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1. Motivation, equations and boundary conditions

p = po|l—0(T—-T),

po ... reference density, p ... density
Ty ... reference temperature, T ... temperature,
6 ... coefficient of thermal expansion

(1)



The acting body force:

pg = po |1 =BT -Ty) e (2)

The Navier—Stokes equation:

—vAu+ (u-Vyu+ v% = 1-8(T-T)e, 3)

The condition of incompressibility:

diva = 0. (4)

The equation of balance of internal energy:

u-VT = gAT. (5)



Boundary conditions for temperature:

T=T4p ONAB and T =Tgp onCD, (6)
oT =0 onAD UCD. (7)

Conditions of compatibility:

TAB(O) - TAB(Z) - TCIJD(O) - Té‘D(l) = 0, (8)

Boundary condition for velocity:

u=20 on of). (9)

We denote by (R) the boundary—value problem (3), (4), (5), (6), (7), (9).
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In order to obtain a problem with homogeneous boundary conditions, we put
T — Text + 97 (10)

where x
Toxe(x1,79) = Tap(x1) + 32 [Tep(z1) — Tap(z1)],

andé is a new unknown function. Substituting f@r from (10) to (3) and (5), we
obtain the equations

—vAu+ (u-V)quV% = 1-B(Tw+0-T) e (11)
—kAO+u-Vo = [/ﬂ;ATQXt —u- VTeXt}. (12)

Functionf should now satisfy the homogeneous boundary conditions
0 =20 on ABUCD, (13)
010 = 0 on AD U BC. (14)

We denote by (B) the boundary—value problem (4), (9), (11), (12), (13), (14).
Problems (IP) and (B) are related through formula (10).



Mathematical analysis of problem (B):
e Existence of a solution (with a general specific body fdie

e Structure of the set of solutions for in dependence on the general specific body
forcef.

e Structure of the set of solutions in the special case when the driving specific body
force essentially equals the gravity. Dependence of solutions on the angle of in-
clination.



2. Existential theory for problem (P-)

Some previous related results:

o Existence of a steady solution of the three dimensior&iad problem be-
tween two parallel horizontal planes, in the case when the flow is driven by the
gravity force.

o Assumptions thafj,,, (the temperature at the lower plang),, (the tempera-
ture at the upper plane) are constant,, < Zioy-

o Assumption that and the so called Rayleigh numer= g3 (Tiow—Topp) h*/ (1651)
is “sufficiently close” to some of the eigenvalues of a certain linearized problem
associated with the original nonlinear problem.

o The question of non—uniqueness of solutions is studied by means of bifurcations
in dependence of the varying Rayleigh number.



o Domain(? is supposed to be smooth and bounded.
o Inhomogeneous boundary conditions for velocity and temperature.
o Existence of a weak solution.

In contrast to Morimoto,
e we consider the heat convection in a domain with corners,

e the fact that? is two—dimensional and its special shape enable us to obtain other
estimates of a solution than in the papers by Morimoto,

e we prove the existence of a steady weak solution of the probleinf¢P any
functionf € L*(Q2) (o > 1),

e we show that every weak solution of the problem) (B in fact a strong solution.



o We denote by (2) the space of functions frorii’1*(Q2) whose traces onl B
andC'D are zero.

o X 1= Wy (Q) x V(Q)
The weak formulation of problem (P»):
f € L*(Q) (for somea > 1)

We look for (u, #) € X such that the integral identities

/[I/Vu:VW—I—(u-V)u-W] dx = /[1—B(Text+9—To)}f-wdx, (15)
0 0

/ [KVQ VI + (u- Vo) 19} dx = — / [KVTeXt VI + (u- Vi) 79] dx. (16)
Q Q

hold for all (w,d) € X.



Theorem 1 (existence of a strong solution of problem (£).

Let functions
f € LY(Q) (for somea > 1) andTap, Tcp € C3([0,1]), satisfying (8), be given.

Then problem (B) has at least one weak solution, 7).

Functionu belongs toW(l)f,(Q) N W22(Q) (whereag := min{2; a}).
Functiond is in V(Q) N W34(Q) for eachq € (1, c0) (if a > 2) or
g€ (1,2a/(2—a)) (if 1l <a<?2).

Consequently, there exists € W1 () so that the tripletu, p, §) represents a
strong solution of probler(P,).

Remark.

Since functiorp enters problem (B only through the gradieri¥p, it can always be
chosen so that € W12 (Q). Thenp is uniquely given byf, u andé.

mv



Principle of the proof:

We assume thdiu, 6) is a weak solution of problem ¢ We use twdasic tools:

I. Solutions of the Stokes problem

—vAu+VP = F in €2,
divua = 0 in Q,
v=20 on of?

in a 2D polygonal domaif satisfy the estimate
[allos + [[VP[ls < CF[ (17)

forl < s < 2. See ) ,

Assuming thatu, #) is a weak solution of problem ¢}, we show that
F:=(u-Vu+|[1-8(Tw+0-Tp)|f € L°(Q) forl<s<2.
So the first application of (17) yields the estimaté|af|, ; for 1 < s < 2.



Il. Solutionz os the Poisson equatiakz: = ¢ the homogeneous boundary condi-
tion in a smooth domaif® satisfies the estimate

Izl 50 < CUGI; 950
This estimate cannot be directly applied to the equation
—kAfO+u-Vo = [/ﬁJATeXt —u- VTeXt}, (12)

because this equation is fulfilled in the non—-smooth domainhis is why we extend
o up as a2d—periodic odd function

o uy as a2d—periodic even function

o 0 as a2d—periodic even function

in variablex;.

We show that the extended functibis a weak solution of equation (12) in the larger
domains?2, see the next picture.
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We apply Grisvard’s estimates to the boundary—value problem onr the fumﬁon
(which satisfies the homogeneous Dirichlet boundary conditiof$®y and using

the bootstrapping argument, we prove the lemma.

We are limited by the fact that the extended functibis in W*(Q) for eachl <

k< 2s/(2 — s), butitis not iNW25(Q).

We successively derive the estimates

lallzaq + 1VPlay < C(IIVullz, [VO]l2, [[£]la,).

(18)



10114 < C(llulls), (19)
—(Tnax = Tnin) < 0(%) < Tnax — Tinim, (20)
Thin < T(x) < Thax, (21)

[Vully < C[1+8(To = Tin)] [I£]la (22)

VO], < (Cd*+ kVd) |V Tt |0 (23)

in 2, where
Twin = min min{T4p(t), Tep(t)},

0<t<li

= max max{Tap(t), Tep(t)}.

0<t<l

max

Existence of a solution of problem {Pcan be finally proven e.g. by means of the
Leray—Schauder fixed point principle. ]



3. Structure of the solution set of problems (R) and (Ps)

We further assume, for convenience, that L2(Q) (i.e. « = 2). Then
ue WiZ(Q)nW24(Q), 0 € V(Q) nTW34(Q) for all ¢ € (1, 00) and
p € WL2(Q).

mv

Functiond is uniquely determined by. Henced = 6(u) and we may consider only
(u, p) to be the strong solution of {R

X = Wyl nW>(Q),
G(u,p) = —yAu+(u-V)u—|—V%,

Swp) = (1510 -1)]) Sup) (24)

We can suppose without loss of generality that the reference tempéfgtamchosen
so that they satisfy the condition

1+BTO > BTmax- (25)



Then, using inequalities (21), we observe that) satisfies
1-3[T(a)—Ty] > 1—B(Tmax—Tp) > 0 inQ. (26)

We denote by5(f) the solution set of problem (P(or (P)).

The inclusion(u, p) € S(f) can be equivalently written:
S(u,p) = f (27)

We can successively prove the lemmas:

Lemma 1 The operatoru — T'(u) is a C*~mapping fronX to W?2"(Q) (for any
r e (1,2)).

Lemma 2 Operatorg is a C*~mapping fromx x W.12(Q) into L(Q).
Lemma 3 Operatorg is a proper mapping fronk x W1l2(Q) to L*(Q).

(Operatorg is said to beproper if, for any compact setx c L%(Q2), the pre—
imageF (K is compact inX x Wl2(Q). For closed operators, the properness is
equivalent to the propertyS(f) is compact for alf”.)



Lemma 4 Operatorg is a Fredholm mapping frot x W12(Q) to L2()
of index.

A closed linear operatof. from X x Wl2(Q) into L?(Q) is called aFredholm
operator if its range R(L) is closed and both the numbersl L (the nullity of L,
i.e. the dimension oKer(L)) anddef L (the deficiency of_, i.e. the dimension of
the quotienr spack*(2)|g(z)) are finite.

The nonlinear operat@ is said to be &redholm mapping if the Frechet differen-
tial [&’(u,p)} (u*, p*) is a linear Fredholm operator (in dependencaidyp*) from
X x Wh2(Q) into L2(Q) for all (u,p) € X x W2(Q).

In this caseijnd §'(u, p) := nul§'(u, p) — def F'(u, p) is independent ofu, p) and
it is called theindex of operator 3.

Recall that the so callesingular valuesof § are images of singular points, i.e. the
points (u,p) € X x WL2(Q) whereF (u, p) is not surjective. All other points in
L?(2) are said to be theegular valuesof §. Thus, iff € L%(Q) is a regular value
of §, operatorF’(u, p) is surjective for allu, p) € S(f).



SinceF : X x Wl2(Q) — L%*(Q) is a properC?—Fredholm mapping of inde,
the setO of regular values of is open and dense ih*(Q2) (by to the Sard—Smale
theorem).

Due to the Preimage Theorem (see e.g. the book by Zeidléf),is a C*—Banach
manifold inX x WL2(Q) for eachf € O.

FurthermoreS(0) reduces to just one poiri0,0). Expressing explicithyg’(0,0),
one can show thatim Kerg’' (0, 0) = 0. Connecting now homotopically poifitc O

with 0, we conclude thas(f) is finite.

Thus, we arrive at the theorem:



Theorem 2.

There exists an open dense suli@et L*(2) with the properties:
1) For everyf € O the setS(f) is finite.

2) The number of elements d(f), for f in every connected component ©f, is
constant.

3) Each element of (f) is aC*—function off for f in every connected component
of O.



4. The case when the body force is essentially the gravity
and angley varies

f =1, .= —ge,+h, (28)
wheree, = (sin ¢, cos ¢).

The caseh = 0, Ty, T¢p constant, and small Rayleigh number.

In this case, it has been observed in experiments that the velotstglso “small” if
angley is “small”. Particularlyu = 0 if ¢ = 0.

Using the assumptions that= 0 and74z and7p constant, multiplying this equa-
tion by u, the equation for thermal convection/conductiordhyntegrating by parts
and using inequalities (20) and the condition

9B8d°* |Tap — Tep| < kv, (29)

we obtain:



gﬁlilTCD—TAB|d(Sing0) \/ld .
V < =: 30

98|Tep — Tapl* d* (sinp) Vid
vk — gBd® |Tep — Tapl

IVO|ly < =: ¢ sinp. (31)

Some observations.

These estimates show that— 0 in Wy2(Q2) and® — 0 in V() for sing — 0
(i.e.forp — 0 orp — ).

Particularly, ifo = 0 or ¢ = « then the only possible solutionis= 0, § = 0.
However,u = 0, # = 0 is not the trivial solution in the case< ¢ < 7.

(P,) does not generally have a trivial solution if functidfigz, T¢:p are not constant.



The case of varying anglep.

For each fixed considered perturbatihne L?(Q) in formula (28), the family
{f,}o<p<» forms a continuous curve in the spdc&<).

Question: Does this curve lie in seP for “most values” ofp ?
We write equation (27) in the form
A(u,p,p) = F(u,p) +ge, = h (32)

and we consider the operatdron the left hand side to be the mapping fréinx
W12(Q) x (0,7) to L2(£2).

mv

One can verify tha#l is a propeiC*—Fredholm mapping ot x W.12(Q) x (0, ) of
index1.

Applying similar considerations and tools as before, we prove the theorem:



Theorem 3.

There exists an open dense subs¢tc L?(Q) such that to everh € M there is
an open dense sét = ®(h) € (0, ) with the property that forp varying in each
connected component &f the set of pairgu, p) such thatu, p, ) satisfies equation

(32) forms a system of finitely many-dimensionalC?—manifolds (i.e C*—curves)
in X x WL2(Q).

Since setM is open and dense *(Q2), the information provided by Theorem 3 is
“generic” with respect to the choice of functionh on the right hand side of (32),
or, in other words, it holds for “almost alki € L2(Q).



Thank you for the attention.
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