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VMS-FEM 4 H

Model problem (convection-diffusion-reaction equation):

Lu:=—-kAu+a-Vu+su=f in 2
u=>0 on 0f2

Variational formulation:
B(u,v) = (f,v) YveV

B(u,v) = k(Vu,Vv) + (a - Vu,v) + s(u,v)

Galerkin finite element approximation:

B(un,vr) = (f,vn) Yvn € Vi
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Essential idea of the VMS method (Hughes, 1995):
V=V,aV

After splinting unknown and test function into finite element and subgrid-scale
(or subscale) component:

B(un,vn) + B(u,vr) = (f,vn) Vvn € Vi
B(up,?) + B(@,9) = (f,9) Vo eV

Formally:

B(un,vn) + (4, L) = (f,vn) Yvn € Vi
(Lup, D) + (L0, 0) = (f,0) VDeV
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First approximation: neglecting the subscale flux jumps (can be relaxed!)

(Evh,iv) ~ Z(th,ﬁ)K = (L‘Uh,?})h
K

Key approximation: lumping of the differential operator applied to the subscales

k
(Lit,©) =~ 7 '(@1,7) where T_lzclﬁ-}—chaTI-}-c:;s

Resulting problem:
B(’U.h, ‘Uh) - ({L L*vh)h = <f "Uh) V‘Uh - Vh
(Lup, D) + 7Y@, 0) = (f,0) VeV
The subscales are given by:

i =71P(f — Luy)

When inserted into the FEM equation, leads to a problem for the FEM solution
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Options for the subscale space:
V C LVj +span{f} <= i =7(f — Luy)

V =V} <= a=7PF(f — Lup)

Using for example the first option, the problem for the FEM solution is:

B(up,vp) + 7(Lup, =Ly )p = (fivp) +7(f, =L vp)n |

This problem has enhanced stability properties with respect to the Galerkin
Method, both in

» Singularly perturbed problems
* Mixed problems
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POD for a general problem

FU, Uy Up_y,.) =
AU 1)Unst — By(U U, — By i(Up_)Up_y —...— C = 0.

System dimension:
Un.+1- Uu,... F.Cc RM

AB, B,_4,.. € RM <M
Matrices might have a non-linear dependence on U
Grouping terms:

RU,.U,_1...):=B,(U)U, +Bpn1(Up)VUp_1+..+C.

Final system:

AUHUtt = RU™, U™, L),
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POD for a general problem

Projection onto a low dimensional subspace V& C RY
U~ ®Uz +U d ¢ RMxm U € R™ m << M

Obtention of the reduced basis by means of a proper orthogonal
decomposition (POD) procedure:

Solve a Full-Order problem (FOM)
Collect snapshots during the solution procedure
Perform a singular value decomposition (SVD) of the snapshot collection

Keep the m first SVD basis functions to form the POD basis



Y|
Additional definitions

Constant value mean vector: U ~ ®Ug + U.
Restriction operator: Rg : RM — R™ Re (U)=&T (U -T) eR™
Extension operator: &£ : R™ — RM E(Up) = ®Us +U € RM

Projection operator: Vs, Ilp : RM - RM  1Ig (U) = £ (Re (U))
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Additional Definitions

Some notation:
Ay = dTAPD e Rm™xm
Ry = ®' (R—-AU) eR™,

Reduced-Order System (Galerkin projection):
AsUr = Ry

For non-symmetric problems it will be convenient to use a Petrov-Galerkin
projection, but we do the development using the Galerkin projection.
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Construction of the Reduced-Order Basis

The reduced-order basis is built through a Singular Value Decomposition.

Let us define the snapshots matrix:
U c R]\-IXN

where N is the number of snapshots. The jth snapshot is denoted as:
Uf.j)

We define the general one matrix as a matrix full of ones:

1t e R | 1 =1 Vi,

and then we can define the mean value of the snapshots as:
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Construction of the Reduced-Order Basis

The snapshots’ mean matrix is:
U= TU1XN ¢ RMxN
And finally the singular value decomposition can be written as:
U=U-+ @020\115.
If we keep only the group of most relevant snapshots:
U-U~dxo!

where ®and ¥ are orthogonal matrices.

We can now define the restriction of the snapshots onto the reduced-order
subspace:

Us =Rae (U) =27 (U-TU)
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Reduced-Order Subscales for POD models

Preliminaries

We aim at taking into account the effect of the discarded modes in our POD
model. Let us consider the solution to the full-order problem:

U™ = A7'R.

Our starting assumption is that the best possible approximation to U™*! in
the reduced-order subspace is the projection (or restriction when expressed
in the reduced-order basis):

H<I> (Un—i-l) R(I) (U‘n.—i-l)

We can now split the unknown into its best possible approximation in the
reduced-order subspace, and the part which cannot be captured by the
reduced-order model, the subscales:

Ut = (U™) + U

This introduces the subscales subspace, which must be the orthogonal
complementary to the reduced-order subspace:

V=V ®V;.
Vi={XeV: XTY=0 VY €Vs}

16 |



Reduced-Order Subscales for POD models

Preliminaries

The new reduced-order system taking into account the subscales is:

AsRe (U™ +[<PTAﬁ‘"'+1]: Rs.

In general ®TAU™! £ 0 and this affects the accuracy of the reduced-order
model.

We propose an approximation to the neglected terms of the form:

A(bsg+1 o ‘I>TAl~Jn+1

where S3t! € R™ are the reduced-order subscales. The reduced-order
system now becomes:

Ag (Ug-i-l + Sg+1) — Rs
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A Least-Squares Model for the subscales

We propose to model the subscales through a linear model of the form:
Sitl = Cc,UM + Dg.

With Cg € R™*™ and Dg € R™

The model for the subscales will be built a posteriori using the information of
the snapshot set.

For each snapshot, we project the exact system of equations onto the reduced-
order subspace:

Agn = &7 A (I (U™)) &,
Ren =@ (R(Ily (U™) — A (I (U™)) T) .

The predicted reduced-order solution, without the subscales is:

n+1
AonUs req = Ren



Reduced-Order Subscales for POD models

A Least-Squares Model for the subscales

The exact subscales for each snapshot can be computed as:

n+l1 n+1 n+1
S@,pred — U‘b,pred o R‘I’ (U ) :

From here, we can easily compute the coefficients for the model for the
subscales as the optimum (from a least-squares point of view) amongst all
possible coefficients:

Af
Cs.Dg = arg min Z [Sa,(.0) — alhd (. 5) — b||?
i=1

aeRmx m ’beR‘nl -

Final reduced-order system taking into account the subscales:

As (I HCY) U™ = Ry —|As Dy,




Reduced-Order Subscales for POD models

A Least-Squares Model for the subscales

FOM Solution U Uritl
Storage
Snapshots U
Storage Ra
Snapshots Restriction Us(.i)
Initial Conditions Uo..i)
Ra
Initial Conditions Restriction Uaso(.i)
ROM
Predicted Solution U é),pred
l St peea=Us prea—Ua (.0

Subscales Snapshots S(.4)



Reduced-Order Subscales for POD models

A Least-Squares Model for the subscales

Cs.Dg = arg min Z [Sa (i) — alda(.i) — b||2

(LERm' Xm ’bean -
‘ 1=1

Ap (Is + Cs) U™ = Ry — ApDg |,

Interesting properties:

C g: = vary, Leovys

The variance matrix is diagonal due to the properties of the SVD, each
coefficient of the coefficients matrix can be computed independently

DI =8I —utct




Reduced-Order Subscales for POD models

Final adjustments to the subscales model

Dropping the components of the model with a negligible contribution:

The diagonal variance matrix:
varg € R™*™

varsqi; = 62] I:S%S@ — SgS_@] N
ij

Pearson’s correlation coefficient ranges from -1 to 1, it measures the
correlation between variables:

T —1/2 —1/2
Pg = var;, ' “covysvarg

In our model, we drop the coefficients with a low contribution (correlation) to
the model:

If Psij < tolpearson then we fix C's;;; = 0

This allows to reduce the computational cost in case a large number of degrees
of freedom is required.
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Final adjustments to the subscales model

Discarding the components of the model with large error:

We define the relative error associated to the ith reduced-order component as:
. _ ISyl
- Uayll

We don’t want the model for the subscales to predict the subscales using
components of the reduced-order model with a large error, so we fix a
tolerance and we discard the corresponding components:

CS(:,j) = Omxl if €5 > tolerror

However, we try to improve the performance of the discarded variable for the
subscales model, that is:

Cs(j) # 07



Reduced-Order Subscales for POD models

Algorithm 1 Algorithm for the calculation of the subscales model.

.

[R]

10.

1.

Collect the high-fidelity solution snapshots U, Uy .
Perform the singular value decomposition of U, compute the restrictions R¢ (U), Ra (Up).

For all the snapshots initial conditions R4 (Up), solve the reduced-order model problem and
obtain the subscales snapshots matrix S by comparing the reduced-order solution with R¢ (U).

Compute the variance of the snapshots expressed in the reduced-order basis vary,.

. Compute the variance of the subscales expressed in the reduced-order basis varg.

Compute the covariance of the snapshots against the subscales covys.
Compute Cg = vary, lcovug .

Compute the Pearson’s correlation coefficient matrix Py .

Modify Cs by dropping the coefficients C'g ;; for which F;; < tolpearson-
Compute the relative error associated to each degree of freedom.

Modify C's by dropping the columns Cyg,. ;) for which ¢; > tolerror.

Compute DL = @ — u_%gcg.




Outline 25 ”

CONTENTS

Vartiational Multiscale FEM for a model problem
POD models and notation

Reduced-Order Subscales for POD models
Numerical Examples

Conclusions



Numerical Examples 26 H

Improving the performance of the ROM

Incompressible flow past a cylinder:

Ou+u-Vu—vAu+Vp=f.
V-u=0.
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Improving the performance of the ROM

Comparison of the full-order results, reduced-order results (2 degrees of
freedom) and reduced-order results with subscales (2 degrees of freedom)
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Improving the performance of the ROM

Real subscales versus modelled subscales for the 2 degrees of freedom

reduced-order model.
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Modeling of the subscales for d.o.f

Modelling of the subscales for d.o.f
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Improving the performance of the ROM

Real subscales versus modelled subscales for a 5 degrees of freedom reduced-
order model.
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Correcting errors of hyper-reduction

Time history for FOM, Hyper-Reduced ROM (2 degrees of freedom), Hyper-
Reduced ROM with subscales (2 degrees of freedom)
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Adapting to different physical parameters

Reynolds from 100 to 1000 (trained at Re=100 and Re=200)
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Using the subscales to solve complex

flow problems
Backward facing step, Reynolds = 37000:
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Using the subscales to solve complex
flow problems

Comparison of results for FOM, ROM with 35 degrees of freedom and ROM
with 80 degrees of freedom.
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Little improvement is obtained by increasing from 35 to 80 dofs, many more
degrees of freedom would be required.
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Using the subscales to solve complex
flow problems

Comparison of results for FOM, ROM with 35 degrees of freedom and ROM
with 35 degrees of freedom plus subscales.
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Overview

A model for the subscales in POD reduced-order models has been
presented

The basic idea is to split the full-order solution into the part which can be
captured by the reduced-order model and the subscales.

The proposed model is defined as a linear function of the solution of the
reduced-order model.

The coefficients for the linear model are obtained by comparing the
reduced and the full-order solution at some trial configurations.

The coefficients for the linear model can be computed independently, and
some of them are dropped for accuracy and performance reasons.

Numerical tests show that:
s The subscales enhance the performance of the ROM.

= When using hyper-reduction, they allow to correct the errors introduced
by hyper-reduction.
= The reduced-order model with the subscales is capable of adapting to
different physical configurations.
s The subscales can be used to solve complex flow problems using POD
reduced-order models.
Remark: We still need the reduced-order basis to be able to
accurately enough represent the full-order solution.
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