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Steady Navier–Stokes–Fourier system

We study the steady Navier–Stokes–Fourier system

div (%u) = 0

div (%u⊗ u)− div S +∇p = %f

div (%Eu) = %f · u− div (pu) + div (Su)− div q

Unknowns:

%(x) ≥ 0 . . . density

u(x) . . . velocity

ϑ(x) > 0 . . . temperature (appearing implicitly)
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Conditions

S(ϑ,∇u) = µ(ϑ)
[
∇u+ (∇u)T − 23div uI

]
+ ξ(ϑ)div uI

p(%, ϑ) = (γ − 1)%e(%, ϑ) . . . generalized law for monoatomic
gas

E (%,u, ϑ) = 1
2 |u|

2 + e(%, ϑ) . . . specific total energy

q(ϑ) = −κ(ϑ)∇ϑ . . . Fourier’s law

p(%, ϑ) ∼ %γ + %ϑ

κ(ϑ) ∼ 1 + ϑm

µ(ϑ), ξ(ϑ) ∼ (1 + ϑ)α
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Additional conditions

We prescribe total mass of the gas:∫
Ω
%dx = M > 0.

Boundary conditions:

u · n = 0, [Sn]× n = 0

−q(ϑ) · n+ L(ϑ)(ϑ−Θ0) = 0,

with 0 < c1 < L(ϑ) < c2
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Previous works I

Isentropic flows, steady case:

P. L. Lions: effective viscous flux identity, γ > 5
3

E. Feireisl: oscillation defect measure

S. Novo, A. Novotný: adapted this method to steady case,
γ > 1, some a–priori estimates for % required

J. Frehse, S. Goj, M. Steinhauer and P. I. Plotnikow, J.
Sokolowski: independently achieved improved estimates for %

J. Březina, A. Novotný: first rigorous proof of existence of
weak solutions for some γ < 5

3 , periodic BC

J. Frehse, M. Steinhauer, W. Weigant: γ > 4
3 with Dirichlet

BC (also slip BC)

S. Jiang, C. Zhou: γ > 1, space periodic and Dirichlet BC

D. Jesslé, A. Novotný: γ > 1, slip BC
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Previous works II

Heat conducting flows, steady case:

P. L. Lions: additional assumption for % to be bdd in Lp for
large p

P. Mucha, M. Pokorný: viscosity does not depend on ϑ, slip
and Dirichlet BC, γ > 7

3

A. Novotný, M. Pokorný: viscosity depend on ϑ, Dirichlet BC,
VES γ >

√
41+3
8 , WS γ > 4

3

D. Jesslé, A. Novotný, M. Pokorný: slip BC, VES γ > 1, WS
γ > 5

4

O. K., Š. Nečasová, M. Pokorný: NSF coupled with radiation
transport eq., α < 1, VES γ > 3

2 , WS: γ > 5
3 - only Bogovskii

estimates used
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Weak solutions I

The triple (%,u, ϑ) is called a weak solution to the mentioned
system, if

% ≥ 0 a.e. in Ω, % ∈ Lγ
3p
4p−3 (Ω),

∫
Ω %dx = M,

u ∈W 1,p(Ω) for some p ∈ (1, 2],
ϑ > 0 a.e. in Ω, ϑ ∈W 1,r (Ω) ∩ L3m(Ω),

moreover % |u|2 ∈ L
3p
4p−3 (Ω), %uϑ ∈ L1(Ω), S(ϑ,∇u)u ∈ L1(Ω),

ϑm∇ϑ ∈ L1(Ω) and∫
Ω
%u · ∇ψ dx = 0 ∀ψ ∈ C∞(Ω), (1)

∫
Ω

(−%(u⊗ u) : ∇ϕ− p(%, ϑ)divϕ+ S(ϑ,∇u) : ∇ϕ) dx

=

∫
Ω
%f ·ϕdx ∀ϕ ∈ C∞(Ω),ϕ · n = 0 at ∂Ω

(2)
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Weak solutions II

and∫
Ω
−
(

1
2
% |u|2 + ρe(%, ϑ)

)
u · ∇ψ dx =

∫
Ω

(%f · uψ + p(%, ϑ)u · ∇ψ) dx

−
∫

Ω

(
(S(ϑ,∇u)u) · ∇ψ + κ(ϑ)∇ϑ · ∇ψ

)
dx

−
∫
∂Ω
L(ϑ)(ϑ−Θ0)ψ dS ∀ψ ∈ C∞(Ω),

(3)
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Variational entropy solutions I

The triple (%,u, ϑ) is called a variational entropy solution to the
mentioned system, if

% ≥ 0 a.e. in Ω, % ∈ Lγ(Ω),
∫

Ω %dx = M,

u ∈W 1,p(Ω) for some p ∈ (1, 2],

ϑ > 0 a.e. in Ω, ϑ ∈W 1,r (Ω) ∩ L3m(Ω),

moreover % |u|2 ∈ L1(Ω), %ϑ ∈ L1(Ω), ϑ−1S(ϑ,∇u)u ∈ L1(Ω),
ϑm∇ϑϑ ∈ L

1(Ω), ϑ−1 ∈ L1(∂Ω),
the equalities (1) and (2) are satisfied in the same sense as in
previous definition. . .
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Variational entropy solutions II

and instead of (3) we have the entropy inequality∫
Ω

(S(ϑ,∇u) : ∇u
ϑ

+ κ(ϑ)
|∇ϑ|2

ϑ2

)
ψ dx+

∫
∂Ω

L(ϑ)

ϑ
Θ0ψ dS

≤
∫

Ω

(
κ(ϑ)

∇ϑ : ∇ψ
ϑ

− %s(%, ϑ)u · ∇ψ
)
dx

+

∫
∂Ω
L(ϑ)ψ dS

(4)

for all nonnegative ψ ∈ C∞(Ω) together with the global total
energy balance ∫

∂Ω
L(ϑ)(ϑ−Θ0) dS =

∫
Ω
%f · u dx. (5)
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Main Theorem I

Theorem

Let Ω ∈ C 2 be a bounded domain in R3, f ∈ L∞(Ω), Θ0 ≥ K0 > 0
a.e. at ∂Ω, Θ0 ∈ L1(∂Ω), M > 0. Moreover, let

α ∈ (0, 1], γ > 1 and m > F (α, γ) (6)

Then there exists a variational entropy solution to our system.
Moreover, the pair (%,u) is a renormalized solution to the
continuity equation.
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Main Theorem II

Theorem
If additionally

γ > g(α) and m > G (α, γ) (7)

then this solution is a weak solution.

Remark

The lowest possible γ for weak solution is 54 + ε for α ∈ (13 , 1) and
1 + 1

3(1+α) for α ∈ (0, 13).
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Outline of proof

4-parameter (N, η, ε, δ) approximative system: existence,
a–priori estimates

Limit passages with N and η

Recovering a–priori estimates, especially estimates for density

Limit passages with ε and δ

Strong convergence of the sequence of densities
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Why is α < 1 worse than α = 1? I

At levels ε and δ we use the entropy inequality to read a–priori
estimates. The key term is

S(ϑ,∇u) : ∇u
ϑ

∼ ϑα−1 |∇u|2 .

α = 1: use only Korn’s inequality to read L2 estimates of ∇u
α < 1: apart from Korn’s inequality we need to use the
following procedure

Denote p = 6m
3m+1−α . Then

‖u‖1,p ≤ ‖ϑ‖
1−α
2
3m

∥∥∥ϑα−1 |∇u|2∥∥∥ 12
1
≤ C ‖ϑ‖

1−α
2
3m
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Why is α < 1 worse than α = 1? II

Using entropy inequality and global total energy balance

‖ϑ‖3m ≤ C
(
‖ϑ‖1,∂Ω +

∥∥∥∇ϑm2 ∥∥∥ 2m
2

)
≤

≤ C (1 +

∫
Ω
|%u · f|dx) ≤ ‖u‖1,p ‖%‖ 3p

4p−3
≤

‖ϑ‖
1−α
2
3m ‖%‖ 3p

4p−3

and thus
‖ϑ‖3m ≤ C ‖%‖

2
1+α
3p
4p−3

‖u‖1,p ≤ C ‖%‖
1−α
1+α
3p
4p−3

or similarly
‖ϑ‖3m ≤ C (1 + ‖%u‖1)
‖u‖1,p ≤ C (1 + ‖%u‖

1−α
2
1 )
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Estimates of density

Introduce A =
∫

Ω

(
%aδ |uδ|

p + %bδ |uδ|
2b+p

)
dx with 1 ≤ a ≤ γ

and 0 < b < 1.
Use Bogovskii test function in ME to obtain ‖%‖sγ ≤ CAω for
some ω and s > 1.
Obtain local pressure estimates using special test functions in
ME

ϕ(x) = η(x) x−x0
|x−x0|A

for fixed x0 away from boundary ∂Ω, η
cut-off function
near boundary ∂Ω: more complicated structure of ϕ(x)
(boundary conditions!) but similar behaviour

This yields:∫
Ω

p(%δ, ϑδ) + δ(%βδ + %2δ)

|x− x0|A
dx+ (1− A)

∫
Ω

%δ |uδ|2

|x− x0|A
dx

≤ C (1 + δ ‖%δ‖ββ + ‖p(%δ, ϑδ)‖1 + (1 + ‖ϑδ‖α3m) ‖uδ‖1,p +
∥∥∥%δ |uδ|2∥∥∥

1
)
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Goal of this work

Our ultimate goal is the inequality of the following type

A =
∥∥∥(%aδ + (%δ |uδ|2)b)up

∥∥∥
L1(Ω)

≤

≤ C

(
sup
x0∈Ω

∫
Ω

(%aδ + (%δ |uδ|2)b)
1
p−1 (x)

|x− x0|
3−p
p−1

dx

)p−1
‖uδ‖pW 1,p(Ω)

.

(8)
so we can use the inequality from previous slide and estimating all
terms on the right hand side derive

A ≤ CAz

for z < 1. This then yields ‖%δ‖sγ , ‖ϑδ‖3m , ‖uδ‖1,p < C .
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Bessel potentials I

For any α ∈ R define Bessel kernel

Gα(x) := F−1((1 + |ξ|2)−
α
2 ) (9)

Properties:

real

radially symmetric

decreasing

positive

exponential decay at ∞
Gα(x) ≤ C (α,N) |x|α−N as |x| → 0 for α ∈ (0,N)
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Bessel potentials II

Define Bessel potential space

Lα,p(RN) :=
{
ϕ = Gα ∗ f , f ∈ Lp(RN)

}
(10)

equipped with the norm

‖Gα ∗ f ‖Lα,p(RN) := ‖f ‖Lp(RN) . (11)

Theorem

For α ∈ N and 1 < p <∞, W α,p(RN) = Lα,p(RN) with
equivalence of norms. In particular, for all ϕ ∈W α,p(RN) there
exists a unique f ∈ Lp(RN) such that ϕ = Gα ∗ f and there exists
a constant A > 0 such that

A−1 ‖ϕ‖Lα,p(RN) ≤ ‖ϕ‖Wα,p(RN) ≤ A ‖ϕ‖Lα,p(RN) . (12)
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Bessel potentials III

Key theorem:

Theorem

Let G be radially decreasing convolution kernel and let
µ ∈M+(RN). Then for 1 < p ≤ q <∞ the following statements
are equivalent:

1) There is a constant A1 such that
(∫

RN |G ∗ f |
q dµ

) 1
q ≤ A1 ‖f ‖Lp

for all f ∈ Lp(RN).

2) There is a constant A2 such that ‖G ∗ µK‖Lp′ ≤ A2µ(K )
1
q′ for

all compact sets K.
Moreover the constants A1, A2 are comparable, in fact we can
choose A1 = A2.
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Bessel potentials IV

for components of our velocity field uiδ ∈W 1,p(Ω) we find
unique f i ∈ Lp(Ω) such that E (uiδ) = G1 ∗ f i (E is extension
operator)

N = 3, p = q ∈ (1, 2)

dµ(x) = (%aδ + (%δ |uδ|2)b)(x)dx, %δ = 0 outside Ω

G = G1 and f = f i defined above
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Bessel potentials V

First we check that statement 2) holds. Denote
h = (%aδ + (%δ |uδ|2)b) and then∫
R3
|G1 ∗ h|K |p

′
dx ≤ C (Ω)

∥∥∥((G1 ∗ Gp
′−1
1 ) ∗ hp′−1|K )

∥∥∥
L∞(R3)

‖h‖L1(K) .

Therefore we denote

A2 := C
∥∥∥((G1 ∗ Gp

′−1
1 ) ∗ hp′−1)

∥∥∥ 1p′
L∞(Ω)

.
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Bessel potentials VI

This means that also statement 1) of the key theorem holds, i.e.∥∥∥(%aδ + (%δ |uδ|2)b)upδ
∥∥∥
L1(Ω)

≤ CAp2 ‖uδ‖
p
W 1,p(Ω)

.

Now we have to investigate behaviour of

A2 := C
∥∥∥((G1 ∗ Gp

′−1
1 ) ∗ hp′−1)

∥∥∥ 1p′
L∞(Ω)

,

more precisely we are interested in studying properties of the
convolution kernel (G1 ∗ Gp

′−1
1 ).

If α = 1, then p = 2, p′ − 1 = 1 and the kernel is just
G1 ∗ G1 = G2 ≤ C

|x| .
The case α < 1 is more complicated.
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Decay properties of Fourier transform I

Unfortunately, Gp
′−1
1 is not equal to any Bessel potential Gα. We

have to proceed in other way - derive decay properties of Fourier
transform.

Lemma

Let f (x) ∈ C 3(R3 \ {0}) such that for some α ∈ (0, 3)

sup
x∈R3\{0}

|x|α+n Dnf (x) <∞, n = 0, 1, ..., 4− dαe .

Then
sup

ξ∈R3\{0}
|ξ|3−α f̂ (ξ) <∞.
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Decay properties of Fourier transform II

This works also other way round.

Lemma

Let f̂ (ξ) ∈ C 3(R3 \ {0}) such that for some β ∈ (0, 3)

sup
ξ∈R3\{0}

|ξ|β+n Dn f̂ (ξ) <∞, n = 0, 1, ..., 4− dβe .

Then
sup

x∈R3\{0}
|x|3−β f (x) <∞.
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Back to Bessel potentials

Repeatedly using these Lemmas we are able to show

(G1 ∗ G r1 )(x) ≤ C |x|1−2r (13)

and thus

A =
∥∥∥(%aδ + (%δ |uδ|2)b)up

∥∥∥
L1(Ω)

≤ CAp2 ‖uδ‖
p
W 1,p(Ω)

≤

≤ C

(
sup
x0∈Ω

∫
Ω

(%aδ + (%δ |uδ|2)b)
1
p−1 (x)

|x− x0|
3−p
p−1

dx

)p−1
‖uδ‖pW 1,p(Ω)

.

(14)
which is the desired estimate which enables us to close the set of
inequalities.
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Last steps in the proof

What remains is to derive the set of conditions, under which we
really get

A ≤ CAz

with z < 1, this then leads to conditions on α, γ and m in the
theorem.
Final step is to prove strong convergence of sequence of densities,
which is somehow classical using the oscillation defect measure and
is basically the same as in the case p = 2.
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Thank you

Thank you for attention.

Ondřej Kreml Steady NSF with nonlinear temperature 28/28


