Krylov Subspace-Based Model Order Reduction of RCL Circuit Equations

Roland W. Freund

Department of Mathematics
University of California, Davis, USA

http://www.math.ucdavis.edu/~freund/

Problem: reduction of RCL networks

Modeling of chip's "wiring"

Efficient reduction of RCL networks

RCL network as a linear dynamical system:

• Model order reduction (based on Krylov subspace methods):

$$\mathbf{H}(s) \approx \mathbf{H}_n(s) = \mathbf{B}_n^{\mathsf{T}} (s \mathbf{C}_n + \mathbf{G}_n)^{-1} \mathbf{B}_n$$

• Can we find an RCL network corresponding to H_n ?

In general, no!

- ullet RCL networks (and ullet) are passive and reciprocal
- Need to use model order reduction methods that guarantee passive and reciprocal \mathbf{H}_n
- Classical results from network synthesis:
 - If \mathbf{H}_n is passive, then there exists a corresponding physical electrical circuit, but not necessarily one with only R's, C's, and L's
 - If \mathbf{H}_n is also reciprocal, then 'fewer' non-RCL elements are needed

Some history

• Elmore delay of RC networks:

Based on a model with a single R and a single C such that

$$H(s) \approx H_1(s) = \frac{a}{s+b}$$

with matching of first two moments (= Taylor coefficients)

• AVVE (Pillage and Rohrer, '90):

$$\mathbf{H}(s) \approx \mathbf{H}_n(s) = \frac{p_{n-1}(s)}{q_n(s)}$$

with matching of first 2n moments

Some history

- PVL, MPVL (Feldmann and F., '94 and '95): Avoids numerical issues of AWE by computing Padé reducedorder models via the Lanczos process
- PRIMA (Odabasioglu, Celik, and Pileggi, '97):

 Passivity via explicit projection onto Krylov subspaces
- Split congruence transformations (Kerns and Yang, '97)
- **SPRIM** (F., '04 and '11)

 Passivity and reciprocity via explicit projection

Outline

- RCL network equations
- Projection onto Krylov subspaces
- PRIMA and SPRIM
- SPRIM revisited
- Open problems

Outline

- RCL network equations
- Projection onto Krylov subspaces
- PRIMA and SPRIM
- SPRIM revisited
- Open problems

RCL networks as directed graphs

Network topology \iff Graph incidence matrix \mathcal{A}

RCL network equations

- Kirchhoff's current laws: $\mathcal{A} i_{\mathcal{E}} = 0$
- Kirchhoff's voltage laws: $A^T v = v_{\mathcal{E}}$
- Equations for R's, C's, and L's:

Modified nodal analysis

ullet 'Easy' eliminations leave only ${f v}$, ${f i}_l$, and ${f i}_v$ as unknowns

Example

5 unknowns: v_1 , v_2 , v_3 , $i_l=i_4$, and $\overline{i_v}$

Example

Input: $\mathbf{u}(t) = v_v(t)$

Output:
$$\mathbf{y}(t) = \begin{bmatrix} 0 & 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ i_l \\ i_v \end{bmatrix} = -i_v(t)$$

General RCL network equations

Linear time-invariant dynamical system:

$$C \frac{d}{dt} \mathbf{x}(t) + G \mathbf{x}(t) = B \mathbf{u}(t)$$
$$\mathbf{y}(t) = B^{\mathsf{T}} \mathbf{x}(t)$$

where

$$\mathbf{x}(t) = \begin{bmatrix} \mathbf{v}(t) \\ \mathbf{i}_l(t) \\ \mathbf{i}_v(t) \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} \mathcal{A}_c \mathcal{C} \mathcal{A}_c^\mathsf{T} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathcal{L} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}, \quad \mathbf{G} = \begin{bmatrix} \mathcal{A}_r \mathcal{R}^{-1} \mathcal{A}_r^\mathsf{T} & \mathcal{A}_l & \mathcal{A}_v \\ -\mathcal{A}_l^\mathsf{T} & \mathbf{0} & \mathbf{0} \\ -\mathcal{A}_v^\mathsf{T} & \mathbf{0} & \mathbf{0} \end{bmatrix}$$

$$\mathbf{u}(t) = \begin{bmatrix} \mathbf{v}_v(t) \\ -\mathbf{i}_i(t) \end{bmatrix}, \quad \mathbf{y}(t) = \begin{bmatrix} -\mathbf{i}_v(t) \\ \mathbf{v}_i(t) \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} \mathbf{0} & \mathcal{A}_i \\ \mathbf{0} & \mathbf{0} \\ -\mathbf{I} & \mathbf{0} \end{bmatrix}$$

Passivity and reciprocity

ullet and $\mathcal C$ are diagonal with positive diagonal entries,

$$\mathcal{A}_r \mathcal{R}^{-1} \mathcal{A}_r^{\mathsf{T}} \succeq \mathbf{0}$$
 and $\mathcal{A}_r \mathcal{C} \mathcal{A}_r^{\mathsf{T}} \succeq \mathbf{0}$,

Passivity follows from

and $\mathcal{L} \succ 0$

$$\mathbf{C} = egin{bmatrix} \mathcal{A}_c^{\mathsf{T}} & 0 & 0 \ 0 & \mathcal{L} & 0 \ 0 & 0 & 0 \end{bmatrix} \succeq \mathbf{0}, \quad rac{\mathbf{G} + \mathbf{G}^{\mathsf{T}}}{2} = egin{bmatrix} \mathcal{A}_r^{\mathsf{T}} & 0 & 0 \ 0 & 0 & 0 \ \end{bmatrix} \succeq \mathbf{0}, \quad rac{\mathbf{G} + \mathbf{G}^{\mathsf{T}}}{2} = egin{bmatrix} \mathcal{A}_r^{\mathsf{T}} & 0 & 0 \ 0 & 0 & 0 \ \end{bmatrix} \succeq \mathbf{0},$$

• Reciprocity follows from the zero structure of C, G, B and the symmetry of $\mathcal{A}_r \mathcal{C} \mathcal{A}_r^{\mathsf{T}}$, $\mathcal{A}_r \mathcal{R}^{-1} \mathcal{A}_r^{\mathsf{T}}$, \mathcal{L}

Outline

- RCL network equations
- Projection onto Krylov subspaces
- PRIMA and SPRIM
- SPRIM revisited
- Open problems

General RCL network equations

Linear time-invariant dynamical system of the form:

$$C \frac{d}{dt} \mathbf{x}(t) + G \mathbf{x}(t) = B \mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathbf{B}^{\mathsf{T}} \mathbf{x}(t)$$

where $\mathbf{C},\ \mathbf{G} \in \mathbb{R}^{N \times N}$ and $\mathbf{B} \in \mathbb{R}^{N \times m}$

 \bullet m is the total number of voltage and current sources

Reduced-order models

Linear time-invariant dynamical system of the same form:

$$C_n \frac{d}{dt} \mathbf{z}(t) + G_n \mathbf{z}(t) = B_n \mathbf{u}(t)$$
$$\widetilde{\mathbf{y}}(t) = B_n^{\mathsf{T}} \mathbf{z}(t)$$

• But now:

$$\mathbf{C}_n, \ \mathbf{G}_n \in \mathbb{R}^{n \times n}$$
 and $\mathbf{B}_n \in \mathbb{R}^{n \times m}$

where $n \ll N$

Transfer functions

Original system:

$$H(s) = B^{\mathsf{T}} (sC + G)^{-1}B$$

Reduced-order model:

$$\mathbf{H}_n(s) = \mathbf{B}_n^{\mathsf{T}} \left(s \, \mathbf{C}_n + \mathbf{G}_n \right)^{-1} \mathbf{B}_n$$

'Good' reduced-order model

 \longleftrightarrow 'Good' approximation $\mathbf{H}_n \approx \mathbf{H}$

Projection-based reduction

• Choose an $N \times n$ matrix

and explicitly project the data matrices of

$$C \frac{d}{dt} \mathbf{x}(t) + G \mathbf{x}(t) = B \mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathbf{B}^{\mathsf{T}} \mathbf{x}(t)$$

onto the subspace spanned by the columns of V_n

Projection-based reduction

Resulting reduced-order model:

$$\mathbf{C}_n \frac{d}{dt} \mathbf{z}(t) + \mathbf{G}_n \mathbf{z}(t) = \mathbf{B}_n \mathbf{u}(t)$$
$$\tilde{\mathbf{y}}(t) = \mathbf{B}_n^{\mathsf{T}} \mathbf{z}(t)$$

where

$$\mathbf{C}_n := \mathbf{V}_n^\mathsf{T} \, \mathbf{C} \, \mathbf{V}_n, \quad \mathbf{G}_n := \mathbf{V}_n^\mathsf{T} \, \mathbf{G} \, \mathbf{V}_n, \quad \mathbf{B}_n := \mathbf{V}_n^\mathsf{T} \, \mathbf{B}$$

• Preserves passivity:

$$\mathbf{C} \succeq \mathbf{0}, \quad \frac{\mathbf{G} + \mathbf{G}^{\mathsf{T}}}{2} \succeq \mathbf{0} \quad \Rightarrow \quad \mathbf{C}_n \succeq \mathbf{0}, \quad \frac{\mathbf{G}_n + \mathbf{G}_n^{\mathsf{T}}}{2} \succeq \mathbf{0}$$

Choice of projection matrix

• Choose expansion point s_0 for transfer function and rewrite:

$$H(s) = B^{T} (s C + G)^{-1} B$$

$$= B^{T} (s_{0} C + G + (s - s_{0}) C)^{-1} B$$

$$= B^{T} (I + (s - s_{0}) A)^{-1} R$$

where

$$A := (s_0 C + G)^{-1} C$$
 and $R := (s_0 C + G)^{-1} B$

Practical choice of expansion point

Projection + Krylov: Moment matching

- Recall: $A = (s_0 C + G)^{-1} C$ and $R = (s_0 C + G)^{-1} B$
- \hat{n} -th block Krylov subspace:

$$\mathcal{K}_{\widehat{n}}(\mathbf{A},\mathbf{R}) := \mathsf{colspan}_{\widehat{n}} \left[\, \mathbf{R} \, \, \mathbf{A} \mathbf{R} \, \, \, \mathbf{A}^2 \mathbf{R} \, \, \, \cdots \, \right]$$

• Choose the projection matrix V_n such that

$$\mathcal{K}_{\widehat{n}}(\mathbf{A},\mathbf{R})\subseteq\mathsf{Range}\,\mathbf{V}_n$$

Moment matching about s₀:

$$\mathbf{H}_n(s) = \mathbf{H}(s) + \mathcal{O}\left((s-s_0)^{\widetilde{q}}\right), \quad ext{where} \quad \widetilde{q} \geq \lfloor \widehat{n}/m \rfloor$$

Outline

- RCL network equations
- Projection onto Krylov subspaces
- PRIMA and SPRIM
- SPRIM revisited
- Open problems

PRIMA

• Projection onto n-th block Krylov subspace:

Range
$$V_n = \mathcal{K}_n(A, R)$$

Block structure of the data matrices:

$$\mathbf{C} = \begin{bmatrix} \mathbf{C_1} & 0 & 0 \\ 0 & \mathbf{C_2} & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \mathbf{G} = \begin{bmatrix} \mathbf{G_1} & \mathbf{A_l} & \mathbf{A_v} \\ -\mathbf{A_l^T} & 0 & 0 \\ -\mathbf{A_v^T} & 0 & 0 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} \mathbf{0} & \mathbf{A_i} \\ \mathbf{0} & \mathbf{0} \\ -\mathbf{I} & \mathbf{0} \end{bmatrix}$$

Reduced-order matrices:

$$\mathbf{C}_n = \begin{bmatrix} \mathbf{C}_n \end{bmatrix}, \quad \mathbf{G}_n = \begin{bmatrix} \mathbf{C}_n \end{bmatrix}, \quad \mathbf{B}_n = \begin{bmatrix} \mathbf{C}_n \end{bmatrix}$$

PRIMA

- Reduced-order models are passive
- Block structure of data matrices is not preserved
- Reduced-order models are not reciprocal

Recall: moment matching if

$$\mathcal{K}_{\widehat{n}}(\mathbf{A},\mathbf{R})\subseteq\mathsf{Range}\,\mathbf{V}_n$$

ullet Let $\widehat{
m V}_{\widehat{n}}$ be any matrix such that

Range
$$\widehat{\mathbf{V}}_{\widehat{n}} = \mathcal{K}_{\widehat{n}}(\mathbf{A},\mathbf{R})$$

• Recall:

$$\mathbf{C} = \begin{bmatrix} \mathbf{\mathcal{C}_1} & 0 & 0 \\ 0 & \mathbf{\mathcal{C}_2} & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \mathbf{G} = \begin{bmatrix} \mathbf{\mathcal{G}_1} & \mathbf{\mathcal{A}_l} & \mathbf{\mathcal{A}_v} \\ -\mathbf{\mathcal{A}_l^T} & 0 & 0 \\ -\mathbf{\mathcal{A}_v^T} & 0 & 0 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} \mathbf{0} & \mathbf{\mathcal{A}_i} \\ \mathbf{0} & \mathbf{0} \\ -\mathbf{I} & \mathbf{0} \end{bmatrix}$$

• Partition $\widehat{\mathbf{V}}_{\widehat{n}}$ accordingly:

$$\hat{V}_{\hat{n}} = \begin{bmatrix} \hat{V}^{(1)} \\ \hat{V}^{(2)} \\ \hat{V}^{(3)} \end{bmatrix}, \quad \hat{V}^{(1)} = \begin{bmatrix} \hat{V}^{(2)} \\ \hat{V}^{(3)} \end{bmatrix}$$

- For i=1,2,3: If Rank $\hat{\mathbf{V}}^{(i)}<\hat{n}$, replace $\hat{\mathbf{V}}^{(i)}$ by matrix of full column rank
- Usually:

$$\hat{\mathbf{V}}^{(3)} = \mathbf{I}$$

Set

$$\mathbf{V}_n = egin{bmatrix} \widehat{\mathbf{V}}^{(1)} & 0 & 0 \ 0 & \widehat{\mathbf{V}}^{(2)} & 0 \ 0 & 0 & \widehat{\mathbf{V}}^{(3)} \end{bmatrix}$$

Reduced-order matrices:

$$\mathbf{C}_{n} = \begin{bmatrix} \tilde{\mathcal{C}}_{1} & 0 & 0 \\ 0 & \tilde{\mathcal{C}}_{2} & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \mathbf{G}_{n} = \begin{bmatrix} \tilde{\mathcal{G}}_{1} & \tilde{\mathcal{G}}_{2} & \tilde{\mathcal{G}}_{3} \\ -\tilde{\mathcal{G}}_{2}^{\mathsf{T}} & 0 & 0 \\ -\tilde{\mathcal{G}}_{3}^{\mathsf{T}} & 0 & 0 \end{bmatrix}, \quad \mathbf{B}_{n} = \begin{bmatrix} 0 & \tilde{\mathcal{B}}_{1} \\ 0 & 0 \\ \tilde{\mathcal{B}}_{2} & 0 \end{bmatrix}$$

• $\mathcal{K}_{\widehat{n}}(\mathbf{A},\mathbf{R}) = \mathsf{Range}\,\widehat{\mathbf{V}}_{\widehat{n}} \subseteq \mathsf{Range}\,\mathbf{V}_n \implies \mathsf{moment}\;\mathsf{matching!}$

- Block structure of data matrices is preserved
- Reduced-order models are passive and reciprocal
- Preservation of block structure implies that SPRIM matches twice as many moments as PRIMA
- PRIMA and SPRIM have the same computational costs
- SPRIM models are about twice as large as PRIMA models

Moment matching of SPRIM

General theory of projection onto block Krylov subspaces:
 PRIMA and SPRIM produce reduced-order models with

$$\mathrm{H}_n(s) = \mathrm{H}(s) + \mathcal{O}\left((s-s_0)^{\widetilde{q}}\right), \quad ext{where} \quad \widetilde{q} \geq \lfloor \widehat{n}/m \rfloor$$

• **Theorem** (F., '08)

The n-th SPRIM model satisfies

$$\mathrm{H}_n(s) = \mathrm{H}(s) + \mathcal{O}\left((s-s_0)^{\widetilde{q}}\right), \quad ext{where} \quad \widetilde{q} \geq 2\left\lfloor \widehat{n}/m \right\rfloor$$

An RCL network with mostly C's and L's

Exact and models corresponding to block Krylov subspace of dimension $\hat{n}=120$

An RCL network with mostly C's and L's

Exact and models corresponding to $\hat{n} = 90$

A package example

Exact and models corresponding to $\hat{n}=128$

A package example

Exact and models corresponding to $\hat{n} = 128$

Outline

- RCL network equations
- Projection onto Krylov subspaces
- PRIMA and SPRIM
- SPRIM revisited
- Open problems

Problem: reduction of RCL networks

What we really want

Original RCL network:

SPRIM model order reduction:

$$C, G, B \Rightarrow C_n, G_n, B_n$$

• Reduced RCL network corresponding to C_n , C_n

'Flaw' of modified nodal analysis

• Matrices of original RCL network:

$$\mathbf{C} = \begin{bmatrix} \mathcal{C}_{1} & 0 & 0 \\ 0 & \mathcal{L} & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \mathbf{G} = \begin{bmatrix} \mathcal{G}_{1} & \mathcal{A}_{l} & \mathcal{A}_{v} \\ -\mathcal{A}_{l}^{\mathsf{T}} & 0 & 0 \\ -\mathcal{A}_{v}^{\mathsf{T}} & 0 & 0 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0 & \mathcal{A}_{i} \\ 0 & 0 \\ -\mathbf{I} & 0 \end{bmatrix}$$

where $\mathcal{C}_1 = \mathcal{A}_c \mathcal{C} \mathcal{A}_c^{\mathsf{T}}$ and $\mathcal{G}_1 = \mathcal{A}_r \mathcal{R}^{-1} \mathcal{A}_r^{\mathsf{T}}$

- The voltage sources are input quantities and thus will not be reduced, yet they appear via \mathcal{A}_v in G
- G can be made symmetric if there are no voltage sources

How to handle A_v

- ullet \mathcal{A}_v is an incidence matrix with full column rank
- ullet 'Easy' transformation $egin{aligned} \mathcal{A}_v \end{aligned} \longrightarrow egin{bmatrix} I \ 0 \end{bmatrix}$
- Matrices of RCL network:

$$\mathbf{C} = \begin{bmatrix} \mathcal{C}_{11} & \mathcal{C}_{12} & 0 & 0 \\ \mathcal{C}_{12}^\mathsf{T} & \mathcal{C}_{22} & 0 & 0 \\ 0 & 0 & \mathcal{L} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \ \mathbf{G} = \begin{bmatrix} \mathcal{G}_{11} & \mathcal{G}_{12} & \mathcal{G}_{13} & \mathbf{I} \\ \mathcal{G}_{12}^\mathsf{T} & \mathcal{G}_{22} & \mathcal{G}_{23} & \mathbf{0} \\ -\mathcal{G}_{13}^\mathsf{T} & -\mathcal{G}_{23}^\mathsf{T} & 0 & 0 \\ -\mathbf{I} & \mathbf{0} & 0 & \mathbf{0} \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} \mathbf{0} & \mathcal{B}_{11} \\ \mathbf{0} & \mathcal{B}_{12} \\ \mathbf{0} & \mathbf{0} \\ -\mathbf{I} & \mathbf{0} \end{bmatrix}$$

'Eliminate' first and last block rows and columns

How to handle \mathcal{A}_v

• Result of elimination:

$$egin{array}{lll} \mathbf{C} & \longrightarrow & \mathbf{E} := egin{bmatrix} \mathcal{C}_{22} & \mathbf{0} \\ \mathbf{0} & -\mathcal{L} \end{bmatrix} \ \\ \mathbf{G} & \longrightarrow & \mathbf{F} := egin{bmatrix} \mathcal{G}_{22} & \mathcal{G}_{23} \\ \mathcal{G}_{23}^\mathsf{T} & \mathbf{0} \end{bmatrix} \ \\ \mathbf{A} = (s_0\,\mathbf{C} + \mathbf{G})^{-1}\,\mathbf{C} & \longrightarrow & \mathbf{A}_1 := (s_0\,\mathbf{E} + \mathbf{F})^{-1}\,\mathbf{F} \end{array}$$

• \mathbf{E} and \mathbf{F} are symmetric and $\mathbf{A_1}$ is \mathbf{F} -symmetric:

$$\mathbf{A}_1^{\mathsf{T}} \mathbf{F} = \mathbf{F} \mathbf{A}_1$$

How to handle \mathcal{A}_v

• Effect on transfer function:

$$\begin{split} \mathbf{H}(s) &= \mathbf{B}^{\mathsf{T}} (s\,\mathbf{C} + \mathbf{G})^{-1}\,\mathbf{B} \\ &= \mathbf{B}^{\mathsf{T}} \big(\mathbf{I} + (s-s_0)\,\mathbf{A}\big)^{-1}\mathbf{R} \\ &= \mathbf{D}_0 + (s-s_0)\,\mathbf{D}_1 + (s-s_0)^2 \big(\mathbf{F}\,\mathbf{R}_1\big)^{\mathsf{T}} \big(\mathbf{I} + (s-s_0)\,\mathbf{A}_1\big)^{-1}\mathbf{R}_1 \\ \text{where } \mathbf{D}_0 &= \mathbf{B}^{\mathsf{T}}\mathbf{R} \text{ and } \mathbf{D}_1 = -\mathbf{B}^{\mathsf{T}}\mathbf{A}\mathbf{R} \end{split}$$

• Since A_1 is F-symmetric, we can use the F-symmetric band Lanczos process to compute Padé approximants of H(s) very efficiently

Consequences for SPRIM

• We need a matrix $\widehat{\mathbf{V}}_{\widehat{n}}$ such that

Range
$$\widehat{\mathbf{V}}_{\widehat{n}} = \mathcal{K}_{\widehat{n}}(\mathbf{A}, \mathbf{R}) = \operatorname{colspan}_{\widehat{n}} \left[\mathbf{R} \ \mathbf{A} \mathbf{R} \ \mathbf{A}^2 \mathbf{R} \ \cdots \right]$$

Setting up the projection matrix:

$$\hat{\mathbf{V}}_{\hat{n}} = \begin{bmatrix} \hat{\mathbf{V}}^{(1)} \\ \hat{\mathbf{V}}^{(2)} \\ \hat{\mathbf{V}}^{(3)} \end{bmatrix} \quad \Rightarrow \quad \mathbf{V}_n = \begin{bmatrix} \hat{\mathbf{V}}^{(1)} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \hat{\mathbf{V}}^{(2)} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{I} \end{bmatrix}$$

• We only need to construct $\hat{\mathbf{V}}^{(1)}$ and $\hat{\mathbf{V}}^{(2)}$, but not $\hat{\mathbf{V}}^{(3)}$

Consequences for SPRIM

Recall:

$$A = (s_0 C + G)^{-1} C$$
 and $R = (s_0 C + G)^{-1} B$

where

$$\mathbf{C} = \begin{bmatrix} \mathcal{C}_{11} & \mathcal{C}_{12} & 0 & 0 \\ \mathcal{C}_{12}^\mathsf{T} & \mathcal{C}_{22} & 0 & 0 \\ 0 & 0 & \mathcal{L} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \ \mathbf{G} = \begin{bmatrix} \mathcal{G}_{11} & \mathcal{G}_{12} & \mathcal{G}_{13} & \mathbf{I} \\ \mathcal{G}_{12}^\mathsf{T} & \mathcal{G}_{22} & \mathcal{G}_{23} & \mathbf{0} \\ -\mathcal{G}_{13}^\mathsf{T} & -\mathcal{G}_{23}^\mathsf{T} & 0 & 0 \\ -\mathbf{I} & \mathbf{0} & 0 & 0 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} \mathbf{0} & \mathcal{B}_{11} \\ \mathbf{0} & \mathcal{B}_{12} \\ \mathbf{0} & \mathbf{0} \\ -\mathbf{I} & \mathbf{0} \end{bmatrix}$$

Corresponding smaller matrices after elimination:

$$A_1 = (s_0 E + F)^{-1} F$$
 and R_1

Consequences for SPRIM

Structure of block Krylov sequence:

$$\mathbf{R} = \begin{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \\ \mathbf{R}_{0} \\ \star \end{bmatrix}, \ \mathbf{A}\mathbf{R} = \begin{bmatrix} \mathbf{0} \\ \mathbf{R}_{1} \\ \star \end{bmatrix}, \ \mathbf{A}^{2}\mathbf{R} = \begin{bmatrix} \mathbf{0} \\ \mathbf{A}_{1}\mathbf{R}_{1} \\ \star \end{bmatrix}, \dots, \mathbf{A}^{k}\mathbf{R} = \begin{bmatrix} \mathbf{0} \\ \mathbf{A}_{1}^{k-1}\mathbf{R}_{1} \\ \star \end{bmatrix}, \dots$$

- We can use the **F**-symmetric band Lanczos process to efficently compute the needed parts $\hat{V}^{(1)}$ and $\hat{V}^{(2)}$ of the projection matrix V_n
- Note that

$$\hat{\mathbf{V}}^{(1)} = \begin{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \\ & \star \end{bmatrix}$$

New and improved SPRIM

Set

$$\mathbf{V}_n = egin{bmatrix} \widehat{\mathbf{V}}^{(1)} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \widehat{\mathbf{V}}^{(2)} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{I} \end{bmatrix}, \quad \text{where} \quad \widehat{\mathbf{V}}^{(1)} = egin{bmatrix} \left[\begin{array}{cc} \mathbf{I} & \mathbf{0} \end{array} \right] \\ \star & \end{bmatrix}$$

Reduced-order matrices:

$$\mathbf{C}_n = egin{bmatrix} \widetilde{\mathcal{C}_1} & 0 & 0 \ 0 & \widetilde{\mathcal{C}_2} & 0 \ 0 & 0 & 0 \end{bmatrix}, \quad \mathbf{G}_n = egin{bmatrix} \widetilde{\mathcal{G}_1} & \widetilde{\mathcal{G}_2} & \mathcal{A}_v \ -\widetilde{\mathcal{G}_2}^\mathsf{T} & 0 & 0 \ -\mathcal{A}_v^\mathsf{T} & 0 & 0 \end{bmatrix}, \quad \mathbf{B}_n = egin{bmatrix} 0 & \widetilde{\mathcal{B}_1} \ 0 & 0 \ -\mathbf{I} & 0 \end{bmatrix}$$

• The incidence matrix \mathcal{A}_v of the voltage sources is preserved!

A package example

Exact and SPRIM models corresponding to $\hat{n}=70$ and $\hat{n}=140$

A much larger example

SPRIM model corresponding to $\hat{n} = 300$

Outline

- RCL network equations
- Projection onto Krylov subspaces
- PRIMA and SPRIM
- SPRIM revisited
- Open problems

Open problems

- 'True' RCL reduction via Krylov subspace-based methods?
- The new version of SPRIM resolves the issue with voltage sources; enough to guarantee RCL reduced-order models?
- Is there a downside to using **F**-symmetric Lanczos to generate SPRIM models?
- I really should finish and release **BANDITS** (a Matlab package of band Krylov subspace iterations)

Thank you!