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Problem: reduction of RCL networks

T




Modeling of chip’s “wiring”




Efficient reduction of RCL networks

e RCL network as a linear dynamical system:

e e
| 7

TTTT T H(s) = BT(sC+G) B

e Model order reduction (based on Krylov subspace methods):

H(s) ~ H,(s) = B;{(s C, + Gn)_an

e Can we find an RCL network corresponding to H,, 7



In general, no!

e RCL networks (and H) are passive and reciprocal

e Need to use model order reduction methods that guarantee
passive and reciprocal Hy,

e Classical results from network synthesis:
If H,, is passive, then there exists a corresponding physical
electrical circuit, but not necessarily one with only R's, C's,

and L's
If H,, is also reciprocal, then ‘fewer’ non-RCL elements are

needed



Some history

o of RC networks:
Based on a model with a single R and a single C such that

a
H ~ H =
(s) ~ Hy(s) =
with matching of first two (= Taylor coefficients)

o (Pillage and Rohrer, ‘90):

" S :pn—l(s)
H(s) ~ Hn(s) ()

with matching of first 2n moments



Some history

o (Feldmann and F., ‘94 and ‘95):
Avoids numerical issues of AWE by computing Padé reduced-
order models via the Lanczos process

° (Odabasioglu, Celik, and Pileggi, '97):
Passivity via explicit projection onto Krylov subspaces

o (Kerns and Yang, ‘97)

o (F., '04 and '11)
Passivity and reciprocity via explicit projection
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RCL networks as directed graphs
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RCL network directed graph

Network topology Graph incidence matrix A



RCL network equations

e Kirchhoff's current laws: Aig =0
e Kirchhoff's voltage laws: ATv =vg¢

e Equations for R's, C's, and L'’s:

R C L
O—D—OOHOO—W—O

I . Q _ Q
V. = Ri 'C_Cdt\é V_Ldt"

r r



Modified nodal analysis

e ‘Easy’ eliminations leave only v, i;, and i, as unknowns



=lE

5 unknowns: v, vo, v3, 4] = i4, and iy
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General RCL network equations

Linear time-invariant dynamical system:

C %x(@ + Gx(t) = Bu(t)
y(t) = BTx(t)

where
v(t) ALAT 0 0 (ARIAT A A
x(t) = [i;(t)|, C= 0 £ 0ol, G= —A" 0 O
iy(t)] 0 0 0 | —A) 0 0
i : 0 A
(Y t — 1y t
w@ = | D] e | 0 0
|—1;(%) vi(t) 1 0




Passivity and reciprocity

e R and C are diagonal with positive diagonal entries,
AR IAT =0 and A.cA -0,
and £ =0

e Passivity follows from

ALCAT 0 0 (ARIAT 0 0
C = 0 L 0| =0, = 0 0 0] =0
0 0 O] 0 0 0

e Reciprocity follows from the zero structure of C, GG, B and
the symmetry of A.CAT, A,RTAT, £
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General RCL network equations

e Linear time-invariant dynamical system of the form:

d
C ax(t) + Gx(t) = Bu(t)
y(t) = B 'x(t)
where C, G € RVXN and B € RVXxm

e m IS the total number of voltage and current sources



Reduced-order models

e Linear time-invariant dynamical system of the same form:

d
Cn &Z(t) + Grz(t) = Bru(t)

y(t) = B! z(¢)

e But now:

Cn, G, e R"™™ and B, cR"™

where n < N



Transfer functions

e Original system:

H(s) =B' (sC+G) B

e Reduced-order model:

Hy(s) = BY (sCn+ Gn) B

e ‘'Good’ reduced-order model
‘Good’ approximation H,, ~ H



Projection-based reduction

e Choose an N x n matrix

and explicitly project the data matrices of

C %X(t) + Gx(t) = Bu(t)
y(t) =B"x()

onto the subspace spanned by the columns of V,,



Projection-based reduction

e Resulting reduced-order model:

Ch, %z(t} 1+ Gpz(t) = Byu(t)

y(t) =B, z(t)

where

e Preserves

-
C >0, G”LQG =0 Cp>=0

B,:=V,'B
T
Gm;(;n -



Choice of projection matrix

e Choose expansion point sg for transfer function and rewrite:

H(s)=B' (sC+G) !B

— BT<80C + G+ (s — sp) C)_lB

=BT (I+(s—s0)A) R
where

A:=(s50C+G)'C and R:=(spC+G) !B



Practical choice of expansion point

— — — PRIMA model
SPRIM model

frequency range
of interest

/
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Projection Krylov: Moment matching

e Recall: A= (s0C+G) ' Cand R=(s0C+G) 'B

e n-th

IC;:(A,R) := colspang; [ R AR AZR }

e Choose the projection matrix V,, such that

K;:(A,R) C RangeVy

° about sq:

Ho(s) = H(s) + O ((s —s0)?), where > |a/m]
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PRIMA

e Projection onto n-th block Krylov subspace:

RangeV, = Kn(A,R)

e Block structure of the data matrices:

Ci1 O 1] [ G A; Al
C=|0 Cy 0, G=|-A" 0 0],
0 0 O - o O

e Reduced-order matrices:




PRIMA

e Reduced-order models are passive

e Block structure of data matrices is not preserved

e Reduced-order models are not reciprocal



SPRIM

e Recall: moment matching if

e Let V5 be any matrix such that

e Recall:

C =

Ci 0 O
0 C> O
0 0 0

K;:(A,R) C RangeVy,

RangeV; = K5(A,R)

Al AU
O O
O O




SPRIM

e Partition V5 accordingly:

W
V.= |v@|, v = v(@) = A vAC) B
v (3)

e Fori:=1,62,3:
If Rank V(D) <« 7 replace V(¥ by matrix of full column rank

e Usually:

v =1



SPRIM

o Set

v (1)
0

0

e Reduced-order matrices:

Cn:

Cy
0
0

0
C2
0

o O O

Gn

0 0
v (2)
o V&

e K;(A,R) =RangeV; C RangeV,

' G1 Go G3] 0 By
=|-6J 0 0|, B, 0 0
@3] 0 0] By 0

moment matching!



SPRIM

e Block structure of data matrices is preserved

e Reduced-order models are passive and reciprocal

e Preservation of block structure implies that SPRIM matches
twice as many moments as PRIMA

e PRIMA and SPRIM have the same computational costs

e SPRIM models are about twice as large as PRIMA models



Moment matching of SPRIM

e General theory of projection onto block Krylov subspaces:
PRIMA and SPRIM produce reduced-order models with

Hy(s) = H(s) + O ((s — s0)?), where §> |A/m)|
e Theorem (F., '08)
The n-th SPRIM model satisfies

Hy(s) = H(s) + O ((s — s0)?), where §>2|[A/m]



An RCL network with mostly C’s and L’s

— — — PRIMA model
- SPRIM model
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Exact and models corresponding to
block Krylov subspace of dimension n = 120



An RCL network with mostly C’s and L’s

Exact and models corresponding to n = 90



A package example

— — — PRIMA model
SPRIM model

1010
Frequency (Hz)

Exact and models corresponding to n = 128



A package example

— — — PRIMA model
SPRIM model

1010
Frequency (Hz)

Exact and models corresponding to n = 128
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Problem: reduction of RCL networks

T




What we really want

e Original RCL network:

W I M
frfrfr C, G, B

e SPRIM model order reduction:

C, G’, B CTL) GTL) BTL

e Reduced RCL network corresponding to C,,, Gy, B, 7



‘Flaw’ of modified nodal analysis

e Matrices of original RCL network:

C; 0 0 [ G1 A 0 A
C=|0 £0/, G=|-4" 0 0|, B=|0 0
Y _ 0 0 -1 0|

where C; = A.CAl and G = A, R-1AT

e [ he voltage sources are input quantities and thus will not be
reduced, yet they appear via in G

e G can be made symmetric if there are no voltage sources



How to handle A4,

e A, is an incidence matrix with full column rank

e 'Easy’ transformation A, — [é]

e Matrices of RCL network:

C11 C12 0 O [ G11 Gi2 Giz |

C— Cirz Coo 0 O G — gil'z Goo  Go3 B
0 0 L 0| —G{; —GJ. 0 0|’
0O 0 00O 0 O

e 'Eliminate’ first and last block rows and columns

0 Bi1
0 Bi»




How to handle A4,

e Result of elimination:

C | D=
7 K —L]
¢ o opafEm
Go3 O

A=(50C+G)'C — A =(oE+F)'F

e E and F are symmetric and A is F-symmetric:

A]F=FA,



How to handle A4,

e Effect on transfer function:
H(s) =B' (sC+G)'B

=BT (I+(s—s0)A) R

= Do+ (s —50) D1 + (s — 30)2(F Rl)T(I + (s — s0) Al)_lRl

where Do =B'R and D; = -BTAR

e Since A, is F-symmetric, we can use the F-symmetric band
Lanczos process to compute Padé approximants of H(s) very
efficiently



Consequences for SPRIM

e We need a matrix V5 such that

RangeV; = K5(A,R) = colspan; | R AR AZR ---

e Setting up the projection matrix:

V(D) v o 0o
Vﬁ = |v(2) \V— o V@ o
v3) 0 0 I

e We only need to construct V(1) and V(2), put not V(3



Cconsequences for SPRIM

e Recall:
A=(s0C+G)1C and R=(spC+G)'B
Wiglelgs
(C11 C1o 0 0 [ G11 Gio Giz || (0 Biq]
C— Cirz Coo 0 O G = gir_zr QQ_QI_ Go3 B= 0 Bio
0 0 L O ~Gls —GJ; 0 0 0 O
0 0 0 0 _ 0 O] -1 0

e Corresponding smaller matrices after elimination:

A = (SoE—|—F)_1F and R,



Consequences for SPRIM

e Structure of block Krylov sequence:

Lol 0 0 0
R = RO : AR = Rl : A2R — A]_R]_ y oo ,AkR = A]i_]-R]_
I * ] I * ] | * | i *

e \We can use the F-symmetric band Lanczos process to

effiicently compute the needed parts V(1) and V(2) of the
projection matrix V,,

e Note that

<

(1):[[1 0]]



New and improved SPRIM

e Set
vl o 0]
- 1) [T 0]
Vo=1| 0 V@ go|, where V% = .
0 0 I

e Reduced-order matrices:

(1 0 0  G1 G Ay (0 By
Ch,=|0 C 0, Gp=|-G3 0 0|, B,=|0 0
0 0 0 —Al 0 0 -1 0]

e The incidence matrix A, of the voltage sources is preserved!



A package example

— — — SPRIM(70)
SPRIM(140)

1010
Frequency (Hz)

Exact and SPRIM models corresponding to n = 70 and n = 140



A much larger example

SPRIM model

1010
Frequency (Hz)

SPRIM model corresponding to n = 300
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Open problems

e ‘'True’ RCL reduction via Krylov subspace-based methods?

e T he new version of SPRIM resolves the issue with voltage
sources; enough to guarantee RCL reduced-order models?

e Is there a downside to using F-symmetric Lanczos to
generate SPRIM models?

e I really should finish and release ER\YEIE]S
package of band Krylov subspace iterations)



T hank you!



