
Krylov Subspace-Based Model Order

Reduction of RCL Circuit Equations

Roland W. Freund

Department of Mathematics

University of California, Davis, USA

http://www.math.ucdavis.edu/ f̃reund/



Problem: reduction of RCL networks



Modeling of chip’s “wiring”



Efficient reduction of RCL networks

• RCL network as a linear dynamical system:

⇐⇒ H(s) = BT
(
sC+G

)−1
B

• Model order reduction (based on Krylov subspace methods):

H(s) ≈ Hn(s) = BT
n

(
sCn +Gn

)−1
Bn

• Can we find an RCL network corresponding to Hn ?



In general, no!

• RCL networks (and H) are passive and reciprocal

• Need to use model order reduction methods that guarantee

passive and reciprocal Hn

• Classical results from network synthesis:

If Hn is passive, then there exists a corresponding physical

electrical circuit, but not necessarily one with only R’s, C’s,

and L’s

If Hn is also reciprocal, then ‘fewer’ non-RCL elements are

needed



Some history

• Elmore delay of RC networks:

Based on a model with a single R and a single C such that

H(s) ≈ H1(s) =
a

s+ b

with matching of first two moments (= Taylor coefficients)

• AWE (Pillage and Rohrer, ‘90):

H(s) ≈ Hn(s) =
pn−1(s)

qn(s)

with matching of first 2n moments



Some history

• PVL, MPVL (Feldmann and F., ‘94 and ‘95):

Avoids numerical issues of AWE by computing Padé reduced-

order models via the Lanczos process

• PRIMA (Odabasioglu, Celik, and Pileggi, ’97):

Passivity via explicit projection onto Krylov subspaces

• Split congruence transformations (Kerns and Yang, ‘97)

• SPRIM (F., ’04 and ’11)

Passivity and reciprocity via explicit projection



Outline

• RCL network equations

• Projection onto Krylov subspaces

• PRIMA and SPRIM

• SPRIM revisited

• Open problems



Outline

• RCL network equations

• Projection onto Krylov subspaces

• PRIMA and SPRIM

• SPRIM revisited

• Open problems



RCL networks as directed graphs

321 R

Lvv

R1 2

C

0

43

0

31 2

5

2

43

1

RCL network directed graph

Network topology ⇐⇒ Graph incidence matrix A



RCL network equations

• Kirchhoff’s current laws: A iE = 0

• Kirchhoff’s voltage laws: ATv = vE

• Equations for R’s, C’s, and L’s:

LCR

iv l

              

r LC=ci =c= R ivr vl d
d

d
d
t t



Modified nodal analysis

• ‘Easy’ eliminations leave only v, il, and iv as unknowns



Example
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Input: u(t) = vv(t)

Output: y(t) =
[
0 0 0 0 −1

]
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General RCL network equations

Linear time-invariant dynamical system:

C
d

dt
x(t) +Gx(t) = Bu(t)

y(t) = BTx(t)

where

x(t) =




v(t)

il(t)

iv(t)


 , C =




AcCAT
c 0 0

0 L 0

0 0 0


 , G =




ArR−1AT
r Al Av

−AT
l 0 0

−AT
v 0 0




u(t) =

[
vv(t)

−ii(t)

]
, y(t) =

[
−iv(t)

vi(t)

]
, B =




0 Ai

0 0

−I 0






Passivity and reciprocity

• R and C are diagonal with positive diagonal entries,

ArR
−1AT

r � 0 and ArCA
T
r � 0,

and L ≻ 0

• Passivity follows from

C =




AcCAT
c 0 0

0 L 0

0 0 0


 � 0,

G+GT

2
=




ArR−1AT
r 0 0

0 0 0

0 0 0


 � 0

• Reciprocity follows from the zero structure of C, G, B and

the symmetry of ArCAT
r , ArR−1AT

r , L
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General RCL network equations

• Linear time-invariant dynamical system of the form:

C
d

dt
x(t) +Gx(t) = Bu(t)

y(t) = BTx(t)

where C, G ∈ R
N×N and B ∈ R

N×m

• m is the total number of voltage and current sources



Reduced-order models

• Linear time-invariant dynamical system of the same form:

Cn
d

dt
z(t) +Gn z(t) = Bn u(t)

ỹ(t) = BT
n z(t)

• But now:

Cn, Gn ∈ R
n×n and Bn ∈ R

n×m

where n ≪ N



Transfer functions

• Original system:

H(s) = BT
(
sC+G

)−1
B

• Reduced-order model:

Hn(s) = BT
n

(
sCn +Gn

)−1
Bn

• ‘Good’ reduced-order model

⇐⇒ ‘Good’ approximation Hn ≈ H



Projection-based reduction

• Choose an N × n matrix

Vn = with RankVn = n

and explicitly project the data matrices of

C
d

dt
x(t) +Gx(t) = Bu(t)

y(t) = BTx(t)

onto the subspace spanned by the columns of Vn



Projection-based reduction

• Resulting reduced-order model:

Cn
d

dt
z(t) +Gn z(t) = Bn u(t)

ỹ(t) = BT
n z(t)

where

Cn := VT
n CVn, Gn := VT

n GVn, Bn := VT
n B

• Preserves passivity:

C � 0,
G+GT

2
� 0 ⇒ Cn � 0,

Gn +GT
n

2
� 0



Choice of projection matrix

• Choose expansion point s0 for transfer function and rewrite:

H(s) = BT (sC+G)−1B

= BT
(
s0C+G+ (s− s0)C

)−1
B

= BT
(
I+ (s− s0)A

)−1
R

where

A := (s0C+G)−1 C and R := (s0C+G)−1 B



Practical choice of expansion point
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Projection + Krylov: Moment matching

• Recall: A = (s0C+G)−1 C and R = (s0C+G)−1 B

• n̂-th block Krylov subspace:

Kn̂(A,R) := colspann̂

[
R AR A2R · · ·

]

• Choose the projection matrix Vn such that

Kn̂(A,R) ⊆ RangeVn

• Moment matching about s0:

Hn(s) = H(s) +O
(
(s− s0)

q̃
)
, where q̃ ≥ ⌊n̂/m⌋
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PRIMA

• Projection onto n-th block Krylov subspace:

RangeVn = Kn(A,R)

• Block structure of the data matrices:

C =




C1 0 0

0 C2 0

0 0 0


 , G =




G1 Al Av

−AT
l 0 0

−AT
v 0 0


 , B =




0 Ai

0 0

−I 0




• Reduced-order matrices:

Cn =

[ ]
, Gn =

[ ]
, Bn =

[ ]



PRIMA

• Reduced-order models are passive

• Block structure of data matrices is not preserved

• Reduced-order models are not reciprocal



SPRIM

• Recall: moment matching if

Kn̂(A,R) ⊆ RangeVn

• Let V̂n̂ be any matrix such that

Range V̂n̂ = Kn̂(A,R)

• Recall:

C =




C1 0 0

0 C2 0

0 0 0


 , G =




G1 Al Av

−AT
l 0 0

−AT
v 0 0


 , B =




0 Ai

0 0

−I 0






SPRIM

• Partition V̂n̂ accordingly:

V̂n̂ =




V̂(1)

V̂(2)

V̂(3)


 , V̂(1) = , V̂(2) = , V̂(3) =

• For i = 1,2,3:

If Rank V̂(i) < n̂, replace V̂(i) by matrix of full column rank

• Usually:

V̂(3) = I



SPRIM

• Set

Vn =




V̂(1) 0 0

0 V̂(2) 0

0 0 V̂(3)




• Reduced-order matrices:

Cn =




C̃1 0 0

0 C̃2 0

0 0 0


 , Gn =




G̃1 G̃2 G̃3
−G̃T

2 0 0

−G̃T
3 0 0


 , Bn =




0 B̃1

0 0

B̃2 0




• Kn̂(A,R) = Range V̂n̂ ⊆ RangeVn ⇒ moment matching!



SPRIM

• Block structure of data matrices is preserved

• Reduced-order models are passive and reciprocal

• Preservation of block structure implies that SPRIM matches

twice as many moments as PRIMA

• PRIMA and SPRIM have the same computational costs

• SPRIM models are about twice as large as PRIMA models



Moment matching of SPRIM

• General theory of projection onto block Krylov subspaces:

PRIMA and SPRIM produce reduced-order models with

Hn(s) = H(s) +O
(
(s− s0)

q̃
)
, where q̃ ≥ ⌊n̂/m⌋

• Theorem (F., ’08)

The n-th SPRIM model satisfies

Hn(s) = H(s) +O
(
(s− s0)

q̃
)
, where q̃ ≥ 2 ⌊n̂/m⌋



An RCL network with mostly C’s and L’s
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An RCL network with mostly C’s and L’s

1.5 2 2.5 3 3.5 4 4.5 5 5.5

x 10
9

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Frequency (Hz)

ab
s(

H
1,

1)

 

 

Exact

PRIMA model

SPRIM model

Exact and models corresponding to n̂ = 90



A package example
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A package example
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Problem: reduction of RCL networks



What we really want

• Original RCL network:

⇐⇒ C, G, B

• SPRIM model order reduction:

C, G, B ⇒ Cn, Gn, Bn

• Reduced RCL network corresponding to Cn, Gn, Bn ?



‘Flaw’ of modified nodal analysis

• Matrices of original RCL network:

C =




C1 0 0

0 L 0

0 0 0


 , G =




G1 Al Av

−AT
l 0 0

−AT
v 0 0


 , B =




0 Ai

0 0

−I 0




where C1 = AcCAT
c and G1 = ArR−1AT

r

• The voltage sources are input quantities and thus will not be

reduced, yet they appear via Av in G

• G can be made symmetric if there are no voltage sources



How to handle Av

• Av is an incidence matrix with full column rank

• ‘Easy’ transformation Av −→

[
I
0

]

• Matrices of RCL network:

C =




C11 C12 0 0

CT12 C22 0 0

0 0 L 0

0 0 0 0



, G =




G11 G12 G13 I

GT
12 G22 G23 0

−GT
13 −GT

23 0 0

−I 0 0 0



, B =




0 B11

0 B12

0 0

−I 0




• ‘Eliminate’ first and last block rows and columns



How to handle Av

• Result of elimination:

C −→ E :=

[
C22 0

0 −L

]

G −→ F :=

[
G22 G23

GT
23 0

]

A = (s0C+G)−1C −→ A1 := (s0E+ F)−1F

• E and F are symmetric and A1 is F-symmetric:

AT
1 F = FA1



How to handle Av

• Effect on transfer function:

H(s) = BT (sC+G)−1B

= BT
(
I+ (s− s0)A

)−1
R

= D0 + (s− s0)D1 + (s− s0)
2
(
FR1

)T(
I+ (s− s0)A1

)−1
R1

where D0 = BTR and D1 = −BTAR

• Since A1 is F-symmetric, we can use the F-symmetric band

Lanczos process to compute Padé approximants of H(s) very

efficiently



Consequences for SPRIM

• We need a matrix V̂n̂ such that

Range V̂n̂ = Kn̂(A,R) = colspann̂

[
R AR A2R · · ·

]

• Setting up the projection matrix:

V̂n̂ =




V̂(1)

V̂(2)

V̂(3)


 ⇒ Vn =




V̂(1) 0 0

0 V̂(2) 0

0 0 I




• We only need to construct V̂(1) and V̂(2), but not V̂(3)



Consequences for SPRIM

• Recall:

A = (s0C+G)−1 C and R = (s0C+G)−1 B

where

C =




C11 C12 0 0

CT12 C22 0 0

0 0 L 0

0 0 0 0



, G =




G11 G12 G13 I

GT
12 G22 G23 0

−GT
13 −GT

23 0 0

−I 0 0 0



, B =




0 B11

0 B12

0 0

−I 0




• Corresponding smaller matrices after elimination:

A1 = (s0E+ F)−1F and R1



Consequences for SPRIM

• Structure of block Krylov sequence:

R =




[I 0]

R0

⋆


 , AR =




0

R1

⋆


 , A2R =




0

A1R1

⋆


 , . . . ,AkR =




0

Ak−1
1 R1

⋆


 , . . .

• We can use the F-symmetric band Lanczos process to

effiicently compute the needed parts V̂(1) and V̂(2) of the

projection matrix Vn

• Note that

V̂(1) =

[
[ I 0 ]

⋆

]



New and improved SPRIM

• Set

Vn =




V̂(1) 0 0

0 V̂(2) 0

0 0 I


 , where V̂(1) =

[
[ I 0 ]

⋆

]

• Reduced-order matrices:

Cn =




C̃1 0 0

0 C̃2 0

0 0 0


 , Gn =




G̃1 G̃2 Av

−G̃T
2 0 0

−AT
v 0 0


 , Bn =




0 B̃1

0 0

−I 0




• The incidence matrix Av of the voltage sources is preserved!



A package example
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A much larger example
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Open problems

• ‘True’ RCL reduction via Krylov subspace-based methods?

• The new version of SPRIM resolves the issue with voltage

sources; enough to guarantee RCL reduced-order models?

• Is there a downside to using F-symmetric Lanczos to

generate SPRIM models?

• I really should finish and release BANDITS (a Matlab

package of band Krylov subspace iterations)



Thank you!


