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first used to solve NL time-dependent problems with LATIN

modes are computed offline and on the fly solving simple problems

Idea of PGD: a priori representation using linear combination of modes with 
variable separation (tensor product space, low-rank structure, canonical format)
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[Chinesta et al. 2010, 2011] 

[Ladeveze 99] 

General	 ideas

Context: multiparameter EDPs (stochastic, optimization):

exponential growth of the number of dof with brute force approaches 
(curse of dimensionality)

model order reduction: RB, POD, PGD,...

no need of a priori information on the solution (no snapshot)

growing interest in the Computational Mechanics community

decrease of computation/storage costs (linear growth of the number of dof)

issues of computation cost / storage

main features of the solution

u(x, t, p1, p2, . . . , pn)

u(x, t, p1, p2, . . . , pn) ≈
M�

m=1

ψm(x)λm(t)φ1m(p1)φ2m(p2) . . .φnm(pn)
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Computation	 of	 modes

NL eigenvalue problem, solved with dedicated iterative strategies (fixed point)

When the solution is known (at least partially): an optimal low-rank separated 
representation may be searched by minimizing the distance with respect to a 
given metric on the tensor product 

classical POD (SVD) approach with L2 norm and 2 variables

When the solution is unknown: several techniques (minimal residuals, (Petrov-)
Galerkin formulation,...)

we concentrate on progressive Galerkin-based method

[Nouy 2010] 

B(u, v) = L(v) ∀v

variants : convergence, mode orthogonalization, mode updating, ...

um = um−1 + ψ(x)λ(t)φ1(p1)φ2(p2) . . .φn(pn)

B(um,ψ∗λφ1 . . .φn) = L(ψ∗λφ1 . . .φn) ∀ψ∗

B(um,ψλ∗φ1 . . .φn) = L(ψλ∗φ1 . . .φn) ∀λ∗

B(um,ψλφ∗
1 . . .φn) = L(ψλφ∗

1 . . .φn) ∀φ∗
1...

ψ = F (λ,φ1, . . . ,φn)
λ = G(ψ,φ1, . . . ,φn)
φ1 = J1(ψ,λ,φ2, . . . ,φn)

...
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Example

u|t=0 = 0

Transient thermal problem

u = 0 on ∂uΩ× I

x

y

ω

c
∂u

∂t
−∇ · q = fd

q · n = qd on ∂qΩ× I
q = k∇u
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Example

u|t=0 = 0

B(u, v) = L(v) ∀v

space mesh      
time mesh

 «classical» approach : Mh
M∆t

Nh ×N∆t dof

Transient thermal problem

u = 0 on ∂uΩ× I

∈ L
2(I)⊗H

1
0 (Ω)

x

y

ω

multi-parameter problem :

c
∂u

∂t
−∇ · q = fd

q · n = qd on ∂qΩ× I
q = k∇u

x, t,p
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«progressive Galerkin» approach

problem in space

m× (Nh +N∆t)u(x, t) ≈ um(x, t) =
m�

i=1

ψi(x)λi(t) dof

um = um−1 + ψλ B(um,ψ∗λ+ ψλ∗) = L(ψ∗λ+ ψλ∗) ∀ψ∗,λ∗s.t.

ψ = Sm(λ) λ = Tm(ψ)problem in time 

(αSM+ βSK)X = F αT
λ(k+1) − λ(k)

∆t
+ βTλ

(k) = δ(k)T λ(0) = 0

B(um,ψ∗λ) = L(ψ∗λ) ∀ψ∗ B(um,ψλ∗) = L(ψλ∗) ∀λ∗

Example
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accuracy of  solution                   ? of quantities of interest             ?
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(guaranteed) estimation of the global/local error

m = 1 m = 2 m = 3

um(x, t) I(um)

adaptivity criteria

Ne = 50, Np = 1000

qd(x, t) = −1 , fd(x, t) = 200xy
Example
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PGD	 strategy

model parameters are seen as extra-coordinates

enables to address many engineering problems:
- variations of material parameters 
- changes in boundary/initial conditions
- changes in loading
- geometry variations
- data assimilation (PGD+Kalman filter)

[Chinesta et al. 2011] 

[Marchand et al. submitted] 

PGD modes are computed offline and used online for inverse analysis, 
optimization with cheap and fast computations on light computing 
platforms

concept of virtual charts
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Material	 parameters

u|t=0 = 0

Transient thermal problem

u = 0 on ∂uΩ× I

x

y

ω

multi-parameter problem :

B(u, v) = L(v) ∀v ∈ H
1
0,ΓD

(Ω)⊗ L
2(I)⊗j L

2(Pj)

B(u, v) =

�

Θ

�

I

�

Ω
(c
∂u

∂t
v + k∇u ·∇v)dΩdtdp

L(v) =

�

Θ

�

I

��

Ω
fdvdΩ+

�

ΓN

qdvds

�
dtdp

c
∂u

∂t
−∇ · q = fd

q · n = qd on ∂qΩ× I
q = k∇u

x, t,p



PGD	 modes

m = 1 m = 2 m = 3

Ne = 50, Np = 1000

qd(x, t) = −1 , fd(x, t) = 200xy

12

m = 4 m = 5

x

t

k

c



- porous medium

- Darcy’s law:

- extra-parameters:     (piecewise constant)
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Another	 2D	 example
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3D	 case
[Chamoin et al  2015] 

- linear elastic material (small perturbations)

- extra-parameters:     (in each inclusion)E



◾ Reference	 domain	 

◾ Leading	 to	 an	 equivalent	 material
⚫ Use of Jacobian transformation

15

Geometry	 variations
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Ω

�

Ω
k∇v ·∇u dΩ =

�

Ω
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�
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�
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◾ Problem:	 heater
⚫ convection on the top border

⚫ imposed flux on the bottom
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Geometry	 variations



◾ Problem:	 heater
⚫ convection on the top border

⚫ imposed flux on the bottom
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APPRoFI project

supported by the French National Research Agency

collaboration between 7 industrials and academics

driven by SAFRAN

Problematic

development of probabilistic approaches for the robust design in fatigue

taking into account variability in durability simulations to guarantee
the robustness and reliability of the design

Typical example
blade of the Vulcain engine booster

elasto-viscoplastic model

variability of material properties

variability of loadings

Nonlinear parametrized problems

17



Engine blade
Description of the test-case

ANR project APPROFI

elasto-viscoplastic material

740,000 DOFs
60 time steps

Symmetry
conditions

Prescribed
displacement

t

Ud

T

18



1,000 sets of parameters

Parametric study
Parametric study

3 parameters: loading amplitude and material characteristics (R0 ,γ)

10 x 10 x 10 = 1,000 sets of parameters (range of variation ±30%)

influence on the maximum value of the σmises

am
p

yi
el

d 
st

re
ss

 R
0

ga
m

m
a

0 100 200 300 400 500 600 700 800 900 1000
0.5

1

1.5

0 100 200 300 400 500 600 700 800 900 1000
20

25

30

0 100 200 300 400 500 600 700 800 900 1000
250

300

350

uµ1,µ2 (t ,M) ≈
m�

i=1
λi (t )Λi (M)

  μPDE: L (u(t ,M),µ1,µ2) = 0

Idea:
to build a library of modes common

to all sets using the LATIN solver

[Néron et al. IJNME 2015]
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For a given set of parameters
PGD modes

X=

Time

Space
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Virtual chart
Parametric study

3 parameters: loading amplitude and material characteristics (R0 ,γ)

10 x 10 x 10 = 1,000 sets of parameters (range of variation ±30%)

influence on the maximum value of the σmises

4 months
with ABAQUS

LATIN+PGD
3 days (gain: 40)

``True’’ complexity: 50 modes
(SVD of the ROB)

PGD based approach: 67 modes
(few needless computations)

γ 
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Lo
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>35% of variation
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Goal: design a PGD algorithm such that:
- a given precision is attained
- as small as possible amount of computational work is needed

The designed error estimation method should:
- give a fully computable upper bound on the overall error (error control)
- enable to distinguish and estimate separately the different error components
- allow to adjust optimally the calculation parameters

Objectives

specific case of PGD

[Ammar et al. 2010] a posteriori error estimation for outputs of interest
indicators based on residuals

[Moitinho de Almeida  2013] goal-oriented error estimation using 
complementary solutions

Large litterature for error estimation and adaptive strategies (greedy) in reduced 
basis methods [Machiels et al. 2001, Grepl & Patera 2005,...] 

[Ladevèze 1998] a priori error estimation for separated variables 
representations (LATIN method)
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Proposed	 estimate

use of the Constitutive Relation Error (CRE) concept

• widely used in the Computational Mechanics community for many years

• guaranteed and fully computable a posteriori error estimate on the energy norm 
method based on dual analysis, with recovery of equilibrated fluxes (verifying 
equilibrium in a strong sense) from the FEM solution

• estimate split into several indicators to drive adaptive procedures

[Ladevèze & Leguillon 83, Destuynder & Métivet 99, Ladevèze & Pelle 04]

PGD control, for linear elliptic or parabolic problems, with robust bounds
[Allier et al.  2015, Ladevèze & L.C. 2011, 2012] 

robust virtual charts that can be used for industrial design
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Find                    such that

(equilibrium of flux                    )

     : unif. bounded, strictly positive function

q = k∇u−∇ · (k∇u) = f in Ω

Find               such thatu ∈ V

a(u, v) = l(v) ∀v ∈ V

u = 0 on ΓD

k∇u · n = g on ΓN

f ∈ L2(Ω) ; g ∈ L2(ΓN )

uh ∈ V p
h

a(uh, vh) = l(vh) ∀vh ∈ V p
h

CONFORMING 
FEM

Th
qh = k∇uh

a(u, v) =

�

Ω
k∇u ·∇vdΩ

l(v) =

�

Ω
fvdΩ+

�

ΓN

gvds

V = H
1
ΓD,0(Ω)

partition

k

Basics	 on	 CRE
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Find                    such that

(equilibrium of flux                    )

     : unif. bounded, strictly positive function

q = k∇u−∇ · (k∇u) = f in Ω

Find               such thatu ∈ V

a(u, v) = l(v) ∀v ∈ V

discretization error e = u− uh

u = 0 on ΓD

k∇u · n = g on ΓN

f ∈ L2(Ω) ; g ∈ L2(ΓN )

uh ∈ V p
h

a(uh, vh) = l(vh) ∀vh ∈ V p
h

CONFORMING 
FEM

Th
qh = k∇uh

a(u, v) =

�

Ω
k∇u ·∇vdΩ

l(v) =

�

Ω
fvdΩ+

�

ΓN

gvds

V = H
1
ΓD,0(Ω)

partition

global measure:

k

��

Ω
k−1 • · • dΩ

|||e||| :=
�

a(e, e) = |||q− qh|||q

Basics	 on	 CRE
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Basics	 on	 CRE
Space of equilibrated fluxes:

W := {p ∈ H(div,Ω),∇ · p+ f = 0 in Ω,p · n = g on ∂2Ω}

p ∈ W is said statically admissible (SA) 

(weak form of equilibrium)
�

Ω
p ·∇vdx =

�

Ω
fvdx+

�

∂2Ω
gvds ∀v ∈ H

1
0,∂1Ω(Ω)

For any approximation       of      which is kinematically admissible (KA), we define: 
(                                            )

flux field     which is SAp
CRE functional

ûh u
ûh ∈ H

1(Ω) ; ûh|∂1Ω = 0

J2(q) = min
p∈W

J2(p) ; J2(p) :=
1

2

�

Ω
k−1p · pdx

E2
CRE(ûh,p) :=

�

Ω
k−1(p− k∇ûh)

2dx ≡ |||p− k∇ûh|||2F = 2(J1(ûh) + J2(p))

|||u− ûh||| = ECRE(ûh,q) ≤ ECRE(ûh,p) ∀p ∈ W
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• Prager-Synge equality:

Basics	 on	 CRE
Properties

easily obtained from

• Hypercircle equality:

with

used for goal-oriented error estimation

provides for asymptotic convergence properties

• Technical point: construction of a relevant admissible flux 

post-processing  of the approximate solution  
(use of Galerkin properties in the FE context
no full dual computation)

[Ladevèze & Pelle 2004]

|||u− ûh|||2 + |||q− p|||2F = E2
CRE(ûh,p) ∀p ∈ W

�

Ω
(q− p) ·∇(u− ûh)dx = 0

4|||q− p∗|||2F = E2
CRE(ûh,p) ∀p ∈ W

p∗ =
1

2
(p+ k∇ûh)

q̂h ∈ W
uh

|||u− uh||| ≤ ECRE(uh, q̂h) ≤ C|||u− uh||

[Ladevèze & Leguillon 83, 
Destuynder & Métivet 99, 
Vohralik 12,
Pares & Diez 06
Pled et al. 11,12]
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Construction	 of	 	 	 
[Ladevèze 75, Ladevèze et al 10] 

TECHNIQUES FOR CONSTRUCTING ADMISSIBLE STRESS FIELDS 437

5.4. Hub of main rotor

A part of the NH90 helicopter from the Eurocopter company is considered. The structure is the
hub of the main rotor which is used as a coupling sleeve between the helicopter frame and the rotor
system. The structure is clamped at one end and subjected to a unit traction force density t , normal
to the surface, on the other end. Let us notice that the loading plan is not exactly orthogonal to the
main axis of the structure. The geometry and mesh considered, made of 19 78 linear tetrahedral
elements and 5898 nodes (i.e. 1794 degrees of freedom), are shown in Figure 23. The reference
mesh is built up by splitting each tetrahedron into 64 tetrahedra. Therefore, it contains 1 265 792
linear tetrahedral elements and 250 274 nodes (i.e. 750 822 degrees of freedom). One can notice
that the FE mesh seems to be fairly distorted and, therefore, contains very ill-shaped elements.

5.4.1. Comparison of the three error estimators. The cost function J0 has been used for the
local minimization step. The highest stress region corresponds to the clamped surface, which
is not a design zone. Conversely, the selected region in Figure 24 plays an essential role in
design purposes and engineering interest. The FE stress field in the selected region is depicted
in Figure 24 and the admissible stress fields obtained from the three techniques are displayed in
Figure 25.

The exact value of the energy norm of the reference error has been directly calculated from the
reference solution

‖eh‖u,! =
√

‖u‖2
u,!−‖uh‖2

u,! #3852.53 (64)

Figure 23. Hub model problem (left) and associated FE mesh (right). Orange plans represent clamped
boundary conditions. Refer online version for interpretation of color.

Figure 24. Magnitude of the FE stress field.

Copyright ! 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 88:409–441
DOI: 10.1002/nme
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implemented in a C++ plateform

Hybrid approach (domain decomposition)

q̂h

solved using PGD (offline)

Step 1 : construction of equilibrated tractions                         on element edgesĝK = σK ĝγ�

K
fdΩ+

�

∂K
ĝKds = 0 ∀K ĝK = g on ΓN;

γ

Step 2 : local construction of            at the element level, verifying:

−∇ · q̂h|K = f in K ; q̂h|K · nK = ĝK on ∂K

q̂h|K

K

condition
�

∂K
ĝKϕids =

�

K
(qh ·∇ϕi − fϕi)dΩ = QK

i
K1

K2

KNi
K

i
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Extension	 of	 CRE

Fundamental result

Definition in the unsteady case

guaranteed bounding on global and local errors

Rem : can be generalized to time-dependent nonlinear problems with dissipation

dissipation error [Ladevèze & Moës 98, Chamoin et al. 07] 

e2dis(Ẋ, Y ) = ϕ(Ẋ) + ϕ∗(Y )− Ẋ · Y

E2
CRE(uh, q̂h) = |||q̂h − k∇uh|||2q

� T

0

�

Ω
k−1 • · • dΩdt

|||u− uh|||2 + |||q− q̂h|||2q +
�

Ω
c(u− uh)

2
|T dΩ = E2

CRE(uh, q̂h)

convex pseudo-potentials (with Fenchel’s duality)
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Use	 of	 the	 CRE	 concept

•     should be compatible (KA) :û
we choose û = um

û = 0 on ΓD × I ; û|t=0 = 0 ∀p

is not SA in a FE sense

•              should be equilibrated (SA) :

then, use of classical FE techniques (prolongation condition)

(û, q̂)

(um,q(um))

(um,qm)

�

Ω
q̂ ·∇u∗dΩ =

�

Ω
(fd − c

∂û

∂t
)u∗dΩ+

�

ΓN

qdu
∗ds ∀u∗ ∈ V, ∀t, ∀p

necessary to post-process to get                     SA in a FE sense 

um(x, t, k, c) =
m�

i=1

ψi(x)λi(t)fi(k)gi(c)

Example: thermal problem solved with PGD

; q(um) = k∇um
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Post-processing

for each PGD modem0 ∈ [1,m]
We stop PGD sub-iterations with a problem in space

assumption : radial loading

is equilibrated in a FE sense with                 , for all  t

B(um0 ,ψ
∗λm0Γm0) = L(ψ∗λm0Γm0) ∀ψ∗ ∈ Vh

fd =
J�

j=1

αj(t)f
j
d(x) qd =

J�

j=1

βj(t)q
j
d(x)

q0 =
J�

j=1

�
αj(t)q

j
0,f (x) + βj(t)q

j
0,q(x)

�

(fd, qd)

Qm0

[Ladevèze & Chamoin 11,12]

Am0i
�

Ω

��

Θ

�

I
λm0Γm0(k∇um0 − q0)dtdp

�
·∇ψ∗dΩ+

�

Ω

m0�

i=1

��

Θ

�

I
cλm0Γm0 λ̇idtdp

�
ψiψ

∗dΩ = 0 ∀ψ∗ ∈ Vh
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satisfies FE equilibration

Post-processing
�

Ω
AΨmψ∗dΩ+

�

Ω
{Q}m1 ·∇ψ∗dΩ = 0 ∀ψ∗ ∈ Vh

�

Ω
Ψmψ∗dΩ+

�

Ω
A−1{Q}m1 ·∇ψ∗dΩ = 0 ∀ψ∗ ∈ Vh

�

Ω
cΓm ⊗ Λ̇m ⊗Ψmψ∗dΩ+

�

Ω
cΓm ⊗ Λ̇m ⊗ A−1{Q}m1 ·∇ψ∗dΩ = 0 ∀ψ∗ ∈ Vh, ∀t, ∀p

u̇m

we construct a SA field following the standard procedure

q̂m = q0 − cΓm ⊗ Λ̇m ⊗ A−1{Q̂}m1

−q̄m

(um, q̄m + q0)
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CRE	 estimate
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asymptotic value = discretization error

convergence for m = 3

ECRE

|||q̂m|||q
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Splitting	 of	 error	 sources

uex − uh,∆t
m = (uex − uh,∆t) + (uh,∆t − uh,∆t

m )

PGD truncation error discretization error

estimated with a discretized reference model

post-processing of                    to get an admissible solution 

ECRE,dis =
�

E2
CRE − E2

CRE,PGD

|||uex − uh,∆t
m |||2u� �� � = |||uh,∆t − uh,∆t

m |||2u� �� �+ |||uex − uh,∆t|||2u� �� �
total error

in the sense of the new reference problem (weaker sense in space and time)

(um,qm) (ûh,∆t, q̂h,∆t)

q̂h,∆t = NT [

� T

0
NTNdt]−1[R1, . . . ,Rk]

Ri =

� T

0
qmNidt

ECRE,PGD = |||q̂h,∆t − k∇ûh,∆t|||q
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Splitting	 of	 error	 sources

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2
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0.35

0.4

m

 

 
ECRE

2

EPGD
2

ECRE
2 EPGD

2

after 3 modes, discretization 
error is dominating

Possible to split space/time discretization errors

E2
CRE,dis = E2

CRE,h + E2
CRE,∆t

{

discretization error in space : 83%
{

|||q̂− q̂h|||q |||q̂h − q̂h,∆t|||q
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Adaptivity
IDEA : the model is adapted mode after mode by comparing contributions of 
error sources (greedy algorithm)

compute mode 1

compute mode 2

compute mode 3

local refinement of mode 3 mesh

• first PGD modes give general aspects : coarse approximation is sufficient

• next modes need more accuracy : fine discretization required

compute mode 4

PGD error dominant

discretization error dominant

PGD error dominant

PGD error dominant
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Adjoint problem

An optimal PGD decomposition for         is usually not optimal for  

use of goal-oriented techniques

um I(um)

ũ|t=T = 0

solution       = influence function (impact of global error on local error) ũ

Error	 on	 a	 QoI

ũ = 0 on ∂uΩ× I
I(u) =

� T

0

�

Ω
(qΣ ·∇u+ fΣu)dΩdt

−c
∂ũ

∂t
−∇ · (q̃− qΣ) = fΣ

q̃ · n = 0 on ∂qΩ× I
q̃ = k∇ũ
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Goal-oriented	 error	 estimation

From an admissible solution (ˆ̃u, ˆ̃q)

Sources splitting

indicators are computed after changing reference problem

I(uex)− I(uh,∆t
m ) = [I(uex)− I(uh,∆t)]� �� �+ [I(uh,∆t)− I(uh,∆t

m )]� �� �
PGD truncation errordiscretization error

optimized bounding possible

[Chamoin et al 08, Pled et al 12] 

I(u)− I(um) =

� T

0

�

Ω

�
c
∂(u− um)

∂t
ˆ̃u+∇(u− um) · ˆ̃q

�
dΩdt

=

� T

0

�

Ω
k−1(q− q̂)(ˆ̃q− k∇ˆ̃u)dΩdt+ Icorr(q̂, ˆ̃q)

|I(u)− I(um)− Icorr(q̂, ˆ̃q)| ≤ ECRE × ẼCRE
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Solving	 the	 adjoint	 problem

I =< u >ω,T

local enrichment
(generalized Green’s function)

residual term, computed with PGD

fΣ =
δT
|ω| in ω

[Chamoin & Ladevèze  2008] 

x

y

ω

ũ(x, t) =
nPUM�

j=1

Nj(x)ũ
hand(x, t)

� �� �

+ ũhand(x, t)� �� �

≈
m�

i=1

ψres
i (x)λres

i (t)
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Goal-Oriented	 Error	 Estimation
From adjoint-based techniques + CRE properties 

Sources splitting

PGD truncation errordiscretization error

estimated with a 
discretized reference model

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

~
m

 

 
total
PGD
discretization

|Iex(p)− Im(p)− Icorr(p)| ≤ ECRE(p) · ẼCRE(p)

I−(p) ≤ Iex(p) ≤ I+(p)

Iex − Ih,∆t
m = [Iex − Ih,∆t] + [Ih,∆t − Ih,∆t

m ]

I = sup
k,c

1

ω

�

ω
u|T dω

supk,c ECRE .ẼCRE

|Im + Icorr|
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Adaptivity

compute mode 1

compute mode 2

compute mode 5

local refinement of mode 5 mesh

• first PGD modes give general aspects : coarse approximation is sufficient
• next modes need more accuracy : fine discretization required

compute mode 6

PGD error dominant

discretization error dominant

PGD error dominant

PGD error dominant

...

...

supk,c ECRE .ẼCRE

|Im + Icorr|
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Guaranteed	 virtual	 chart

I(k, c) =< u(x, t, k, c) >ω,T



Basics	 on	 Proper	 Generalized	 Decomposition	 (PGD)

Illustrations	 of	 PGD	 applications

A	 posteriori	 error	 estimation:	 the	 CRE	 concept

Control	 and	 adaptivity	 in	 PGD	 computations

PGD	 performances	 and	 limits
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Outline



45

Reference	 solution

brute force FEM solution

SVD decomposition 
according to energy norm

optimal one

Reference	 reduction	 error

neglect the discretization 
error

eref =
�uh − um�E

�uh�E

0 10 20 30 40
10−3

10−2

10−1

100

m

e r
e
f

Reference Galerkin Petrov-Galerkin

PGD modes m

Idelsohn's	 benchmark
c, k






c∂u∂t (x, t)−
∂σ
∂x (x, t) = δ(x− vt) ∀(x, t) ∈ Ω× I

u(0, t) = u(L, t) = 0 ∀t ∈ I
u(x, 0) = 0 ∀x ∈ Ω
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Reference	 solution

brute force FEM solution

SVD decomposition 
according to energy norm

optimal one

Reference	 reduction	 error

neglect the discretization 
error

eref =
�uh − um�E

�uh�E
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c∂u∂t (x, t)−
∂σ
∂x (x, t) = δ(x− vt) ∀(x, t) ∈ Ω× I

u(0, t) = u(L, t) = 0 ∀t ∈ I
u(x, 0) = 0 ∀x ∈ Ω
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Convergence	 of	 PGD	 strategies	 
Update of time fonctions (LMT method)
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PGD modes m
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Minimal	 CRE	 in	 PGD	 
Idea

Minimizing the CRE indicator:

Under the condition of equilibrium (without the constitutive relation)

Advantages

Immediate reduction error estimator;

Pilots the progressive algorithm;

Easy access to full error estimator through classical FEM CRE methods.

B(u,σ; v) = L(v) ∀v ∈ V ⊗ T

argmin
u,σ

�eCRE(u,σ)�E

[Allier et al  2015] 

Minimisation

partial

full

Estimation	 through	 CRE

Only an estimation !

0 10 20 30 40
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10−2

10−1

100

m

e C
R
E

eCRE =
�τm − µ∂um

∂x �E
�τm + µ∂um

∂x �E
PGD modes m
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Minimisation	 of	 CRE
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Effectivity	 of	 CRE	 indicator
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A	 lifting	 technique
Lifting	 

with the solution of infinity domain:

with space limit conditions:

Galerkin	 PGD	 method	 for	 correction

u∞(x, t) =
θ(x− vt)

cv

�
e−

cv
k (x−vt) − 1

�
+

θ(x)

cv

�
1− e−

cv
k x

�
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S
p
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The reference solution uref

0

0.2

0.4

0.6

0.8

1

1.2

0 T
2

T
0

L
2

L

Time t

S
p
ac
e
x

The lifting solution u∞

0 T
2

T
0

L
2

L

Time t

The PGD correction um

0 T
2

T
0

L
2

L

Time t

S
p
ac
e
x

The reference solution uref

0

0.2

0.4

0.6

0.8

1

1.2

0 T
2

T
0

L
2

L

Time t

S
p
ac
e
x

The lifting solution u∞

0 T
2

T
0

L
2

L

Time t

The PGD correction um

+=

u∞(x, t) = u∞(x, t)× δ(0)× δ(L)

um(x, t) = u∞(x, t) +
m�

i=1

λi(t)ψi(x)
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Is	 the	 exact	 solution	 separable	 ?

Influence	 of	 the	 instationnary	 term

targeted error: 10-2

L/v t

c, k

T

0 0.5 1 1.5 2 2.5 3
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10

20

30

40

v × T/L
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Is	 the	 exact	 solution	 separable	 ?

Influence	 of	 the	 instationnary	 term	 (v=L/T)

targeted error: 10-2
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Conclusions	 and	 prospects

◾ PGD	 model	 reduction
⚫ a priori construction of modes

⚫ explicit solution with respect to parameters

⚫ offline/online strategy

⚫ variable separation should be driven by the physics of the problem

◾ Error	 estimation	 for	 PGD	 reduced	 models
⚫ separates the sources of the error

⚫ allows adaptative PGD procedure

⚫ guaranteed bounds (robust virtual charts)

◾ In	 	 progress
⚫ extension to space separation:

⚫ error estimation in the non-linear case (through LATIN method)

u �
m�

i=1

ψi(x)γi(y)λi(z)
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