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Outline and Collaborators

Optimal Rational Approximation for Linear Dynamical Systems
Thanos Antoulas (Rice Univ) and Chris Beattie (Virginia Tech)
Input-independent, optimal rational approximation by interpolation

Structure-preserving Interpolation for Linear Dynamical Systems
Chris Beattie (Virginia Tech)
Reduced model preserves the internal structure
Not-necessarily a rational approximation

DEIM and Structure-preserving MOR of nonlinear port-Hamiltonian systems
Chris Beattie (Virginia Tech), Saifon Chaturantabut (Thammasat Univ) and
Zlatko Drmač (Univ. of Zagreb)
A new DEIM selection operator
Structure-preserving POD-DEIM
Enrich the POD subspace

Dropped from slides: Optimal MOR of bilinear systems via interpolation
Garret Flagg (WesternGeco, Schlumberger)
Interpolating the Volterra series
Interpolation-based optimality conditions
See the related poster by Pawan Goyal
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Generic Problem Setting
“Smaller” dynamical systems ?

Eẋ = Ax(t) + Bu(t)
y(t) = Cx(t)

?≈ Erẋ = Arxr(t) + Bru(t)
yr(t) = Crxr(t)

(Original system) (Reduced system)

Pick Er, Ar ∈ Rr×r, Br ∈ Rr×p, Cr : Rm×r; so that r (the reduced
state space dimension ) is much smaller: r # n

and

so that the outputs remain close, yr(t) ≈ y(t),

for a large class of inputs u(t).

Beattie/Gugercin Robust Nonintrusive Model Reduction

A,E ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n

x(t) ∈ Rn : states, u(t) ∈ Rm : Input, y(t) ∈ Rp : Output

Pick Er,Ar ∈ Rr×r, Br ∈ Rr×m, Cr : Rp×r; so that r � n and

‖y− yr‖ is small in an appropriate norm

The procedure is computationally efficient.
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Model Reduction via Projection

Choose Vr = Range(Vr): the r-dimensional right modeling
subspace (the trial subspace) where Vr ∈ Rn×r

andWr = Range(Wr), the r-dimensional left modeling subspace
(test subspace) where Wr ∈ Rn×r

Approximate x(t)︸︷︷︸
n×1

≈ Vr︸︷︷︸
n×r

xr(t)︸︷︷︸
r×1

by forcing xr(t) to satisfy

Wr
T (EVrẋr − AVrxr − B u) = 0 (Petrov-Galerkin)

Leads to a reduced order model:

Er = Wr
TEVr︸ ︷︷ ︸
r×r

, Ar = Wr
TAVr︸ ︷︷ ︸
r×r

, Br = Wr
TB︸ ︷︷ ︸

r×m

, Cr = CVr︸︷︷︸
p×r

, Dr = D︸︷︷︸
p×m
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Figure: Projection-based Model Reduction

Once Vr andWr are selected, Sr is automatically determined.
In other words: What matters are the Ran(Vr) and Ran(Wr).
Antoulas, Beattie, Benner, Borggaard, Chaturantabut, Enns, Freund, Glover, Grimme,

Haasdonk, Heinkenschloss, Hinze, Iliescu, Kunish, Mehrmann, Mullis, Roberts, Reis,

Sorensen, Stykel, van Dooren, Volkwein, Willcox, and many many more
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Frequecy Domain and Transfer Functions

S : u(t) 7→ y(t) = (Su)(t) =

∫ t

−∞
h(t − τ)u(τ)dτ.

H(s) = (Lh)(s) = C(sE− A)−1B + D.

H(s): matrix-valued (p× m) rational function in s ∈ C.

Similarly: Hr(s) = Cr(sEr − Ar)
−1Br + Dr

H(s) =
α0sn + α1sn−1 + α2sn−2 + · · ·+ αn

sn + β1sn−1 + β2sn−2 + · · ·+ βn
(Assuming SISO)

Hr(s) =
γ0sr + γ1sr−1 + γ2sr−2 + · · ·+ γr

sr + η1sr−1 + η2sr−2 + · · ·+ ηr
(Assuming SISO)

Model Reduction = Rational Approximation
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A much more general problem setting

Consider the following example from [Antoulas (2006)]:

∂T
∂t

(z, t) =
∂2T
∂z2 (z, t), t ≥ 0, z ∈ [0, 1]

∂T
∂t

(0, t) = 0 and
∂T
∂z

(1, t) = u(t)

u(t) is the input function (supplied heat)

y(t) = T(0, t) is the output.

Transfer function: H(s) =
Y(s)
U(s)

=
1√

s sinh
√

s

H(s) = 1√
s sinh

√
s 6= C(sE− A)−1B
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Do not assume the generic first-order structure.

For example:

H(s) = C(sE− A0 − e−τ1sA1 − e−τ2sA2)−1B
H(s) = e−

√
s

H(s) = (sC1 + C0)(s2M + sD + K)−1B
H(s) = 1√

s sinh
√

s

H(s) = C(s)K(s)−1B(s)

New goal: Given the ability to evaluate H(s):

H(s)
?≈ Erẋ = Arxr(t) + Bru(t)

yr(t) = Crxr(t)

Beattie/Gugercin Realization-independentH2 Approximation

Realization independent and data-driven.
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Model Reduction by Rational Interpolation

For simplicity of notation, assume m = p = 1:

B→ b ∈ Rn C→ cT ∈ Rn

For the MIMO case details, see [Antoulas/Beattie/G,11], [Beattie/G,15].

Given a transfer function H(s) together with

left driving frequencies: right driving frequencies:
{µi}r

i=1 ⊂ C, {σi}r
i=1 ⊂ C

producing left responses: producing right responses:
{H(µi)}r

i=1 ⊂ C, {H(σj)}r
i=1 ⊂ C

Find a reduced model Hr(s) = cT
r (sEr − Ar)

−1br, that is a rational
interpolant to H(s):

Hr(µi) = H(µi) and Hr(σj) = H(σj)
for i = 1, · · · , r, for j = 1, · · · , r,
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Interpolatory Model Reduction via Projection

Given {σi}r
i=1 and {µj}r

j=1, set

Vr =
[
(σ1E− A)−1b, · · · , (σrE− A)−1b

]
∈ Cn×r and

Wr =
[
(µ1 ET − AT)−1cT · · · (µr ET − AT)−1cT ] ∈ Cn×r

Obtain Hr(s) via projection as before

Er = Wr
TEVr Ar = Wr

TAVr, br = Wr
Tb, cr = Vr

Tc, Dr = D

Then
H(σi) = Hr(σi), for i = 1, · · · , r,
H(µj) = Hr(µj), for j = 1, · · · , r,
H′(σk) = H′r(σk) if σk = µk

Hermite tangential interpolation without explicit computations of
the quantities to be matched.
[Skelton et. al., 87], [Feldmann/Freund, 95], [Grimme, 97], [Gallivan et. al., 05]
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Rational Interpolation from Data [Mayo/Antoulas (2007)]

Given {σi}r
i=1 and {µj}r

j=1, evaluate or measure H(σi) and H(µj)

Construct the Loewner matrix:

Lij =
H(µi)−H(σj)

µi − σj
, i, j = 1, . . . , r, (H(s))

Construct the shifted Loewner matrix:

Mij =
µiH(µi)−H(σj)σj

µi − σj
, i, j = 1, . . . , r (sH(s))

In addition to L and M, construct the following vectors from data:

z =




H(µ1)
...

H(µr)


 y =




H(σ1)
...

H(σr)
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Data-Driven Interpolant

Theorem (Mayo/Antoulas,2007)
Assume that µi 6= σj for all i, j = 1, . . . , r. Suppose that M− sL is
invertible for all s ∈ {σi} ∪ {µj}. Then, with

Er = −L, Ar = −M, br = z, cr = y,

the rational function (reduced model)

Hr(s) = cT
r (sEr − Ar)

−1br = yT(M− sL)−1z

interpolates the data and furthermore is a minimal realization.

Once the data is collected, one directly writes down Hr(s).
For Hermite interpolation, choose σi = µi and only modify

Lii = H′(σi) and Mii = [sH(s)]′s=σi
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A brief note on the DAEs

H(s) = Hsp(s) + P(s).

We want Hr(s) = Hr,sp(s) + Pr(s) with Pr(s) = P(s),

Problem reduces to: Hr,sp(s) interpolates Hsp(s).

Pr = the spectral projector onto the right deflating subspace of
(λE− A) corresponding to the finite eigenvalues.

Pl: Defined similarly for the left deflating subspace.

W∞ and V∞: Span, respectively, the right and left deflating
subspaces of (λE− A) corresponding to the infinite eigenvalues.

Gugercin Plzeň MORE 2015: Structure-preserving Interpolatory MOR
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Theorem ([G./Stykel/Wyatt,12])

Given are H(s) = cT(sE− A)−1b + D, interpolation points σ ∈ C.
Define Vf and Wf such that

Vf =
[
(σ1E− A)−1Plb, · · · , (σrE− A)−1Plb

]
∈ Cn×r and

Wf =
[
(σ1 ET − AT)−1PT

r cT · · · (σr ET − AT)−1PT
r cT ] ∈ Cn×r

Define Wr = [ Wf , W∞ ] and Vr = [ Vf , V∞ ], and construct Hr(s).
Then,

1 Pr(s) = P(s), and
2 H(σj) = Hr(σj), and H′(σj) = Hr

′(σj) for j = 1, 2, . . . , r.

Theorem requires explicit computation of Pl and Pr in general.
[G./Stykel/Wyatt,12]: For index-1 and (Stokes-type) index-2 DAEs
interpolation with polynomial matching achieves without explicit
computation of Pl and Pr.
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Where to Interpolate: Performance Measures

How to measure H(s) ≈Hr(s)

‖H−Hr‖H2 =

(
1

2π

∫ ∞

−∞
‖H(ıω)−Hr(ıω)‖2

F dω
)1/2

Make pointwise error maxt>0 ‖y(t)− yr(t)‖∞ small
relative to input energy,

(∫∞
0 ‖u(t)‖2

2 dt
)1/2

max
t>0
‖y(t)− yr(t)‖∞ ≤ ‖H−Hr‖H2 ·

(∫ ∞

0
‖u(t)‖2

2 dt
)1/2

2−∞ induced norm if m = 1 and/or p = 1

‖H‖H2
= sup

u 6=0

‖y‖∞
‖u‖2
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Interpolatory H2 optimality conditions

Theorem ([Meier /Luenberger,67], [G./Antoulas/Beattie,08])

Given H(s), let Hr(s) be the best stable rth order rational
approximation of H with respect to the H2 norm. Assume Hr has
simple poles at λ̂1, λ̂2, . . . λ̂r. Then

H(−λ̂k) = Hr(−λ̂k) and H′(−λ̂k) = H′r(−λ̂k) for k = 1, 2, ..., r.

Hermite interpolation for H2 optimality

Optimal interpolation points : σi = −λ̂i

The MIMO conditions: [G./Antoulas/Beattie,08]

Other MIMO works: [van Dooren et al..08], [Bunse-Gernster et al.,09]

λ̂i NOT known a priori =⇒ Need iterative steps
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An Iterative Rational Krylov Algorithm (IRKA):

If projection framework is preferred:
Algorithm (G./Antoulas/Beattie [2008])

1 Choose {σ1, . . . , σr}
2 Vr =

[
(σ1E− A)−1b, · · · , (σrE− A)−1b

]

Wr =
[
(σ1 ET − AT)−1cT , · · · , (σr ET − AT)−1cT

]
.

3 while (not converged)

1 Ar = Wr
TAVr, Er = WT

r EVr

2 σi ←− −λi(Ar,Er).
3 Vr =

[
(σ1E− A)−1b, · · · , (σrE− A)−1b

]

4 Wr =
[
(σ1 ET − AT)−1cT , · · · , (σr ET − AT)−1cT

]

4 Ar = Wr
TAVr, Er = WT

r EVr, br = Wr
Tb, and cr = Vr

Tc, Dr = D.

Optimality conditions upon convergence
Gugercin Plzeň MORE 2015: Structure-preserving Interpolatory MOR
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Realization Independent IRKA

If H(s) is not rational or only H(s) is available

Algorithm (Realization Independent IRKA [Beattie/G., (2012)])

1 Choose initial {σi} for i = 1, . . . , r.

2 while not converged

1 Evaluate H(σi) and H′(σi) for i = 1, . . . , r.

2 Construct Er = −L, Ar = −M, br = z and cr = y

3 Construct Hr(s) = cT
r (sEr − Ar)

−1br

4 σi ←− −λi(Ar,Er) for i = 1, . . . , r

3 Construct Hr(s) = cT
r (sEr − Ar)

−1br = zT(M− sL)−1y

Allows infinite order transfer functions !!
e.g., H(s) = cT(sE− A0 − e−τ1sA1 − e−τ2sA2)−1b

Gugercin Plzeň MORE 2015: Structure-preserving Interpolatory MOR
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In its simplest form, IRKA is a fixed point iteration.

IRKA is not a descent method and global convergence is not
guaranteed despite overwhelming numerical evidence.

Guaranteed convergence: State-space symmetric systems
[Flagg/Beattie/G.,2012]

Newton formulation is possible [G./Antoulas/Beattie,08]

Globally convergent descent formulation: [Beattie/G.,09]

Weighted-H2 IRKA: For minimizing ‖W(s) (H(s)−Hr(s)) ‖H2 :
[Anic et al. 12], [Breiten/Beattie/G.,14], [Vuillemin et al., 15]

IRKA for DAEs: [G./Stykel/Wyatt, 12]

Extended to bilinear systems: B-IRKA by [Benner/Breiten, 12].
Analogous interpolation conditions for Volterra series [Flagg/G., 15].
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Revisit: One-dimensional heat equation

H(s) =
1√

s sinh
√

s
=

1
s

+

∞∑

k=1

2 (−1)k

s + k2π2 =
1
s

+ G(s)

Apply Loewner-IRKA to G(s). Then Hr(s) = Gr(s) + 1
s

Optimal points upon convergence: σ1 = 20.9418, σ2 = 10.8944.

Hr(s) = −0.9469s−37.84
s2+31.84s+228.1 + 1

s .

‖H−Hr‖H2 = 5.84× 10−3, ‖H−Hr‖H∞ = 9.61× 10−4

Hr(s) exactly interpolates H(s)

Balanced truncation of the discretized model:
n = 10: ‖H−Hr‖H2 = 1.16× 10−2, ‖H−Hr‖H∞ = 1.58× 10−3

n = 1000: ‖H−Hr‖H2 = 5.91× 10−3, ‖H−Hr‖H∞ = 1.01× 10−3
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Indoor-air environment in a conference room

X Y

Z

inlet window
window

table

vent
light

inlet

inlet
inlet

light

Figure: Geometry for our Indoor-air Simulation:
Example from [Borggaard/Cliff/G., 2011], research under EEBHUB

Four inlets, one return vent
Thermal loads: two windows, two overhead lights and occupants
FLUENT to simulate the indoor-air velocity, temperature and
moisture.
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Finite Element Model of Convection/Diffusion

A finite element model for thermal energy transfer with frozen
velocity field v,

∂T
∂t

+ v · ∇T =
1

RePr
∆T + Bu,

leading to

E ẋ(t) = A x(t) + B u(t), y(t) = C x(t),

with n = 202140, m = 2 inputs
1 the temperature of the inflow air at all four vents, and
2 a disturbance caused by occupancy around the conference table,

and p = 2 outputs
1 the temperature at a sensor location on the max x wall,
2 the average temperature in an occupied volume around the table,

Gugercin Plzeň MORE 2015: Structure-preserving Interpolatory MOR
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Conference Room: Reduction by IRKA

Recall n = 202140, m = 2 and p = 2
Reduced the order to r = 30 using IRKA.
Relative errors in the subsystems by IRKA

From Input [1] From Input [2]
To Output [1] 6.62× 10−3 1.82× 10−5

To Output [2] 4.86× 10−4 5.40× 10−7

Does IRKA pay off? How about some ad hoc selections:

From Input [1] From Input [2]
To Output [1] 9.19× 10−2 8.38× 10−2

To Output [2] 5.90× 10−2 2.22× 10−2

One can keep trying different ad hoc selections but this is exactly
what we want to avoid.

Gugercin Plzeň MORE 2015: Structure-preserving Interpolatory MOR
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Structure-preserving model reduction

Intro StrcMOR GenProj Ex1 Ex2

Structure-preserving model reduction

u(t) −→ A0
d! x

dt!
+ A1

d!−1 x

dt!−1
+ . . . + A!x = B0

dk u

dtk
+ . . . + Bku

y(t) = C0
dq x
dtq

+ . . . + Cqx(t)
−→ y(t)

“Every linear ODE may be reduced to an equivalent first

order system” Might not be the best approach ...

The “state space” is an aggregate of dynamic variables

some of which may be internal and “locked” to other

variables.

Refined goal: Want to develop model reduction methods

that can reduce selected state variables (i.e., on selected

subspaces) while leaving other state variables untouched;

maintain structural relationships among the variables.

“Structure-preserving model reduction”

Gugercin Structure-preserving Interpolation

“Every linear ODE may be reduced to an equivalent first order
system” Might not be the best approach ...
For example

C(s2M + sD + K)−1B = C(sE−A)−1B

where

E =

[
I 0
0 M

]
, A =

[
0 I
−K −D

]
, B =

[
0
B

]
, C =

[
C 0

]

Disadvantages???

Gugercin Plzeň MORE 2015: Structure-preserving Interpolatory MOR
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The “state space” is an aggregate of dynamic variables some of
which may be internal and “locked” to other variables.

Refined goal: Want to develop model reduction methods that can
reduce selected state variables (i.e., on selected subspaces) while
leaving other state variables untouched; maintain structural
relationships among the variables.

“Structure-preserving model reduction”

For the second-order systems, see: [Craig Jr.,1981], [Chahlaoui et.al, 2005],

[Bai,2002], [Su/Craig,(1991)], [Meyer/Srinivasan,1996], ....

For H(s) = cT(sM + D + K/s)−1c: see [Freund, 2008]

We will be investigating a much more general framework.

Gugercin Plzeň MORE 2015: Structure-preserving Interpolatory MOR
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Example 1: Incompressible viscoelastic vibration

∂ttw(x, t)− η∆w(x, t)−
∫ t

0
ρ(t − τ) ∆w(x, τ) dτ +∇$(x, t) = b(x) ·u(t),

∇ · w(x, t) = 0 which determines y(t) = [$(x1, t), . . . , $(xp, t)]T

[Leitman and Fisher, 1973]
w(x, t) is the displacement field; $(x, t) is the pressure field; ρ(τ) is
a “relaxation function”

M ẍ(t) + ηK x(t) +

∫ t

0
ρ(t − τ) K x(τ) dτ + D$(t) = B u(t),

DT x(t) = 0, which determines y(t) = C$(t)

x ∈ Rn1 discretization of w; $ ∈ Rn2 discretization of $.
M and K are real, symmetric, positive-definite matrices,
B ∈ Rn1×m, C ∈ Rp×n2 , and D ∈ Rn1×n2 .

Gugercin Plzeň MORE 2015: Structure-preserving Interpolatory MOR
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Example 1: Incompressible viscoelastic vibration
Transfer function (need not be a rational function !):

H(s) = [ 0 C ]

[
s2M + (ρ̂(s) + η) K D

DT 0

]−1 [ B
0

]

Want a reduced order model that replicates input-output response
with high fideliety yet retains “viscoelasticity”:

Mr ẍ(t) + ηKr xr(t) +

∫ t

0
ρ(t − τ) Kr xr(τ) dτ + Dr$r(t) = Br u(t),

DT
r xr(t) = 0, which determines yr(t) = Cr$r(t)

with symmetric positive semidefinite Mr, Kr ∈ Rr×r, Br ∈ Rr×m,
Cr ∈ Rp×r, and Dr ∈ Rr×r.
Because of the memory term, both reduced and original systems have
infinite-order.

Gugercin Plzeň MORE 2015: Structure-preserving Interpolatory MOR
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Generalized Coprime Interpolation Setting

Intro StrcMOR GenProj Setting Projection Framework Error and PerfMeas

Generic Problem Setting

u(t) −→ H(s) = C(s)K(s)−1B(s) −→ y(t)

A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n with n (state space
dimension) very large: n ≈ 10

5, 106 or higher.

“Internal state” x(t) is not itself important.

How much state space detail is needed to replicate the

map “u %→ y” ?

H(s) = C(s)K(s)−1B(s) −→ Hr(s) = Cr(s)Kr(s)−1Br(s)

Gugercin Structure-preserving Interpolation

C(s) ∈ C1×n and B(s) ∈ Cn×1 are analytic in the right half plane;

K(s) ∈ Cn×n is analytic and full rank throughout the right half plane
with n ≈ 105, 106 or higher.

“Internal state” x(t) is not itself important.

How much state space detail is needed to replicate the map
“u 7→ y” ?

Intro StrcMOR GenProj Setting Projection Framework Error and PerfMeas

Generic Problem Setting

u(t) −→ H(s) = C(s)K(s)−1B(s) −→ y(t)

A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n with n (state space
dimension) very large: n ≈ 10

5, 106 or higher.

“Internal state” x(t) is not itself important.

How much state space detail is needed to replicate the

map “u %→ y” ?

H(s) = C(s)K(s)−1B(s) −→ Hr(s) = Cr(s)Kr(s)−1Br(s)

Gugercin Structure-preserving Interpolation
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A General Projection Framework

Select Vr ∈ Rn×r and Wr ∈ Rn×r.

The the reduced model Hr(s) = Cr(s)Kr(s)−1Br(s) is

Kr(s) = Wr
TK(s)Vr, Br(s) = Wr

TB(s), Cr(s) = C(s)Vr.

Intro StrcMOR GenProj Projection Framework Error and PerfMeas

Projection Framework

Suppose Vr,Wr ∈ Rn×r andWT
r Vr is nonsingular.

Approximate x(t) ≈ Vrxr(t) by forcing xr(t) to satisfy

WT
r (Vrẋr − AVrxr(t) − B u(t)) = 0 (Petrov-Galerkin)

Leads to a reduced order model:

u(t) −→ Hr(s) = Cr(s)Kr(s)−1Br(s) −→ yr(t) ≈ y(t)

with

Ar = (WT
r Vr)

−1WT
r AVr ∈ Rr×r, Br = (WT

r Vr)
−1WT

r B ∈ Rr×m

and Cr = CVr ∈ Rp×r.

The (skew) projection Pr = Vr(W
T
r Vr)

−1WT
r

Gugercin Structure-preserving Interpolation

The generic case: K(s) = sE− A, B(s) = B, C(s) = C,

We choose Vr ∈ Rn×r and Wr ∈ Rn×r to enforce interpolation.
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Model Reduction by Tangential Interpolation

For selected points {σ1, σ2, ...σr} in C, find Hr(s) so that

H(σi) = Hr(σi), and H′(σi) = H′r(σi) for i = 1, 2, . . . , r.

Theorem (Beattie/G,09)

Suppose that B(s), C(s), and K(s) are analytic at a point σ ∈ C
and both K(σ) and Kr(σ) = WT

r K(σ)Vr have full rank.

If K(σ)−1B(σ) ∈ Ran(Vr), then H(σ) = Hr(σ).

If
(
C(σ)K(σ)−1)T ∈ Ran(Wr), then H(σ) = Hr(σ)

If K(σ)−1B(σ) ∈ Ran(Vr) and
(
C(σ)K(σ)−1)T ∈ Ran(Wr)

then H′(σ) = H′r(σ)

Once again, Herminte interpolation via projection
Flexibility of interpolation framework
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Interpolatory projections in model reduction

Given distinct (complex) frequencies {σ1, σ2, . . . , σr} ⊂ C,

Vr =
[
K(σ1)−1B(σ1), · · · , K(σr)

−1B(σr)
]

WT
r =




C(σ1)K(σ1)−1

...
C(σr)K(σr)

−1




Guarantees that H(σj) = Hr(σj) and H′(σj) = H′r(σj)

for j = 1, 2, . . . , r.

Structure-preserving interpolation from data

[Schulze/Unger, 15]: Delay models

[Schulze/Unger/Beattie/G., 15]: Generalized coprime case
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Viscoelastic Example

A simple variation of the previous model:
Ω = [0, 1]× [0, 1]: a volume filled with a viscoelastic material with
boundary separated into a top edge (“lid”), ∂Ω1, and the
complement, ∂Ω0 (bottom, left, and right edges).
Excitation through shearing forces caused by transverse
displacement of the lid, u(t).
Output: displacement w(x̂, t), at a fixed point x̂ = (0.5, 0.5).

∂ttw(x, t)− η0 ∆w(x, t) − η1∂t

∫ t

0

∆w(x, τ)

(t − τ)α
dτ + ∇$(x, t) = 0 for x ∈ Ω

∇ · w(x, t) = 0 for x ∈ Ω,

w(x, t) = 0 for x ∈ ∂Ω0, w(x, t) = u(t) for x ∈ ∂Ω1
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!" #"

!" #"

Hfine: nx = 51, 842 and np = 6, 651 H30: nx = np = 30
Hcoarse: nx = 13, 122 np = 1, 681 H20: nx = np = 20

H30,H20 : reduced interpolatory viscoelastic models.

H30 almost exactly replicates Hfine and outperforms Hcoarse

Since input is a boundary displacement (as opposed to a boundary
force), B(s) = s2 m + ρ(s)k,
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Delay Differential Equations

Many physical processes exhibit some sort of delayed response in
their input, output, or internal dynamics.

Eẋ(t) = A1x(t) + A2x(t − τ) + B u(t), y(t) = Cx(t)

H(s) = C︸︷︷︸
C(s)

(sE− A1 − e−τsA2)︸ ︷︷ ︸
K(s)

−1 B︸︷︷︸
B(s)

.

Delay systems are also infinite-order. The dynamic effects of even
a small delay can be profound.

Find a reduced order model retaining the same delay structure:

Erẋr(t) = A1rxr(t) + A2rxr(t − τ) + Br u(t), yr(t) = Crxr(t)

Hr(s) = Cr︸︷︷︸
Cr(s)

(sEr − A1r − e−τsA2r)︸ ︷︷ ︸
Kr(s)

−1 Br︸︷︷︸
Br(s)

.

Gugercin Plzeň MORE 2015: Structure-preserving Interpolatory MOR



Intro Intrplt StrcMOR Nonlinear NL-PH Conclusions Exmpl1 Projection Interp Exmpl1 DelayModels Exmpl2

Construct Vr and Wr as in the Theorem. Then,

Kr(s) = WT
r KVr = sWT

r EVr −WT
r A1Vr −WT

r A2Vr e−τs

Br = WT
r B and Cr = CVr

Hr(s) has exactly the same delay structure

Hr(s) exactly interpolates H(s). This will not be the case if e−τs is
approximated by a rational function.

Moreover, the rational approximation of e−τs increases the order
drastically.

Multiple state-delays, delays in the input/output mappings are
welcome.
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A two-port newtork with internal delay

Example from [Tseng et al., 07].

n = 2390: 2097 lumped components and 120 sets of lossless
two-conductor TLs.

Method of [Tsenget al., 07]: 4th-order Taylor series expansion of
e−τs to obtain Vr and Wr; but the reduction is performed on the
original delay system.

Dimension grows to N = 5× 2390

Delay structure and passivity are preserved but no interpolation.

Compare with our approach where delay structure and passivity
are preserved and interpolation is guaranteed.
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Fig. 4. Numerical performance of reduced-order system (Example 2).
(a) Comparison of system response. (b) Comparison of transient responses at
port voltage.

VI. NUMERICAL EXAMPLES

A. Validation of Implicit Moment Technique

The first example is used to demonstrate the advantage of
using the proposed algorithm in constructing the orthogonal
basis over using the explicit approach. In this example, a
network composed of 20 lossless three-conductor TLs, repre-
senting the delay elements, and a circuit with lumped RLC com-
ponents, has been considered for reduction. The size of this net-
work is 2735. Two approaches were then considered to obtain
the reduced-order system. In the first approach, the proposed
algorithm outlined in Section V was adopted to construct the
orthogonal basis. This approach is labelled “Implicit,” and the
Y-parameter is computed based on the resulting reduced-order
system were plotted as the dashed line in Fig. 3. The figure
also shows the exact Y-parameters computed from the original
network in the solid line. The second approach used to gen-
erate the reduced-order system was based on using the relations
in (24) and (25) to compute the moments explicitly, where an

Fig. 5. Frequency-domain responses (Example 3). (a) Comparison of system
responses . (b) Comparison of system responses .

MGS process was used afterwards to compute the orthogonal
basis. This approach was then labelled “Explicit,” and the cor-
responding Y-parameters have been shown in the dotted line in
Fig. 3. It is seen from Fig. 3 that although the basis in both cases
was of size 80, thereby making the size of the reduced-order
system 80 as well, the one constructed based on the proposed
algorithm matches the original system over a much wider fre-
quency range.

B. One-Port Network

The second example is a one-port network with lumped RLC
components and a lossless three-conductor TL. An ADDE
system as described in Section IV-A was first constructed to de-
scribe the entire network with a size of 418. One reduced-order
system of size 20 was obtained with sixth-order Taylor expan-
sions for the exponential terms. Fig. 4(a) shows the response
obtained from the reduced-order system and compares it with
the response of the original system. To validate the performance
of the reduced-order system for time-domain transient analysis,
we excited the reduced-order model, as well as the original
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Interpolatory Model Reduction for Parametric Systems

H(s,p) = C(p) (sE(p)− A(p))−1 B(p)

Er(p) = WT
r E(p)Vr, Ar(p) = WT

r A(p)Vr,
Br(p) = WT

r B(p), Cr(p) = C(p)Vr

Theorem ([Baur/Beattie/Benner/G.,11])

Suppose σE(p)− A(p), B(p), and C(p) are continuously differentiable
with respect to p in a neighborhood of π. If

(σE(π)− A(π))
−1 B(π) ∈ Ran(Vr) and (σE(π)− A(π))

−T C(π)T ∈ Ran(Wr),

then H(σ,π) =Hr(σ,π), H′(σ,π) = H′r(σ,π),

and ∇pH(σ,π) = ∇pHr(σ,π).

Two-sided interpolation matches parameter gradients.
Nonlinear Inversion in Diffuse Optical Tomography ([G. et al, 2015])
[Daniel et al., 2004], [Gunupudi et al., 2004], [Weile et al., 1999]
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Model Reduction for Nonlinear Systems

Consider the nonlinear case:

E ẋ(t) = A x(t)+f(x(t))+B g(t)⇒ Er ẋr(t) = Ar x(t)+fr(x(t))+Br g(t),

Approximate: x(t) ≈ Vxr(t) and enforce the Galerkin condition
(

EVẋr(t)− AVxr(t)− f
(
Vxr(t)

)
− Bg(t)

)
⊥ Vr to obtain

Er = VTEV, Ar = VTAV, Br = VTB, and fr(xr(t)) = VT f(Vxr(t)).

For general nonlinear systems, we use POD: Construct

X = [ x(t0), x(t1), x(t2), . . . , x(tN−1)] = ZΣYT

Choose V = Z(:, 1 : r). See: [Hinze/Volkwein, 2005], [Kunish/Volkwein, 2002]

fr(xr(t)) = VT f(Vxr(t)): Lifting bottleneck
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How to resolve the lifting bottleneck

[Astrid et al., 2008], [Barrult et al., 2004] , [Carlberg et al., 2013].

Discrete Empirical Interpolation Method: [Chaturantabut/Sorensen, 2010]

Given are: f : Rn −→ Rn and a basis matrix U ∈ Rn×m

The goal is: f(t) ≈ U c(t) where c(t) ∈ Rm

DEIM approximation is f̂(t) = U(STU)−1ST f(t),

where S is n× m matrix obtained by selecting columns of I.

Note that ST f(t) = ST f̂(t), i.e., interpolation at the selected rows.

fr(xr) = VT
︸︷︷︸
r×n

f(Vxr(t))︸ ︷︷ ︸
n×1

≈ VTU(STU)−1
︸ ︷︷ ︸

precomp :r×m

ST f(Vxr)︸ ︷︷ ︸
m×1

:= f̂r(xr)
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fr(xr) ≈ VTU(STU)−1ST f(Vxr)

ST “extracts m rows” ℘1, . . . , ℘m. ℘ := [℘1, . . . , ℘m]

STU = U(℘, :) S = [e℘1 , . . . , e℘m ],, e℘i = ℘i-th column of In

U is the POD basis for [f(t1) f(t2), . . . , f(tN)]. How to pick S?

Discrete Empirical Interpolation Method (DEIM):
[Chaturantabut/Sorensen, 2010]: A greedy selection strategy to
pick the interpolation indices.

DEIM is LU with partial pivoting without replacement: [Sorensen, 2010]

Discrete variation of the EIM algorithm (Barrault, Maday, Nguyen,
Patera; 2004)
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Lemma (Chaturantabut/Sorensen, 2010)

Let U ∈ Rn×m be orthonormal (U∗U = Im, m < n) and let

f̂ = U(STU)−1ST f (1)

be the DEIM projection f ∈ Rn, with S computed by DEIM. Then

‖f − f̂‖2 ≤ c‖(I− UU∗)f‖2, c = ‖(STU)−1‖2, (2)

where

c ≤ (1 +
√

2n)m−1

‖u1‖∞
≤ √n(1 +

√
2n)m−1.

If R(U) captures the behavior of f well, and if S results in a
moderate c, the DEIM approximation will succeed.

More on this upper bound later ( a recent improved version)
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Towards a different selection operator S

The error bound is rather pessimistic and DEIM performs
drastically better than the bound predicts.

S computed by DEIM depends on a particular basis for U .

The complexity of DEIM is O(m2n) + O(m3)

Questions of interests:

Can the upper bound be improved and what selection operator S
will have sharper a priori error bound?

Can we devise a selection operator S independent of the choice of
an orthonormal basis U of U?

Can we reduce the contribution of the factor n without substantial
loss in the quality of the computed selection operator?
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A new DEIM framework

Theorem (Drmač/G.,2015)

Let U ∈ Cn×m, U∗U = Im, m < n. Then :

There exists an algorithm to compute S with complexity O(nm2) s.t.

‖(STU)−1‖2 ≤
√

n− m + 1
√

4m + 6m− 1
3

, (3)

and for any f ∈ Cn

‖f − U(STU)−1ST f‖2 ≤
√

n O(2m) ‖f − UU∗f‖2. (4)

There exists a selection operator S? such that

‖f − U(ST
?U)−1ST

?f‖2 ≤
√

1 + m(n− m) ‖f − UU∗f‖2. (5)

The selection operators S, S? do not change if U is changed to UΩ where
Ω is arbitrary m× m unitary matrix.
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Proof is constructive and uses the ideas from [Drmač,2009], arising in
the analysis of block Jacobi algorithm for diagonalization of
Hermitian matrices.
Selection strategy S simply amounts to the pivot selection in QR
factorization with column pivoting of U∗ !!! Let

U∗Π = WΠ =
(

Ŵ1 Ŵ2

)
= QR =




> ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗
0 0 ? ∗ ∗ ∗ ∗




be pivoted QR. Consider the Businger–Golub pivoting:




i pi n
? ? ? ? ? ? ?

i 0 ∗ ∗ ~ ∗ ∗ ∗
0 ∗ ∗ ~ ∗ ∗ ∗

m 0 ∗ ∗ ~ ∗ ∗ ∗




swap(i,pi)→−→−→




i n
? ? ? ? ? ? ?

i 0 ~ ∗ ∗ ∗ ∗ ∗
0 ~ ∗ ∗ ∗ ∗ ∗

m 0 ~ ∗ ∗ ∗ ∗ ∗


.

S: selection operator that collects the columns of W to build Ŵ1;
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The existence of S? is due to [Goreinov et al., 1997]) and uses the
concept of matrix volume (the absolute value of the determinant).

S? is defined to be the one that maximizes the volume of ST
?U over

all
(n

m

)
= n!

m!(n−m)! m× m submatrices of U.

Either S or S? does not change by a unitary transformation

Computing S? is difficult and S behaves very well in practice

The volume of the submatrix selected by S equals the volume∏m
i=1 |Tii| of the upper triangular T.

Following a similar analysis, [Sorensen/Embree, 15] very recently

improved the original DEIM upper bound to: c ≤
√

nm
3

2m

[Bos et al., 2009]: Approximate Feketa points and pivoted QR.
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Numerical Implementation

The new selection is called Q-DEIM

It is still an interpolatory DEIM process, but with a different S

2.1.1. Implementation details. In terms of the row selection from U, the
actual computation used in Theorem 2.1 is an LQ factorization of U with row pivoting.
The transposition and using QR with column pivoting is used only for convenience
and due to the availability of software implementations. A Householder based QR
factorization of a fat m ⇥ n matrix runs with complexity O(m2n), similar to the
complexity of DEIM. LAPACK [1] based software tools use optimized, BLAS 3 based
and robust [21] function xGEQP3. Other pivoting strategies are possible, such as in
xGEQPX, xGEQPY in [10], [11]. On a parallel computing machinery, our new approach
uses best available QR with column pivoting; e.g. PxGEQPF from ScaLAPACK [12].

As an illustration of simplicity at which we get high performance computation of
a good selection operator, and to make a case for dime, we briefly describe a MATLAB
implementation. Using the notation of Theorem 2.1, we have

U = ⇧

✓
T⇤

K⇤

◆
Q⇤, ST U = T⇤Q⇤, and thus M ⌘ U(ST U)�1 = ⇧

✓
Im

K⇤T�⇤

◆
. (2.13)

The computation T�1K = T̆�1(D�1K) by a triangular solver (e.g. the backslash

\ or linsolve() in MATLAB) is numerically stable as T̆ is well conditioned and
maxij |(D�1K)ij |  1. The explicitly set identity matrix Im in (2.12) guarantees that
the selected entries of a vector f will be exactly interpolated when M is computed as
in (2.12). If M is computed as eM = computed(U/(ST U)) (e.g. by MATLAB’s slash)

then ST eM = Im + (✏ij)m⇥m, with all ✏ij on a roundo↵ level. If s1, . . . , sm are the
interpolation indices selected by S, then checking the interpolation for f 2 Rn yields

(ST eMST f)i = fsi
(1 + ✏ii) +

X

j 6=i

fsj
✏ij , i = 1, . . . , m,

revealing an undesirable pollution of fsi
, in particular if maxsj 6=si

|fsj
|� |fsi

|.

function [ S, M ] = q_dime( U ) ;
% Input : U n�by�m with orthonormal columns
% Output : S selection of m row indices with guaranteed upper bound
% norm(inv(U(S,:))) <= sqrt(n�m+1) * O(2ˆm).
% : M the matrix U*inv(U(S,:)); the DEIM projection of
% n�by�1 f is M*f(S).
% Coded by Zlatko Drmac, April 2015.
[n,m] = size(U) ;
if nargout == 1
[˜,˜,P] = qr(U','vector') ; S = P(1:m) ;
else
[Q,R,P] = qr(U','vector') ; S = P(1:m) ;
M = [eye(m) ; (R(:,1:m)\R(:,m+1:n))'] ;
Pinverse(P) = 1 : n ; M = M(Pinverse,:) ;
end
end

2.1.2. DEIM and LU with partial pivoting. It has been known, at least
to experts, that DEIM is a variation of Gauss elimination; Sorensen [39] called it a
pivoted LU without replacement. Recently, [2] proposed to replace Step 7 of Algorithm

1, Uj =
�
Uj�1 uj

�
, by bUj = (bUj�1 br) (To make the distinction clear, we denote

the new variable by bU and we use bUj to denote the matrix bU(:, 1 : j) at the end

of the jth step.). In other words, the basis Ûj�1 is updated by adding the current

residual vector. Assume that at step j, bUj�1 = Uj�1Gj�1, where Gj�1 is unit upper

9
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Example 1

Computed DEIM and Q-DEIM using 200 randomly generated
orthonormal matrices of size 10000× 100.
Compare c(DEIM) and c(Q-DEIM)

k (trial index)
0 50 100 150 200

c

20

40

60

80

100

120

140

160

180

200
Comparison of the constant c = ∥(STU−1∥2

DEIM
Q-DEIM

k (trial index)
0 50 100 150 200

c
(Q

-D
E
IM

)/
c
(D

E
IM

)

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75
0.8

0.85

The ratio c(Q-DEIM)/c(DEIM)
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Example 2: The FitzHugh-Naguma (F–N) System

Model and parameters from [Chaturantabut/Sorensen,2010]

Arises in modeling the activation and deactivation dynamics of a
spiking neuron.
Let v and w denote, respectively, the voltage and recovery of
voltage. Also, let x ∈ [0,L] and t ≥ 0.

εvt(x, t) = ε2vxx(x, t) + f (v(x, t))− w(x, t) + c

wt(x, t) = bv(x, t)− γw(x, t) + c

where f (v) = v(v− 0.1)(1− v) and

v(x, 0) = 0, w(x, 0) = 0, x ∈ [0,L],
vx(0, t) = −i0(t), vx(L, t) = 0, t ≥ 0,

L = 1, ε = 0.015, b = 0.5, γ = 2, c = 0.05 and i0(t) = 50000t3e−15t.
A finite difference discretization leads to n = 2048.
Simulation t = [0, 8] leads to N = 100 snapshots.
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As before, compare c(DEIM) and c(Q-DEIM)

k (trial index)
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Figure: 200 random changes of a DEIM orthonormal basis U of size
2048× 100 via post-multiplication by random 100× 100 orthogonal matrices
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Using restricted/randomized basis information

If n is gargantuan, it will be necessary to reduce the O(m2n) factor
We only need to ensure that T = R(1 :m, 1 :m) has small inverse
where T is the pivoted QR triangular factor of columns of W.
Use only a small selection of the columns of W (the rows of U):
Randomly pick k ≥ m columns and store them in L:


⇑ ↑ ↑ ↑ ↑ ⇑ ⇑ ↑ ↑ ⇑
? ∗ . . ∗ . ∗ . ∗ ? . . ? . ∗ . ∗ . ?
? ∗ . . ∗ . ∗ . ∗ ? . . ? . ∗ . ∗ . ?
? ∗ . . ∗ . ∗ . ∗ ? . . ? . ∗ . ∗ . ?
? ∗ . . ∗ . ∗ . ∗ ? . . ? . ∗ . ∗ . ?

 7→
L︷ ︸︸ ︷

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗



Apply QR with column pivoting on L with a built-in Incremental
Condition Estimator (ICE) that estimates ‖L(1 : j, 1 : j)−1‖
Define a threshold for the inverse.
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∗ ∗ × × × ×
0 ∗ × × × ×
0 0 ~ � � �
0 0 0 � � �


 




∗ ∗ ? ? ? ?
0 ∗ ? ? ? ?
0 0 ? ? ? ?
0 0 ? ? ? ?


 




∗ ∗ ∗ ? ? ?
0 ∗ ∗ ? ? ?
0 0 ∗ ? ? ?
0 0 0 ? ? ?




If ‖L(1 : j, 1 : j)−1‖ is below threshold, continue.

If not, the (j, j)th position ~ is too small, and, due to pivoting, that
all entries in the active submatrix of L (� are also small. (~)

The columns j to k in L are useless; discard them

Draw new k − j + 1 columns from the active columns of W ( ⇑? ).

At any point, only k columns are processed.

Algorithm is called Q-DEIMr.
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Example 3

f(t;µ) = 10e−µt(cos(4µt) + sin(4µt)), 1 ≤ t ≤ 6, 0 ≤ µ ≤ π.

Take 40 uniformly µ sample and compute the snapshots over the
discretized t–domain at n = 10000 uniformly spaced nodes.

The best low rank approximation returned U with m = 34 columns.

Let k = m columns in the work array L, and set the upper bound
for c at

√
m
√

n− m + 1.

Column index drawing is “random”.

After processing 113 rows of U (out of 10000), Q-DEIMr selected a
submatrix with c ≈ 181.45;

DEIM processed the whole matrix U and returned c ≈ 79.13.
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Figure: Left figure: Upper bound in Q-DEIMr set to m
√

n− m + 1; it used 53
rows with c ≈ 2532.9. Right figure: Upper bound in Q-DEIMr set to√

m
√

n− m + 1/5; it used 220 rows with c ≈ 103.1.
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Nonlinear Port-Hamiltonian (NPH) systems

Full-order system (dim n):

ẋ = (J− R)∇xH(x) + Bu(t)

y = BT∇xH(x),

x ∈ Rn: State variable; u ∈ Rnin : Input; y ∈ Rnout : Output
H: Hamiltonian - total energy in the system. H : Rn → [0,∞)

J: Structure matrix (interconnection of energy storage components)
R: Dissipation matrix (describing internal energy losses)

Structure: J = −JT , R = RT ≥ 0. H : Rn → [0,∞)

Passive system: H(x(t1))− H(x(t0)) ≤
∫ t1

t0
y(t)Tu(t)dt.

Generalizes classical Hamiltonian systems: ẋ = J∇xH(x).
[van der Schaft, 2006], [Zwart/Jacob, 2009]
Applications: Circuit, Network/interconnect structure, Mechanics
(Euler-Lagrange eqn), e.g. Toda Lattice, Ladder Network
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Model Reduction

Full-order system (dim n):

ẋ = (J− R)∇xH(x) + Bu(t), y = BT∇xH(x),

GOAL: Reduced system (dim r � n):

ẋr = (Jr − Rr)∇xr Hr(xr) + Bru(t), yr = BT
r∇xr Hr(xr),

J = −JT , R = RT ≥ 0. Hamiltonian: H : Rn → [0,∞), H(x) > 0,
H(0) = 0

“ Preserve Structure, Stability & Passivity”

Jr = −JT
r , Rr = RT

r ≥ 0. Hamiltonian: Hr : Rr → [0,∞), Hr(xr) > 0,
Hr(0) = 0

Hr(xr(t1))− Hr(xr(t0)) ≤
∫ t1

t0
yr(t)Tu(t)dt.
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Model Reduction via Petrov-Galerkin Projection

Choose basis matrices Vr ∈ Rn×r and Wr ∈ Rn×r so that

x ≈ Vrxr ( x(t) approximately lives in an r-dimensional subspace)
Span{Wr} is orthogonal to the residual:

WT
r [Vrẋr(t)− (J− R)∇xH(Vrxr)− Bu(t)] = 0

yr(t) = BT∇xH(Vrxr).

and with WT
r Vr = I (change of basis)

ẋr = WT
r (J− R)∇xH(Vrxr) + WT

r Bu(t)

yr = BT∇xH(Vrxr),

Main Issues:

Port-Hamiltonian structure is not preserved =⇒ Stability and passivity of
the reduced model are not guaranteed.
The complexity is not reduced – complexity of nonlinear term ∼ O(n)
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MOR for Nonlinear PH Systems [Beattie & G. (2011)]

[Fujimoto, H. Kajiura (2007], [Scherpen, van der Schaft (2008)]
Find Vr such that x(t) ≈ Vrxr(t)

Find Wr such that
∇xH(x(t)) ≈Wr c(t) for some c(t) ∈ Rr

∇xH(Vrxr(t)) ≈ ∇xH(x(t)) ≈ Wr c(t)

VT
r Wr = I,

=⇒ c(t) = VT
r∇xH(Vrxr(t)) = ∇xr Hr(xr(t))

Reduced-order Hamiltonian:

Hr(xr(t)) := H(Vrxr(t))
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Substitute x −→ Vrxr, and ∇xH(Vrxr(t)) −→Wr∇xr Hr(xr(t))
with

Wr
T [Vrẋr − (J− R)WrVT

r∇xH(Vrxr) + Bu(t) = 0
]
, WT

r Vr = I.

Reduced system:

ẋr = (Jr − Rr)∇xr Hr(xr) + Bru(t), yr = BT
r∇xr Hr(xr),

where Jr = WT
r JWr, Rr = WT

r RWr, Br = WT
r B,

∇xr Hr(xr) = VT
r∇xH(Vrxr).
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POD for port-Hamiltonian systems (POD-PH)

Algorithm (POD-based MOR for pH systems [Beattie, G. (2011)])

1 Generate trajectory x(t), and collect snapshots:

X = [x(t0), x(t1), x(t2), . . . , x(tN)] .

2 Truncate SVD of snapshot matrix, X, to get POD basis, Ṽr.
3 Collect associated force snapshots:

F = [∇xH(x(t0)),∇xH(x(t1)), . . . ,∇xH(x(tN))] .

4 Truncate SVD of F to get a second POD basis, W̃r.

The POD-PH reduced system is

ẋr = (Jr − Rr)∇xr Hr(xr) + Bru(t), yr(t) = BT
r ∇xr Hr(xr)

with Jr = WT
r JWr, Rr = WT

r RWr, Br = WT
r B, and Hr(xr) = H(Vrxr).
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A-Priori Error for NPH from structure preserving MOR

Error bounds [Chaturantaut, Beattie & G. (2013)]:

Basis matrices Vr,Wr with WT
r Vr = VT

r W = I and VT
r Vr = I,

∫ T

0
‖x(t)− Vrxr(t)‖2dt ≤ Cx

nt∑

`=r+1

λ` + Cf

nt∑

`=r+1

%`

and
∫ T

0
‖y(t)− yr(t)‖2dt ≤ Ĉx

nt∑

`=r+1

λ` + ĈF

nt∑

`=r+1

%`

=⇒ Error bounds are proportional to the least-squares errors (L2-norm)

of snapshots x(t) and F(t) = ∇xH(x(t)).
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An Alternative Approach

POD provides one set of choices for Vr and Wr. Consider others
Find a choice of subspaces that is asymptotically optimal for small
u (hence for small x).
∇xH(x) ≈ Qx for a symmetric positive semidefinite Q ∈ Rn×n.
Leads to consideration of Linear Port-Hamiltonian Systems

ẋ = (J− R)Qx + Bu(t)

y(t) = BT Qx
−→ ẋr = (Jr − Rr)Qrxr + Bru(t)

yr(t) = BT
r Qrxr

(Original system) (Reduced system)

G(s) = BTQ(sI− (J−R)Q)−1B −→ Gr(s) = BT
r Qr(sI− (Jr −Rr)Qr)

−1Br

Find Vr and Wr that are optimal reduction spaces for ‖G−Gr‖H2
,

use them to reduce the original nonlinear system
We use Quasi-H2 optimal subspaces using PH-IRKA method of
[G./Polyuga/Beatie/van der Schaft/09]
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N-stage Nonlinear Ladder Network

Magnetic fluxes: {φk(t)}N
k=1; Charges: {Qk}N

k=1. Ck(V) = C0V0
V0+V

Total energy in stage k: H[k](φk,Qk) = C0V2
0

[
exp
(

Qk
C0V0

)
− 1
]
− QkV0 + 1

2 L0
φ2

k .

State variable: x = [Q1, . . . ,QN , φ1, . . . , φN ]T .
Hamiltonian: H(x) =

∑N
k=1 H[k](φk,Qk).

Gaussian pulse-generated POD basis.
Testing: Sinusoid input; R0 = 1Ω G0 = 10µ0, L0 = 2µH,
C0 = 100pF V0 = 1V.
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Testing: Sinusoid input; R0 = 1Ω G0 = 10µ0, L0 = 2µH, C0 = 100pF
V0 = 1V.
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Combining POD and Quasi-optimal H2 bases.

POD is very accurate for the choice of specific inputs
Enrich this POD basis by including components that are optimal
for (small) variations from an equilibrium point, i.e. optimal
subspaces from linear approximations
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=⇒ Much more accurate than only POD or only quasi-optimal H2
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Toda Lattice

1-D motion of N-particle chain with nearest neighbor exponential
interactions, e.g., crystal model in solid state physics.

ẋ = (J− R)∇xH(x) + Bu(t), y = BT∇xH(x).

J =

[
0 I
−I 0

]
R =

[
0 0
0 diag(γ1, . . . , γN)

]
∈ Rn×n, B =

[
0
e1

]
∈ Rn×n.

State variable: x =

[
q
p

]
; qj =displacement; pj =momentum.

Hamiltonian: H =
∑N

k=1
1
2 p2

k +
∑N−1

k=1 exp(qk − qk+1) + exp(qN)− q1.

Q := ∇2H(0), N = 1000; Full dim n = 2N = 2000.

γj = 0.1, j = 1, . . . ,N
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Input: u(t) = 0.1 sin(t)

POD basis dimension r

DEIM dim.: m = r,m1,m2, m1 = r+ ceil(r/3), m2 = r+ceil(2r/3).
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Conclusions

Interpolation is good for you.
Optimal rational approximation for linear dynamical

Hermite interpolation at mirror images
Input-independent approximations via IRKA

Structure-preserving interpolation for generalized coprime setting
Rational interpolation naturally extends
Reduced models preserve the internal structure
Approximants are not necessarily rational

DEIM and MOR of nonlinear port-Hamiltonian systems
A new DEIM selection operator: Q-DEIM
Structure-preserving POD-DEIM for port-Hamiltonian systems

Some open problems
Structure-preserving optimal interpolation
Input-independent model reduction for nonlinear systems
Effect of structure-preservation in nonlinear model reduction
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