$

- $\mathfrak{C}(s) \in \mathbb{C}^{1 \times n}$ and $\mathfrak{B}(s) \in \mathbb{C}^{n \times 1}$ are analytic in the right half plane;
- $\mathfrak{K}(s) \in \mathbb{C}^{n \times n}$ is analytic and full rank throughout the right half plane with $n \approx 10^5, 10^6$ or higher.
- "Internal state" $\mathbf{x}(t)$ is not itself important.
- How much state space detail is needed to replicate the map " $\mathbf{u} \mapsto \mathbf{v}$ "?

$$\mathcal{H}(s) = \mathcal{C}(s)\mathcal{K}(s)^{-1}\mathcal{B}(s) \longrightarrow \mathcal{H}_r(s) = \mathcal{C}_r(s)\mathcal{K}_r(s)^{-1}\mathcal{B}_r(s)$$

A General Projection Framework

- Select $\mathbf{V}_r \in \mathbb{R}^{n \times r}$ and $\mathbf{W}_r \in \mathbb{R}^{n \times r}$.
- The the reduced model $\mathcal{H}_r(s) = \mathcal{C}_r(s)\mathcal{K}_r(s)^{-1}\mathcal{B}_r(s)$ is

$$\mathfrak{K}_r(s) = \mathbf{W}_r^T \mathfrak{K}(s) \mathbf{V}_r, \quad \mathfrak{B}_r(s) = \mathbf{W}_r^T \mathfrak{B}(s), \quad \mathfrak{C}_r(s) = \mathfrak{C}(s) \mathbf{V}_r.$$

$$\mathbf{u}(t) \longrightarrow \mathbf{\mathcal{H}}_r(s) = \mathbf{\mathcal{C}}_r(s)\mathbf{\mathcal{K}}_r(s)^{-1}\mathbf{\mathcal{B}}_r(s) \longrightarrow \mathbf{y}_r(t) \approx \mathbf{y}(t)$$

- The generic case: $\mathcal{K}(s) = s\mathbf{E} \mathbf{A}$, $\mathcal{B}(s) = \mathbf{B}$, $\mathcal{C}(s) = \mathbf{C}$,
- We choose $\mathcal{V}_r \in \mathbb{R}^{n \times r}$ and $\mathcal{W}_r \in \mathbb{R}^{n \times r}$ to enforce interpolation.

Model Reduction by Tangential Interpolation

• For selected points $\{\sigma_1, \sigma_2, ...\sigma_r\}$ in \mathbb{C} , find $\mathcal{H}_r(s)$ so that

$$\mathcal{H}(\sigma_i) = \mathcal{H}_r(\sigma_i), \text{ and } \mathcal{H}'(\sigma_i) = \mathcal{H}'_r(\sigma_i) \text{ for } i = 1, 2, \dots, r.$$

Theorem (Beattie/G,09)

Suppose that $\mathfrak{B}(s)$, $\mathfrak{C}(s)$, and $\mathfrak{K}(s)$ are analytic at a point $\sigma \in \mathbb{C}$ and both $\mathfrak{K}(\sigma)$ and $\mathfrak{K}_r(\sigma) = \mathbf{W}_r^T \mathfrak{K}(\sigma) \mathbf{V}_r$ have full rank.

- If $\mathfrak{K}(\sigma)^{-1}\mathfrak{B}(\sigma) \in Ran(\mathbf{V}_r)$, then $\mathfrak{H}(\sigma) = \mathfrak{H}_r(\sigma)$.
- If $\left(\mathfrak{C}(\sigma)\mathfrak{K}(\sigma)^{-1}\right)^T \in \mathit{Ran}(\mathbf{W}_r)$, then $\mathfrak{H}(\sigma) = \mathfrak{H}_r(\sigma)$
- If $\mathfrak{K}(\sigma)^{-1}\mathfrak{B}(\sigma) \in \mathit{Ran}(\mathbf{V}_r)$ and $\left(\mathfrak{C}(\sigma)\mathfrak{K}(\sigma)^{-1}\right)^T \in \mathit{Ran}(\mathbf{W}_r)$ then $\mathfrak{H}'(\sigma) = \mathfrak{H}'_r(\sigma)$
- Once again, Herminte interpolation via projection
- Flexibility of interpolation framework

Interpolatory projections in model reduction

• Given distinct (complex) frequencies $\{\sigma_1, \sigma_2, \ldots, \sigma_r\} \subset \mathbb{C}$,

$$\mathbf{\mathcal{V}}_r = \left[\mathbf{\mathcal{K}}(\sigma_1)^{-1} \mathbf{\mathcal{B}}(\sigma_1), \cdots, \mathbf{\mathcal{K}}(\sigma_r)^{-1} \mathbf{\mathcal{B}}(\sigma_r) \right]$$
$$\mathbf{\mathcal{W}}_r^T = \begin{bmatrix} \mathbf{\mathcal{C}}(\sigma_1) \mathbf{\mathcal{K}}(\sigma_1)^{-1} \\ \vdots \\ \mathbf{\mathcal{C}}(\sigma_r) \mathbf{\mathcal{K}}(\sigma_r)^{-1} \end{bmatrix}$$

- Guarantees that $\mathcal{H}(\sigma_j) = \mathcal{H}_r(\sigma_j)$ and $\mathcal{H}'(\sigma_j) = \mathcal{H}'_r(\sigma_j)$ for j = 1, 2, ..., r.
- Structure-preserving interpolation from data
 - [Schulze/Unger, 15]: Delay models
 - [Schulze/Unger/Beattie/G., 15]: Generalized coprime case

Viscoelastic Example

- A simple variation of the previous model:
- $\Omega = [0,1] \times [0,1]$: a volume filled with a viscoelastic material with boundary separated into a top edge ("lid"), $\partial \Omega_1$, and the complement, $\partial \Omega_0$ (bottom, left, and right edges).
- Excitation through shearing forces caused by transverse displacement of the lid, u(t).
- Output: displacement $\mathbf{w}(\hat{x}, t)$, at a fixed point $\hat{x} = (0.5, 0.5)$.

$$\partial_{tt}\mathbf{w}(x,t) - \eta_0 \, \Delta\mathbf{w}(x,t) \, - \, \eta_1 \partial_t \int_0^t \, \frac{\Delta\mathbf{w}(x,\tau)}{(t-\tau)^\alpha} \, d\tau \, + \, \nabla\varpi(x,t) = 0 \ \, \text{for} \, \, x \in \Omega$$

$$abla \cdot \mathbf{w}(x,t) = 0 \text{ for } x \in \Omega,$$

 $\mathbf{w}(x,t) = 0 \text{ for } x \in \partial \Omega_0,$ $\mathbf{w}(x,t) = u(t) \text{ for } x \in \partial \Omega_1$

$$\mathcal{H}_{\text{fine}}$$
: $n_x = 51,842$ and $n_p = 6,651$ \mathcal{H}_{30} : $n_x = n_p = 30$ $\mathcal{H}_{\text{coarse}}$: $n_x = 13,122$ $n_p = 1,681$ \mathcal{H}_{20} : $n_x = n_p = 20$

- \mathcal{H}_{30} , \mathcal{H}_{20} : reduced interpolatory viscoelastic models.
- \mathcal{H}_{30} almost exactly replicates $\mathcal{H}_{\text{fine}}$ and outperforms $\mathcal{H}_{\text{coarse}}$
- Since input is a boundary displacement (as opposed to a boundary force), $\mathfrak{B}(s) = s^2 \mathbf{m} + \rho(s) \mathbf{k}$,

Delay Differential Equations

 Many physical processes exhibit some sort of delayed response in their input, output, or internal dynamics.

$$\mathbf{E}\dot{\mathbf{x}}(t) = \mathbf{A}_{1}\mathbf{x}(t) + \mathbf{A}_{2}\mathbf{x}(t-\tau) + \mathbf{B}\,\mathbf{u}(t), \qquad \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$$

$$\mathbf{\mathcal{H}}(s) = \underbrace{\mathbf{C}}_{\mathbf{C}(s)}\underbrace{(s\mathbf{E} - \mathbf{A}_{1} - e^{-\tau s}\mathbf{A}_{2})}_{\mathbf{\mathcal{K}}(s)}^{-1}\underbrace{\mathbf{B}}_{\mathbf{B}(s)}.$$

- Delay systems are also infinite-order. The dynamic effects of even a small delay can be profound.
- Find a reduced order model retaining the same delay structure:

$$\mathbf{E}_{r}\dot{\mathbf{x}}_{r}(t) = \mathbf{A}_{1r}\mathbf{x}_{r}(t) + \mathbf{A}_{2r}\mathbf{x}_{r}(t-\tau) + \mathbf{B}_{r}\mathbf{u}(t), \qquad \mathbf{y}_{r}(t) = \mathbf{C}_{r}\mathbf{x}_{r}(t)$$

$$\mathbf{\mathcal{H}}_{r}(s) = \underbrace{\mathbf{C}_{r}}_{\mathbf{C}_{r}(s)}\underbrace{(s\mathbf{E}_{r} - \mathbf{A}_{1r} - e^{-\tau s}\mathbf{A}_{2r})}_{\mathbf{\mathcal{K}}_{r}(s)}^{-1}\underbrace{\mathbf{B}_{r}}_{\mathbf{\mathcal{B}}_{r}(s)}.$$

• Construct \mathcal{V}_r and \mathcal{W}_r as in the Theorem. Then,

$$\mathcal{K}_r(s) = \mathcal{W}_r^T \mathcal{K} \mathcal{V}_r = s \, \mathcal{W}_r^T \mathbf{E} \mathcal{V}_r - \mathcal{W}_r^T \mathbf{A}_1 \mathcal{V}_r - \mathcal{W}_r^T \mathbf{A}_2 \mathcal{V}_r \, e^{-\tau s}$$

$$\mathbf{B}_r = \mathcal{W}_r^T \mathbf{B} \quad \text{and} \quad \mathbf{C}_r = \mathbf{C} \mathcal{V}_r$$

- $\mathcal{H}_r(s)$ has exactly the same delay structure
- $\mathcal{H}_r(s)$ exactly interpolates $\mathcal{H}(s)$. This will not be the case if $e^{-\tau s}$ is approximated by a rational function.
- Moreover, the rational approximation of $e^{-\tau s}$ increases the order drastically.
- Multiple state-delays, delays in the input/output mappings are welcome.

Intro Intrplt StrcMOR Nonlinear NL-PH Conclusions Exmpl1 Projection Interp Exmpl1 DelayModels Exmpl2

A two-port newtork with internal delay

- Example from [Tseng et al., 07].
- n = 2390: 2097 lumped components and 120 sets of lossless two-conductor TLs.
- Method of [Tseng*et al.*, 07]: 4^{th} -order Taylor series expansion of $e^{-\tau s}$ to obtain \mathcal{V}_r and \mathcal{W}_r ; but the reduction is performed on the original delay system.
 - Dimension grows to $N = 5 \times 2390$
 - Delay structure and passivity are preserved but no interpolation.
- Compare with our approach where delay structure and passivity are preserved and interpolation is guaranteed.

From [Tsenget al., 07]. with r = 60

Our approach with r = 46

Interpolatory Model Reduction for Parametric Systems

- $\mathcal{H}(s, \mathbf{p}) = \mathbf{C}(\mathbf{p}) (s\mathbf{E}(\mathbf{p}) \mathbf{A}(\mathbf{p}))^{-1} \mathbf{B}(\mathbf{p})$
- $\mathbf{\Phi} \ \mathbf{E}_r(\mathsf{p}) = \mathbf{W}_r^T \mathbf{E}(\mathsf{p}) \mathbf{V}_r, \ \mathbf{A}_r(\mathsf{p}) = \mathbf{W}_r^T \mathbf{A}(\mathsf{p}) \mathbf{V}_r, \\ \mathbf{B}_r(\mathsf{p}) = \mathbf{W}_r^T \mathbf{B}(\mathsf{p}), \ \mathbf{C}_r(\mathsf{p}) = \mathbf{C}(\mathsf{p}) \mathbf{V}_r$

Theorem ([Baur/Beattie/Benner/G.,11])

Suppose $\sigma E(p)-A(p)$, B(p), and C(p) are continuously differentiable with respect to p in a neighborhood of π . If

$$(\sigma \mathbf{E}(\boldsymbol{\pi}) - \mathbf{A}(\boldsymbol{\pi}))^{-1} \, \mathbf{B}(\boldsymbol{\pi}) \in \text{Ran}(\mathbf{V}_r) \ \text{ and } \ (\sigma \mathbf{E}(\boldsymbol{\pi}) - \mathbf{A}(\boldsymbol{\pi}))^{-T} \, \mathbf{C}(\boldsymbol{\pi})^T \in \text{Ran}(\mathbf{W}_r),$$

$$\mathcal{H}(\sigma, \pi) = \mathcal{H}_r(\sigma, \pi), \qquad \mathcal{H}'(\sigma, \pi) = \mathcal{H}'_r(\sigma, \pi),$$

and $\nabla_{\mathsf{D}}\mathcal{H}(\sigma, \pi) = \nabla_{\mathsf{D}}\mathcal{H}_r(\sigma, \pi).$

- Two-sided interpolation matches parameter gradients.
- Nonlinear Inversion in Diffuse Optical Tomography ([G. et al, 2015])
- [Daniel et al., 2004], [Gunupudi et al., 2004], [Weile et al., 1999]

Model Reduction for Nonlinear Systems

Consider the nonlinear case:

$$\mathbf{E}\,\dot{\mathbf{x}}(t) = \mathbf{A}\,\mathbf{x}(t) + \mathbf{f}(\mathbf{x}(t)) + \mathbf{B}\,\mathbf{g}(t) \Rightarrow \mathbf{E}_r\,\dot{\mathbf{x}}_r(t) = \mathbf{A}_r\,\mathbf{x}(t) + \mathbf{f}_r(\mathbf{x}(t)) + \mathbf{B}_r\,\mathbf{g}(t),$$

 $\left(\mathbf{E}\mathbf{V}\dot{\mathbf{x}}_r(t) - \mathbf{A}\mathbf{V}\mathbf{x}_r(t) - \mathbf{f}\left(\mathbf{V}\mathbf{x}_r(t)\right) - \mathbf{B}\mathbf{g}(t)\right) \perp \mathcal{V}_r$ to obtain

• Approximate: $\mathbf{x}(t) \approx \mathbf{V}\mathbf{x}_r(t)$ and enforce the Galerkin condition

$$\mathbf{E}_r = \mathbf{V}^T \mathbf{E} \mathbf{V}, \ \mathbf{A}_r = \mathbf{V}^T \mathbf{A} \mathbf{V}, \ \mathbf{B}_r = \mathbf{V}^T \mathbf{B}, \text{ and } \mathbf{f}_r(\mathbf{x}_r(t)) = \mathbf{V}^T \mathbf{f}(\mathbf{V} \mathbf{x}_r(t)).$$

For general nonlinear systems, we use POD: Construct

$$\mathbb{X} = [\mathbf{x}(t_0), \mathbf{x}(t_1), \mathbf{x}(t_2), \dots, \mathbf{x}(t_{N-1})] = \mathbf{Z} \boldsymbol{\Sigma} \mathbf{Y}^T$$

- Choose $\mathbf{V} = \mathbf{Z}(:, 1:r)$. See: [Hinze/Volkwein, 2005], [Kunish/Volkwein, 2002]
- $\mathbf{f}_r(\mathbf{x}_r(t)) = \mathbf{V}^T \mathbf{f}(\mathbf{V} \mathbf{x}_r(t))$: Lifting bottleneck

How to resolve the lifting bottleneck

- [Astrid et al., 2008], [Barrult et al., 2004], [Carlberg et al., 2013].
- Discrete Empirical Interpolation Method: [Chaturantabut/Sorensen, 2010]
- Given are: $\mathbf{f}: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ and a basis matrix $\mathbf{U} \in \mathbb{R}^{n \times m}$
- The goal is: $\mathbf{f}(t) \approx \mathsf{U}\,\mathbf{c}(t)$ where $\mathbf{c}(t) \in \mathbb{R}^m$

DEIM approximation is
$$\hat{\mathbf{f}}(t) = \mathbf{U}(\mathbb{S}^T \mathbf{U})^{-1} \mathbb{S}^T \mathbf{f}(t)$$
,

where \mathbb{S} is $n \times m$ matrix obtained by selecting columns of \mathbb{I} .

• Note that $\mathbb{S}^T \mathbf{f}(t) = \mathbb{S}^T \hat{\mathbf{f}}(t)$, i.e., interpolation at the selected rows.

$$\mathbf{f}_r(\mathbf{x}_r) = \underbrace{\mathbf{V}^T}_{r \times n} \underbrace{\mathbf{f}(\mathbf{V}\mathbf{x}_r(t))}_{\mathbf{n} \times 1} \approx \underbrace{\mathbf{V}^T \mathbf{U}(\mathbb{S}^T \mathbf{U})^{-1}}_{\text{precomp}:r \times m} \underbrace{\mathbb{S}^T \mathbf{f}(\mathbf{V}\mathbf{x}_r)}_{\mathbf{m} \times 1} := \hat{\mathbf{f}}_r(\mathbf{x}_r)$$

- $\mathbf{f}_r(\mathbf{x}_r) \approx \mathbf{V}^T \mathbf{U}(\mathbb{S}^T \mathbf{U})^{-1} \mathbb{S}^T \mathbf{f}(\mathbf{V} \mathbf{x}_r)$
- \mathbb{S}^T "extracts m rows" \wp_1, \ldots, \wp_m . $\wp := [\wp_1, \ldots, \wp_m]$
- $\mathbb{S}^T \mathsf{U} = \mathsf{U}(\wp,:) \mathbb{S} = [\mathbf{e}_{\wp_1}, \dots, \mathbf{e}_{\wp_m}], \quad \mathbf{e}_{\wp_i} = \wp_i$ -th column of \mathbf{I}_n
- U is the POD basis for $[\mathbf{f}(t_1) \ \mathbf{f}(t_2), \dots, \mathbf{f}(t_N)]$. How to pick S?
- Discrete Empirical Interpolation Method (DEIM): [Chaturantabut/Sorensen, 2010]: A greedy selection strategy to pick the interpolation indices.
- DEIM is LU with partial pivoting without replacement: [Sorensen, 2010]
- Discrete variation of the EIM algorithm (Barrault, Maday, Nguyen, Patera; 2004)

Lemma (Chaturantabut/Sorensen, 2010)

Let $U \in \mathbb{R}^{n \times m}$ be orthonormal ($U^*U = \mathbb{I}_m$, m < n) and let

$$\widehat{f} = \mathsf{U}(\mathbb{S}^T \mathsf{U})^{-1} \mathbb{S}^T f \tag{1}$$

be the DEIM projection $f \in \mathbb{R}^n$, with \mathbb{S} computed by DEIM. Then

$$||f - \widehat{f}||_2 \le \mathbf{c}||(\mathbb{I} - \mathsf{U}\mathsf{U}^*)f||_2, \quad \mathbf{c} = ||(\mathbb{S}^T\mathsf{U})^{-1}||_2,$$
 (2)

where

$$\mathbf{c} \le \frac{(1+\sqrt{2n})^{m-1}}{\|u_1\|_{\infty}} \le \sqrt{n}(1+\sqrt{2n})^{m-1}.$$

- If $\mathcal{R}(U)$ captures the behavior of \mathbf{f} well, and if \mathbb{S} results in a moderate \mathbf{c} , the DEIM approximation will succeed.
- More on this upper bound later (a recent improved version)

Towards a different selection operator S

- The error bound is rather pessimistic and DEIM performs drastically better than the bound predicts.
- \mathbb{S} computed by DEIM depends on a particular basis for \mathcal{U} .
- The complexity of DEIM is $O(m^2n) + O(m^3)$
- Questions of interests:
 - Can the upper bound be improved and what selection operator S will have sharper a priori error bound?
 - Can we devise a selection operator S independent of the choice of an orthonormal basis U of U?
 - Can we reduce the contribution of the factor *n* without substantial loss in the quality of the computed selection operator?

A new DEIM framework

Theorem (Drmač/G.,2015)

Let $U \in \mathbb{C}^{n \times m}$, $U^*U = \mathbb{I}_m$, m < n. Then :

• There exists an algorithm to compute S with complexity $O(nm^2)$ s.t.

$$\|(\mathbb{S}^T \mathsf{U})^{-1}\|_2 \le \sqrt{n-m+1} \, \frac{\sqrt{4^m+6m-1}}{3},$$
 (3)

and for any $f \in \mathbb{C}^n$

$$||f - \mathsf{U}(\mathbb{S}^T\mathsf{U})^{-1}\mathbb{S}^T f||_2 \le \sqrt{n} O(2^m) ||f - \mathsf{U}\mathsf{U}^* f||_2.$$
 (4)

There exists a selection operator S_⋆ such that

$$||f - \mathsf{U}(\mathbb{S}_{\star}^T \mathsf{U})^{-1} \mathbb{S}_{\star}^T f||_2 \le \sqrt{1 + m(n-m)} ||f - \mathsf{U}\mathsf{U}^* f||_2.$$
 (5)

• The selection operators \mathbb{S} , \mathbb{S}_{\star} do not change if \mathbb{U} is changed to $\mathbb{U}\Omega$ where Ω is arbitrary $m \times m$ unitary matrix.

- Proof is constructive and uses the ideas from [Drmač,2009], arising in the analysis of block Jacobi algorithm for diagonalization of Hermitian matrices.
- Selection strategy S simply amounts to the pivot selection in QR factorization with column pivoting of U* !!! Let

$$\mathsf{U}^*\Pi = \mathsf{W}\Pi = \begin{pmatrix} \widehat{\mathsf{W}}_1 & \widehat{\mathsf{W}}_2 \end{pmatrix} = Q\mathsf{R} = \begin{pmatrix} * & * & * & * & * & * \\ 0 & * & * & * & * & * \\ 0 & 0 & \star & * & * & * \end{pmatrix}$$

be pivoted QR. Consider the Businger-Golub pivoting:

$$i \qquad p_{i} \qquad n \qquad i \qquad n$$

$$i \qquad m$$

$$0 \quad * \quad * \quad * \quad * \quad * \quad * \quad *$$

$$m \qquad 0 \quad * \quad * \quad * \quad * \quad *$$

$$m \qquad 0 \quad * \quad * \quad * \quad * \quad *$$

$$m \qquad 0 \quad * \quad * \quad * \quad * \quad *$$

$$m \qquad 0 \quad * \quad * \quad * \quad * \quad *$$

ullet S: selection operator that collects the columns of W to build \widehat{W}_1 ;

- \mathbb{S}_{\star} is defined to be the one that maximizes the volume of $\mathbb{S}_{\star}^{T}\mathsf{U}$ over all $\binom{n}{m} = \frac{n!}{m!(n-m)!} m \times m$ submatrices of U.
- Either S or S_⋆ does not change by a unitary transformation
- Computing S₊ is difficult and S behaves very well in practice
- The volume of the submatrix selected by S equals the volume $\prod_{i=1}^{m} |\mathsf{T}_{ii}|$ of the upper triangular T.
- Following a similar analysis, [Sorensen/Embree, 15] very recently improved the original DEIM upper bound to: $\mathbf{c} \leq \sqrt{\frac{nm}{3}}2^m$
- [Bos et al., 2009]: Approximate Feketa points and pivoted QR.

Numerical Implementation

- The new selection is called Q-DEIM
- It is still an interpolatory DEIM process, but with a different S

```
function [ S, M ] = q_dime( U );
% Input : U n-by-m with orthonormal columns
% Output : S selection of m row indices with guaranteed upper bound
응
           norm(inv(U(S,:))) \le sgrt(n-m+1) * O(2^m).
         : M the matrix U*inv(U(S,:)); the DEIM projection of
           n-bv-1 f is M*f(S).
% Coded by Zlatko Drmac, April 2015.
[n,m] = size(U):
if nargout == 1
[\tilde{r}, \tilde{r}, P] = qr(U', 'vector') ; S = P(1:m) ;
else
[0,R,P] = gr(U', 'vector') ; S = P(1:m)
M = [eye(m) ; (R(:,1:m) \setminus R(:,m+1:n))'] ;
Pinverse(P) = 1 : n ; M = M(Pinverse,:) ;
end
end
```

Example 1

- Computed DEIM and Q-DEIM using 200 randomly generated orthonormal matrices of size 10000×100 .
- Compare $\mathbf{c}(DEIM)$ and $\mathbf{c}(Q-DEIM)$

Example 2: The FitzHugh-Naguma (F–N) System

- Model and parameters from [Chaturantabut/Sorensen,2010]
- Arises in modeling the activation and deactivation dynamics of a spiking neuron.
- Let v and w denote, respectively, the voltage and recovery of voltage. Also, let $x \in [0, L]$ and $t \ge 0$.

$$\varepsilon v_t(x,t) = \varepsilon^2 v_{xx}(x,t) + f(v(x,t)) - w(x,t) + c$$

$$w_t(x,t) = bv(x,t) - \gamma w(x,t) + c$$

where
$$f(v) = v(v - 0.1)(1 - v)$$
 and

$$v(x,0) = 0,$$
 $w(x,0) = 0,$ $x \in [0,L],$
 $v_x(0,t) = -i_0(t),$ $v_x(L,t) = 0,$ $t \ge 0,$

- L = 1, $\varepsilon = 0.015$, b = 0.5, $\gamma = 2$, c = 0.05 and $i_0(t) = 50000t^3e^{-15t}$.
- A finite difference discretization leads to n = 2048.
- Simulation t = [0, 8] leads to N = 100 snapshots.

• As before, compare c(DEIM) and c(Q-DEIM)

Figure: 200 random changes of a DEIM orthonormal basis U of size 2048×100 via post-multiplication by random 100×100 orthogonal matrices

Using restricted/randomized basis information

- If n is gargantuan, it will be necessary to reduce the $O(m^2n)$ factor
- We only need to ensure that T = R(1:m, 1:m) has small inverse where T is the pivoted QR triangular factor of columns of W.
- Use only a small selection of the columns of W (the rows of U):
- Randomly pick $k \ge m$ columns and store them in L:

- Apply QR with column pivoting on L with a built-in Incremental Condition Estimator (ICE) that estimates $||L(1:j,1:j)^{-1}||$
- Define a threshold for the inverse.

$$\begin{pmatrix} * & * & \times & \times & \times & \times \\ 0 & * & \times & \times & \times & \times \\ 0 & 0 & \circledast & \odot & \odot & \odot \\ 0 & 0 & 0 & \odot & \odot & \odot \end{pmatrix} \rightsquigarrow \begin{pmatrix} * & * & \star & \star & \star \\ 0 & * & \star & \star & \star & \star \\ 0 & 0 & \star & \star & \star & \star \\ 0 & 0 & \star & \star & \star & \star \end{pmatrix} \rightsquigarrow \begin{pmatrix} * & * & \star & \star & \star \\ 0 & * & * & \star & \star & \star \\ 0 & 0 & * & \star & \star & \star \\ 0 & 0 & 0 & \star & \star & \star \end{pmatrix}$$

- If $\|L(1:j,1:j)^{-1}\|$ is below threshold, continue.
- If not, the (i, j)th position \circledast is too small, and, due to pivoting, that all entries in the active submatrix of L (⊙ are also small. (⊗)
- The columns i to k in L are useless; discard them
- Draw new k-j+1 columns from the active columns of W ($^{\uparrow}$).
- At any point, only k columns are processed.
- Algorithm is called Q-DEIMr.

- $\mathbf{f}(t; \mu) = 10e^{-\mu t}(\cos(4\mu t) + \sin(4\mu t)), 1 \le t \le 6, 0 \le \mu \le \pi.$
- Take 40 uniformly μ sample and compute the snapshots over the discretized t-domain at n=10000 uniformly spaced nodes.
- The best low rank approximation returned U with m = 34 columns.
- Let k = m columns in the work array L, and set the upper bound for \mathbf{c} at $\sqrt{m}\sqrt{n-m+1}$.
- Column index drawing is "random".
- After processing 113 rows of U (out of 10000), Q-DEIMr selected a submatrix with $\mathbf{c}\approx181.45$;
- DEIM processed the whole matrix U and returned $c \approx 79.13$.

Figure: Left figure: Upper bound in Q-DEIMr set to $m\sqrt{n-m+1}$; it used 53 rows with $\mathbf{c}\approx 2532.9$. Right figure: Upper bound in Q-DEIMr set to $\sqrt{m}\sqrt{n-m+1}/5$; it used 220 rows with $\mathbf{c}\approx 103.1$.

Nonlinear Port-Hamiltonian (NPH) systems

Full-order system (dim n):

$$\dot{\mathbf{x}} = (\mathbf{J} - \mathbf{R}) \nabla_{\mathbf{x}} H(\mathbf{x}) + \mathbf{B} \mathbf{u}(t)$$

$$\mathbf{y} = \mathbf{B}^T \nabla_{\mathbf{x}} H(\mathbf{x}),$$

- $\mathbf{x} \in \mathbb{R}^n$: State variable; $\mathbf{u} \in \mathbb{R}^{n_{in}}$: Input; $\mathbf{y} \in \mathbb{R}^{n_{out}}$: Output
- *H*: Hamiltonian total energy in the system. $H: \mathbb{R}^n \to [0, \infty)$
- J: Structure matrix (interconnection of energy storage components)
- R: Dissipation matrix (describing internal energy losses)
- Structure: $\mathbf{J} = -\mathbf{J}^T$, $\mathbf{R} = \mathbf{R}^T \ge 0$. $H : \mathbb{R}^n \to [0, \infty)$
- Passive system: $H(\mathbf{x}(t_1)) H(\mathbf{x}(t_0)) \leq \int_{t_0}^{t_1} \mathbf{y}(t)^T \mathbf{u}(t) dt$.
- Generalizes classical Hamiltonian systems: $\dot{\mathbf{x}} = \mathbf{J} \nabla_{\mathbf{x}} H(\mathbf{x})$.
- [van der Schaft, 2006], [Zwart/Jacob, 2009]
- Applications: Circuit, Network/interconnect structure, Mechanics (Euler-Lagrange eqn), e.g. Toda Lattice, Ladder Network

Full-order system (dim n):

$$\dot{\mathbf{x}} = (\mathbf{J} - \mathbf{R})\nabla_{\mathbf{x}}H(\mathbf{x}) + \mathbf{B}\mathbf{u}(t), \ \mathbf{y} = \mathbf{B}^T\nabla_{\mathbf{x}}H(\mathbf{x}),$$

GOAL: Reduced system (dim $r \ll n$):

$$\dot{\mathbf{x}}_r = (\mathbf{J}_r - \mathbf{R}_r) \nabla_{\mathbf{x}_r} H_r(\mathbf{x}_r) + \mathbf{B}_r \mathbf{u}(t), \ \mathbf{y}_r = \mathbf{B}_r^T \nabla_{\mathbf{x}_r} H_r(\mathbf{x}_r),$$

- $\mathbf{J} = -\mathbf{J}^T$, $\mathbf{R} = \mathbf{R}^T > 0$. Hamiltonian: $H: \mathbb{R}^n \to [0, \infty)$, $H(\mathbf{x}) > 0$, H(0) = 0
 - "Preserve Structure, Stability & Passivity"
- \bullet $\mathbf{J}_r = -\mathbf{J}_r^T$, $\mathbf{R}_r = \mathbf{R}_r^T \geq 0$. Hamiltonian: $H_r : \mathbb{R}^r \to [0, \infty)$, $H_r(\mathbf{x}_r) > 0$, $H_r(\mathbf{0}) = 0$
- $\bullet H_r(\mathbf{x}_r(t_1)) H_r(\mathbf{x}_r(t_0)) \leq \int_{t_0}^{t_1} \mathbf{y}_r(t)^T \mathbf{u}(t) dt.$

ntro Intrplt StrcMOR Nonlinear NL-PH Conclusions Structre MOR POD-PH H2-PH LadderNet TodaLattice

Model Reduction via Petrov-Galerkin Projection

Choose basis matrices $\mathbf{V}_r \in \mathbb{R}^{n \times r}$ and $\mathbf{W}_r \in \mathbb{R}^{n \times r}$ so that

- $\mathbf{x} \approx \mathbf{V}_r \mathbf{x}_r$ ($\mathbf{x}(t)$ approximately lives in an r-dimensional subspace)
- Span{W_r} is orthogonal to the residual:

$$\mathbf{W}_{r}^{T} \quad [\mathbf{V}_{r}\dot{\mathbf{x}}_{r}(t) - (\mathbf{J} - \mathbf{R}) \nabla_{\mathbf{x}} H(\mathbf{V}_{r}\mathbf{x}_{r}) - \mathbf{B}\mathbf{u}(t)] = \mathbf{0}$$
$$\mathbf{y}_{r}(t) = \mathbf{B}^{T} \nabla_{\mathbf{x}} H(\mathbf{V}_{r}\mathbf{x}_{r}).$$

• and with $\mathbf{W}_r^T \mathbf{V}_r = \mathbf{I}$ (change of basis)

$$\dot{\mathbf{x}}_r = \mathbf{W}_r^T (\mathbf{J} - \mathbf{R}) \nabla_{\mathbf{x}} \mathbf{H} (\mathbf{V}_r \mathbf{x}_r) + \mathbf{W}_r^T \mathbf{B} \mathbf{u}(t)$$
$$\mathbf{v}_r = \mathbf{B}^T \nabla_{\mathbf{x}} \mathbf{H} (\mathbf{V}_r \mathbf{x}_r).$$

Main Issues:

- Port-Hamiltonian structure is not preserved

 Stability and passivity of the reduced model are not guaranteed.
- The complexity is not reduced complexity of nonlinear term $\sim \mathcal{O}(n)$

MOR for Nonlinear PH Systems [Beattie & G. (2011)]

- [Fujimoto, H. Kajiura (2007], [Scherpen, van der Schaft (2008)]
- Find V_r such that $\mathbf{x}(t) \approx V_r \mathbf{x}_r(t)$
- Find \mathbf{W}_r such that $\nabla_{\mathbf{x}} H(\mathbf{x}(t)) \approx \mathbf{W}_r \mathbf{c}(t)$ for some $\mathbf{c}(t) \in \mathbb{R}^r$

$$\nabla_{\mathbf{x}} H(\mathbf{V}_r \mathbf{x}_r(t)) \approx \nabla_{\mathbf{x}} H(\mathbf{x}(t)) \approx \mathbf{W}_r \mathbf{c}(t)$$

• $\mathbf{V}_r^T \mathbf{W}_r = \mathbf{I}$,

$$\Longrightarrow \mathbf{c}(t) = \mathbf{V}_r^T \nabla_{\mathbf{x}} H(\mathbf{V}_r \mathbf{x}_r(t)) = \nabla_{\mathbf{x}_r} H_r(\mathbf{x}_r(t))$$

Reduced-order Hamiltonian:

$$H_r(\mathbf{x}_r(t)) := H(\mathbf{V}_r\mathbf{x}_r(t))$$

• Substitute $\mathbf{x} \longrightarrow \mathbf{V}_r \mathbf{x}_r$, and $\nabla_{\mathbf{x}} H(\mathbf{V}_r \mathbf{x}_r(t)) \longrightarrow \mathbf{W}_r \nabla_{\mathbf{x}_r} H_r(\mathbf{x}_r(t))$ with

$$\mathbf{W}_r^T \left[\mathbf{V}_r \dot{\mathbf{x}}_r - (\mathbf{J} - \mathbf{R}) \mathbf{W}_r \mathbf{V}_r^T \nabla_{\mathbf{x}} H(\mathbf{V}_r \mathbf{x}_r) + \mathbf{B} \mathbf{u}(t) = 0 \right], \qquad \mathbf{W}_r^T \mathbf{V}_r = \mathbf{I}.$$

Reduced system:

$$\dot{\mathbf{x}}_r = (\mathbf{J}_r - \mathbf{R}_r) \nabla_{\mathbf{x}_r} H_r(\mathbf{x}_r) + \mathbf{B}_r \mathbf{u}(t), \quad \mathbf{y}_r = \mathbf{B}_r^T \nabla_{\mathbf{x}_r} H_r(\mathbf{x}_r),$$

where
$$\mathbf{J}_r = \mathbf{W}_r^T \mathbf{J} \mathbf{W}_r$$
, $\mathbf{R}_r = \mathbf{W}_r^T \mathbf{R} \mathbf{W}_r$, $\mathbf{B}_r = \mathbf{W}_r^T \mathbf{B}$, $\nabla_{\mathbf{x}_r} H_r(\mathbf{x}_r) = \mathbf{V}_r^T \nabla_{\mathbf{x}} H(\mathbf{V}_r \mathbf{x}_r)$.

POD for port-Hamiltonian systems (POD-PH)

Algorithm (POD-based MOR for pH systems [Beattie, G. (2011)])

Generate trajectory $\mathbf{x}(t)$, and collect snapshots:

$$\mathbb{X} = [\mathbf{x}(t_0), \mathbf{x}(t_1), \mathbf{x}(t_2), \dots, \mathbf{x}(t_N)].$$

- Truncate SVD of snapshot matrix, X, to get POD basis, V_r .
- Collect associated force snapshots:

$$\mathbb{F} = \left[\nabla_{\mathbf{x}} H(\mathbf{x}(t_0)), \nabla_{\mathbf{x}} H(\mathbf{x}(t_1)), \dots, \nabla_{\mathbf{x}} H(\mathbf{x}(t_N))\right].$$

1 Truncate SVD of \mathbb{F} to get a second POD basis, \mathbf{W}_r .

The POD-PH reduced system is

$$\dot{\mathbf{x}}_r = (\mathbf{J}_r - \mathbf{R}_r) \nabla_{\mathbf{x}_r} H_r(\mathbf{x}_r) + \mathbf{B}_r \mathbf{u}(t), \qquad \mathbf{y}_r(t) = \mathbf{B}_r^T \nabla_{\mathbf{x}_r} H_r(\mathbf{x}_r)$$

with
$$\mathbf{J}_r = \mathbf{W}_r^T \mathbf{J} \mathbf{W}_r$$
, $\mathbf{R}_r = \mathbf{W}_r^T \mathbf{R} \mathbf{W}_r$, $\mathbf{B}_r = \mathbf{W}_r^T \mathbf{B}$, and $H_r(\mathbf{x}_r) = H(\mathbf{V}_r \mathbf{x}_r)$.

A-Priori Error for NPH from structure preserving MOR

Error bounds [Chaturantaut, Beattie & G. (2013)]:

Basis matrices $\mathbf{V}_r, \mathbf{W}_r$ with $\mathbf{W}_r^T \mathbf{V}_r = \mathbf{V}_r^T \mathbf{W} = \mathbf{I}$ and $\mathbf{V}_r^T \mathbf{V}_r = \mathbf{I}$,

$$\int_0^T \|\mathbf{x}(t) - \mathbf{V}_r \mathbf{x}_r(t)\|^2 dt \leq C_{\mathbf{x}} \sum_{\ell=r+1}^{n_t} \lambda_{\ell} + C_{\mathbf{f}} \sum_{\ell=r+1}^{n_t} \varrho_{\ell}$$

and

$$\int_0^T \|\mathbf{y}(t) - \mathbf{y}_r(t)\|^2 dt \leq \widehat{C}_{\mathbf{X}} \sum_{\ell=r+1}^{n_t} \lambda_{\ell} + \widehat{C}_F \sum_{\ell=r+1}^{n_t} \varrho_{\ell}$$

 \implies Error bounds are proportional to the least-squares errors (\mathcal{L}_2 -norm) of snapshots $\mathbf{x}(t)$ and $\mathbf{F}(t) = \nabla_{\mathbf{x}} H(\mathbf{x}(t))$.

- POD provides one set of choices for V_r and W_r. Consider others
- Find a choice of subspaces that is asymptotically optimal for small \mathbf{u} (hence for small \mathbf{x}).
- $\nabla_{\mathbf{x}} H(\mathbf{x}) \approx \mathbf{Q} \mathbf{x}$ for a symmetric positive semidefinite $\mathbf{Q} \in \mathbb{R}^{n \times n}$.
- Leads to consideration of Linear Port-Hamiltonian Systems

$$\dot{\mathbf{x}} = (\mathbf{J} - \mathbf{R})\mathbf{Q}\mathbf{x} + \mathbf{B}\mathbf{u}(t)$$
 $\mathbf{y}(t) = \mathbf{B}^T \mathbf{Q}\mathbf{x}$
(Original system)
$$\dot{\mathbf{x}}_r = (\mathbf{J}_r - \mathbf{R}_r)\mathbf{Q}_r\mathbf{x}_r + \mathbf{B}_r\mathbf{u}(t)$$
 $\mathbf{y}_r(t) = \mathbf{B}_r^T\mathbf{Q}_r\mathbf{x}_r$
(Reduced system)

- Find V_r and W_r that are optimal reduction spaces for $\|\mathbf{G} \mathbf{G}_r\|_{\mathcal{H}_2}$, use them to reduce the original nonlinear system
- We use Quasi- \mathcal{H}_2 optimal subspaces using PH-IRKA method of [G./Polyuga/Beatie/van der Schaft/09]

N-stage Nonlinear Ladder Network

- Magnetic fluxes: $\{\phi_k(t)\}_{k=1}^N$; Charges: $\{Q_k\}_{k=1}^N$. $C_k(V) = \frac{C_0V_0}{V_0+V}$
- Total energy in stage k: $H^{[k]}(\phi_k,Q_k) = C_0V_0^2\left[\exp\left(\frac{Q_k}{C_0V_0}\right) 1\right] Q_kV_0 + \frac{1}{2L_0}\phi_k^2$.
- State variable: $\mathbf{x} = [Q_1, \dots, Q_N, \phi_1, \dots, \phi_N]^T$.
- Hamiltonian: $H(\mathbf{x}) = \sum_{k=1}^{N} H^{[k]}(\phi_k, Q_k)$.
- Gaussian pulse-generated POD basis.
- Testing: Sinusoid input; $R_0 = 1\Omega$ $G_0 = 10\mu \mho$, $L_0 = 2\mu H$, $C_0 = 100 pF$ $V_0 = 1 V$.

Testing: Sinusoid input; $R_0 = 10 \, G_0 = 10 \mu \text{ G}$, $L_0 = 2 \mu \text{H}$, $C_0 = 100 \text{pF}$ $V_0 = 1 V$.

ntro Intrplt StrcMOR Nonlinear NL-PH Conclusions Structre MOR POD-PH H2-PH LadderNet TodaLattice

Combining POD and Quasi-optimal \mathcal{H}_2 bases.

- POD is very accurate for the choice of specific inputs
- Enrich this POD basis by including components that are optimal for (small) variations from an equilibrium point, i.e. optimal subspaces from linear approximations

 \implies Much more accurate than only POD or only quasi-optimal \mathcal{H}_2

Toda Lattice

 1-D motion of N-particle chain with nearest neighbor exponential interactions, e.g., crystal model in solid state physics.

$$\dot{\mathbf{x}} = (\mathbf{J} - \mathbf{R}) \nabla_{\mathbf{x}} H(\mathbf{x}) + \mathbf{B} \mathbf{u}(t), \qquad \mathbf{y} = \mathbf{B}^T \nabla_{\mathbf{x}} H(\mathbf{x}).$$

$$\mathbf{J} = \begin{bmatrix} \mathbf{0} & \mathbf{I} \\ -\mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{R} = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \operatorname{diag}(\gamma_1, \dots, \gamma_N) \end{bmatrix} \in \mathbb{R}^{n \times n}, \mathbf{B} = \begin{bmatrix} \mathbf{0} \\ \mathbf{e}_1 \end{bmatrix} \in \mathbb{R}^{n \times n}.$$

- State variable: $\mathbf{x} = \begin{bmatrix} \mathbf{q} \\ \mathbf{p} \end{bmatrix}$; q_j =displacement; p_j =momentum.
- Hamiltonian: $H = \sum_{k=1}^{N} \frac{1}{2} p_k^2 + \sum_{k=1}^{N-1} \exp(q_k q_{k+1}) + \exp(q_N) q_1$.
- $Q := \nabla^2 \mathbf{H}(0), N = 1000$; Full dim n = 2N = 2000.
- \bullet $\gamma_i = 0.1, j = 1, \dots, N$

Input: $u(t) = 0.1 \sin(t)$

- POD basis dimension r
- DEIM dim.: $m = r, m_1, m_2, m_1 = r + \text{ceil}(r/3), m_2 = r + \text{ceil}(2r/3).$

Conclusions

- Interpolation is good for you.
- Optimal rational approximation for linear dynamical
 - Hermite interpolation at mirror images
 - Input-independent approximations via IRKA
- Structure-preserving interpolation for generalized coprime setting
 - Rational interpolation naturally extends
 - Reduced models preserve the internal structure
 - Approximants are not necessarily rational
- DEIM and MOR of nonlinear port-Hamiltonian systems
 - A new DEIM selection operator: Q-DEIM
 - Structure-preserving POD-DEIM for port-Hamiltonian systems
- Some open problems
 - Structure-preserving optimal interpolation
 - Input-independent model reduction for nonlinear systems
 - Effect of structure-preservation in nonlinear model reduction

Related Papers:

- S. Gugercin, A.C. Antoulas, and C.A. Beattie, H₂ model reduction for large-scale linear dynamical systems, SIMAX, 2008.
- C.A. Beattie and S. Gugercin, Interpolatory Projection Methods for Structure-preserving Model Reduction, Systems and Control Letters, 2009.
- C.A. Beattie and S. Gugercin, A Trust Region Method for Optimal H₂ Model Reduction, Proceedings of the 48th IEEE Conference on Decision and Control, 2009.
 A.C. Antoulas, C.A. Beattie and S. Gugercin, Interpolatory Model Reduction of Large-scale
- Dynamical Systems, Efficient Modeling and Control of Large-Scale System, 2011.

 5. C.A. Beattie, and S. Gugercin, Realization independent Hazangrayimation, Proceedings of
- S.A. Beattie, and S. Gugercin. Realization-independent H₂-approximation. Proceedings of the 51st IEEE Conference on Decision and Control, 2012.
- S. Gugercin, T. Stykel, and S. Wyatt. Model Reduction of Descriptor Systems by Interpolatory Projections Methods. SIAM Journal on Scientific Computing, 2013.
- C.A. Beattie and S. Gugercin, Model Reduction by Rational Interpolation, Model Reduction and Approximation for Complex Systems, 2015.
- 3 Z. Drmac and S. Gugercin, A New Selection Operator for the Discrete Empirical Interpolation Method improved a priori error bound and extensions., 2015.
- O.A. Beattie and S. Gugercin, Model Reduction by Rational Interpolation, Model Reduction and Approximation for Complex Systems, 2015.
- Z. Drmac and S. Gugercin, A New Selection Operator for the Discrete Empirical Interpolation Method – improved a priori error bound and extensions., 2015.
- P. Benner, S. Gugercin and K. Willcox, A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems, SIAM Review, 2015.