Mathematical Analysis of a Steady Navier–Stokes–Boussinesq BVP in an Inclined Rectangular Cavity #### Jiří Neustupa Mathematical Institute of the Czech Academy of Sciences, Prague (in collaboration with **Dennis Siginer**, University of Wichita) Model reduction in continuum thermodynamics Modelling, analysis and computation Banff International Research Station, September 16–21, 2012 ## 1. Motivation, equations and boundary conditions $$\rho = \rho_0 \left[1 - \beta (T - T_0) \right], \tag{1}$$... reference density, ρ ... density T_0 ... reference temperature, T ... temperature, ... coefficient of thermal expansion #### The acting body force: $$\rho \mathbf{g} = \rho_0 \left[1 - \beta (T - T_0) \right] \mathbf{g}. \tag{2}$$ #### The Navier-Stokes equation: $$-\nu\Delta\mathbf{u} + (\mathbf{u}\cdot\nabla)\mathbf{u} + \nabla\frac{p}{\rho_0} = \left[1 - \beta\left(T - T_0\right)\right]\mathbf{g},\tag{3}$$ #### The condition of incompressibility: $$\operatorname{div} \mathbf{u} = 0. \tag{4}$$ #### The equation of balance of internal energy: $$\mathbf{u} \cdot \nabla T = \kappa \Delta T. \tag{5}$$ ### **Boundary conditions for temperature:** $$T = T_{AB}$$ on AB and $T = T_{CD}$ on CD , (6) $$\partial_1 T = 0 \qquad \text{on } AD \cup CD. \tag{7}$$ #### **Conditions of compatibility:** $$T'_{AB}(0) = T'_{AB}(l) = T'_{CD}(0) = T'_{CD}(l) = 0,$$ (8) #### **Boundary condition for velocity:** $$\mathbf{u} = \mathbf{0} \qquad \text{on } \partial\Omega. \tag{9}$$ We denote by (P_1) the boundary–value problem (3), (4), (5), (6), (7), (9). In order to obtain a problem with homogeneous boundary conditions, we put $$T = T_{\text{ext}} + \theta, \tag{10}$$ where $$T_{\text{ext}}(x_1, x_2) = T_{AB}(x_1) + \frac{x_2}{d} \left[T_{CD}(x_1) - T_{AB}(x_1) \right],$$ and θ is a new unknown function. Substituting for T from (10) to (3) and (5), we obtain the equations $$-\nu \Delta \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla \frac{p}{\rho_0} = \left[1 - \beta \left(T_{\text{ext}} + \theta - T_0 \right) \right] \mathbf{g}, \tag{11}$$ $$-\kappa \Delta \theta + \mathbf{u} \cdot \nabla \theta = \left[\kappa \Delta T_{\text{ext}} - \mathbf{u} \cdot \nabla T_{\text{ext}}\right]. \tag{12}$$ Function θ should now satisfy the homogeneous boundary conditions $$\theta = 0 \qquad \text{on } AB \cup CD, \tag{13}$$ $$\partial_1 \theta = 0$$ on $AD \cup BC$. (14) We denote by (P_2) the boundary–value problem (4), (9), (11), (12), (13), (14). Problems (P_1) and (P_2) are related through formula (10). #### Mathematical analysis of problem (P_2) : - Existence of a solution (with a general specific body force f). - Structure of the set of solutions for in dependence on the general specific body force **f**. - Structure of the set of solutions in the special case when the driving specific body force essentially equals the gravity. Dependence of solutions on the angle of inclination. # 2. Existential theory for problem (P_2) #### Some previous related results: - P. Rabinowitz (1968) - Existence of a steady solution of the three dimensional Bénard problem between two parallel horizontal planes, in the case when the flow is driven by the gravity force. - Assumptions that T_{low} (the temperature at the lower plane), T_{upp} (the temperature at the upper plane) are constant, $T_{\text{upp}} < T_{\text{low}}$. - Assumption that and the so called Rayleigh number $R := g\beta(T_{\text{low}} T_{\text{upp}})h^3/(16\kappa\nu)$ is "sufficiently close" to some of the eigenvalues of a certain linearized problem associated with the original nonlinear problem. - The question of non–uniqueness of solutions is studied by means of bifurcations in dependence of the varying Rayleigh number. - H. Morimoto (1991, 2007, 2010) - Domain Ω is supposed to be smooth and bounded. - Inhomogeneous boundary conditions for velocity and temperature. - Existence of a weak solution. #### In contrast to Morimoto, - we consider the heat convection in a domain with corners, - the fact that Ω is two–dimensional and its special shape enable us to obtain other estimates of a solution than in the papers by Morimoto, - we prove the existence of a steady weak solution of the problem (P_2) for any function $\mathbf{f} \in \mathbf{L}^{\alpha}(\Omega)$ $(\alpha > 1)$, - we show that every weak solution of the problem (P_2) is in fact a strong solution. • We denote by $V(\Omega)$ the space of functions from $W^{1,2}(\Omega)$ whose traces on AB and CD are zero. $$\circ \mathcal{X} := \mathbf{W}_{0,\sigma}^{1,2}(\Omega) \times V(\Omega)$$ ### The weak formulation of problem (P_2) : $$\mathbf{f} \in \mathbf{L}^{\alpha}(\Omega)$$ (for some $\alpha > 1$) We look for $(\mathbf{u}, \theta) \in \mathcal{X}$ such that the integral identities $$\int_{\Omega} \left[\nu \nabla \mathbf{u} : \nabla \mathbf{w} + (\mathbf{u} \cdot \nabla) \mathbf{u} \cdot \mathbf{w} \right] d\mathbf{x} = \int_{\Omega} \left[1 - \beta \left(T_{\text{ext}} + \theta - T_0 \right) \right] \mathbf{f} \cdot \mathbf{w} d\mathbf{x}, \quad (15)$$ $$\int_{\Omega} \left[\kappa \nabla \theta \cdot \nabla \vartheta + (\mathbf{u} \cdot \nabla \theta) \vartheta \right] d\mathbf{x} = - \int_{\Omega} \left[\kappa \nabla T_{\text{ext}} \cdot \nabla \vartheta + (\mathbf{u} \cdot \nabla T_{\text{ext}}) \vartheta \right] d\mathbf{x}. \quad (16)$$ hold for all $(\mathbf{w}, \vartheta) \in \mathcal{X}$. ### Theorem 1 (existence of a strong solution of problem (P_2)). Let functions $\mathbf{f} \in \mathbf{L}^{\alpha}(\Omega)$ (for some $\alpha > 1$) and $T_{AB}, T_{CD} \in C^{3}([0, l])$, satisfying (8), be given. Then problem (P_2) has at least one weak solution (\mathbf{u}, θ) . Function **u** belongs to $\mathbf{W}_{0,\sigma}^{1,2}(\Omega) \cap \mathbf{W}^{2,\alpha_0}(\Omega)$ (where $\alpha_0 := \min\{2; \alpha\}$). Function θ is in $V(\Omega) \cap W^{3,q}(\Omega)$ for each $q \in (1,\infty)$ (if $\alpha \geq 2$) or $q \in (1,2\alpha/(2-\alpha))$ (if $1 < \alpha < 2$). Consequently, there exists $p \in W^{1,\alpha_0}(\Omega)$ so that the triplet (\mathbf{u}, p, θ) represents a strong solution of problem (P_2) . #### Remark. Since function p enters problem (P_2) only through the gradient ∇p , it can always be chosen so that $p \in W^{1,\alpha_0}_{\mathrm{mv}}(\Omega)$. Then p is uniquely given by \mathbf{f} , \mathbf{u} and θ . ### **Principle of the proof:** We assume that (\mathbf{u}, θ) is a weak solution of problem (P_2) . We use two **basic tools:** #### I. Solutions of the Stokes problem $$-\nu\Delta\mathbf{u} + \nabla P = \mathbf{F} \qquad \text{in } \Omega,$$ $$\operatorname{div} \mathbf{u} = 0 \qquad \text{in } \Omega,$$ $$\mathbf{v} = \mathbf{0} \qquad \text{on } \partial\Omega$$ in a 2D polygonal domain Ω satisfy the estimate $$\|\mathbf{u}\|_{2,s} + \|\nabla P\|_s \le C \|\mathbf{F}\|_s \tag{17}$$ for $1 < s \le 2$. See Kellog and Osborn (1976), Grisvard (1979), Girault and Raviart (1986). Assuming that (\mathbf{u}, θ) is a weak solution of problem (P_2) , we show that $$\mathbf{F} := (\mathbf{u} \cdot \nabla)\mathbf{u} + [1 - \beta (T_{\text{ext}} + \theta - T_0)] \mathbf{f} \in \mathbf{L}^s(\Omega)$$ for $1 < s < 2$. So the first application of (17) yields the estimate of $\|\mathbf{u}\|_{2,s}$ for 1 < s < 2. II. Solution z os the Poisson equation $\Delta z = G$ the homogeneous boundary condition in a smooth domain $\widehat{\Omega}$ satisfies the estimate $$||z||_{k,s;\widehat{\Omega}} \le C ||G||_{k-2,s;\widehat{\Omega}}.$$ This estimate cannot be directly applied to the equation $$-\kappa \Delta \theta + \mathbf{u} \cdot \nabla \theta = \left[\kappa \Delta T_{\text{ext}} - \mathbf{u} \cdot \nabla T_{\text{ext}}\right],\tag{12}$$ because this equation is fulfilled in the non–smooth domain Ω . This is why we extend - u_1 as a 2d-periodic odd function - u_2 as a 2d-periodic even function - θ as a 2d-periodic even function in variable x_1 . We show that the extended function $\widehat{\theta}$ is a weak solution of equation (12) in the larger domain $\widehat{\Omega}$, see the next picture. We apply Grisvard's estimates to the boundary–value problem for the function $\eta\theta$ (which satisfies the homogeneous Dirichlet boundary condition on $\partial\widehat{\Omega}$), and using the bootstrapping argument, we prove the lemma. We are limited by the fact that the extended function $\widehat{\mathbf{u}}$ is in $\mathbf{W}^{1,k}(\widehat{\Omega})$ for each 1 < k < 2s/(2-s), but it is not in $\mathbf{W}^{2,s}(\widehat{\Omega})$. We successively derive the estimates $$\|\mathbf{u}\|_{2,\alpha_0} + \|\nabla p\|_{\alpha_0} \le C(\|\nabla \mathbf{u}\|_2, \|\nabla \theta\|_2, \|\mathbf{f}\|_{\alpha_0}),$$ (18) $$\|\theta\|_{3,q} \le C(\|\mathbf{u}\|_{2,s}),\tag{19}$$ $$-(T_{\text{max}} - T_{\text{min}}) \le \theta(\mathbf{x}) \le T_{\text{max}} - T_{\text{min}}, \tag{20}$$ $$T_{\min} \le T(\mathbf{x}) \le T_{\max},$$ (21) $$\|\nabla \mathbf{u}\|_{2} \leq C \left[1 + \beta \left(T_{0} - T_{\min}\right)\right] \|\mathbf{f}\|_{\alpha}, \tag{22}$$ $$\|\nabla \theta\|_2 \le \left(Cd^2 + \kappa\sqrt{d}\right) \|\nabla T_{\text{ext}}\|_{\infty},\tag{23}$$ in Ω , where $$T_{\min} := \min_{0 \le t \le l} \min\{T_{AB}(t), T_{CD}(t)\},$$ $$T_{\max} := \max_{0 \le t \le l} \max \{ T_{AB}(t), T_{CD}(t) \}.$$ Existence of a solution of problem (P_2) can be finally proven e.g. by means of the Leray–Schauder fixed point principle. # 3. Structure of the solution set of problems (P_1) and (P_2) We further assume, for convenience, that $\mathbf{f} \in \mathbf{L}^2(\Omega)$ (i.e. $\alpha = 2$). Then $\mathbf{u} \in \mathbf{W}^{1,2}_{0,\sigma}(\Omega) \cap \mathbf{W}^{2,2}(\Omega)$, $\theta \in V(\Omega) \cap W^{3,q}(\Omega)$ for all $q \in (1,\infty)$ and $p \in W^{1,2}_{\mathrm{mv}}(\Omega)$. Function θ is uniquely determined by \mathbf{u} . Hence $\theta = \theta(\mathbf{u})$ and we may consider only (\mathbf{u}, p) to be the strong solution of (P_2) . $$\mathfrak{X} := \mathbf{W}_{0,\sigma}^{1,2}(\Omega) \cap \mathbf{W}^{2,2}(\Omega),$$ $$\mathfrak{G}(\mathbf{u},p) := -\nu \Delta \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla \frac{p}{\rho_0},$$ $$\mathfrak{F}(\mathbf{u},p) := \left(1 - \beta \left[T(\mathbf{u}) - T_0\right]\right)^{-1} \mathfrak{G}(\mathbf{u},p).$$ (24) We can suppose without loss of generality that the reference temperature T_0 is chosen so that they satisfy the condition $$1 + \beta T_0 > \beta T_{\text{max}}. \tag{25}$$ Then, using inequalities (21), we observe that $T(\mathbf{u})$ satisfies $$1 - \beta [T(\mathbf{u}) - T_0] > 1 - \beta (T_{\text{max}} - T_0) > 0 \quad \text{in } \Omega.$$ (26) We denote by $S(\mathbf{f})$ the solution set of problem (P_1) (or (P_2)). The inclusion $(\mathbf{u}, p) \in \mathcal{S}(\mathbf{f})$ can be equivalently written: $$\mathfrak{F}(\mathbf{u},p) = \mathbf{f} \tag{27}$$ We can successively prove the lemmas: **Lemma 1** The operator $\mathbf{u} \mapsto T(\mathbf{u})$ is a C^2 -mapping from \mathfrak{X} to $W^{2,r}(\Omega)$ (for any $r \in (1,2)$). **Lemma 2** Operator \mathfrak{F} is a C^2 -mapping from $\mathfrak{X} \times W^{1,2}_{\mathrm{mv}}(\Omega)$ into $\mathbf{L}^2(\Omega)$. **Lemma 3** Operator \mathfrak{F} is a proper mapping from $\mathfrak{X} \times W^{1,2}_{\mathrm{mv}}(\Omega)$ to $\mathbf{L}^2(\Omega)$. (Operator $\mathfrak F$ is said to be **proper** if, for any compact set $K \subset \mathbf L^2(\Omega)$, the pre-image $\mathfrak F^{-1}(K)$ is compact in $\mathfrak X \times W^{1,2}_{\mathrm{mv}}(\Omega)$. For closed operators, the properness is equivalent to the property " $\mathcal S(\mathbf f)$ is compact for all $\mathbf f$ ".) **Lemma 4** Operator \mathfrak{F} is a Fredholm mapping from $\mathfrak{X} \times W^{1,2}_{\mathrm{mv}}(\Omega)$ to $\mathbf{L}^2(\Omega)$ of index 0. A closed linear operator L from $\mathfrak{X} \times W^{1,2}_{\mathrm{mv}}(\Omega)$ into $\mathbf{L}^2(\Omega)$ is called a **Fredholm operator** if its range R(L) is closed and both the numbers $\mathrm{nul}\,L$ (the nullity of L, i.e. the dimension of $\mathrm{Ker}(L)$) and $\mathrm{def}\,L$ (the deficiency of L, i.e. the dimension of the quotienr space $\mathbf{L}^2(\Omega)|_{R(L)}$) are finite. The nonlinear operator $\mathfrak F$ is said to be a **Fredholm mapping** if the Fréchet differential $[\mathfrak F'(\mathbf u,p)](\mathbf u^*,p^*)$ is a linear Fredholm operator (in dependence on $\mathbf u^*,p^*$) from $\mathfrak X \times W^{1,2}_{\mathrm{mv}}(\Omega)$ into $\mathbf L^2(\Omega)$ for all $(\mathbf u,p) \in \mathfrak X \times W^{1,2}(\Omega)$. In this case, $\operatorname{ind} \mathfrak{F}'(\mathbf{u}, p) := \operatorname{nul} \mathfrak{F}'(\mathbf{u}, p) - \operatorname{def} \mathfrak{F}'(\mathbf{u}, p)$ is independent of (\mathbf{u}, p) and it is called the **index of operator** \mathfrak{F} . Recall that the so called **singular values** of \mathfrak{F} are images of singular points, i.e. the points $(\mathbf{u},p)\in\mathfrak{X}\times W^{1,2}_{\mathrm{mv}}(\Omega)$ where $\mathfrak{F}'(\mathbf{u},p)$ is not surjective. All other points in $\mathbf{L}^2(\Omega)$ are said to be the **regular values** of \mathfrak{F} . Thus, if $\mathbf{f}\in\mathbf{L}^2(\Omega)$ is a regular value of \mathfrak{F} , operator $\mathfrak{F}'(\mathbf{u},p)$ is surjective for all $(\mathbf{u},p)\in\mathcal{S}(\mathbf{f})$. Since $\mathfrak{F}:\mathfrak{X}\times W^{1,2}_{\mathrm{mv}}(\Omega)\to \mathbf{L}^2(\Omega)$ is a proper C^2 -Fredholm mapping of index 0, the set $\mathcal O$ of regular values of \mathfrak{F} is open and dense in $\mathbf{L}^2(\Omega)$ (by to the Sard–Smale theorem). Due to the Preimage Theorem (see e.g. the book by Zeidler), $S(\mathbf{f})$ is a C^2 -Banach manifold in $\mathfrak{X} \times W^{1,2}_{\mathrm{mv}}(\Omega)$ for each $\mathbf{f} \in \mathcal{O}$. Furthermore, $S(\mathbf{0})$ reduces to just one point $(\mathbf{0},0)$. Expressing explicitly $\mathfrak{F}'(\mathbf{0},0)$, one can show that $\dim \operatorname{Ker} \mathfrak{F}'(\mathbf{0},0) = 0$. Connecting now homotopically point $\mathbf{f} \in \mathcal{O}$ with $\mathbf{0}$, we conclude that $S(\mathbf{f})$ is finite. Thus, we arrive at the theorem: #### Theorem 2. There exists an open dense subset $\mathcal{O} \subset \mathbf{L}^2(\Omega)$ with the properties: - 1) For every $f \in \mathcal{O}$ the set $\mathcal{S}(f)$ is finite. - 2) The number of elements of S(f), for f in every connected component of O, is constant. - 3) Each element of $S(\mathbf{f})$ is a C^2 -function of \mathbf{f} for \mathbf{f} in every connected component of O. # 4. The case when the body force is essentially the gravity and angle φ varies $$\mathbf{f} \equiv \mathbf{f}_{\varphi} := -g\mathbf{e}_{\varphi} + \mathbf{h},\tag{28}$$ where $\mathbf{e}_{\varphi} = (\sin \varphi, \cos \varphi)$. ### The case h = 0, T_{AB} , T_{CD} constant, and small Rayleigh number. In this case, it has been observed in experiments that the velocity ${\bf u}$ is also "small" if angle φ is "small". Particularly, ${\bf u}={\bf 0}$ if $\varphi=0$. Using the assumptions that $\mathbf{h} = \mathbf{0}$ and T_{AB} and T_{CD} constant, multiplying this equation by \mathbf{u} , the equation for thermal convection/conduction by θ , integrating by parts and using inequalities (20) and the condition $$g\beta d^3 |T_{AB} - T_{CD}| < \kappa \nu, \tag{29}$$ we obtain: $$\|\nabla \mathbf{u}\|_{2} \leq \frac{g\beta\kappa |T_{CD} - T_{AB}| d(\sin\varphi) \sqrt{ld}}{\nu\kappa - g\beta d^{3} |T_{CD} - T_{AB}|} =: c_{1} \sin\varphi, \tag{30}$$ $$\|\nabla\theta\|_2 \le \frac{g\beta |T_{CD} - T_{AB}|^2 d^2 (\sin\varphi) \sqrt{ld}}{\nu\kappa - g\beta d^3 |T_{CD} - T_{AB}|} =: c_2 \sin\varphi. \tag{31}$$ #### Some observations. These estimates show that $\mathbf{u} \to \mathbf{0}$ in $\mathbf{W}_{0,\sigma}^{1,2}(\Omega)$ and $\theta \to 0$ in $V(\Omega)$ for $\sin \varphi \to 0$ (i.e. for $\varphi \to 0$ or $\varphi \to \pi$). Particularly, if $\varphi = 0$ or $\varphi = \pi$ then the only possible solution is $\mathbf{u} = \mathbf{0}$, $\theta = 0$. However, $\mathbf{u} = \mathbf{0}$, $\theta = 0$ is not the trivial solution in the case $0 < \varphi < \pi$. (P_2) does not generally have a trivial solution if functions T_{AB} , T_{CD} are not constant. ### The case of varying angle φ . For each fixed considered perturbation $\mathbf{h} \in \mathbf{L}^2(\Omega)$ in formula (28), the family $\{\mathbf{f}_{\varphi}\}_{0 \leq \varphi \leq \pi}$ forms a continuous curve in the space $\mathbf{L}^2(\Omega)$. **Question:** Does this curve lie in set \mathcal{O} for "most values" of φ ? We write equation (27) in the form $$\mathfrak{A}(\mathbf{u}, p, \varphi) := \mathfrak{F}(\mathbf{u}, p) + g\mathbf{e}_{\varphi} = \mathbf{h}$$ (32) and we consider the operator $\mathfrak A$ on the left hand side to be the mapping from $\mathfrak X \times W^{1,2}_{\mathrm{mv}}(\Omega) \times (0,\pi)$ to $\mathbf L^2(\Omega)$. One can verify that $\mathfrak A$ is a proper C^2 -Fredholm mapping of $\mathfrak X \times W^{1,2}_{\mathrm{mv}}(\Omega) \times (0,\pi)$ of index 1. Applying similar considerations and tools as before, we prove the theorem: #### Theorem 3. There exists an open dense subset $\mathcal{M} \subset \mathbf{L}^2(\Omega)$ such that to every $\mathbf{h} \in \mathcal{M}$ there is an open dense set $\Phi = \Phi(\mathbf{h}) \in (0,\pi)$ with the property that for φ varying in each connected component of Φ , the set of pairs (\mathbf{u},p) such that (\mathbf{u},p,φ) satisfies equation (32) forms a system of finitely many 1-dimensional C^2 -manifolds (i.e. C^2 -curves) in $\mathfrak{X} \times W^{1,2}_{\mathrm{my}}(\Omega)$. Since set \mathcal{M} is open and dense in $\mathbf{L}^2(\Omega)$, the information provided by Theorem 3 is "generic" with respect to the choice of function \mathbf{h} on the right hand side of (32), or, in other words, it holds for "almost all" $\mathbf{h} \in \mathbf{L}^2(\Omega)$. Thank you for the attention.