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Abstract This paper addresses the convergence behavior of Krylov meth-
ods for nonsymmetric linear systems which can be classified as Q-OR (quasi-
orthogonal) or Q-MR (quasi-minimum residual) methods. It explores, more
precisely, whether the influence of eigenvalues is the same when using non-
orthonormal bases as it is for the FOM and GMRES methods. It presents
parametrizations of the classes of matrices with a given spectrum and right-
hand sides generating prescribed Q-OR/Q-MR (quasi) residual norms and
discusses non-admissible residual norm sequences. It also gives closed-form
expressions of the Q-OR/Q-MR (quasi) residual norms as functions of the
eigenvalues and eigenvectors of the matrix of the linear system.
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1 Introduction

We consider the problem of solving linear systems Ax = b where A is a square
nonsingular matrix of order n with real or complex entries and b is a vector
of length n. The probably most popular iterative methods for solving such
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a possibly nonsymmetric linear system are Krylov methods. Assuming the
initial guess is zero, they are based on repeated multiplication of b with A to
form Krylov subspaces Kk(A, b) ≡ span{b, Ab,A2b, . . . , Ak−1b}, k = 1, 2, . . . ,
of growing dimension. The approximations xk to the solution of the linear
system are extracted from these subspaces. Interesting references for Krylov
methods include the books [17], [39] and [25].

A paper describing these methods in an abstract framework is [12]. In [12]
it is shown that most Krylov methods can be described as so-called quasi-
orthogonal (Q-OR) or quasi-minimum (Q-MR) residual methods. Many nu-
merical methods that can be classified as Q-OR or Q-MR methods have been
proposed over the years, starting in the early fifties. Generally they come
into Q-OR/Q-MR pairs. Considering only the nonsymmetric case, probably
the most famous one is the FOM (Full Orthogonalization Method) and GM-
RES (Generalized Minimum RESidual) method pair. They are not quasi but
true OR and MR methods in the sense that in the kth iteration, the matrix Vk

whose columns form a basis of Kk(A, b) is defined to have orthonormal columns
(provided Kk(A, b) has dimension k). GMRES is an MR method (that is, min-
imizing the true residual norm, ‖b−Axk‖) proposed by Saad and Schultz [30]
and FOM is an OR method introduced by Saad [28], [29]. The matrix Vk and
the upper Hessenberg matrix Hk = V ∗

k AVk (where V ∗
k denotes the conjugate

transpose of Vk) are computed column by column using the Arnoldi process
[2].

Another famous pair is BiCG/QMR. The BiCG (BiConjugate Gradient)
algorithm was derived by Fletcher [13] from the nonsymmetric Lanczos algo-
rithm [24]. The BiCG and QMR (Quasi Minimum Residual) methods use a
basis that is bi-orthogonal to a basis of the Krylov subspace Kk(A∗, b) (an-
other initial vector than b can be chosen to generate this auxiliary subspace).
The practical interest of these methods is that they use only short recurrences
contrary to FOM/GMRES. BiCG is a particular implementation of the Q-
OR method and QMR introduced by Freund and Nachtigal [14–16] minimizes
the quasi-residual norm; see below for details. Note that in this paper we will
use the acronym Q-MR in two different ways. The first one (Q-MR) is to de-
note the general class of quasi-minimum residual methods and the second one
(QMR) is related to the particular method introduced in [14].

Another pair of methods is Hessenberg/CMRH. CMRH (Changing Mini-
mal Residual method based on the Hessenberg process), introduced by Sadok
[31], is a Q-MR method which uses the Hessenberg basis computed with an
LU factorization with partial pivoting of the Krylov matrix without explic-
itly computing the Krylov matrix. The Hessenberg method [20] is the corre-
sponding Q-OR method. Other examples of Krylov methods that do not use
orthonormal bases include CGS (Conjugate Gradient Squared) introduced by
Sonneveld [36], BiCGStab (BiCG Stabilized) by van der Vorst [38], truncated
methods [41], [21], [22] and restarted methods [34]. Many of them can be clas-
sified as a Q-OR or Q-MR-type method, but BiCGStab, for instance, is a
combination of the two types.
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Krylov methods using non-orthonormal bases mostly work with short re-
currences, although there are exceptions like CMRH; see [32]. The price paid
for the relatively low computational costs with short recurrences are less fa-
vorable stability properties; Krylov methods using non-orthonormal bases are
called non-optimal methods in [35]. From the theoretical point of view, the
usage of non-orthonormal bases leads to methods whose convergence behav-
ior is more complicated to analyse than for their orthonormal counterparts.
The residual norms generated in the GMRES method can be described, the-
oretically, by a particularly simple and natural minimization property. This
is probably the main cause of the fact that the majority of convergence re-
sults about Krylov methods for nonsymmetric matrices concern the GMRES
method (and to a lesser extent FOM).

In this paper we make an attempt to generalize some convergence results
for the FOM/GMRES pair to other Q-OR/Q-MR pairs which do not employ
orthonormal bases. We are interested in a particular type of convergence results
about Krylov methods for nonsymmetric matrices, namely those addressing
the extent to which eigenvalues influence the convergence behavior. For the
GMRES method, answers to this question can be found in the series of papers
[1,19,18], [8,9], [11], [27], [26]; restarted GMRES and FOM were addressed
in [40], [33] and [10]. They show that in general, any residual norm history
(with non-increasing norms) is possible with any spectrum of the system ma-
trix and thus convergence behavior cannot be determined by the eigenvalue
distribution alone. Similar results for FOM can be obtained by using the re-
lationships between FOM and GMRES; see [33]. It is not clear whether the
same kind of results holds for Krylov methods using non-orthonormal bases,
although they do work with essentially the same Krylov subspaces. Rather
than investigating this and related questions method by method we will adopt
the general framework of [12] and we will not consider any particular imple-
mentation.

The paper is organized as follows. Section 2 describes the general frame-
work for the Q-OR and Q-MR Krylov methods we are considering and in-
troduces a decomposition of Hessenberg matrices which is important for the
paper. In section 3 we point out differences between Q-OR/Q-MR methods
and FOM/GMRES. Section 4 considers the problem of constructing a matrix,
with a freely chosen spectrum, and a right-hand side yielding prescribed Q-OR
residual norm or Q-MR quasi-residual norm convergence curves for a given Q-
OR or Q-MR method. Depending on the method, this amounts to construct
a Hessenberg matrix with a particular non-zero structure. It turns out that
for some Q-OR methods not every residual norm history is possible. Section 5
gives expressions for the Q-OR residual norms or Q-MR quasi-residual norms
as a function of the eigenvalues and eigenvectors of A, the right-hand side b
and the matrix V of the basis vectors. Finally we give some conclusions.

Throughout the paper we assume that the matrix
(
b Ab A2b · · · An−1b

)
is of full rank, that is, the grade of b with respect to A, denoted as d(A, b),
is equal to n. This implies that the matrix A is non-derogatory. For the sake
of simplicity we assume also that x0 = 0 and ‖b‖ = 1. where ‖ · ‖ denotes
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the Euclidean norm. The vector ei will denote the ith column of the identity
matrix (of appropriate order). The identity matrix of order n is denoted In.
Xi:j,k:` denotes the submatrix of X with rows from i to j and columns from k
to `.

2 The general framework for Q-OR and Q-MR methods

As in [12], we consider abstract Krylov methods of two types denoted as
quasi-orthogonal residual (Q-OR) methods and quasi-minimal residual (Q-
MR) methods. They are all based on the construction of Krylov subspaces
span{b, Ab, . . . , Ak−1b}, k = 1, 2, . . . . These subspaces are nested, i.e.K1(A, b) ⊂
K2(A, b) ⊂ · · · ⊂ Kn(A, b). As we assume that all subspaces have full rank,
Kn(A, b) = Cn and the Krylov matrix defined as

K =
(
b Ab A2b · · · An−1b

)
.

is a nonsingular matrix.
Let us assume that we have an ascending basis vk, k = 1, . . . , n of unit norm

vectors for Kn(A, b) with v1 = b. This means that {v1, . . . , vk} is a basis of
Kk(A, b) for all k ≤ n. The unit norm vectors are not necessarily orthonormal
to each other. Let V be the matrix whose columns are the basis vectors vk.
The matrix V is nonsingular and there exists a nonsingular upper triangular
matrix U (which is the matrix representing the change of basis) such that

K = V U. (2.1)

Let C be the companion matrix associated with the characteristic polyno-
mial of A denoted as

C =

0 · · · 0 −α0

In−1

...
−αn−1

 . (2.2)

The monic polynomial with coefficients αn−1, . . . , α0 has the eigenvalues of A
as roots. We have the following theorem.

Theorem 2.1 Let V and U be defined by (2.1) and C be the companion matrix
of A. Then

H = UCU−1 (2.3)

is an unreduced upper Hessenberg matrix and

AV = V H. (2.4)

Proof It is well known that AK = KC. This equality is straightforward for
the first n − 1 columns. The equality for the last column is a consequence of
the Cayley-Hamilton theorem that is, the matrix A satisfies its characteristic
polynomial equation. Since U is nonsingular, we have from AK = KC that

AV U = V UC, hence AV = V (UCU−1).
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The matrix U being upper triangular, the matrix UCU−1 is upper Hessenberg.
The fact that H = UCU−1 is unreduced will be proved using Theorem 2.2
and the fact that uj,j 6= 0, ∀j. �

Note that since v1 = b and b is of unit norm, we have u1,1 = 1. For a given
H and C corresponding to the characteristic polynomial of H, the matrix U
in decomposition (2.3) is obtained straightforwardly by successively equating
columns 1, . . . , n − 1 in HU = UC. This gives (but is not recommended to
compute numerically)

U =
(
e1 He1 H2e1 · · · Hn−1e1

)
.

Thus U is the Krylov matrix generated from H and e1.
Let us now define the Krylov methods we are considering. We proceed as

in [12]. Since without loss of generality we have chosen a zero starting vector
x0 = 0, we define the iterates xk as

xk = Vky(k), (2.5)

where Vk is the matrix of the k first columns of V . This means that we look
for xk in Kk(A, b). Since

AVk = VkHk + hk+1,kvk+1e
T
k = Vk+1Hk, (2.6)

where Hk is the principal submatrix of order k of H and Hk is the same matrix
appended with the k first entries of the (k +1)st row of H, the residual vector
rk can be written as

rk = b−Axk = Vke1 −AVky(k) = Vk(e1 −Hky(k))− hk+1,ky
(k)
k vk+1. (2.7)

The kth iterate xO
k = Vky(k) of a Q-OR method is defined (provided that

Hk is nonsingular) by computing y(k) as the solution of the linear system

Hky(k) = e1. (2.8)

This annihilates the first term in the rightmost expression of (2.7). Thus the
iterates of the Q-OR method are xO

k = VkH−1
k e1, the residual vector, which

we denote as rO
k , is proportional to vk+1 and ‖rO

k ‖ = |hk+1,ky
(k)
k |. In case Hk is

singular and xO
k is not defined, we shall define the residual norm to be infinite,

‖rO
k ‖ = ∞. The vector y(k) is usually computed by using Givens rotations

to zero the subdiagonal entries of Hk and then solving an upper triangular
system.

The rightmost expression in (2.7) can also be written as Vk+1(e1−Hky(k)).
In a Q-MR method the vector y(k) is computed as the solution of the mini-
mization problem

min
y
‖e1 −Hky‖. (2.9)

The vector zM
k = e1 − Hky(k) of length k + 1 is referred to as the quasi-

residual, its norm as the quasi-residual norm. Thus Q-MR methods minimize
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the quasi-residual norm. The residual vector rM
k is Vk+1z

M
k . The solution of

the minimization problem always exists but this method does not minimize the
true residual norm unless Vk+1 is orthonormal. However, this way of computing
y(k) can also be seen as a minimization of the residual norm in a different norm;
see [12]. Note that since the basis vectors are assumed to be of unit norm we
have ‖rM

k ‖ ≤
√

k + 1 ‖zM
k ‖. The solution of the least squares problem (2.9)

is usually computed using Givens rotations to zero the subdiagonal entries
of Hk. Let sj and cj be the sines and cosines characterizing these rotations.
Then, the norms of the quasi-residuals can be expressed using the sines of the
rotations.

Proposition 2.1 The norms of the Q-MR quasi-residuals are

‖zM
k ‖ = |s1s2 · · · sk|. (2.10)

We have the following relation between the residual norms of the Q-OR method
and the quasi-residual norms of the corresponding Q-MR method,

1
‖rO

k ‖2
=

1
‖zM

k ‖2
− 1
‖zM

k−1‖2
. (2.11)

Proof This result can be obtained in the same way as Proposition 4.1 in [14]
where it is proved for a particular Q-MR method in which H is block tridiag-
onal; see also [12]. �

Equation (2.11) is responsible for the well-known peak-plateau phenomenon;
see [7]. When the Q-OR iterates are not defined because Hk is singular, the
quasi-residual norms of the corresponding Q-MR method stagnate.

We have just seen that the matrices Hk and Hk are at the heart of the
Q-OR/Q-MR methods since they define the problems to be solved at each iter-
ation. It turns out that, for k < n, the entries of these matrices are completely
determined by U in (2.3), not by the companion matrix giving the spectrum
of H.

Theorem 2.2 For k < n the matrix Hk can be written as Hk = UkC(k)U−1
k ,

Uk being upper triangular and the leading principal submatrix of order k of U
and C(k) = Ek +

(
0 U−1

k U1:k,k+1

)
where Ek is a square down-shift matrix of

order k,

Ek =


0
1 0

. . . . . .
1 0

 .

Moreover, the subdiagonal entries of H are hj+1,j = uj+1,j+1
uj,j

, j = 1, . . . , n−1.

The leading submatrix Hk of dimension (k + 1)× k is

Hk = Uk+1Ek+1

(
U−1

k

0 · · · 0

)
.
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Proof From H = UCU−1 it is straightforward to see that hj+1,j = uj+1,j+1
uj,j

, j =
1, . . . , n− 1. Consider the matrix Hk. Clearly

Hk =
(
Ik 0

)
H

(
Ik

0

)
.

Then, using H = UCU−1,

Hk =
(
Uk U1:k,k+1:n

)
C

(
U−1

k

0

)
.

Let us partition the companion matrix C as

C =
(

Ek C1

Fk C2

)
,

where Fk is an (n− k)× k matrix with only one non-zero entry, (Fk)1,k = 1.
Then

C

(
U−1

k

0

)
=

(
EkU−1

k

FkU−1
k

)
.

The matrix FkU−1
k is zero except for the entry (FkU−1

k )1,k = (U−1
k )k,k =

1/uk,k. Therefore Hk = UkEkU−1
k +

(
0 1

uk,k
U1:k,k+1

)
. Hence Hk is a rank-one

modification of a nilpotent matrix. Let us denote uk = U1:k,k+1. We can write
Hk as

Hk = Uk

[
Ek + U−1

k

(
0 uk

)]
U−1

k = Uk

[
Ek +

(
0 U−1

k uk

)]
U−1

k .

The other assertion is proved by writing

Hk =
(
Ik+1 0

)
H

(
Ik

0

)
.

�

3 Comparison of Q-OR and Q-MR methods with FOM and
GMRES

The only difference between individual Q-OR methods and between individ-
ual Q-MR methods is in the type of generated basis for the Krylov subspaces;
the subspaces themselves are the same. At first sight, it may therefore seem
straightforward to show that the eigenvalues of A, being of course indepen-
dent of the type of basis used, have exactly the same limited influence on
convergence behavior as has been shown for FOM and GMRES (see, e.g., [19]
and [18]). But in this section we point out the potentially completely different
convergence behavior of Q-OR/Q-MR methods using non-orthonormal bases
as compared to the FOM and GMRES methods.
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Let us denote with a superscript A matrices related to the FOM/GMRES
pair, which generates an orthogonal basis using the Arnoldi orthogonalization
process. We have the relation

K = V U = V AUA.

The matrix V A computed with the Arnoldi process is unitary, therefore

W ≡ (V A)∗V = UAU−1. (3.1)

In the following we will use the matrix W as a measure of departure from the
true OR/MR methods, FOM and GMRES. Note that W is upper triangular.
The further W is from the identity matrix, the less a corresponding method
can be expected to behave like a true OR/MR method.

The Hessenberg matrices H in (2.4) can be transformed with W to the Hes-
senberg matrix HA generated in the Arnoldi process. Using HA = UAC(UA)−1,
we have

H = UCU−1 = V −1V AUAC(UA)−1(V A)∗V = W−1HAW.

Of course the two matrices H and HA are similar since they are both similar
to A. For the submatrices Hk and Hk of H, which define, with the computed
bases for the Krylov subspaces, respectively the Q-MR and Q-OR iterates, we
have the following results.

Theorem 3.1 Let Wk denote the leading principal submatrix of order k of
W . Then,

HA
k = Wk+1HkW−1

k ,

and
HA

k = WkHkW−1
k + [0

uk+1,k+1

uA
k,k

wk],

where wk is the vector of the first k components of the (k + 1)st column of
Wk+1.

Proof Using (3.1) we obtain Wk = UA
k U−1

k . Considering AVk = Vk+1Hk we
can write

AV A
k UA

k U−1
k = V A

k+1U
A
k+1U

−1
k+1Hk.

Hence AV A
k = V A

k+1U
A
k+1U

−1
k+1HkUk[UA

k ]−1, and

HA
k = UA

k+1U
−1
k+1HkUk[UA

k ]−1 = Wk+1HkW−1
k .

Using a partitioning of Wk+1 we have

HA
k =

(
Wk wk

0 ωk

) (
Hk

hk+1,k+1e
T
k

)
W−1

k .

Therefore,
HA

k = WkHkW−1
k + wkhk+1,keT

k W−1
k .
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The second term on the right-hand side is hk+1,k(W−1
k )k,kwkeT

k because Wk

is upper triangular. But with Theorem 2.2 and (3.1),

hk+1,k =
uk+1,k+1

uk,k
, (W−1

k )k,k =
uk,k

uA
k,k

,

and we get the result. �

Thus (H)k is transformed to HA
k with Wk and Wk+1 and the matrix HA

k

is a rank-one modification of Hk transformed with Wk. Clearly, the trans-
formations and the rank-one modification can have a large impact on the
iterates and on convergence behavior. In order to investigate the effect of Wk

on (quasi-)residual norms, we now formulate a theorem which is the basis for
many results of the paper. It states that the moduli of the entries of the first
row of U−1 are the inverses of the Q-OR residual norms.

Theorem 3.2 Let
(
1 g1 · · · gn−1

)
be the first row of U−1. The entries gk

satisfy

|gk| =
1

‖rO
k ‖

, (3.2)

where rO
k are the Q-OR residual vectors.

Proof Let

Gj =
(

cj −sj

sj cj

)
, c2

j + |sj |2 = 1,

be the unitary complex rotation matrices used to reduce H to upper triangular
form R. We have Gn−1 · · ·G1H = R. Therefore U−1H = U−1G−1

1 · · ·G−1
n−1R

and
U−1G−1

1 · · ·G−1
n−1 = CU−1R−1. (3.3)

SinceR−1 is upper triangular, the matrix CU−1R−1 has a zero first row except
for the last entry. We will need the first row of U−1G−1

1 · · ·G−1
n−1. The product

of the rotation matrices in terms of the sines and cosines was given in [3], [4].
For instance, for n = 6 the product G−1

1 · · ·G−1
5 is

c1 c2s1 c3s2s1 c4s3s2s1 c5s4s3s2s1 s5s4s3s2s1

−s1 c2c1 c3s2c1 c4s3s2c1 c5s4s3s2c1 s5s4s3s2c1

0 −s2 c3c2 c4s3c2 c5s4s3c2 s5s4s3c2

0 0 −s3 c4c3 c5s4c3 s5s4c3

0 0 0 −s4 c5c4 s5c4

0 0 0 0 −s5 c5

 .

The proof of the claim is by induction. Let us prove it for g1. By comparing
the first rows in (3.3), we have c1−s1g1 = 0. Since, by our hypothesis that the
Arnoldi process does not break down prematurely, s1 6= 0. This yields g1 =
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c1/s1 and with c1 = ±
√

1− |s1|2 we get |g1| =
√

1
|s1|2 − 1. Since ‖zM

0 ‖ = 1

and ‖zM
1 ‖ = |s1|, this is nothing other than

|g1| =
(

1
‖zM

1 ‖2
− 1
‖zM

0 ‖2

)1/2

=
1

‖rO
1 ‖

.

Let us assume that we have gj = cj/(s1 · · · sj) for j = 1, . . . , k − 1. Then,

gk =
ck

sk

[
sk−1sk−2 · · · s1 + sk−1 · · · s2

c2
1

s1
+ · · ·+ sk−1

c2
k−2

s1 · · · sk−2
+

c2
k−1

s1 · · · sk−1

]
,

=
ck

sk · · · s1

[
|sk−1|2 · · · |s1|2 + |sk−1|2 · · · |s2|2c2

1 + · · ·+ |sk−1|2c2
k−2 + c2

k−1

]
.

By using c2
j = 1 − |sj |2, the term within brackets is equal to 1. Therefore

gk = ck/(s1 · · · sk) and using (2.10) and (2.11) we obtain the result. �

Thus the inverses of the norms of the Q-OR residuals of any Q-OR method
can be read from the first row of U−1, where U is the upper triangular matrix
in (2.1). Moreover, using (2.11), the norms of the Q-MR quasi-residuals can
be read from the first row of U−1, too; there holds

‖zM
k ‖ =

1 +
k∑

j=1

|gj |2
−1/2

. (3.4)

The relation between the first row of U−1 and the first row of (UA)−1 is
fully determined by the matrix W containing the angles between the basis
vectors vj and vA

k , j ≤ k: Using U−1 = (UA)−1W, see (3.1), we immediately
obtain eT

1 U−1 = eT
1 (UA)−1W, or, equivalently,
1
g1

...
gn−1

 =


1

w1,2 w2,2

...
. . . . . .

w1,n . . . wn−1,n wn,n




1
gA
1
...

gA
n−1

 . (3.5)

Thus, depending on the entries of W, the residual norms of a Q-OR method
can in theory be arbitrarily different from those of FOM and similarly for
Q-MR methods. The next two theorems express the differences between the
convergence of Q-OR/Q-MR methods and FOM/GMRES using W .

Theorem 3.3 If gA
k 6= 0, then for k = 1, . . . , n − 1 the relative difference

between gA
k and gk is

gk − gA
k

gA
k

= wk+1,k+1 − 1 +
1
gA

k

w1,k+1 +
gA
1

gA
k

w2,k+1 + · · ·+
gA

k−1

gA
k

wk,k+1,
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Proof From the (k + 1)st row in (3.5) we obtain the claim using

gk − gA
k = w1,k+1 + gA

1 w2,k+1 + · · ·+ gA
k−1wk,k+1 + gA

k [wk+1,k+1 − 1].

�

Theorem 3.4 Let us denote the Q-MR and GMRES residual vectors by rM
k

and rG
k . Then,

‖rG
k ‖ ≤ ‖rM

k ‖ ≤ κ((V A)∗k+1Vk+1) ‖rG
k ‖. (3.6)

Proof We proceed as in [32] where bounds were obtained for GMRES and
CMRH. Obviously we have ‖rG

k ‖ ≤ ‖rM
k ‖. The residual vectors are inKk+1(A, b).

Then we can write

rM
k = Vk+1z

M ,

rG
k = Vk+1z

G = (V A)k+1w
G.

Since (V A)k+1 is unitary, the second equation yields wG = (V A)∗k+1Vk+1z
G.

Since Q-MR minimizes the norm of the quasi-residual, we have

‖zM‖ ≤ ‖zG‖ ≤ ‖[(V A)∗k+1Vk+1]−1‖ ‖wG‖ = ‖[(V A)∗k+1Vk+1]−1‖ ‖rG
k ‖.

Hence

‖rM
k ‖ ≤ ‖Vk+1‖ ‖zM‖ ≤ ‖Vk+1‖ ‖[(V A)∗k+1Vk+1]−1‖ ‖rG

k ‖
= ‖(VA)∗k+1Vk+1‖ ‖[(VA)∗k+1Vk+1]−1‖ ‖rG

k ‖.

�

4 The construction of linear systems with a prescribed convergence
curve and spectrum

The previous section showed that the convergence behavior of a Q-OR method
can be arbitrarily different from that of FOM and similarly for the convergence
behavior of a Q-MR method and that of the GMRES method. The question
how much eigenvalues influence the behavior of a Q-OR or Q-MR method can
therefore most probably not be answered by using the answer to that question
for FOM and GMRES.

At the same time a partial answer to the question was provided by Theo-
rem 3.2. We have proved that if the basis of the Krylov subspaces (defined by
the matrix V with unit norm columns) is such that K = V U with U upper
triangular, then AV = V H with H = UCU−1, see Theorem 2.1. Thus we
have the factorization A = V UCU−1V −1 and b = V e1. According to The-
orem 3.2, the inverses of the residual norms generated in the Q-OR method
are the moduli of the entries of the first row of U−1 and the quasi-residual
norms generated in the Q-MR method depend upon the first row of U−1 as
described by equation (3.4). Therefore, if in A = V UCU−1V −1 we change the
last column of C (without making the (1, n) entry zero) and keep everything



12 Gérard Meurant, Jurjen Duintjer Tebbens

else the same, we obtain a new matrix Â (with other nonzero eigenvalues) such
that we have the same convergence curve for the Q-OR method when solving
Âx = b with the basis V . Using the Q-MR method we obtain the same norms
for the quasi-residual vectors. In this sense, the convergence of any Q-OR and
Q-MR methods does not depend on the eigenvalues of the matrix only. If a
certain convergence curve is generated with a Q-OR or Q-MR method, the
same curve can be obtained with any (prescribed) nonzero eigenvalues. In this
section we further investigate what convergence curves are possible and at-
tempt to construct linear systems generating admissible curves with arbitrary
nonzero eigenvalues.

For GMRES any non-increasing residual norm history is possible [18], and
using (2.11) this gives that for FOM any residual norms can be generated,
including infinite residual norms (they correspond to stagnation in the GMRES
process). To construct a matrix A with prescribed eigenvalues and a right-hand
side b such that we generate a given FOM residual norm convergence curve, we
first take any upper triangular matrix U−1 such that the moduli of the inverses
of the entries of the first row are the given FOM residual norms. Then, C being
the companion matrix corresponding to the given eigenvalues, we set H =
UCU−1. Finally, A = V HV ∗, b = V e1, where V is any unitary matrix. The
same can be done to create a non-increasing GMRES residual norm history;
the only difference is that the first row of U−1 must satisfy, instead of (3.2),
the conditions (3.4) with ‖zM

k ‖ = ‖rM
k ‖. The factorization A = V UCU−1V −1

can, together with b = V e1, also be considered a parametrization of the entire
class of matrices with right-hand sides yielding a given residual norm history
with a given spectrum for the system matrix. There is freedom in the choice
of the unitary matrix V and in the rows 2 to n of U−1. We remark that these
rows can be used to prescribe, in addition, the Ritz values generated in the
underlying Arnoldi process (see [8], [9] and [10]).

A similar construction can be used for the Hessenberg/CMRH pair. These
methods are based on an LU decomposition with partial pivoting of the Krylov
matrix

PT K = LU, (4.1)

hence the decomposition (2.1) takes the form

K = V U, V = PL,

with V a nonsingular row permuted lower triangular matrix. Note that in (2.1)
we assumed the columns of V are of unit length. This can always be achieved
by appropriate scaling of the two factors in the LU decomposition of PT K. To
force prescribed residual norms for the corresponding Q-OR method (i.e. for
the Hessenberg method), we can, as before, choose an upper triangular matrix
U−1 such that the absolute values of the inverses of the entries of the first row
are the given Hessenberg residual norms (allowing zero entries to force infinite
residual norms). With C being the companion matrix corresponding to the
prescribed eigenvalues, we set H = UCU−1. A and b are then constructed
from A = V HV −1 and b = V e1, where V is any nonsingular row permuted
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lower triangular matrix with unit norm columns. Using the same construction
but with the first row of U−1 satisfying the conditions (3.4), we can prescribe
quasi-residual norms for the CMRH method, with any nonzero eigenvalues.
We therefore have the following parametrization.

Theorem 4.1 The characteristic polynomial of A is χ(λ) = λn +
∑n−1

k=0 αkλk

and the Hessenberg (CMRH) method generates the residual norms ‖rO
1 ‖, . . . ,

‖rO
n−1‖ (generates the non-increasing quasi-residual norms ‖zM

1 ‖, . . . , ‖zM
n−1‖)

if and only if A = V UCU−1V −1, where C has the form (2.2), the first row(
1 g1 · · · gn−1

)
of U−1 satisfies (3.2) (satisfies (3.4)), V is a nonsingular row

permuted lower triangular matrix with unit norm columns and b = V e1.

With a particular choice of V we can not only prescribe CMRH quasi-
residual norms, but even CMRH residual norms.

Corollary 4.1 Any residual norm history (with infinite residual norms being
allowed) is possible for the Hessenberg method with any nonzero eigenvalues
of the system matrix. Any non-increasing residual norm history is possible for
the CMRH method with any nonzero eigenvalues of the system matrix.

Proof The first claim follows immediately from Theorem 4.1. The second claim
follows when we apply the CMRH method to the matrix H = UCU−1 with
b = e1, where U and C are chosen as in Theorem 4.1. Then both P and L in
(4.1) are the identity matrix and so is V . Thus V is in particular unitary and
the residual norms equal the prescribed quasi-residual norms. �

The situation is less straightforward if we wish to prescribe convergence
curves for the BiCG/QMR pair. A first complication is that the Hessenberg
matrix H generated in these methods is in fact tridiagonal, which puts addi-
tional conditions in the construction process of H = UCU−1. Second, infinite
BiCG residual norms cannot be prescribed arbitrarily. In fact, we will show
that some convergence curves with infinite BiCG residual norms are inadmiss-
able. Also, the choice of V in the parametrization A = V HV −1 is a little more
delicate.

The BiCG and QMR methods use the nonsymmetric Lanczos process to
generate a pair of bi-orthogonal bases, sometimes also known as the nonhermi-
tian Lanczos or the Bi-Lanczos process. In the following we will use the term
Bi-Lanczos process. It generates a pair of bases with three-term recurrences.
The first basis is an ascending basis for the Krylov subspaces Kk(A, b), k ≤ n,
represented by the columns vk of a nonsingular matrix V , just as for the pre-
vious pairs of methods. The second basis is an ascending basis for the Krylov
subspaces Kk(A∗, s), k ≤ n, represented by the columns ṽk of a nonsingular
matrix Ṽ . The shadow vector s must satisfy s∗b 6= 0, d(A∗, s) = n and is
frequently chosen as s ≡ b; in the following we will consider this choice. The
bi-orthogonality condition ṽ∗i vj 6= 0 for i = j and ṽ∗i vj = 0 for i 6= j can be
written as

Ṽ ∗V = Φ = diag(φ1, . . . , φn), φk 6= 0, k = 1, . . . , n.
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Now suppose we have any pair of bi-orthogonal bases stored in the nonsin-
gular matrices V, Ṽ such that V has unit norm columns. It can be generated by
applying the Bi-Lanczos process (a variant that uses the correct column scaling
of V ) to any matrix Â and starting vector b̂ provided the bi-orthogonalization
process runs to completion. Also suppose we have a tridiagonal matrix of the
form T = UCU−1 such that the absolute values of the inverses of the entries of
the first row of the upper triangular matrix U−1 are prescribed Bi-CG residual
norms and C is the companion matrix corresponding to prescribed nonzero
eigenvalues. We will discuss the existence of such a matrix T below. Then we
can define A = V TV −1 and b = V e1. It follows that

K =
(
b Ab A2b · · · An−1b

)
= V

(
e1 Te1 T 2e1 · · · Tn−1e1

)
= V U.

Moreover, defining T̃ ≡ ΦT ∗Φ∗ and using V ∗ = Φ∗Ṽ −1, we have A∗ = Ṽ T̃ Ṽ −1

and therefore(
b A∗b (A∗)2b · · · (A∗)n−1b

)
= Ṽ

(
e1 T̃ e1 T̃ 2e1 · · · T̃n−1e1

)
= Ṽ Ũ .

Thus the Bi-Lanczos process applied to A and b generates the bi-orthogonal
bases represented by V and Ṽ , A has the desired spectrum and U has the
desired first row forcing the prescribed Bi-CG residual norms. We note that
the problem of constructing matrices with a prescribed BiCG convergence
curve was also considered in [6]. This was done using the relations between
FOM/GMRES and BiCG/QMR. Also, given the results of BiCG on Ax = b,
in [6] a matrix B with the same eigenvalues as A and a right-hand side c are
constructed such that FOM applied to Bx = c yields the same convergence
curve. In [37] choices of the shadow vector s are presented which lead, for
some selected iteration numbers, to the same Bi-CG residual norms as the
residual norms obtained when applying a different Krylov method like, e.g.,
the GMRES method to the same linear system.

Along the same lines as in the above considerations one can find parametriza-
tions for other Q-OR/Q-MR methods, like truncated and restarted methods.

4.1 An inverse constrained tridiagonal eigenproblem

We have just seen that if we wish to prescribe eigenvalues and Bi-CG residual
norms simultaneously, we have to construct an upper triangular matrix U such
that the first row of U−1 is prescribed and such that the upper Hessenberg
matrix H = UCU−1 is tridiagonal with prescribed eigenvalues given by the
companion matrix C. This can be seen as an inverse nonsymmetric tridiagonal
eigenproblem, with an additional constraint for the change of basis matrix U.
We will first solve this problem when we prescribe finite Bi-CG residual norms
only, i.e. the first row of U−1 has no zero entries.

We use the results of Joubert [23] which state that for a non-derogatory
complex matrix, almost every starting vector r (i.e. except for a measure zero
set of vectors) with shadow vector s = r will generate a Bi-CG process that
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does not yield any breakdown, especially no so-called hard break-down. Several
types of breakdown are possible in the Bi-CG method, most of them originating
from a breakdown in the underlying Bi-Lanczos process. The nomenclature is
not fully unified in the litterature; a hard break-down according to [23] in
Bi-CG is an iteration, say number k, where the generated tridiagonal matrix
of size k is singular. Hence with as input matrix the companion matrix C
corresponding to the prescribed spectrum, almost every starting vector r with
shadow vector s = r will generate, after n iterations, a tridiagonal matrix T̂ of
size n. Clearly, T̂ has the same prescribed spectrum as C and, in addition, no
leading principal submatrix of T̂ is singular. Then we can generate the upper
triangular matrix Û = [e1, T̂ e1, . . . , T̂

n−1e1]. It follows from the remarks in
Section 2 that

T̂ = ÛCÛ−1.

The matrix Û−1 needs not have the first row equal to g =
(
1 g1 · · · gn−1

)
with the gk satisfying (3.2) for given residual norms ‖rO

k ‖. But the first row
of Û−1 has no zero entries, otherwise some leading principal submatrix of T̂
would be singular. We can always find a nonsingular diagonal matrix D such
that the first row of Û−1D equals g. Then with U = D−1Û ,

D−1T̂D = D−1ÛCÛ−1D = UCU−1,

and T ≡ D−1T̂D is the desired tridiagonal matrix. We proved the following.

Theorem 4.2 Any residual norm history with finite residual norms is possible
for the Bi-CG method with any nonzero eigenvalues of the system matrix. Any
decreasing residual norm history is possible for the QMR method with any
nonzero eigenvalues of the system matrix.

Proof Both claims follow when we apply the BiCG and QMR method to the
matrix T = UCU−1 with b = e1 from the preceeding discussion. Then V is
the identity matrix and is in particular unitary and the QMR residual norms
equal the prescribed quasi-residual norms. �

4.2 Banded Hessenberg matrices

We can also solve the constrained inverse eigenproblem for general banded
Hessenberg matrices. Banded Hessenberg matrices arise, for example, in look-
ahead and truncated variants of Krylov methods [22], [21], [41].

Due to the lack of space we do not give the details of the algorithm but the
construction consists of a backward algorithm starting with a random choice of
the last columns of U−1. If we would like to have a bandwidth m in the upper
triangular part of H, then we have to prescribe the last m columns of U−1 to
start the algorithm. Then the computation of the other columns of U−1 are
interleaved with the computation of the non-zero entries of H for which we
have to solve small upper triangular systems of order at most (m+1)×(m+1).
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4.3 Infinite residual norms

The previous sections showed that we can generate any Bi-CG convergence
curve with any spectrum, provided we do not prescribe infinite residual norms.
We next show that infinite residual norms cannot be forced at arbitrary pre-
determined iteration numbers. This result is a nonsymmetric analogue of a
well-known fact for the symmetric Lanczos process applied to indefinite sys-
tems, see, e.g., [5, Section 2.1]. We formulate it for the situation where the
underlying Bi-Lanczos process runs till completion, but it holds also when the
Bi-Lanczos process terminates prematurely, having found an A-invariant or
A∗-invariant Krylov subspace.

Theorem 4.3 Let the Bi-CG method be applied to a linear system Ax = b
with a nonsingular matrix A such that d(A, b) = n and d(A∗, s) = n. The
Bi-CG residual norms of two consecutive iteration numbers cannot be both
infinite.

Proof Let C be the companion matrix corresponding to the characteristic
polynomial of A, let T be the tridiagonal matrix produced by the Bi-Lanczos
process and let U = [e1, T e1, . . . , T

n−1e1], then U−1T = CU−1. The first
row of U−1 denoted by g = [1, . . . , gn−1] contains the Bi-CG residual norms
through |gk|−1 = ‖rBi−CG

k ‖. Equating the kth column and the first row in
U−1T = CU−1 for some k, 1 < k < n, we obtain

gk−2βk + gk−1γk + gkρk+1 = 0, (4.2)

where βk, γk and ρk+1 are the non-zero entries in the kth column of T . Per
assumption, all entries on the lower and upper diagonals of T next to the
main diagonal are nonzero, otherwise the Bi-Lanczos procedure would have
terminated early. Therefore equation (4.2) cannot be satisfied if gk−2 = gk−1 =
0 in combination with gk 6= 0 or if gk−2 6= 0 in combination with gk−1 = gk = 0.
By consecutively using the same rule for neighboring columns we conclude that
either (1) all gk, 1 ≤ k ≤ n − 1, are nonzero, (2) all gk, 1 ≤ k ≤ n − 1, are
zero, or (3) no two consecutive gk−1, gk are zero. The claim follows if we can
exclude the case (2) where gk = 0 for all 1 ≤ k ≤ n− 1. This would lead, with
the equation γ1 + g1ρ2 = 0 for the (1, 1)-entry of U−1T = CU−1, to γ1 = 0.
Then

det
(

0 β2

ρ2 γ2

)
6= 0,

contradicting g1 = 0. �

Thus if we allow infinite residual norms, then not every convergence curve
is admissable for Bi-CG. This is in contrast with the situation for FOM and the
Hessenberg method. Similarly, in contrast with GMRES and CMRH, two con-
secutive steps of stagnation of quasi-residual norms are impossible for QMR.

The question whether we can prescribe with a given spectrum of the sys-
tem matrix, infinite Bi-CG residual norms at given, non-consecutive iteration
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numbers amounts to solving an inverse tridiagonal eigenproblem where prin-
cipal leading submatrices of predetermined sizes must be singular. We did not
find any text addressing this problem in the literature. Though we were able to
derive partial solutions not reported here, we consider prescribing particular
gk’s to be zero as an open problem.

5 Influence of eigenvectors, right-hand side and Krylov basis

The results in the previous section show that there are sets of matrices with
different, even arbitrary eigenvalue distributions and right-hand sides giving
the same residual norms for Q-OR methods or the same quasi-residual norms
for Q-MR methods. Of course, this does not mean that the behaviour of these
methods is not influenced by the eigenvalues at all. It means that if we modify
eigenvalues, then to have the same (quasi-)residual norms, other objects related
to the linear system (eigenvectors, the right-hand side) must be modified and
indeed can be modified in an appropriate way. Formulaes which reveal the
complicated but precise interplay between eigenvalues, eigenvectors and right-
hand side when forming GMRES residual norms were given in [27] (and in [11]
for normal matrices). They are closed form expressions (unlike the norms of the
GMRES residual vectors in actual GMRES computations) and as such have
no immediate practical application but they give insight into when residual
norms can be expected to be governed by eigenvalues and when not.

In this section we present similar closed form expressions for general Q-OR
and Q-MR methods. For simplicity, we will not consider the case of defective
matrices (expressions for GMRES residual norms in this case can be found
in [27, Sections 3 and 4]). The main ingredient to write the (quasi)-residual
norms as a function of the eigenvalues and eigenvectors of A, is the following
generalization of a well-known result for GMRES; see [11] and the references
therein.

Theorem 5.1 Let us define the moment matrix M = U∗U and let Mk+1 be
the principal submatrix of M given by Mk+1 = U∗

k+1Uk+1. Then the norms of
the Q-OR residual and of the Q-MR quasi-residual vectors are given by

‖rO
k ‖2 =

1
(M−1

k+1)1,1 − (M−1
k )1,1

, ‖zM
k ‖2 =

1
(M−1

k+1)1,1

. (5.1)

Proof Since M−1
k+1 = U−1

k+1U
−∗
k+1, the (1, 1) entry of this matrix is

(M−1
k+1)1,1 = 1 + |g1|2 + · · ·+ |gk|2.

Using (3.2) and (3.4) this gives the claim. �

We now use that U in the definition of the moment matrix M = U∗U
satisfies U = V −1K and plug in the spectral decomposition of A for the
columns Akb of the Krylov matrix K. As before, it is assumed that K is
nonsingular, but the following result is essentially the same if A does not
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have distinct eigenvalues or when components of the right-hand side in the
eigenvector basis are zero.

Theorem 5.2 Let A be a diagonalizable matrix with a spectral factorization
XΛX−1 where Λ = diag(λ1, . . . , λn) contains the distinct eigenvalues, let b
be a vector of unit norm such that c = X−1b has no zero entries and let
Z = V −1X with V defined in (2.1). Then for k < n,

(M−1
k+1)1,1 = µN

k /µD
k+1,

where µN
1 =

∑n
i=1

∣∣∣∑n
j=1 Zi,j cj λj

∣∣∣2 , for k ≥ 2

µN
k =

∑
Ik

∣∣∣∣∣∣
∑
Jk

det(ZIk,Jk
) cj1 · · · cjk

λj1 · · ·λjk

∏
j`<jp∈Jk

(λjp
− λj`

)

∣∣∣∣∣∣
2

, and

µD
k+1 =

∑
Ik+1

∣∣∣∣∣∣
∑
Jk+1

det(ZIk+1,Jk+1) cj1 · · · cjk+1

∏
j`<jp∈Jk+1

(λjp
− λj`

)

∣∣∣∣∣∣
2

.

The summations are over all sets of indices Ik+1, Jk+1, Ik, Jk defined as I`

(or J`) to be a set of ` indices
(
i1, i2, . . . , i`

)
such that 1 ≤ i1 < · · · < i` ≤ n

and ZI`,J`
is the submatrix of Z whose row and column indices of entries are

defined respectively by I` and J`.

Proof We would like to use (5.1). We have M = U∗U = K∗V −∗V −1K. The
matrix A has been assumed to be diagonalizable with A = XΛX−1. Then
K = X

(
c Λc · · ·Λn−1c

)
with c = X−1b and

M =
(
c Λc · · · Λn−1c

)∗
X∗V −∗V −1X

(
c Λc · · · Λn−1c

)
.

Let Dc be the diagonal matrix with diagonal entries ci and let Vk+1 denote
the k + 1 first columns of the square Vandermonde matrix for λ1, . . . , λn with
entries (Vk+1)i,j = λj−1

i . Then the matrix Mk+1 can be written as

Mk+1 = V∗k+1D
∗
cX∗V −∗V −1XDcVk+1.

With F = V −1XDcVk+1, it is the product F ∗F of two n × (k + 1) matrices.
We can use Cramer’s rule and twice the Cauchy-Binet formula to compute the
determinants exactly as in [11], [27]. Therefore we omit the details. �

The theorem, in combination with Theorem 5.1, shows that the (quasi)-
residual norms in Q-OR/Q-MR methods depend upon the following three
types of objects: Eigenvalues, components of the right-hand side in the eigen-
vector basis and determinants of Z, i.e. of the eigenvector basis multiplied
with the inverse of the generated basis for the Krylov subspaces. As for true
OR/MR methods, the contribution of the right-hand side is restricted to its
components in the eigenvector basis. A difference with true OR/MR meth-
ods is that the involved Krylov subspace basis, which is not a priori given,
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plays a role. Even if A is normal, i.e. X∗X = I, this needs not imply that
the determinants in µN

k , µD
k+1 can be simplified, unless V is unitary. Bounds

on the (quasi)-residual norms involving κ(Z) or κ(Zdiag(c1, . . . , cn)) might be
derived along the same lines as was done in [27]. For low condition numbers,
they would imply a dominating influence of eigenvalues on convergence be-
havior. Nevertheless, Theorem 5.2 suggests that, in general, eigenvectors, the
right-hand side and the generated Krylov subspace basis can play a similarly
important role.

6 Conclusion

It is a well-known result that any non-increasing residual norm history is
possible for GMRES with any nonzero spectrum. We showed that it can be
generalized to any Krylov method classifiable as a Q-OR or Q-MR method
with a few slight modifications: For Q-OR methods the residual norm history
needs not be non-increasing and when using long recurrences any residual
norms including infinite norms (i.e. non-definable iterates) are possible. With
three-term recurrences any finite residual norm history is possible but two
consecutive infinite norms are not allowed. An open problem is whether any
residual norm history without consecutive infinite norms is possible. The proofs
are constructive and give parametrizations of the classes of matrices with a
given nonzero spectrum and right-hand sides such that prescribed residual
norms (or quasi-residual norms for Q-MR methods) are generated. We also
derived expressions of the Q-OR residual and Q-MR quasi-residual norms as
functions of the eigenvalues and eigenvectors. They are the same as those for
FOM and GMRES except for that the matrix of the Krylov subspace basis
vectors comes in.

In this paper we assumed exact arithmetic. However, the only hypothesis
which is made on the matrix V whose columns are the basis vectors of the
Krylov subspace is that it is nonsingular. Therefore, it can even correspond to
the computed basis vectors in finite precision arithmetic as long as V is of full
rank, but this remains a topic for further research. However, it must be noted
that in finite precision arithmetic the matrix U can be almost singular. To
see this consider the case of an orthonormal matrix V . Then the factorization
K = V U is a QR decomposition of the Krylov matrix K. In many cases the
matrix K is rank deficient and almost singular with very small singular values.
These troubles are reflected in U and not in V which is orthonormal or unitary.
Therefore, it is difficult to numerically compute large matrices U which yields
a prescribed convergence curve. Methods like FOM, GMRES and CMRH work
with the matrix H which is constructed from H = V ∗AV and which does not
suffer from the same problems as U . The matrix U is interesting for theoretical
purposes but not for computations in finite precision arithmetic.
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25. J. Liesen and Z. Strakoš. Krylov Subspace Methods, Principles and Analysis. Oxford
University Press, 2012.

26. G. Meurant. GMRES and the Arioli, Pták, and Strakoš parametrization. BIT,
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