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RATE OF CONVERGENCE TO EQUILIBRIUM AND
ŁOJASIEWICZ-TYPE ESTIMATES

TOMAŠ BÁRTA

Abstract. A well known result states that the Łojasiewicz gradient in-
equality implies some estimates of the rate of convergence to equilibrium
for solutions of gradient systems. We generalize this result to gradient-
like systems satisfying certain angle condition and Kurdyka-Łojasiewicz
inequality and to even more general situation. We apply the results to a
broad class of second order equations with damping.

1. Introduction

In this paper, we study rate of convergence to equilibrium of solutions to
gradient-like ordinary differential equations based on some generalizations
of the Łojasiewicz gradient inequality.

General assumptions. Throughout this paper, we assume that (M, g) is a
smooth Riemannian manifold, ‖ · ‖ is the norm on the tangent bundle TM induced
by the Riemannian metric g and d(·, ·) is the distance on M induced by g. We
assume that F : M → TM is a continuous vector field. We consider an ordinary
differential equation

(1) u̇ + F(u) = 0,

its bounded solution u ∈W1,1
loc ([0,+∞),M), and a point ϕ in the omega-limit set of

u,
ω(u) = {ϕ ∈M : ∃ tn ↗ +∞, u(tn)→ ϕ}.

Moreover, we assume that a continuously differentiable function E : M→ R is a a
strict Lyapunov function to (1), i.e.,

(2) 〈∇E(u),F(u)〉 > 0 whenever u ∈M, F(u) , 0.

There are many results saying that under additional conditions on E we
have u(t) → ϕ as t → +∞. The main goal of this paper is to find the rate of
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convergence, i.e. a function R as small as possible such that

d(u(t), ϕ) ≤ R(t) for all t ≥ 0.

Let us start with a special case when F = ∇E, then (1) becomes a gradient
system

u̇ + ∇E(u) = 0.
The classical result of Łojasiewicz (see [9]) states that u(t) converges to ϕ if
the Łojasiewicz gradient inequality

(LI) |E(u) − E(ϕ)|1−θ ≤ C‖∇E(u)‖ for all u ∈ N(ϕ)

holds with some C > 0 and θ ∈ (0, 1
2 ] (by N(ϕ) we denote some neigborhood

of ϕ). Moreover, there exist a, K > 0 such that for all t ≥ 0 it holds that

d(u(t), ϕ) ≤ Ke−at if θ =
1
2

and
d(u(t), ϕ) ≤ K(1 + t)

−θ
1−2θ if θ <

1
2
.

The result by Łojasiewicz was later generalized in several ways. First, the
inequality (LI) was generalized to the so called Kurdyka-Łojasiewicz inequality
(see [7])

(KLI) Θ(|E(u) − E(ϕ)|) ≤ ‖∇E(u)‖ for all u ∈ N(ϕ)

with a function Θ positive on (0,+∞) and satisfying Θ(0) = 0 and 1
Θ
∈

L1
loc([0, 1)) (if we take Θ(s) = s1−θ, then (KLI) becomes (LI)). In this case, we

have again convergence u(t) → ϕ as t → +∞ with convergence rate given
by

(3) d(u(t), ϕ) ≤ KΦ(ψ−1(t − t0)) for some K, t0 > 0 and all t > t0,

with

Φ(t) =

∫ t

0

1
Θ(s)

ds and ψ(t) = −

∫
1

Θ2(t)
dt.

The rate of convergence was proved by Chill and Fiorenza in [5].
Second, it was generalized to gradient-like system, i.e. ordinary differ-

ential equations wiht a strict Lyapunov function E (not neccessarily satis-
fying F = ∇E). In this case, it is not sufficient to assume that E satisfies
the Łojasiewicz or Kurdyka-Łojasiewicz inequality to obtain convergence
u(t) → ϕ. We need to add so called angle condition (see [1, Theorem 2.2], [6,
Proposition 5(a), Theorem 4], [8, Definition 1.1])

(AC) 〈∇E(u),F(u)〉 ≥ α‖∇E(u)‖ ‖F(u)‖ for some α > 0 and all u ∈ N(ϕ).

If we moreover assume the comparability condition

(C) c1‖F(u)‖ ≤ ‖∇E(u)‖ ≤ c2‖F(u)‖ for some c1, c2 > 0 and all u ∈ N(ϕ),
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then we can obtain the same rate of convergence as for gradient systems
(see Corollary 2 below). It is not surprising, since the orbits depend on the
direction of F only, the size of F determines how quickly the solution moves
along the orbit. Let us mention that (AC) and (C) together are equivalent to
the angle and comparability condition

(AC+C) 〈∇E(u),F(u)〉 ≥ c(‖∇E(u)‖2 + ‖F(u)‖2) for all u ∈ N(ϕ).

Further, in [2] we introduced a generalized Łojasiewicz condition

(GLI) Θ(|E(u) − E(ϕ)|) ≤
1

‖F(u)‖
〈∇E(u),F(u)〉 for all u ∈ N(ϕ),

that generalizes (AC+C) and (KLI) (i.e., (AC+C) and (KLI) imply (GLI)) and
is sufficient to obtain convergence u(t) → ϕ. We give an estimate of the
convergence rate for this case in Theorem 1, which is the main result of this
paper. We apply this result to a second order equation with a general (weak)
damping function (Theorems 5 and 6) and generalize the result by Chergui
[4, Theorem 1.3].

Finally, we present better estimates of the convergence rate in some cases.
In fact, all the estimates mentioned above use the inequlality

d(u(t), ϕ) ≤
∫ +∞

t
‖u̇(s)‖ds,

i.e., estimate the distance to the equilibrium by the length of the remaining
trajectory. This estimate is far from being optimal if the solution u has a
shape of a spiral, which is exactly the case if we consider a second order
equation with a weak damping (smaller than linear). We show that it can
be better to estimate d(u(t), ϕ) directly by a function of E(u(t)).

Section 2 is devoted to the abstract results, while in Section 3 we apply
these results to a damped second order equation and Section 4 contains
some technical Lemmas.

2. Main results

We formulate the main result of this paper (keeping in mind the general
assumptions introduced in the previous section).

Theorem 1. Let E and F satisfy (GLI) with a function Θ : [0, 1) → R+ such
that 1

Θ
∈ L1

loc([0, 1)) and Θ(s) > 0 for s > 0. Then u has finite length in (M, g)
and, in particular, lim

t→+∞
u(t) = ϕ in (M, g). Moreover, if α : (0, 1) → (0,+∞) is

nondecreasing and satisfies

(4) α(E(u(t))) ≤ ‖F(u(t))‖ for all t large enough,
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then there exist t0 > 0 such that

‖u(t) − ϕ‖ ≤ Φ(ψ−1(t − t0)) for all t > t0,

where

Φ(t) :=
∫ t

0

1
Θ(s)

ds and ψ(t) :=
∫ 1/2

t

1
Θ(s)α(s)

ds.

Let us remark that an example of such function α (and, in fact, the best
one) is

α(s) := min{‖F(u(t))‖ : E(u(t)) − E(ϕ) ≥ s}.

This function is well defined. Since {u(t) : t ∈ R+} ∪ {ϕ} is compact and so
the level set {u(t) : E(u(t)) ≥ s + E(ϕ)} is also compact. Therefore ‖F(u(t))‖
attains its minimum on this set. Positivity and monotonicity of α and (4)
follow immediately.

Proof. We have proved convergence in [2], Theorem 5. It remains to show the
moreover part. Without loss of generality we may assume E(ϕ) = 0. Since
α is nondecreasing, the Lebesgue integral in the definition of ψ exists and ψ
is decreasing, therefore invertible. We show below that lims→0+ψ(s) = +∞,
which implies that ψ−1 is defined on a neighborhood of +∞.

Let ε > 0 be small enough. For all t large enough we have E(u(t)) ∈ (0, ε)
and for almost all such t’s it holds that (by definition of ψ, (GLI) and (4))

d
dt
ψ(E(u(t))) = −

1
Θ(E(u(t)))α(E(u(t)))

〈∇E(u(t)), u̇(t)〉

=
1

Θ(E(u(t)))α(E(u(t)))
〈∇E(u(t)),F(u(t))〉

≥
1

Θ(E(u(t)))α(E(u(t)))
Θ(E(u(t)))‖F(u(t))‖

≥
1

Θ(E(u(t)))α(E(u(t)))
Θ(E(u(t)))α(E(u(t)))

= 1.

Fix t0 large enough (such that ψ(E(u(t0))) > 0) and integrate this inequality
from t0 to t > t0

ψ(E(u(t))) ≥ (t − t0) + ψ(E(u(t0))) ≥ t − t0.

From this inequality it follows that lims→0+ψ(s) = +∞. Sinceψ is decreasing,
we have E(u(t)) ≤ ψ−1(t − t0). Further, by (GLI), u̇ = −F(u) and by definition
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of Φ, we have

d(u(t), ϕ) ≤
∫ +∞

t
‖u̇(s)‖

≤

∫ +∞

t
−

1
Θ(E(u(s)))

〈∇E(u(s)), u̇(s)〉

= − lim
s→+∞

Φ(E(u(s))) + Φ(E(u(t)))

= Φ(E(u(t)))

≤ Φ(ψ−1(t − t0)).

�

Corollary 2. Let E and F satisfy (AC), eqrefC and (KLI) with a function Θ :
[0, 1) → R+ such that 1

Θ
∈ L1

loc([0, 1)) and Θ(s) > 0 for s > 0. Then u has finite
length in (M, g) and, in particular, lim

t→+∞
u(t) = ϕ in (M, g). Moreover, there exists

t0 > 0 such that

d(u(t), ϕ) ≤ Φ1(ψ−1
1 (t − t0)) for all t > t0,

where

Φ1(t) := c1

∫ t

0

1
Θ(s)

ds and ψ1(t) := c2

∫ 1/2

t

1
Θ2(s)

ds

for appropriate positive constants c1, c2.

Proof. Conditions (AC) and (KLI) imply

1
‖F(u)‖

〈∇E(u),F(u)〉 ≥ α‖∇E(u)‖ ≥ αΘ(|E(v) − E(ϕ)|),

so (GLI) holds with Θ replaced by Θ̃ := αΘ. Since Θ(|E(u) − E(ϕ)|) ≤
‖∇E(u)‖ ≤ c2‖F(u)‖ by (KLI) and (C), we can take α(s) = 1

c2
Θ(s) and apply

Theorem 1. �

The above results estimate the distance from the equilibrium by the length
of the remaining trajectory, i.e.

(5) ‖u(t) − ϕ‖ =

∫
∞

t
u̇(s)ds ≤

∫
∞

t
‖u̇(s)‖ds.

This estimate seems to be quite bad if the trajectory looks like a spiral;
then the remaining trajectory can be much longer than the distance to the
equilibrium.

Let us assume that (M, g) be an open subset of Rn with the Euclidean
metric. We denote the Euclidean norm by | · |. It is easy to show that if

(6) 〈F(u),u〉 ≥ α|F(u)| |u|
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for some fixed α > 0, then the estimate (5) is optimal. In fact,

−
d
dt
|u(t)| = −〈

u(t)
|u(t)|

, u̇(t)〉 = 〈
u(t)
|u(t)|

,F(u(t))〉 ≥ α|F(u(t))| = α|u̇(t)|

and after integration from T to +∞we obtain

|u(T)| ≥ α
∫ +∞

T
|u̇(t)|dt.

The estimate (6) means that E(u) = |u|2 is a Lyapunov function and ∇E
and F satisfy (AC). So, the estimate (5) is optimal even for some spirals
(logarithmic spiral). However, in many cases the estimate (5) is not optimal
and the following corollary yields a better result.

Corollary 3. Let the assumptions of Theorem 1 hold and let γ : (0, 1) → (0,+∞)
be a nondecreasing function satisfying γ(E(u) − E(ϕ)) ≥ |u − ϕ| for all u in a
neigborhood of ϕ. Then there exist t0 > 0 such that

|u(t) − ϕ| ≤ γ(ψ−1(t − t0)) for all t > t0.

Proof. As in the proof of Theorem 1 (assuming E(ϕ) = 0) we obtain E(u(t)) ≤
ψ−1(t − t0). Further,

|u(t) − ϕ| ≤ γ(E(u(t))) ≤ γ(ψ−1(t − t0))

since γ is nondecreasing. �

Let us mention that an example (and, in fact, the best one) of a function γ
from Corollary 3 is

γ(s) := sup{|u(t) − ϕ| : E(u(t)) − E(ϕ) ≤ s}.

Let us recall the Example 7 from [2]:

Example 4. Let M ⊆ R2 be the open unit disk, equipped with the Euclidean
metric. Let α ≥ 0, and let F(u) = F(u1,u2) = (|u|αu1 − u2,u1 + |u|αu2) and
E(u) = 1

2 (u2
1 + u2

2). Then

〈∇E(u),F(u)〉 = |u|2+α, |F(u)| = |u| ·
√

1 + |u|2α and |∇E(u)| = |u|.

The function E satisfies the Łojasiewicz inequality (LI) near the origin for
θ = 1

2 . But the angle condition (AC) does not hold on any neighbourhood
of the critical point (0, 0), so Corollary 2 does not apply (unless α = 0). On
the other side, we have

1
|F(u)|

〈E
′(u),F(u)〉 =

|u|1+α

√
1 + |u|2α

≥
1
√

2
|u|2(1−θ)

≥
1
√

2
E(u)1−θ

provided 0 < θ ≤ 1−α
2 . Hence, if 0 ≤ α < 1, then E satisfies (GLI) with

Θ(s) = 1
√

2
s1−θ, θ = 1−α

2 .
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We can apply Theorem 1 with α(s) = 2
√

s since for small s we have

inf{|u(t)|
√

1 + |u(t)|2α :
1
2
|u(t)|2 ≥ s} =

√

2s
√

1 + (2s)α ≤ 2
√

s.

Hence, ψ′(s) = csθ−3/2 andψ(s) = csθ−1/2 andψ−1(s) = cs
1

θ−1/2 and Φ = csθ (with
various constants c). Then,

|u(t)| ≤ Φ(ψ−1(t − t0)) ≤ C(t − t0)
θ

θ−1/2 = C(t − t0)
1
α−1.

If (AC+C) condition were satisfied, the decay of u would be exponential
due to the Łojasiewicz exponent equal to 1

2 . Since the (AC+C) condition is
not satisfied, the decay is only polynomial.

However, the above estimate is not optimal and we can get a better one
from Corollary 2. In fact, taking

γ(s) = sup
{√

x2 + y2 :
1
2

(x2 + y2) ≤ s
}

=
√

2s

we obtain

|u(t)| ≤
√

2C(t − t0)
1

θ−1/2 = C̃(t − t0)−
1
α .

This is a better result since − 1
α <

1
α − 1. Moreover, transformation to polar

coordinates show that this result is optimal. In fact, we obtain r′ = −rα+1,
which yields r(t) = c(t − t0)−1/α.

3. Second order equation with damping

In this section we apply the previous results to a damped second order
equation

(7) ü + G(u, u̇) + ∇E(u) = 0.

We studied such equations in [2] (see [2, Theorem 4]), where we proved
convergence to equilibrium under appropriate assumptions on E and G.
We have further generalized the result in [3, Theorem 6.1]. A special case
G(u, v) = |v|αv and E satisfying the Łojasiewicz inequality with an exponent
θwas considered by Chergui, he proved in [4, Theorem 1.3] the convergence
rate estimates

(8) |u(t) − ϕ| + |u̇(t)| ≤ C(1 + t)−
θ−α(1−θ)

1−2θ+α(1−θ) .

We generalize this estimate to more general dampings and more general E
and we obtain a better estimate for some special functions E.

Of course, equation (7) can be reduced to a first order system(
u̇
v̇

)
+ F(u, v) = 0 with F(u, v) =

(
−v

G(u, v) + ∇E(u)

)
.
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Now, we formulate our assumptions on E and G. We start with a first set
of assumptions and apply the approach from [2]. Then we introduce more
general assumptions and use the result from [3].

(E) Let E ∈ C2(Rn,R) satisfy (KLI) with a function Θ : [0, 1) → [0,+∞)
which is nondecreasing, sublinear (Θ(s+t) ≤ Θ(s)+Θ(t)), and it holds
that 1

Θ
∈ L1

loc([0, 1)) and 0 < Θ(s) ≤ c
√

s for all s ∈ (0, 1) and some c > 0.
(G) The function G : Rn

× Rn
→ Rn is continuous and there exists a

function h : [0,+∞) → [0,+∞), which is concave and nondecreasing
and it holds that
(g1) there exists C2 > 0 such that |G(w, z)| ≤ C2|z|h(|z|) for all z,w ∈ Rn,
(g2) there exists C3 > 0 such that |G(w, z)| ≥ C3|z|h(|z|) for all z,w ∈ Rn,
(g3) there exists C4 > 0 such that 〈G(w, z), z〉 ≥ C5|G(w, z)||z| for all

w, z ∈ Rn.
(g4) there exists C5 > 0 such that |∇G(w, z)| ≤ C5h(|z|) for all w, z ∈ Rn.
(g5) the function s 7→ 1

Θ(s)h(Θ(s)) belongs to L1((0, τ)),

Let us comment on these assumptions. First, function Θ(s) = s1−θ, θ ∈ (0, 1
2 ]

satisfies the assumptions in (E), in this case (KLI) reduces to (LI). Concerning
assumptions on G, let us first consider G(w, z) = g(|z|)z. Then conditions
(g1),(g2) say that the damping function g is between two multiples of a
concave function h (g can even oscilate between them but not much, due to
(g4)). Condition (g5) is a connection between E and G. If Θ(s) = s1−θ and
g(z) = |z|α, then (g5) reduces to α < θ

1−θ , which is the condition from [4]. In
this case, the following theorem gives the same rate of convergence as [4,
Theorem 1.3].

If G(w, z) = g(|z|)z, then the damping force acts in the direction opposite
to velocity. For general G, condition (g3) is an angle condition which says
that the angle between the damping force and minus velocity is less than π

2
uniformly.

Theorem 5. Let E and G satisfy (E) and (G). Let u ∈ W1,∞((0,+∞),Rn) ∩
W2,1

loc ([0,+∞),Rn) be a solution to (7) and ϕ ∈ ω(u). Then there exists t0 > 0
such that

(9) |u̇(t)| + |u(t) − ϕ| +
∫ +∞

t
|u̇(s)|ds ≤ Φ(ψ−1(t − t0)),

holds for all t > t0, some C1, C2 > 0 and

(10) Φ(t) = C1

∫ t

0

1
Θ(s)h(Θ(s))

ds and ψ(t) = C2

∫ 1
2

t

1
Θ2(s)h(Θ(s))

ds.

Proof. By [2, Theorem 4], the left-hand side of (9) tends to zero as t → +∞.
Let us assume without loss of generality that ϕ = 0 and E(ϕ) = 0 and denote
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v(t) := u̇(t). In the proof of [2, Theorem 4] we have shown that (for ε > 0
small enough)

E(u, v) =
1
2
|v|2 + E(u) + ε〈G(u,∇E(u)), v〉

is a strict Lyapunov function and satisfies ([2, last inequality of the proof])

Θ̃(E(u, v)) ≤
1

|F(u, v)|
〈∇E(u, v),F(u, v)〉

with Θ̃(s) := Θ(s)h(Θ(s)). Further, we have shown ([2, p.71, first inequality])

(11) Θ(E(u, v)) ≤ C(‖v‖ + ‖∇E(u)‖).

From the definition of F we have immediately

|F(u, v)| = (|v|2 + |G(u, v) + ∇E(u)|2)1/2
≥

1
2

(|v| + |G(u, v) + ∇E(u)|).

Now, we show that

(12) |F(u, v)| ≥ c(|v| + |∇E(u)|).

By the assumptions on G we have |G(u, v)| ≤ C|v|h(|v|). Now, we distingiush
two cases:

1. If (u, v) is such that C|v|h(|v|) ≤ (1 − α)|∇E(u)| for some α ∈ (0, 1), then

|F(u, v)| ≥
1
2

(|v| + |∇E(u)| − (1 − α)|∇E(u)|) ≥
α
2

(|v| + |∇E(u)|).

2. If (u, v) is such that C|v|h(|v|) ≥ (1 − α)|∇E(u)|, then for |v| small enough
(we are interested for small |v| only) we have h(|v|) ≤ c. Then

|v| + |∇E(u)| ≤ |v| +
cC

1 − α
|v| = C̃ ·

1
2
|v| ≤ C̃|F(u, v)|

We now have (12) and using (11) we obtain

|F(u, v)| ≥
c
C

Θ(E(u, v)).

It remains to apply Theorem 1 with α(s) = c
CΘ(s) and the proof is complete

(with C1 = 1 and C2 = C
c ). �

Now, let us further relax the assumptions on the damping function G. In
particular, if G(w, z) = g(|z|)z, then the following assumption say that g is
still bigger than a concave function h on (0, τ), but not necessarily less than
a multiple of h. Since we do not have any condition on ∇G, function g can
oscilate arbitrarily between h and a constant function on (0, τ).
(GG) The function G : Rn

× Rn
→ Rn is continuous and there exists τ > 0

such that
(gg1) there exists C2 > 0 such that |G(w, z)| ≤ C2|z| for all |z| < τ, w ∈ Rn,
(gg2) there exists C3 > 0 such that C3|z| ≤ |G(w, z)| for all z ≥ τ, w ∈ Rn,
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(gg3) there exists C5 > 0 such that 〈G(w, z), z〉 ≥ C5|G(w, z)||z| for all
w, z ∈ Rn.

(HH) For τ from condition (G) there exists a function h : [0,+∞)→ [0,+∞),
which is concave and nondecreasing on [0, τ] and satisfies

(hh1) |G(w, z)| ≥ h(|z|)|z| for all |z| < τ, w ∈ Rn,
(hh2) the function s 7→ 1

Θ(s)h(Θ(s)) belongs to L1((0, τ)),
(hh3) the function ψ : s 7→ sh(

√
s) is convex on [0, τ2].

Theorem 6. Theorem 5 remains valid if E and G satisfy weaker assumptions (E),
(GG), (HH).

Proof. By [3, Theorem 6.1], the left-hand side of (9) tends to zero as t→ +∞.
Let us assume without loss of generality that ϕ = 0 and E(ϕ) = 0. Denote
v(t) := u̇(t). In the proof of [3, Theorem 6.1] we have defined for ε > 0 small
enough

H(u, v) :=
1
2
|v|2 + E(u) + εh(|v|)〈∇E(u), v〉

In fact, h̃ used in [3] is equal to h on a neighborhood of zero and E in [3] has
the opposite sign. In the following we write u, v instead of u(t), v(t). In [3]
we have shown that (see [3, inequality (10)])

−
d
dt

H(u, v) ≥ ch(|v|)(|v| + |∇E(u)|)2

and (see [3, inequality (12)])

Θ(H(u, v))h(Θ(H(u, v))) ≤ C(|v| + |∇E(u)|)h(|v| + |∇E(u)|),

and (see [3, the inequality below (13)])

−
1

Θ(H(u, v))h(Θ(H(u, v)))
·

d
dt

H(u, v) ≥ c|v|.

Since

−
d
dt

H(u, v) = −〈∇H(u, v), (u̇, v̇)〉 = 〈∇H(u, v),F(u, v)〉,

we have

(13)
〈∇H(u, v),F(u, v)〉

c ·Θ(H(u, v)) · h(Θ(H(u, v)))
≥ |v|,

which is almost (GLI) with E = H, Θ̃(s) = cΘ(s)h(Θ(s)); the only difference is
that there is |v| instead of |F(u, v)| on the right-hand side of (13). It holds that

(14) Θ(H(u, v)) ≤ d(|v| + |∇E(u)|) ≤ d̃|F(u, v)|,

the first inequality is proven in [3, the inequality before (12)], the second
inequality follows by the same arguments as in the proof of Theorem 5.
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Therefore, we can continue similarly to the proof of Theorem 1

d
dt
ψ(H(u, v)) = −ψ′(H(u, v))〈∇H(u, v),F(u, v)〉

≥
cC2

Θ(H(u, v))
|v|

≥
cC2

d
·

|v|
|v| + |∇E(u)|

,

where the first inequality follows from (13) and the definition of ψ and
the second inequality follows from (14). In Lemma 8 we show that for an
appropriate L, t0 > 0 we have∫ t

t0

|v|
|v| + |∇E(u)|

≥ L(t − t0) for all t > t0.

Then we can complete the proof similarly to Theorem 1. We have (taking t0

large enough and C2 := d(cL)−1)

ψ(H(u(t), v(t))) ≥ cC2Ld−1(t − t0) + ψ(H(u(t0), v(t0))) ≥ t − t0,

so H(u(t), v(t)) ≤ ψ−1(t − t0). Finally, we complete the proof by the estimates

|u(t)| + |v(t)| ≤
∫ +∞

t
|u̇(s)| + |v̇(s)|

≤

√

2
∫ +∞

t
|F(u(s), v(s))|

≤

√

2K
∫ +∞

t
|v(s)|

≤

√

2K
∫ +∞

t

〈∇H(u(s), v(s)),F(u(s), v(s))〉
cΘ(H(u(s), v(s)))h(Θ(H(u(s), v(s)))

= Φ(H(u(t), v(t))) − lim
s→+∞

Φ(H(u(s), v(s)))

≤ Φ(ψ−1(t − t0)).

Here the first and second inequality are obvious, we applied Lemma 9 in the
third inequality, in the forth inequality we used (13) and in the next equality
we set C1 := K

c

√
2 in the definition of Φ. �

Now, we improve the above estimates by applying Corollary 3. In the
simplest case

ü + |u|αu + u = 0,
where u is a scalar function, the solutions are spirals. So, it is reasonable to
assume that the length of the remaining trajectory is much bigger than the
distance from the equilibrium. So, we improve the estimates from Theorem
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6 in case that the energy function E is nice. In particular, in addition to
the Kurdyka–Łojasiewicz inequality (KLI) we assume that also the opposite
is true. Moreover, we assume that |u| can be estimated by an appropriate
function of E.

(E1) Let E and Θ be the functions from (E) and ϕ be the point from
Theorem 5. Then there exists c > 0 such that

Θ(E(u) − E(ϕ)) ≥ c|∇E(u)| for all u ∈ N(ϕ).

Theorem 7. Let the assumptions of Theorem 5 hold with (E), (G) replaced by (E),
(E1), (GG), (HH). Moreover, let γ be a nondecreasing function satisfying

(15) γ(E(u) − E(ϕ)) ≥ |u − ϕ| for all u ∈ N(ϕ).

Then

(16) |u̇(t)| ≤ C
√
ψ−1(t − t0) and |u(t) − ϕ| ≤ Cγ(ψ−1(t − t0)),

holds for all t > t0 and some C > 0, ψ defined as in (10).

Before we prove this theorem, let us mention that if p ≥ 2, then E(u) =∑n
i=1 |ui|

p is a prototype of an energy satisfying the Łojasiewicz estimate with

θ = 1
p (i.e., Θ(s) = s

p−1
p ). Moreover, this function E satisfies (E1) and function

γ(t) = t
Θ(t) = t

1
p satisfies (15). If we take a damping function G(u, v) = |v|αv

for α < 1
p−1 as in [4] or any larger admissible function, we obtain

|u̇(t)| ≤ C(1 + t)−
1
2

1−2θ+α(1−θ) and |u(t)| ≤ C(1 + t)−
θ

1−2θ+α(1−θ) ,

which improves the convergence rate from [4, Theorem 1.3]. In particular,
if α = 0 (linear damping), then this result is equal to the one in [4, Theorem
1.3] and the weaker is the damping, the bigger is the difference between the
two results.

Proof. As in the proof of Theorem 6 we show H(u(t), v(t)) ≤ ψ−1(t− t0). Now,
we show that (assuming WLOG ϕ = 0, E(ϕ) = 0)

(17) H(u, v) ≥ c(|v|2 + E(u)).

By definition of H (see proof of Theorem 6) we have

H(u, v) ≥
1
2
|v|2 + E(u) − εh(|v|)|∇E(u)||v|.

Further,

|∇E(u)||v| ≤ CΘ(E(u))|v| ≤ C
√

E(u)|v| ≤
C
2

(|v|2 + E(u)).

Since h is bounded on a neighborhood of 0, by taking ε > 0 small enough
we obtain (17).
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Now, we have

|v(t)| ≤
1
√

c

√
H(u(t), v(t)) ≤

1
√

c

√
ψ−1(t − t0),

which is the first estimate in (16). Further, by monotonicity of γ we have

|u| ≤ γ(E(u)) ≤ γ(c−1H(u, v)) ≤ γ(c−1ψ−1(t − t0)),

which is the second estimate in (16), when we change the constant C2 in the
definition of ψ. �

4. Appendix

In this section we prove two technical Lemmas.

Lemma 8. There exist L, t0 > 0 such that∫ t

t0

|v(s)|
|v(s)| + |∇E(u(s))|

ds ≥ L(t − t0) for all t > t0.

Proof. We will show that if p(t) := |v(t)|
|∇E(u(t))| is small on an interval I, then we

can find an equally long interval immediately before I, where p(t) is large.
In particular, assume that for some tp > t0 it holds that |v(tp)| < κ|∇E(u(tp))|,
where κ is a small constant, which will be specified later. Define

t1 := sup{t < tp : |v(t)| ≥ κ|∇E(u(t))|},
t8 := sup{t < tp : |v(t)| ≥ 8κ|∇E(u(t))|}.

We show that tp−t1 < t1−t8. If we start in t0 where |v(t0)| > 8κ|∇E(u(t0))|, then
t8 > t0. Therefore, for any t > t0 we have |v(s)| ≥ κ|∇E(u(s))| for s ∈Mt ⊂ (t0, t)
and measure of Mt is at least 1

2 (t − t0). Therefore∫ t

t0

|v(s)|
|v(s)| + |∇E(u(s))|

ds ≥
∫

Mt

|v(s)|
|v(s)| + |∇E(u(s))|

ds

≥

∫
Mt

κ|∇E(u(s))|
κ|∇E(u(s))| + |∇E(u(s))|

ds

≥
1
2

(t − t0)
κ

κ + 1
,

what we wanted to prove (in the second inequality we used the fact that
x 7→ x

x+a is increasing for x ≥ 0 if a > 0).
So, it remains to show tp − t1 ≤ t1 − t8. The idea is that in the points where

v(t) is almost zero and ∇E(u(t)) is large in comparison to v(t) it holds that

v̇(t) = −∇E(u(t)) + O(|v|) and
d
dt
∇E(u(t)) = ∇2E(u(t))v(t) = O(|v|)
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(the first equality follows from the differential equation (7) and |G(u, v)| ≤
c|v|). It means that∇E(u) changes very slowly and the change of v is relatively
fast and (almost) constant concerning size and also direction.

Let tp be such that |v(tp)| < κ|∇E(u(tp))|. Then

(18) 〈v̇(t),−∇E(u(tp))〉 = 〈G(u(t), v(t)),−∇E(u(tp))〉 + 〈−∇E(u(t)),−∇E(u(tp))〉

First of all, let us denote K = |∇E(u(tp))| and estimate∣∣∣∣∣ d
dt
|∇E(u(t))|

∣∣∣∣∣ ≤ |∇2E(u(t))||v(t)| ≤ Cκ|∇E(u(t))|

and therefore for t ∈ (t1, tp)

e−Cκ(tp−t)K ≤ |∇E(u(t))| ≤ eCκ(tp−t)K.

To estimate the right-hand side of (18) we employ

|〈G(u(t), v(t)),−∇E(u(tp))〉| ≤ |G(u(t), v(t))| · |∇E(u(tp))|
≤ c|v(t)||∇E(u(t))|

≤ cκK2e2Cκ(tp−t)

and

〈∇E(u(t)),∇E(u(tp))〉 = |∇E(u(tp))|2 − 〈∇E(u(tp)) − ∇E(u(t)),∇E(u(tp))〉

≥ K2
− K|∇2E(u)(ξ)||v(ξ)||tp − t|

≥ K2
− KCκ(tp − t)KeCκ(tp−t)

= K2(1 − κC(tp − t)eCκ(tp−t)).

If t ∈ (t1, tp), t > tp − 1 and κ < (4eC)−1, κ < (4ec)−1, then right-hand side of
(18) is larger than

K2(1 − κ(C(tp − t)eCκ(tp−t) + ce2Cκ(tp−t))) ≥
1
2

K2.

Integrating (18) from t to tp, where we obtain

1
2

K2(tp − t) ≤ 〈v(tp) − v(t),−∇E(u(tp))〉

≤ K|v(t) − v(tp)|
≤ K(|v(t)| + |v(tp)|)

≤ K(κKeCκ(tp−t) + κK)

≤ κK2(1 + eCκ(tp−t))

≤
5
2
κK2
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if κ is small enough. So,
tp − t ≤ 5κ.

It means that taking κ small enough we have tp − t << 1 and the restriction
t > tp − 1 plays no role and we have the estimate

tp − t1 ≤ 5κ.

Now, we need to do similar estimates on (t8, t1). Let us denote K1 :=
|∇E(u(t1))|. Similarly as above we obtain

e−8Cκ(t1−t)K1 ≤ |∇E(u(t))| ≤ e8Cκ(t1−t)K1

Further, we have

|v̇(t)| ≤ |G(u(t), v(t))| + |∇E(u(t))|
≤ c|v(t)| + |∇E(u(t))|
≤ c8κ|∇E(u(t))| + |∇E(u(t))|

≤ (1 + 8cκ)e8Cκ(t1−t)K1

≤
6
5

K1,

provided t > t1 − 1 and κ is small enough. Integrating this inequality we
obtain

|v(t) − v(t1)| ≤
∫ t1

t
|v̇(s)| ≤

6
5

K1(t1 − t)

If t8 > t1 − 1, then

|v(t8) − v(t1)| ≥ |v(t8)| − |v(t1)|
= 8κ|∇E(u(t8))| − κ|∇E(u(t1))|

≥ 8κK1e−8κc(t1−t8)
− κK1

≥ 6κK1

and together with the previous inequality we have

t1 − t8 ≥ 5κ.

If t8 ≤ t1 − 1, then t1 − t8 ≥ 1 ≥ 5κ if κ is small enough. Together with the
upper estimate of tp − t1 we have

t1 − t8 ≥ 5κ ≥ tp − t1

and the proof is complete. �

Lemma 9. There exists K, t0 > 0 such that for all t > t0 it holds that∫ +∞

t
|F(u(s), v(s))| ≤ K

∫ +∞

t
|v(s)|.
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Proof. Since |F(u, v)| ≤ C(|v| + |∇E(u)|), it remains to estimate
∫ +∞

t
|∇E(u(s))|.

Let κ > 0 be small enough. Let us decompose (t,+∞) into two parts

M1 := {s > t : |v(s)| ≤ κ|∇E(u(s))|},
M2 := {s > t : |v(s)| > κ|∇E(u(s))|}.

Then ∫
M2

|∇E(u(s))|ds ≤
1
κ

∫
M2

|v(s)|ds.

If tp ∈M1, then we can find

t1 := inf{t > tp : |v(s)| ≥ κ|∇E(u(s))|}
t8 := inf{t > tp : |v(s)| ≥ 8κ|∇E(u(s))|}

and we can proof that t8 − t1 ≥ 5κ ≥ t1 − tp similarly to the proof of Lemma 8
(here we have t8 > t1 > tp unlike in Lemma 8, where we had t8 < t1 < tp, but
the situation is symmetric). Denote K1 := |∇E(u(t1))|. Similarly to the proof
of Lemma 8 we can prove on (tp, t1) the inequality

|∇E(u(t))| ≤ K1eCκ(t1−t)

and since the length of the interval (tp, t1) is less that 5κ we obtain

|∇E(u(t))| ≤ 2K1

if 5Cκ2 < ln 2. On the other hand, on (t1, t1 + 5κ) ⊂ (t1, t8) it holds that

|∇E(u(t))| ≥ K1e−8Cκ(t−t1)
≥ K1e−8·5Cκ2

≥ 2−8K1

if 5Cκ2 < ln 2. It follows that∫ t1

tp

|∇E(u(s))| ≤ (t1 − tp)2K1

≤ 5κ29
· 2−8K1

≤ 29
∫ t1+5κ

t1

2−8K1

≤ 29
∫ t1+5κ

t1

|∇E(u(s))|

The set M1 is (at most countable) union of intervals (tpn, t1n) which are
followed by corresponding intervals (t1n, t1n + 5κ) ⊂M2. Therefore, we have∫

M1

|∇E(u(s))|ds ≤ 29
∫

M2

|∇E(u(s))|ds ≤
29

κ

∫
M2

|v(s)|ds

and the proof is complete. �
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