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1. Motivation, equations and boundary conditions
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l d

Ω
x1

x2

ϕ

t

?

g

ρ = ρ0
[
1− β(T − T0)

]
, (1)

ρ0 . . . reference density, ρ . . . density
T0 . . . reference temperature, T . . . temperature,
β . . . coefficient of thermal expansion
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The acting body force:

ρg = ρ0
[
1− β(T − T0)

]
g. (2)

The Navier–Stokes equation:

−ν∆u + (u · ∇)u +∇ p
ρ0

=
[
1− β (T − T0)

]
g, (3)

The condition of incompressibility:

div u = 0. (4)

The equation of balance of internal energy:

u · ∇T = κ∆T. (5)
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Boundary conditions for temperature:

T = TAB onAB and T = TCD onCD, (6)

∂1T = 0 onAD ∪ CD. (7)

Conditions of compatibility:

T ′AB(0) = T ′AB(l) = T ′CD(0) = T ′CD(l) = 0, (8)

Boundary condition for velocity:

u = 0 on∂Ω. (9)

We denote by (P1) the boundary–value problem (3), (4), (5), (6), (7), (9).
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In order to obtain a problem with homogeneous boundary conditions, we put

T = Text + θ, (10)

where
Text(x1, x2) = TAB(x1) +

x2

d

[
TCD(x1)− TAB(x1)

]
,

andθ is a new unknown function. Substituting forT from (10) to (3) and (5), we
obtain the equations

−ν∆u + (u · ∇)u +∇ p
ρ0

=
[
1− β (Text + θ − T0)

]
g, (11)

−κ∆θ + u · ∇θ =
[
κ∆Text − u · ∇Text

]
. (12)

Functionθ should now satisfy the homogeneous boundary conditions

θ = 0 on AB ∪ CD, (13)

∂1θ = 0 on AD ∪ BC. (14)

We denote by (P2) the boundary–value problem (4), (9), (11), (12), (13), (14).
Problems (P1) and (P2) are related through formula (10).
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Mathematical analysis of problem (P2):

• Existence of a solution (with a general specific body forcef ).

• Structure of the set of solutions for in dependence on the general specific body
forcef .

• Structure of the set of solutions in the special case when the driving specific body
force essentially equals the gravity. Dependence of solutions on the angle of in-
clination.
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2. Existential theory for problem (P2)

Some previous related results:

• P. Rabinowitz (1968)

◦ Existence of a steady solution of the three dimensional Bénard problem be-
tween two parallel horizontal planes, in the case when the flow is driven by the
gravity force.

◦ Assumptions thatTlow (the temperature at the lower plane),Tupp (the tempera-
ture at the upper plane) are constant,Tupp < Tlow.

◦ Assumption that and the so called Rayleigh numberR := gβ(Tlow−Tupp)h3/(16κν)
is “sufficiently close” to some of the eigenvalues of a certain linearized problem
associated with the original nonlinear problem.

◦ The question of non–uniqueness of solutions is studied by means of bifurcations
in dependence of the varying Rayleigh number.
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• H. Morimoto (1991, 2007, 2010)

◦ DomainΩ is supposed to be smooth and bounded.

◦ Inhomogeneous boundary conditions for velocity and temperature.

◦ Existence of a weak solution.

In contrast to Morimoto,

• we consider the heat convection in a domain with corners,

• the fact thatΩ is two–dimensional and its special shape enable us to obtain other
estimates of a solution than in the papers by Morimoto,

• we prove the existence of a steady weak solution of the problem (P2) for any
functionf ∈ Lα(Ω) (α > 1),

• we show that every weak solution of the problem (P2) is in fact a strong solution.
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◦ We denote byV (Ω) the space of functions fromW 1,2(Ω) whose traces onAB
andCD are zero.

◦ X := W1,2
0,σ(Ω)× V (Ω)

The weak formulation of problem (P2):

f ∈ Lα(Ω) (for someα > 1)

We look for(u, θ) ∈ X such that the integral identities∫
Ω

[
ν∇u : ∇w + (u · ∇)u ·w

]
dx =

∫
Ω

[
1− β (Text + θ − T0)

]
f ·w dx, (15)∫

Ω

[
κ∇θ · ∇ϑ+ (u · ∇θ)ϑ

]
dx = −

∫
Ω

[
κ∇Text · ∇ϑ+ (u · ∇Text)ϑ

]
dx. (16)

hold for all (w, ϑ) ∈ X .
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Theorem 1 (existence of a strong solution of problem (P2)).

Let functions
f ∈ Lα(Ω) (for someα > 1) andTAB, TCD ∈ C3([0, l]), satisfying (8), be given.

Then problem (P2) has at least one weak solution(u, θ).

Functionu belongs toW1,2
0,σ(Ω) ∩W2,α0(Ω) (whereα0 := min{2; α}).

Functionθ is in V (Ω) ∩W 3,q(Ω) for eachq ∈ (1,∞) (if α ≥ 2) or
q ∈ (1, 2α/(2− α)) (if 1 < α < 2).

Consequently, there existsp ∈ W 1,α0(Ω) so that the triplet(u, p, θ) represents a
strong solution of problem(P2).

Remark.

Since functionp enters problem (P2) only through the gradient∇p, it can always be
chosen so thatp ∈ W 1,α0

mv (Ω). Thenp is uniquely given byf , u andθ.
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Principle of the proof:

We assume that(u, θ) is a weak solution of problem (P2). We use twobasic tools:

I. Solutions of the Stokes problem

−ν∆u +∇P = F in Ω,

div u = 0 in Ω,

v = 0 on∂Ω

in a 2D polygonal domainΩ satisfy the estimate

‖u‖2,s + ‖∇P‖s ≤ C ‖F‖s (17)

for 1 < s ≤ 2. SeeKellog and Osborn (1976), Grisvard (1979), Girault and
Raviart (1986).

Assuming that(u, θ) is a weak solution of problem (P2), we show that

F := (u · ∇)u +
[
1− β (Text + θ − T0)

]
f ∈ Ls(Ω) for 1 < s < 2.

So the first application of (17) yields the estimate of‖u‖2,s for 1 < s < 2.
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II. Solutionz os the Poisson equation∆z = G the homogeneous boundary condi-
tion in a smooth domain̂Ω satisfies the estimate

‖z‖k,s; Ω̂ ≤ C ‖G‖k−2,s; Ω̂ .

This estimate cannot be directly applied to the equation

−κ∆θ + u · ∇θ =
[
κ∆Text − u · ∇Text

]
, (12)

because this equation is fulfilled in the non–smooth domainΩ. This is why we extend

◦ u1 as a2d–periodic odd function

◦ u2 as a2d–periodic even function

◦ θ as a2d–periodic even function

in variablex1.

We show that the extended functionθ̂ is a weak solution of equation (12) in the larger
domainΩ̂, see the next picture.
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-
x1

6x2

Ω̂
A B

D C

supp η Ω

−l 2l0 l

We apply Grisvard’s estimates to the boundary–value problem for the functionηθ̂

(which satisfies the homogeneous Dirichlet boundary condition on∂Ω̂), and using
the bootstrapping argument, we prove the lemma.

We are limited by the fact that the extended functionû is in W1,k(Ω̂) for each1 <
k < 2s/(2− s), but it is not inW2,s(Ω̂).

We successively derive the estimates

‖u‖2,α0
+ ‖∇p‖α0

≤ C
(
‖∇u‖2, ‖∇θ‖2, ‖f‖α0

)
, (18)
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‖θ‖3,q ≤ C
(
‖u‖2,s

)
, (19)

−(Tmax − Tmin) ≤ θ(x) ≤ Tmax − Tmin, (20)

Tmin ≤ T (x) ≤ Tmax, (21)

‖∇u‖2 ≤ C
[
1 + β (T0 − Tmin)

]
‖f‖α , (22)

‖∇θ‖2 ≤
(
Cd2 + κ

√
d
)
‖∇Text‖∞ , (23)

in Ω, where
Tmin := min

0≤t≤l
min{TAB(t), TCD(t)},

Tmax := max
0≤t≤l

max{TAB(t), TCD(t)}.

Existence of a solution of problem (P2) can be finally proven e.g. by means of the
Leray–Schauder fixed point principle. �
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3. Structure of the solution set of problems (P1) and (P2)

We further assume, for convenience, thatf ∈ L2(Ω) (i.e. α = 2). Then
u ∈W1,2

0,σ(Ω) ∩W2,2(Ω), θ ∈ V (Ω) ∩W 3,q(Ω) for all q ∈ (1,∞) and
p ∈ W 1,2

mv (Ω).

Functionθ is uniquely determined byu. Henceθ = θ(u) and we may consider only
(u, p) to be the strong solution of (P2).

X := W1,2
0,σ(Ω) ∩W2,2(Ω),

G(u, p) := −ν∆u + (u · ∇)u +∇ p
ρ0
,

F(u, p) :=
(

1− β
[
T (u)− T0)]

)−1
G(u, p). (24)

We can suppose without loss of generality that the reference temperatureT0 is chosen
so that they satisfy the condition

1 + βT0 > βTmax . (25)
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Then, using inequalities (21), we observe thatT (u) satisfies

1− β
[
T (u)− T0

]
> 1− β(Tmax − T0) > 0 in Ω. (26)

We denote byS(f) the solution set of problem (P1) (or (P2)).

The inclusion(u, p) ∈ S(f) can be equivalently written:

F(u, p) = f (27)

We can successively prove the lemmas:

Lemma 1 The operatoru 7→ T (u) is a C2–mapping fromX to W 2,r(Ω) (for any
r ∈ (1, 2)).

Lemma 2 OperatorF is aC2–mapping fromX×W 1,2
mv (Ω) into L2(Ω).

Lemma 3 OperatorF is a proper mapping fromX×W 1,2
mv (Ω) to L2(Ω).

(OperatorF is said to beproper if, for any compact setK ⊂ L2(Ω), the pre–
imageF−1(K) is compact inX ×W 1,2

mv (Ω). For closed operators, the properness is
equivalent to the property “S(f) is compact for allf ”.)
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Lemma 4 OperatorF is a Fredholm mapping fromX×W 1,2
mv (Ω) to L2(Ω)

of index0.

A closed linear operatorL from X × W 1,2
mv (Ω) into L2(Ω) is called aFredholm

operator if its rangeR(L) is closed and both the numbersnulL (the nullity of L,
i.e. the dimension ofKer(L)) anddef L (the deficiency ofL, i.e. the dimension of
the quotienr spaceL2(Ω)|R(L)) are finite.

The nonlinear operatorF is said to be aFredholm mapping if the Fŕechet differen-
tial
[
F′(u, p)

]
(u∗, p∗) is a linear Fredholm operator (in dependence onu∗, p∗) from

X×W 1,2
mv (Ω) into L2(Ω) for all (u, p) ∈ X×W 1,2(Ω).

In this case,ind F′(u, p) := nul F′(u, p) − def F′(u, p) is independent of(u, p) and
it is called theindex of operator F.

Recall that the so calledsingular valuesof F are images of singular points, i.e. the
points(u, p) ∈ X × W 1,2

mv (Ω) whereF′(u, p) is not surjective. All other points in
L2(Ω) are said to be theregular valuesof F. Thus, if f ∈ L2(Ω) is a regular value
of F, operatorF′(u, p) is surjective for all(u, p) ∈ S(f).
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SinceF : X × W 1,2
mv (Ω) → L2(Ω) is a properC2–Fredholm mapping of index0,

the setO of regular values ofF is open and dense inL2(Ω) (by to the Sard–Smale
theorem).

Due to the Preimage Theorem (see e.g. the book by Zeidler),S(f) is aC2–Banach
manifold inX×W 1,2

mv (Ω) for eachf ∈ O.

Furthermore,S(0) reduces to just one point(0, 0). Expressing explicitlyF′(0, 0),
one can show thatdim KerF′(0, 0) = 0. Connecting now homotopically pointf ∈ O
with 0, we conclude thatS(f) is finite.

Thus, we arrive at the theorem:
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Theorem 2.

There exists an open dense subsetO ⊂ L2(Ω) with the properties:

1) For everyf ∈ O the setS(f) is finite.

2) The number of elements ofS(f), for f in every connected component ofO, is
constant.

3) Each element ofS(f) is aC2–function off for f in every connected component
of O.
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4. The case when the body force is essentially the gravity
and angleϕ varies

f ≡ fϕ := −geϕ + h, (28)

whereeϕ = (sinϕ, cosϕ).

The caseh = 0, TAB, TCD constant, and small Rayleigh number.

In this case, it has been observed in experiments that the velocityu is also “small” if
angleϕ is “small”. Particularly,u = 0 if ϕ = 0.

Using the assumptions thath = 0 andTAB andTCD constant, multiplying this equa-
tion by u, the equation for thermal convection/conduction byθ, integrating by parts
and using inequalities (20) and the condition

gβd3 |TAB − TCD| < κν, (29)

we obtain:

4. The case when the body force is essentially the gravity 20 / 24



‖∇u‖2 ≤
gβκ |TCD − TAB| d (sinϕ)

√
ld

νκ− gβd3 |TCD − TAB|
=: c1 sinϕ, (30)

‖∇θ‖2 ≤
gβ |TCD − TAB|2 d2 (sinϕ)

√
ld

νκ− gβd3 |TCD − TAB|
=: c2 sinϕ. (31)

Some observations.

These estimates show thatu → 0 in W1,2
0,σ(Ω) andθ → 0 in V (Ω) for sinϕ → 0

(i.e. forϕ→ 0 or ϕ→ π).

Particularly, ifϕ = 0 or ϕ = π then the only possible solution isu = 0, θ = 0.

However,u = 0, θ = 0 is not the trivial solution in the case0 < ϕ < π.

(P2) does not generally have a trivial solution if functionsTAB, TCD are not constant.
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The case of varying angleϕ.

For each fixed considered perturbationh ∈ L2(Ω) in formula (28), the family
{fϕ}0≤ϕ≤π forms a continuous curve in the spaceL2(Ω).

Question: Does this curve lie in setO for “most values” ofϕ ?

We write equation (27) in the form

A(u, p, ϕ) := F(u, p) + geϕ = h (32)

and we consider the operatorA on the left hand side to be the mapping fromX ×
W 1,2

mv (Ω)× (0, π) to L2(Ω).

One can verify thatA is a properC2–Fredholm mapping ofX×W 1,2
mv (Ω)× (0, π) of

index1.

Applying similar considerations and tools as before, we prove the theorem:
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Theorem 3.

There exists an open dense subsetM ⊂ L2(Ω) such that to everyh ∈ M there is
an open dense setΦ = Φ(h) ∈ (0, π) with the property that forϕ varying in each
connected component ofΦ, the set of pairs(u, p) such that(u, p, ϕ) satisfies equation
(32) forms a system of finitely many1–dimensionalC2–manifolds (i.e.C2–curves)
in X×W 1,2

mv (Ω).

Since setM is open and dense inL2(Ω), the information provided by Theorem 3 is
“generic” with respect to the choice of functionh on the right hand side of (32),
or, in other words, it holds for “almost all”h ∈ L2(Ω).
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Thank you for the attention.
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