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Weak lower semicontinuity of integral functionals and
applications

Barbora Benešová1 & Martin Kruž́ık2

“Nothing takes place in the world whose
meaning is not that of some maximum or
minimum.”

Leonhard Paul Euler (1707–1783)

Abstract. In 1965, N.G. Meyers [110] significantly extended weak lower semicontinuity results for integral functionals
depending on maps and their gradients available at that time. We recapitulate the development on this topic from that time
on. Special attention is paid to signed integrands and to applications to continuum mechanics of solids. In particular, we review
existing results for polyconvex simple as well as nonsimple materials and related statements about sequential weak continuity of
minors. These are non-coercive and belong precisely to the class of integrands studied by Meyers in his seminal work. Besides,
we emphasize some recent progress in lower semicontinuity of functionals along sequences satisfying differential and algebraic
constraints which have applications in continuum mechanics of solids to ensure injectivity and orientation-preservation of elastic
deformations. Finally, we outline generalization of these results to more general first-order partial differential operators and
make some suggestions for further reading.

1. Introduction. The observation that continuous functions attain extreme values on compact sets
goes back to Bernard Bolzano who proved it in his work “Function Theory” in 1830. This result is called
the Extreme Value Theorem. Later on, it was independently shown by Karl Weierstrass around 1860. The
main ingredient of the proof, namely the fact that one can extract a convergent subsequence from a closed
bounded interval of reals, is nowadays known as the Bolzano-Weierstrass theorem. While Riesz and Hilbert
already used the weak topology on Hilbert spaces from the beginning of the 20th century, Stefan Banach
defined it on other normed spaces around 1929 [124, 156] and opened the possibility to extend Bolzano’s
Extreme Value Theorem to more general situations and, in particular, to the calculus of variations.

Calculus of variations has in its background minimization problems of the type

y 7→
∫ b

a

v(x, y, y′) dx→ inf with y(a) = ya and y(b) = yb .

It includes, for example, the brachistochrone problem, i.e., the problem of finding curves with a minimum
time of descent in a gravitational field. Foundations of the calculus of variations were laid down in the
18th century by L.P. Euler and J.L. Lagrange who also realized its important connections to physics and to
mechanics.

Lower semicontinuity of functional (cf. Definition 1.1 below) plays a fundamental role in the direct
method of the calculus of variations, an algorithm, proposed by David Hilbert around 1900, to show (in a
non-constructive way) the existence of a solution to the minimization problem

find minimum of I on Y .

It consists of three steps: First, we find a minimizing sequence along which I converges to its infimum on
Y. The second step is to show that a subsequence of the minimizing sequence converges to an element of Y
in some topology τ . Finally, it remains to prove that this limit element is a minimizer. This is easily done
if I is (sequentially) lower semicontinuous with respect to the topology τ . In the most typical situation, the
topology τ is either the weak or the weak∗ one; thus, we shall also limit our view to this case.

Definition 1.1. Let Y be a subset of a Banach space. We say that the functional I : Y → R
is (sequentially) weakly/weakly* lower-semicontinuous on Y if for any sequence {uk}k∈N ⊂ Y converging
weakly/weakly* to u ∈ Y, we have that

I(u) ≤ lim inf
k→∞

I(uk).
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While the first two steps of the direct method can be satisfied by assuming coercivity of I and by
choosing a sufficiently weak topology on Y, the last step essentially relies on fine properties of I as convexity,
for instance.

Let us point out that earlier studies of minimizers of integral functionals of the form

(1.1) y 7→
∫ b

a

v(x, y, y′) dx

naturally relied on smoothness properties of v when calculating variations of this integral; see for example
the book by Bolza [29]. On the other hand, the direct method is not based on calculating derivatives and
thus it is natural to expect that it will cope also with non-smooth and possibly also partially discontinuous
integrands in (1.1). This expectation is indeed true and relaxing smoothness/continuity assumptions of v
will be a re-occurring theme throughout this review.

As indicated above, many phenomena in nature are successfully modeled by solving a minimization
problem for a suitably chosen (energy) functional. A prominent example is found in continuum mechanics
of solid media, where minimization of the stored energy

E(y) :=

∫
Ω

W (∇y(x)) dx ,(1.2)

determines stable states of a hyperelastic body. Here, W is the stored energy density and the map y : Ω→ R3,
with Ω a bounded domain representing the undeformed material, is the deformation of the modeled medium.

Naturally, the question arises under what conditions on W minimizers of (1.2) exist on a suitable function
space Y. In view of the direct method described above, this particularly includes the study of weak lower
semicontinuity of functionals E .

Although the study of weak lower semicontinuity is motivated by understanding minimization problems,
it has become an independent subject in mathematical literature that has been studied for its own right. In
1920, Tonelli [152] showed that if v : Ω× R× R is a Caratheóodory integrand,3 and

I(u) :=

∫
Ω

v(x, u(x),∇u(x)) dx ,(1.3)

with Ω = (a, b) and u ∈ W 1,∞((a, b);R) then I is weakly lower semicontinuous if and only if v is convex in
its last variable, i.e., in the derivative ∇u = u′. Later, several authors generalized this result to functions
in W 1,∞(Ω;R) with Ω ⊂ Rn and n > 1; see for example Serrin [139], where differentiability properties of
v were removed from assumptions, and Marcellini and Sbordone [108]. On the other hand, if we allow the
function u to be vector-valued, i.e., u ∈ W 1,∞(Ω;Rm) with Ω ⊂ Rn and n > 1 as well as m > 1, then the
convexity hypothesis turns out to be sufficient but unnecessary. A suitable condition, termed quasiconvexity,
was introduced by Morrey [114].

Definition 1.2. Let Ω ⊂ Rn be a bounded Lipschitz domain. We say that a function f : Rm×n → R is
quasiconvex if for any A ∈ Rm×n and any ϕ ∈W 1,∞

0 (Ω;Rm)

f(A)Ln(Ω) ≤
∫

Ω

f(A+∇ϕ(x)) dx .(1.4)

Morrey showed, under strong regularity assumptions on v, that I from (1.3) is weakly lower semicon-
tinuous in W 1,∞(Ω;Rm) if and only if v is quasiconvex in the last variable (i.e. in the gradient). All the
above characterizations turn the problem of sequential weak lower semicontinuity of I into conditions on
the integrand. Obviously, this is a much more explicit as it does not need to deal with weakly convergent
sequences.

3i.e. v(x, ·, ·) is continuous for almost all x ∈ Ω and v(·, s, A) is measurable for all (s,A) ∈ R× R
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These results were generalized more than fifty years ago, in 1965, by Norman G. Meyers in his seminal
paper [110]. There he investigated W k,p-weak (weak* if p = +∞) lower semicontinuity of integral functionals
of the form

I(u) :=

∫
Ω

v(x, u(x),∇u(x), . . . ,∇ku(x)) dx ,(1.5)

where Ω ⊂ Rn is a bounded domain and u : Ω → Rm is a mapping possessing (weak) derivatives up to the
order k ∈ N. The function v was supposed to be continuous in all its arguments. Since now higher gradients
than the first ones are considered, the definition of quasiconvexity also needs to be generalized accordingly
(see Section 2 for the notation).

Definition 1.3. Let Ω ⊂ Rn be a bounded Lipschitz domain. We say that a function f : X(n,m, k)→ R
is k-quasiconvex4 if for any A ∈ X(n,m, k) and any ϕ ∈W k,∞

0 (Ω;Rm)

f(A)Ln(Ω) ≤
∫

Ω

f(A+∇kϕ(x)) dx .(1.6)

Thus, more precisely, k-quasiconvexity of v (i.e. quasiconvexity with respect to the k-th gradient) means
that Ak 7→ v(x,A[k−1], Ak) is quasiconvex for all fixed (x,A[k−1]) ∈ Ω × Y (m,n, k − 1); here, we already
used the notation which will be introduced in Section 2, however, X(·) and Y (·) are simply Euclidean spaces
hosting pointwise values of corresponding maps.

Remark 1.1. In fact, it was shown in [45] that if k = 2 and if f satisfies a (slightly) stronger version
of 2-quasiconvexity then 2-quasiconvexity coincides with 1-quasiconvexity. See [34] for an analogous result
with general k.

However, more generally than in Morrey’s work, the function v is not necessarily bounded from bellow
in [110]. From this, additional difficulties arise and, in fact, quasiconvexity is no longer a sufficient condition
for weak lower semicontinuity (cf. Section 3). Moreover, the regularity assumptions on the integrand in (1.5)
were weakened in Meyers’ work.

The motivation for studying functionals of the type (1.5) is twofold: from the point of view of applications
in continuum mechanics it is reasonable to let v depend also on higher-order gradients since their appearance
in the energy usually models interfacial energies or multipolar elastic materials [71]. Another reason might be
to consider deformation-gradient dependent surface loads [13]. On the other hand, not assuming a constant
lower bound on v is important to consider for mathematical completeness. Additionally, integrands of the
type v(A) := detA, which are unbounded from below, are of crucial importance in continuum mechanics.

Meyers’ main results are necessary and sufficient conditions on v so that I is weakly lower semicontinuous
on W k,p(Ω;Rm). We review these results in Section 3. He first discusses the problem p = +∞, where
quasiconvexity in the highest-order gradient (cf. Theorem 3.1) turns out to be a necessary and sufficient
condition for weak*-lower semicontinuity. For the case 1 ≤ p < +∞, the situation is, however, much more
subtle and an additional condition (cf. Theorem 3.3 and Section 3.1) is needed.

Since the appearance of Meyers’ work, significant progress has been achieved with respect to the char-
acterization of weak lower semicontinuity of functionals of the type (1.2) or (1.5). In particular, for k = 1
in (1.5) the additional condition for sequential weak lower semicontinuity was characterized more explicitly
and results relaxing Meyer’s continuity assumptions were obtained for functionals bounded from below; cf.
Section 3.

Moreover, it has been identified for which functions v the functional I in (1.5) is even weakly continuous
(see Section 4) – these functions are the so-called null Lagrangians – and this knowledge led to the notion of
polyconvexity (see Section 6) that is sufficient for weak lower semicontinuity and of particular importance
in mathematical elasticity. In fact, quasiconvexity, which is, for a large class of integrands, the necessary
and sufficient condition for weak lower semicontinuity is not well-suited for elasticity. We explain this issue
in Section 7 and review some recent progress in this field. Null Lagrangians have also been identified for

4In the original paper [110], quasiconvexity with respect to the k-th gradient is also referred to as quasiconvexity.
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functional defined on the boundary (see Section 5). Finally, we review weak lower semi-continuity results
for functionals depending on maps that satisfy general differential constraints in Section 8 and we conclude
with some suggestions for further reading in Section 9.

2. Notation. In this section, we summarize the notation that shall be used throughout the paper. It
largely coincides with the one used in [13]. In what follows, Ω ⊂ Rn is a bounded domain whose boundary
is Lipschitz or smoother. This domain is mapped to a set in Rm by means of a mapping u : Ω → Rm. Let
N be the set of natural numbers and N0 := N ∪ {0}. If J := (j1, . . . , jn) ∈ Nn0 and K := (k1, . . . , kn) ∈ Nn0
are two multiindices we define J ± K := (j1 ± k1, . . . , jn ± kn), further |J | =

∑n
i=1 ji, J ! := Πn

i=1ji!, and

we say that J ≤ K if ji ≤ ki for all i. Then we also define
(
J
K

)
:= J !/K!/(J −K)!, ∂ujK := ∂k1 ...∂kn

∂x
k1
1 ...∂xknn

uj ,

xK = xK := xk11 . . . xknn , and (−D)K := (−∂)k1 ...(−∂)kn

∂x
k1
1 ...∂xknn

.

We will work with the space of matrices X = X(n,m, k) with the dimension m
(
n+k−1

k

)
. This is the

space of matrices M = (M i
K) for 1 ≤ i ≤ m and |K| = k. Similarly, Y = Y (n,m, k) is a space of matrices

M = (M i
K) for 1 ≤ i ≤ m and |K| ≤ k. Its dimension is m

(
n+k
k

)
. We denote the elements of X(n,m, k)

by Ak while the A[k] = (A,A2, . . . , Ak) is an element of Y (n,m, k). We use an analogous notation also for
gradients; thus, if x ∈ Ω, then ∇ku(x) ∈ X(n,m, k) while ∇[k]u(x) ∈ Y (n,m, k).

We denote by B(x0, r) the ball of origin x0 with the radius r while Dρ(x0, r) is the half-ball with ρ being
the normal of the planar component of its boundary; i.e.

Dρ(x0, r) := {x ∈ B(x0, r) : (x− x0) · % < 0},

and we write Dρ := Dρ(0, 1).
We shall use the standard notation for the Lebesgue spaces Lp(Ω;Rm) and Sobolev spaces W k,p(Ω;Rm).

Moreover, BV(Ω;Rm) is the space of functions of a bounded variation. If m = 1, we may omit the target
space. If Ω is a bounded open domain we denoteM(Ω) the space of Radon measures on Ω and Ln denotes the
n-dimensional Lebesgue measure; cf. [76]. Moreover, D(Ω) is the space of infinitely differentiable functions
with compact support in Ω and its dual D′(Ω) is the space of distributions.

If n = m = 3 and F ∈ R3×3 the cofactor matrix CofF ∈ R3×3 is a matrix whose entries are signed
subdeterminants of 2 × 2 submatrices of F . More precisely, [CofF ]ij := (−1)i+j detF ′ij where F ′ij for
i, j ∈ {1, 2, 3} is a submatrix of F obtained by removing the i-th row and j-th column. If F is invertible,
we have CofF = (detF )F−>. Rotation matrices with determinants equal one are denoted SO(n) while
orthogonal matrices with determinants ±1 are denote by O(n).

3. A review of Meyers’ results. Meyers studies in [110] weak lower semicontinuity of (1.5) on a fairly
general class of integrands. In particular, for weak lower semicontinuity on W k,p(Ω,Rm) with 1 ≤ p < +∞
he introduces the class Fp(Ω) (cf. [110, Def. 4] and Definition 3.2 below). On W k,∞(Ω,Rm), any continuous
integrand is admitted and Meyers proves an analogous result to the one found in the original work of Morrey
for k = 1 [114]:

Theorem 3.1. Let Ω be a bounded domain and v a continuous function. Then I from (1.5) is weakly∗

lower semicontinuous on W k,∞(Ω;Rm) if and only if it is k-quasiconvex.

Nevertheless, when it comes to the case of W k,p(Ω;Rm) with p ≥ 1 finite the situation is substantially
more involved; in particular, because the considered integrands are not bounded from below. This can be
seen from the definition of the class Fp(Ω).

Definition 3.2 (Class Fp(Ω)). Let Ω ⊂ Rn be a bounded domain. A continuous integrand v : Ω ×
Y (n,m, k)→ R is said to be in the class Fp(Ω) for 1 ≤ p < +∞ if (C > 0 is a constant depending only on
v)

(i) v(x,A[k]) ≤ C
(
1 + |A[k]|

)p
,

(ii) |v(x,A[k] +B[k])− v(x,A[k])| ≤ C
(
1 + |A[k]|+ |B[k]|

)p−γ |B[k]|γ , where 0 < γ ≤ 1,

(iii) |v(x + y,A[k]) − v(x,A[k])| ≤ (1 + |A[k]|)pη(|y|) with η : [0; +∞) → [0; +∞) continuous, increasing
and vanishing at zero.
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Indeed, when setting A[k] = 0 in (ii) we get that |v(x,B[k])| ≤ C(1 + |B[k]|)p and thus the class Fp(Ω)
contains also noncoercive integrands and, in particular, those which decay as −| · |p.

This decay is problematic with respect to weak lower semicontinuity, because then, along concentrating
sequences of gradients5, energy may be gained and hence the lower semicontinuity is destroyed. On the
boundary of the domain this effect cannot be excluded by quasiconvexity as the following example shows.

Example 3.1 (following [97], [7]). Choose Ω = (0, 1) and define a sequence on BV((0, 1)) defined
through un := χ(0, 1n ), i.e. the characteristic function of (0, 1

n ), so that Dun = −δ 1
n

. Further let us choose

and v(x, s,A) := A; i.e. v is a linear function and so quasiconvex. Then the functional

I(u) =

∫
Ω

v(x, u(x), A) dDu(x),

which is a BV-equivalent (1.5) with k = 1, fulfills I(un) = −1 for all n, but un
∗
⇀ 0 in BV((0, 1)) and

I(0) = 0 > −1.
The example illustrates the above mentioned effect that a sequence concentrating on the boundary (such

as un) may actually lead to an energy gain in the limit. While the above example is in BV((0, 1)), because this
allows us to take a linear, and thus a particularly easy, integrand in (1.5) appropriate nonlinear integrands
lead to the same effect in W k,p(Ω;Rm) with p > 1; cf. Example 3.2 below.

Meyers hence introduced an additional condition to ensure sequential weak lower semicontinuity and
proved the following.

Theorem 3.3. Let Ω be a bounded domain and v ∈ Fp(Ω). Then I from (1.5) is weakly lower semicon-
tinuous on W k,p(Ω;Rm) with 1 ≤ p <∞ if and only if the following two conditions hold simultaneously:

(i) v(x,A[k−1], ·) is k-quasiconvex for all values of (x,A[k−1]),
(ii) lim infj→∞ I(uj ,Ω

′) ≥ −µ(Ln(Ω′)) for every subdomain Ω′ ⊂ Ω and every sequence {uj}j∈N ⊂
W k,p(Ω;Rm) such that uj = u on Ω \ Ω′ and uj⇀u in W k,p(Ω;Rm). Here µ is an increasing
continuous function with µ(0) = 0 which only depends on u and on lim supj→∞ ‖uj‖Wk,p(Ω;Rm .

Above, I(·,Ω′) denotes the functional I when the integration domain Ω is replaced by Ω′.
We immediately see that condition (ii) is satisfied, for example, if v ≥ 0. To see why this condition

excludes the effect of concentrations on the boundary, take a sequence of “rings” Ω′k around the boundary
of Ω. The measure of such rings converges to zero and so, also µ(Ln(Ω′k)) tends to zero as k → ∞. But if
{|∇kuj |p} is a concentrating sequence which converges to a measure supported on ∂Ω then I(uj ,Ω

′
k) may

take a fixed negative value and thus it violates condition (ii) from Theorem 3.3.
Since condition (ii) in Theorem 3.3 is connected with concentrations on the boundary, Meyers conjectured

[110, p. 146] that it can be dropped if ∂Ω is “smooth enough” or a “smooth enough” function is prescribed
on the boundary as the datum. The second part of the conjecture turned out to be true in the following
special cases: if k = 1 in (1.5)(see [110, Thm. 5] and Thm. 3.7) or if the integrand in (1.5) depends just on
the highest gradient (see end of Section 8). However, the general case is still open:

Open problem 3.4. Is the functional (1.5) weakly lower semicontinuous along sequences with fixed
Dirichlet boundary data if v is a general function in the class Fp(Ω)?

The first part of the conjecture of Meyers turned out not to hold as the following example illustrates:

Example 3.2 (See [18]). Let n = m = p = 2, 0 < a < 1, Ω := (0, a)2 and for x ∈ Ω define

uj(x1, x2) =
1√
j

(1− |x2|)j(sin jx1, cos jx1).

We see that {uj}j∈N converges weakly in W 1,2(Ω;R2) as well as pointwise to zero. Moreover, we calculate
for j →∞ ∫ a

0

∫ a

0

det∇uj(x) dx→ −a
2
< 0 .

5We say that a sequence bounded in L1 is concentrating if it converges weak* in measures but not weakly in L1.
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Hence, we see that I(u) :=
∫

Ω
det∇u(x) dx is not weakly lower semicontinuous in W 1,2(Ω;R2). This

example can be generalized to arbitrary dimensions m = n ≥ 2. Indeed, take u ∈ W 1,n
0 (B(0, 1);Rn) and

extend u by zero to the whole Rn. We get that
∫
B(0,1)

det∇u(x) dx = 0 because of the zero Dirichlet

boundary conditions on ∂B(0, 1). Take % ∈ Rn, a unit vector, such that
∫
D%

det∇u(x) dx < 0. Notice

that this condition can be fulfilled, if we take u suitably.
Denote uj(x) := u(jx) for all j ∈ N; then uj⇀0 in W 1,n(B(0, 1);Rn) (even in measure) but also∫

D%
det∇uj(x) dx →

∫
D%

det∇u(x) dx < 0 by our construction. The same conclusion can be drawn if we

take Ω ⊂ Rn with arbitrarily smooth boundary and such that 0 ∈ ∂Ω. Let % be the outer unit normal to ∂Ω
at zero. Then we have for the same sequence as before

lim
j→∞

∫
Ω

det∇uj(x) dx = lim
j→∞

∫
B(0,1)∩Ω

det∇uj(x) dx

= lim
j→∞

∫
B(0,1)∩Ω

jn det∇(u(jx) dx =

∫
D%

det∇u(y) dy < 0 .

3.1. Understanding condition (ii) in Theorem 3.3. Condition (ii) in Theorem 3.3 is rather implicit
and thus hard to verify. Nevertheless, as Examples 3.1 and 3.2 show, it should be linked to concentrations
on the boundary of the domain. To our best knowledge, this link has been fully drawn only in the case k = 1
and for integrands v(x, u,∇u) := v(x,∇u) in (1.5).

First, we present a result showing that indeed concentrations are the key issue.

Theorem 3.5 (adapted from [85]). Let v ∈ C(Ω̄×Rm×n), |v| ≤ C(1 + | · |p), C > 0, v(x, ·) quasiconvex
for all x ∈ Ω̄, and 1 < p < +∞. Then the functional

I(u) :=

∫
Ω

v(x,∇u(x)) dx

is sequentially weakly lower semicontinuous on W 1,p(Ω;Rm) if and only if for any bounded sequence {uj} ⊂
W 1,p(Ω;Rm) such that ∇uj → 0 in measure we have lim infj→∞ I(uj) ≥ I(0).

Recall that two effects may cause a sequence {uj} ⊂ W 1,p(Ω;Rm) to converge weakly but not strongly
to some limit function u: oscillations and concentrations. The above theorem then states that a functional
with a quasiconvex integrand is lower semicontinuous along any weakly converging sequences if it is so along
purely concentrating ones. Indeed, realize that a purely concentrating sequence converges to zero in measure.

The proof of Theorem 3.5 relies on two main ingredients. The first one is the so-called p-Lipschitz
continuity of quasiconvex functions. It asserts that if f : Rm×n → R is quasiconvex and |f | ≤ C(1 + | · |p)
for some C > 0, and 1 ≤ p < +∞ then there is another constant α ≥ 0 such that for all A,B ∈ Rm×n

|f(A)− f(B)| ≤ α(1 + |A|p−1 + |B|p−1)|A−B| .(3.1)

Remark 3.3. The p-Lipschitz continuity holds even if v is only separately convex, i.e. convex along
Cartesian axes in Rm×n. Various variants are proven e.g. in [66, 107] and in [42]. It shows that quasiconvex
functions satisfying the mentioned bound are locally Lipschitz.

The second ingredient is the decomposition lemma due to Kristensen [95] and Fonseca, Müller, and
Pedregal [61].

Lemma 3.6 (Decomposition lemma). Let 1 < p < +∞ and Ω ⊂ Rn be an open bounded set and
let {uk}k∈N ⊂ W 1,p(Ω;Rm) be bounded. Then there is a subsequence {uj}j∈N and a sequence {zj}j∈N ⊂
W 1,p(Ω;Rm) such that

lim
j→∞

Ln({x ∈ Ω; zj(x) 6= uj(x) or ∇zj(x) 6= ∇uj(x)}) = 0(3.2)

and {|∇zj |p}j∈N is relatively weakly compact in L1(Ω).
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This lemma allows us to find, for a general sequence bounded in W 1,p(Ω;Rm), another one, called
{zj} ⊂ W 1,p(Ω;Rm), whose gradients are p-equiintegrable, i.e., for which {|∇zj |p} is relatively weakly
compact in L1(Ω) and so it is a purely oscillating sequence. Thus, we decompose uj = zj + wj , and
{|∇wj |p}j∈N tends to zero in measure for j → ∞; i.e., it is a purely concentrating sequence. Roughly
speaking, this means that for any weakly converging sequence in W 1,p(Ω;Rm), p > 1, we can be decompose
the sequence of gradients into a purely oscillating and a purely concentrating one. Note, however, that due
to (3.2), this decomposition is very special. Notice that Lemma 3.6 inherited its name exactly from this
decomposition.

Hence, denoting Rj the set appearing in (3.2) we get∣∣∣∣∫
Ω

v(x,∇wj(x)) dx−
∫

Ω

(v(x,∇uj(x))− v(x,∇zj(x))) dx

∣∣∣∣
≤

(∫
Rj

|v(x,∇uj(x)−∇zj(x))− v(x,∇uj(x))|dx+

∫
Rj

|v(x,∇zj(x))|dx

)
(3.3)

≤ α
∫
Rj

[
(1 + |∇uj(x)−∇zj(x)|p−1 + |∇uj |p−1)|∇zj(x)|+ (1 + |∇zj |p)

]
dx

≤ c

(∫
Rj

|∇zj(x)|p dx

)1/p

+

∫
Rj

1 + |∇zj(x)|p dx+

∫
Rj

|∇zj(x)|dx


for a constant c > 0 (which may depend also on supj‖∇uj‖Lp(Ω) and supj‖∇zj‖Lp(Ω) ). The last term goes
to zero as j → ∞ because {|∇zj |p} is relatively weakly compact in L1(Ω) and Ln(Rj) → 0 as j → ∞.
This calculation shows that for v quasiconvex we can separate oscillation and concentration effects of {∇uj}.
Thus, we get for (non-relabeled) subsequences

lim
j→∞

∫
Ω

v(x,∇uj(x)) dx = lim
j→∞

∫
Ω

v(x,∇zj(x)) dx+ lim
j→∞

∫
Ω

v(x,∇wj(x)) dx

≥
∫

Ω

v(x,∇u(x)) dx+ lim
j→∞

∫
Ω

v(x,∇wj(x)) dx .(3.4)

The inequality follows from Theorem 3.3 because {|∇zj |p}j∈N is uniformly integrable, hence (ii) holds auto-
matically. Therefore, sequential weak lower semicontinuity of the functional is equivalent to

lim
j→∞

∫
Ω

v(x,∇wj(x)) dx ≥
∫

Ω

v(x, 0) dx = I(0) .

We now indicate why quasiconvexity is capable of preventing concentrations in the domain Ω from
breaking weak lower semicontinuity. Indeed, let ζ ∈ D(Ω), 0 ≤ ζ ≤ 1 and take a quasiconvex function
v : Rm×n → R such that |v(A)| ≤ C(1 + |A|p) for some C > 0 and all A ∈ Rm×n with p > 1. We calculate
using Definition 1.2 for A := 0, the sequence {wj} from the Decomposition Lemma 3.6, and (3.1)

|Ω|v(0) ≤
∫

Ω

v(∇(ζ(x)wj(x))) dx =

∫
Ω

v(ζ(x)∇wj(x) + wj(x)⊗∇ζ(x)) dx

≤
∫

Ω

v(ζ(x)∇wj(x)) dx+ α

∫
Ω

(1 + |ζ(x)∇wj(x) + wj(x)⊗∇ζ(x)|p−1)|wj(x)⊗∇ζ(x)|dx

+ α

∫
Ω

(|ζ(x)∇wj(x)|p−1)|wj(x)⊗∇ζ(x)|dx ≤
∫

Ω

v(ζ(x)∇wj(x)) dx

+ α

∫
Ω

(1 + 2p−1)|ζ(x)∇wj(x)|p−1)|wj(x)⊗∇ζ(x)|dx

+ α

∫
Ω

(2p−1|wj(x)⊗∇ζ(x)|p−1)|wj(x)⊗∇ζ(x)|dx

≤
∫

Ω

v(ζ(x)∇wj(x)) dx+ α(1 + 2p−1)‖ζ∇wj‖p−1
Lp(Ω;Rm×n)‖wj ⊗∇ζ‖Lp(Ω;Rm)

+ 2p−1α‖wj ⊗∇ζ‖pLp(Ω;Rn) .
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Since wj → 0 strongly in Lp(Ω;Rn) and {∇wj}k∈N is bounded in Lp(Ω;Rm×n) the last two terms tend to
zero if j →∞. Therefore, we have

Ln(Ω)v(0) ≤ lim inf
j→∞

∫
Ω

v(ζ(x)∇wj(x)) dx .(3.5)

Let |∇wj |p
∗
⇀ σ inM(Ω̄) for a (non-relabeled) subsequence. Assume that σ(∂Ω) = 0. We continue with the

following estimate

lim
j→∞

∫
Ω

v(ζ(x)∇wj(x)) dx ≤ lim
j→∞

∫
Ω

v(∇wj(x)) dx

+ α lim
j→∞

∫
Ω

(1− ζ(x))(1 + ζp−1(x))|∇wj(x)|p dx+ α lim
j→∞

∫
Ω

(1− ζ(x))|∇wj(x)|dx

= lim
j→∞

∫
Ω

v(∇wj(x)) dx+ α

∫
Ω

(1− ζ(x))(1 + ζp−1(x))σ(dx) .(3.6)

Now, we construct a sequence {ζj}j∈N ⊂ D(Ω), satisfying 0 ≤ ζj ≤ 1 that pointwise tends to the character-
istic function of Ω, χΩ, σ-a.e. Taking into account (3.5) and (3.6), we have by the Lebesgue’s dominated
convergence theorem

Ln(Ω)v(0) ≤ lim
j→∞

∫
Ω

v(∇wj(x)) dx .

Hence, weak lower semicontinuity is preserved. This reasoning, however, clearly breaks if ∂Ω is not a σ-null
set. Nevertheless, not every boundary concentration is fatal for weak lower semicontinuity. If Ω is a Lipschitz
domain, we can extend {wj}j∈N to a larger domain Ω̃ ⊃ Ω, and denote this extension {w̃j} ⊂W 1,p(Ω̃;Rm), in

such a way that ∂Ω is now in the interior of Ω̃ and the extension satisfies zero Dirichlet boundary conditions
on ∂Ω̃. Then the above calculation holds if we replace Ω by Ω̃ and {wj} by {w̃j}. Arguing heuristically,
concentrations at ∂Ω are influenced by interior concentrations coming from Ω and exterior ones arriving
from Ω̃ \Ω. If added to each other, they are harmless for weak lower semicontinuity. For instance, if w̃j = 0
for all j ∈ N outside Ω then exterior concentrations do not exist at all. Hence, the interior one cannot spoil
weak lower semicontinuity. That is, roughly speaking, why Dirichlet boundary conditions suffice to ensure
(ii) in Theorem 3.3 at least if k = 1. More generally, Dirichlet boundary conditions can be replaced by the
requirement that {|w̃j |p}j∈N is equiintegrable in L1(Ω̃ \ Ω).

The next theorem shows that weak lower semicontinuity of (1.5) for quasiconvex v can be proved, for
example, if the negative part of v has sub-critical growth or Dirichlet boundary conditions are fixed.

Theorem 3.7 (taken from [85]). Let the assumptions of Theorem 3.5 hold. Let further {uj} ⊂
W 1,p(Ω;Rm), uj ⇀ u in W 1,p(Ω;Rm) and at least one of the following conditions be satisfied:

(i) for any subsequence of {uj} (not relabeled) such that |∇uj |p
∗
⇀σ in M(Ω̄) it holds that σ(∂Ω) = 0,

(ii) lim|A|→∞
v−(x,A)
1+|A|p = 0 for all x ∈ Ω̄ where v− := max{0,−v},

(iii) uj = u on ∂Ω for any j ∈ N and Ω is Lipschitz.
Then I(u) ≤ lim infj→∞ I(uj).

Notice that (ii) is satisfied for example, if v ≥ 0 or if v− ≤ C(1 + | · |q) for some 1 ≤ q < p in which case
−C(1 + |A|q) ≤ v(s) ≤ C(1 + |A|p), C > 0. This result can be found e.g. in [42].

In 1990, Ball and Zhang [20] considered the following bound on a Caratheódory integrand

|v(x, s,A)| ≤ a(x) + C(|s|p + |A|p) ,(3.7)

where C > 0 and a ∈ L1(Ω). Notice that contrary to the above considered results, (3.7) allows the
integrand v to also depend on u not just the gradient of u. Under (3.7), we cannot expect weak lower
semicontinuity of I along generic sequences. Indeed, they proved the following weaker result.
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Theorem 3.8 (Ball and Zhang [20]). Let 1 ≤ p < +∞, uk ⇀ u in W 1,p(Ω;Rm), v(x, s, ·) be quasiconvex
for all s ∈ Rm and almost all x ∈ Ω, and let (3.7) hold. Then there exist a sequence of sets {Ωj}j∈N ⊂ Ω
such that Ωj+1 ⊆ Ωj for all j ≥ 1, and limj→∞ Ln(Ωj) = 0 such that for all j ≥ 1∫

Ω\Ωj
v(x, u(x),∇u(x)) dx ≤ lim inf

k→∞

∫
Ω\Ωj

v(x, uk(x),∇uk(x)) dx .(3.8)

We immediately see that if v ≥ 0 then the statement holds for Ω1 = Ωj = ∅, i.e., that weak lower
semicontinuity is recovered. The sets {Ωj} that must be removed (or bitten) from Ω are the sets where
possible concentration effects of the bounded sequence {v(x, uk,∇uk)}k∈N ⊂ L1(Ω) take place. Thus, {Ωj}
depends on the sequence {uk} itself and Ωj are not known a-priori. The main tool of the proof is the Biting
Lemma due to Chacon [33, 19].

Lemma 3.9 (Biting lemma). Let Ω ⊂ Rn be a bounded measurable set. Let {zk} ⊂ L1(Ω;Rm) be
bounded. Then there is a (non-relabeled) subsequence of {zk}’s, z ∈ L1(Ω;Rm) and a nonincreasing sequence
of sets {Ωj}j∈N ⊂ Ω with Ln(Ωj) → 0 for j → ∞ such that zk⇀z in L1(Ω \ Ωj ;Rm) for k → ∞ and any
j ∈ N.

Let us return to the issue of understanding better condition (ii) in Theorem 3.3. It has been identified
in [98] that a suitable growth from below of the whole functional in (1.5) (which does not necessarily imply a
lower bound on the integrand v itself) equivalently replaces this condition. First, let us illustrate that some
form of boundedness from below is indeed necessary for weak lower semicontinuity.

Example 3.4. Take u ∈ W 1,p
0 (B(0, 1);Rm) (1 < p < ∞) and extend it by zero to the whole of Rn.

Define for x ∈ Rn and j ∈ N uj(x) = j
n−p
p u(jx),i.e., uj ⇀ 0 in W 1,p(B(0, 1);Rm) and consider a smooth

domain Ω ∈ Rn such that 0 ∈ ∂Ω; denote by ρ the outer unit normal to ∂Ω at 0. Moreover, take a function
v : Rm×n → R that is positively p-homogeneous, i.e., v(αξ) = αpv(ξ) for all α ≥ 0. If

I(u) =

∫
Ω

v(∇u(x)) dx

is weakly lower semicontinuous on W 1,p(Ω;Rm) then

0 = I(0) ≤ lim inf
j→∞

∫
Ω

v(∇uj(x)) dx = lim inf
j→∞

∫
B(0,1/j)∩Ω

v(∇uj(x)) dx(3.9)

= lim inf
j→∞

∫
B(0,1/j)∩Ω

jnv(∇u(jx)) dx =

∫
Dρ

v(∇u(y)) dy .

Thus, we see that

(3.10) 0 ≤
∫
Dρ

v(∇u(y)) dy

for all u ∈ W 1,p
0 (B(0, 1);Rm) forms a necessary condition for weak∗ lower semicontinuity of I whenever v

is positively p-homogeneous.

For functions that are not p-homogeneous, S. Krömer [98] generalized (3.10) as follows.

Definition 3.10 (following [98]6). Assume that Ω ⊂ Rn has a smooth boundary and let ρ be a unit
outer normal to ∂Ω at x0. We say that a function v : Ω×Rm×n → R is of p-quasi-subcritical growth from
below (p-qsb) if for every x0 ∈ ∂Ω

for every ε > 0, there exists Cε ≥ 0 such that∫
Dρ(x0,1)

v(x0,∇u(x))dx ≥ −ε
∫
Dρ(x0,1)

|∇u(x)|pdx− Cε for all u ∈W 1,p
0 (B(0, 1);Rm),(3.11)

6In [98] this condition is actually not referred to as p-quasi-subcritical growth from below but is introduced in Theorem 1.6
(ii).
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It has been proved in [98] that the p-quasi-subcritical growth from below of the function v := v(x,∇u)
equivalently replaces (ii) in Theorem 3.3.

Notice that (3.11) is expressed only in terms of v and that it is local in x. It also again shows that, at
least in the case when v does depend only on the first gradient of u but not on u itself, only concentrations at
the boundary may interfere with weak lower semicontinuity of functionals involving quasiconvex functions.
This means that concentrations inside of the domain Ω are already “taken care of” by the quasiconvexity
itself.

Remark 3.5. Let us realize that (3.11) implies (3.10) if v is positively p-homogeneous and independent
of x. To this end, we use, for t ≥ 0, u = tũ in (3.11) to see that

0 ≤ 1

tp

(∫
D%(x0,1)

v(t∇ũ(x)) dx+ ε|t∇ũ(x)|pdx+ Cε

)
.

Letting now t→∞ gives that Cε = 0. Then, we may also send ε→ 0 to get (3.10).

Since only concentration effects play a role for (ii) in Theorem 3.3, it is natural to expect that weak lower
semicontinuity can be linked to properties of the so-called recession function of the function v, if it admits
one. Recall, that we say that the functions v∞ : Ω×Rm×n → R is a recession function for v : Ω̄×Rm×n → R
if for all x ∈ Ω

lim
|A|→∞

v(x,A)− v∞(x,A)

|A|p
= 0.

Thus, informally speaking, the recession function describes the behavior of v at “infinitely large matrices”.
Note that v∞ is necessarily positively p-homogeneous; i.e. v∞(x, λA) = λpv∞(x,A) for all λ ≥ 0, all x ∈ Ω̄,
and all A ∈ Rm×n.

It follows from Remark 3.9 in [98] that if v admits a recession function, then quasi-subcritical growth
from below is equivalent to (3.10) for v∞.

Since weak lower semicontinuity is connected to quasiconvexity and to condition (ii) in Theorem 3.3
which is connected to effects at the boundary, it is reasonable to ask whether the two ingredients can
be combined. Indeed, so-called quasiconvexity at the boundary was introduced in [15] to study necessary
conditions satisfied by local minimizers of variational problems – we also refer to [144, 112, 141] where this
condition is analyzed, too. In order to define quasiconvexity at the boundary, we put for 1 ≤ p ≤ +∞

W 1,p
Γρ

(Dρ;Rm) := {u ∈W 1,p(Dρ;Rm); u = 0 on ∂Dρ \ Γρ} ,(3.12)

where Γρ is the planar part of ∂Dρ.

Definition 3.11 (taken from [112]). 7 Let % ∈ Rn be a unit vector. A function f : Rm×n → R is called
quasiconvex at the boundary at the point A ∈ Rm×n with respect to ρ if there is q ∈ Rm such that for all
ϕ ∈W 1,∞

Γρ
(Dρ;Rm) it holds∫

Γρ

q · ϕ(x) dS + f(A)Ln(D%) ≤
∫
Dρ

f(A+∇ϕ(x)) dx .(3.13)

Let us remark that, analogously to quasiconvexity, we may generalize quasiconvexity at the boundary
to W 1,p-quasiconvexity at the boundary (for 1 < p <∞) by using all u ∈W 1,p

Γ%
(Dρ;Rm) as test functions in

(3.13). For functions with p-growth these two notions coincide.

Remark 3.6. Let us give an intuition on the above definition. Take a smooth convex function f :
Rm×n → R and ϕ ∈W 1,∞

Γ%
(Dρ;Rm). Then we know that

f(A+∇ϕ(x)) ≥ f(A) +
∂f

∂A
(A) : ∇ϕ(x);

7The original definition in [15] considers the case q := 0.
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integrating this expression over Ω then gives∫
Ω

f(A+∇ϕ(x))dx ≥
∫

Ω

f(A) +
∂f

∂A
(A) : ∇ϕdx = Ln(Ω)f(A) +

∫
∂Ω

( ∂f
∂A

(A)ρ
)
· ϕdS,

where ρ is the outer normal to ∂Ω. Now when setting q := ∂f
∂A (A) we obtained the definition of the quasi-

convexity at the boundary. Notice also that if ϕ is zero at the whole boundary we recover the definition of
classical quasiconvexity, too.

Remark 3.7. It is possible to work with more general domains that half-balls in Definition 3.11; namely
with so-called standard boundary domains. We say that D̃ρ is a standard boundary domain with the normal

ρ if there is a ∈ Rn such that D̃ρ ⊂ Ha,ρ := {x ∈ Rn; ρ · x < a} and the (n − 1)- dimensional interior Γρ
of ∂D̃ρ ∩ ∂Ha,ρ is nonempty. Roughly speaking, this means that the boundary of D̃ρ should contain a planar
part.

As with standard quasiconvexity, if (3.13) holds for one standard boundary domain it holds for other
standard boundary domains, too.

Remark 3.8. If p > 1, v : Rm×n → R is positively p-homogeneous, continuous, and W 1,p-quasiconvex
at the boundary at (0, ρ) then q = 0 in (3.13). Indeed, we have v(0) = 0 and suppose, by contradiction, that∫
Dρ
v(∇u(x)) dx < 0 for some u ∈W 1,∞

Γρ
(Dρ;Rm). By (3.13), we must have for all λ > 0

0 ≤ λp
∫
Dρ

v(∇u(x)) dx− λ
∫

Γρ

q · u(x) dS .

However, this is not possible for λ > 0 large enough and therefore for all ϕ ∈ W 1,∞
Γρ

(Dρ;Rm) it holds that∫
Dρ
v(∇ϕ(x)) dx ≥ 0. Thus, we can take q = 0.

From the above remark and from (3.10), we have the following lemma:

Lemma 3.12. If a function v : Rm×n → R is W 1,p-quasiconvex at the boundary at zero and every
% ∈ Rn, a unit normal vector to ∂Ω, then it is also of p-subcritical growth from below. The two notions
become equivalent if v is also positively p-homogeneous. Here Ω must have a smooth boundary.

3.2. Integrands bounded from below. As already mentioned, condition (ii) in Theorem 3.3 is
automatically satisfied if the integrand in (1.5) is bounded from below. Moreover, in this case, the continuity
assumptions stated in Definition 3.2 can be considerably weakened. In fact, the Carathéodory property is
sufficient in case k = 1 in (1.5) as the following famous result due to E. Acerbi and N. Fusco [1] shows.

Theorem 3.13 (Acerbi and Fusco [1]). Let k = 1, Ω ⊂ Rn be an open, bounded set, and let v : Ω ×
Rm×Rm×n → [0; +∞) be a Carathéodory integrand, i.e., v(·, s, A) is measurable for all (s,A) ∈ Rm×Rm×n
and v(x, ·, ·) is continuous for almost all x ∈ Ω. Let further v(x, s, ·) be quasiconvex for almost all x ∈ Ω and
all s ∈ Rm, and suppose that for some C > 0, 1 ≤ p < +∞, and a ∈ L1(Ω) we have that8

0 ≤ v(x, s,A) ≤ a(x) + C(|s|p + |A|p) .(3.14)

Then I : W 1,p(Ω;Rm)→ [0; +∞) given in (1.5) is weakly lower semicontinuous on W 1,p(Ω;Rm).

Interestingly, the paper by Acerbi and Fusco [1] already implicitly contains a version of Decomposition
lemma 3.6.

Marcellini [107] proved, by a different technique of constructing a suitable non-decreasing sequence of
approximations, a very similar result to Theorem 3.13 allowing also for a slightly more general growth

(3.15) −c1|A|r − c2|s|t − c3(x) ≤ v(x, s,A) ≤ g(x, s)
(
1 + |A|p

)
,

8This bound is often called “natural growth conditions”.
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where c1, c2 ≥ 0, c3 ∈ L1(Ω); g is Carathéodory but otherwise arbitrary and for the exponents we have that
p ≥ 1, 1 ≤ r < p (but r = 1 if p = 1) and if p < n 1 ≤ t < np/(n− p), otherwise t ≥ 1.

Note that the growth condition (3.15) actually allows for integrands unbounded from below but the
exponent r determining this growth is strictly smaller than p. Such integrands are of sub-critical growth and
for integrand of the class Fp(Ω) weak lower semicontinuity under this growth follows also from Theorem
3.7(ii).

Acerbi and Fusco [1, p. 127] remarked that “...using more complicated notations as in [13], [110], our
results can be extended to the case of functionals of the type (1.5)”.This extension has been considered by
Fusco [66] for the case p = 1 an later by Guidorzi and Poggilioni [73] who rewrote functional (1.5) as (using
the notation from Section 2)

(3.16) I(u) =

∫
Ω

v(x,∇[k−1]u(x),∇ku(x))dx

and proved the following.

Proposition 3.14 ([73]). Let v : Ω×Y (n,m, k−1)×X(n,m, k)→ R be a Carathéodory k-quasiconvex
function satisfying for all H ∈ Y (n,m, k − 1) and all A ∈ X(n,m, k)

0 ≤ v(x,H,A) ≤ g(x,H)(1 + |A|)p

|v(x,H,A)− v(x,H,B)| ≤ C(1 + |A|p−1 + |B|p−1)|A−B|

where g is a Carathéodory function and C ≥ 0. Then the functional from (3.16) is weakly lower semicontin-
uous in W k,p(Ω;Rn) for 1 ≤ p <∞ and k ∈ N.

Note that in this result the continuity of the integrand in the space variable x could be omitted, which is,
roughly speaking, due to the fact that quasiconvexity is enough to handle the concentration effects. On the
other hand, the continuity assumption from Definition 3.2(ii) still remains present (with γ = 1). A similar
result can be drawn from the more general setting of A-quasiconvexity (which we review in Section 8 below)
considered in [31].

While the above results handle also weak lower semicontinuity on W k,1(Ω;Rm) with respect to the
standard weak convergence in this space, it is more suitable to investigate lower semicontinuity with respect
to the strong convergence in W k−1,1(Ω;Rm). This is due to the fact that W k,1(Ω;Rm) is not reflexive
and therefore coercivity of (1.5) does not allow us to select a minimizing sequence that would be weakly
convergent in W k,1(Ω;Rm) but the strong convergence in W k−1,1(Ω;Rm) can be assured.

The case for k = 1 was treated by Fonseca and Müller [59] who considered continuous integrands under
mild growth conditions. The result was later generalized by Fonseca, Leoni, Malý, and Paroni [58] not only
with respect to the continuity of the integrand that could be partially dropped, but also to arbitrary k. We
give the result in Theorem 3.15.

Theorem 3.15 (taken from [58]). Let v in (1.5) be a Borel integrand that is moreover continuous in
the following sense: For all ε > 0 and (x0, H0) ∈ Ω × Y (n,m, k − 1) there exist δ > 0 and a modulus of
continuity ω with the property that, for some C > 0, ω(s) ≤ C(1 + s), s > 0 such that

v(x0, H0, A)− v(x,H,A) ≤ ε(1 + v(x,H,A)) + ω(|H0 −H|),

for all x ∈ Ω satisfying |x− x0| ≤ δ and for all H ∈ Y (n,m, k − 1) and all A ∈ X(n,m, k). Suppose further
that v is k-quasiconvex and satisfies9

1

c
|A| − c ≤ v(x0, H0, A) ≤ c(1 + |A|),

9If k = 1 the growth condition can be relaxed to

0 ≤ v(x0, s, A) ≤ c(1 + |A|) ∀A ∈ Rm×n

and it can be even omitted if v is convex in its last variable.
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for some c > 0 and all A ∈ X(n,m, k).
Then, v in (1.5) is lower semicontinuous with respect to the strong convergence in W k−1,1(Ω;Rm).

For the functions v : X(m,n, k) → R, i.e. those depending only on the highest gradient, an analogous
result has been obtained in [4].

4. Null Lagrangians. In this section, we study under which conditions on v the functional (1.5) is not
only weakly lower semicontinuous but actually weakly continuous in W k,p(Ω;Rm). This question is tightly
connected (cf. Theorem 4.3 below) to the study of so-called null Lagrangians. We start the discussion by
presenting definitions of null Lagrangians of the first and higher order.

Definition 4.1. We say that a continuous map L : Rm×n → R is a null Lagrangian of the first order,
if for every u ∈ C1(Ω̄;Rm) and every ϕ ∈ C1

0 (Ω;Rm) it holds that∫
Ω

L(∇(u(x) + ϕ(x))) dx =

∫
Ω

L(∇u(x)) dx .(4.1)

Notice that the definition is independent of the particular Lipschitz domain Ω. In fact, if (4.1) holds for
one domain Ω it also holds for all other (Lipschitz) domains.

Remark 4.1. The name “null Lagrangians” comes from the fact that, if L is even smooth so that the
Gateaux derivative of J(u) :=

∫
Ω
L(∇u(x)) dx can be evaluated, it easily follows from (4.1) that J satisfies

J ′(u) = 0 for all u ∈ C1(Ω̄;Rm). In other words, the Euler-Lagrange equations of J are fulfilled identically
in the sense of distributions.

Remark 4.2. Let us notice that, if L is a null Lagrangian, the value of J(u) =
∫

Ω
L(∇u(x)) dx is only

dependent on the boundary values of u(x). This can be seen from (4.1) as the value remains unchanged even
if we add arbitrary functions vanishing on the boundary.

It is straightforward to generalize (4.1) also to higher order problems.

Definition 4.2. Let k ≥ 2. We say that L : X → R is a (higher-order) null Lagrangian if∫
Ω

L(∇k(u(x) + ϕ(x)) dx =

∫
Ω

L(∇k(u(x)) dx(4.2)

for all u ∈ Ck(Ω̄;Rm) and all ϕ ∈ Ck0 (Ω;Rm).

Similarly as in the first-order gradient case, the definition is independent of the particular (Lipschitz)
domain Ω. In the same way as in the first order case, it follows that Euler-Lagrange equations∑

|K|≤l

(−D)K
∂L

∂uiI
(∇lu) = 0(4.3)

are satisfied in the sense of distributions for arbitrary u ∈ Ck(Ω̄;Rm).

Remark 4.3. It is natural to generalize the notion of null Lagrangians to functionals of the type
(1.5), i.e. those depending also on lower order gradients, in the following way: We say that the function
L : Ω × Y (n,m, k) → R is a null Lagrangian for the functional (1.5) if for all u ∈ Ck(Ω;Rm) and all
ϕ ∈ Ck0 (Ω;Rm) it holds that

J(u+ ϕ) = J(u) and J(u) =

∫
Ω

L(x, u(x),∇u(x), . . . ,∇ku(x)) dx.

We shall see in the end of the section that null Lagrangians for these types of functionals are actually
determined by higher order null Lagrangians at least if k = 1.

The following result characterizes null Lagrangians (of first and higher order) by means of a few
equivalent statements. In particular, it shows that null Lagrangians are the only integrands along which∫

Ω
v(∇k(u(x)) dx is weakly continuous. It is taken from [13].

Theorem 4.3 (Characterization of (higher-order) null Lagrangians). Let L : X(n,m, k) → R be con-
tinuous. Then the following statements are mutually equivalent:
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(i) L is a null Lagrangian,
(ii)

∫
Ω
L(A +∇kϕ(x)) dx =

∫
Ω
L(A) dx for every ϕ ∈ C∞0 (Ω;Rm) and every A ∈ X(n,m, k) and every

open subset Ω ⊂ Rn,
(iii) L is continuously differentiable and (4.3) holds in the sense of distributions,
(iv) The map u 7→ L(∇ku) is sequentially weakly* continuous from W k,∞(Ω;Rm) to L∞(Ω). This means

that if uj
∗
⇀u in W k,∞(Ω;Rm) as j →∞ then L(∇kuj)

∗
⇀L(∇ku) in L∞(Ω),

(v) L is a polynomial of degree p and the map u 7→ L(∇ku) is sequentially weakly* continuous from
W k,p(Ω;Rm) to D′(Ω). This means that if uj ⇀ u in W k,p(Ω;Rm) as j → ∞ then L(∇kuj) ⇀
L(∇ku) in D′(Ω).

While Theorem 4.3 provides us with very useful properties of null Lagrangians it is interesting to note
that that they are known explicitly in the first as well as in the higher order. In fact, null Lagrangians are
formed by minors or sub-determinants of the gradient entering the integrand in J .

4.1. Explicit characterization of null Lagrangians of the first order. Let us start with the
first order case: If A ∈ Rm×n we denote by Ti(A) the vector of all subdeterminants of A of order i for
1 ≤ i ≤ min(m,n). Notice that the dimension of Ti(A) is d(i) :=

(
m
i

)(
n
i

)
, hence the the number of all

subdeterminants of A is σ :=
(
m+n
n

)
− 1. Finally, we write T := (T1, . . . ,Tmin(m,n)). For example, if m = 1

or n = 1 then T(A) consists only of entries of A, if m = n = 2 then T(A) = (A,detA) and for m = n = 3
we obtain T(A) = (A,CofA,detA).

Clearly, linear maps are weakly continuous. Yet, it has been known at least since [114, 130, 8] that also
minors have this property (see Theorem 4.4 below). This result, usually called (sequential) weak continuity
of minors is unexpected because if i > 1 then A 7→ Ti(A) is a nonlinear polynomial of the i-th order. As it
is well-known, weak convergence generically does not commute with nonlinear mappings.

Theorem 4.4 (Weak continuity of minors (see e.g. [42])). Let Ω ⊂ Rn be a bounded Lipschitz domain.
Let 1 ≤ i ≤ min(m,n). Let {uk}k∈N ⊂ W 1,p(Ω;Rm) be such that uk⇀u in W 1,p(Ω;Rm) for p > i. Then
Ti(∇uk)⇀Ti(∇u) in Lp/i(Ω;Rd(i)).

It follows from Theorem 4.7 below (see also [42]) that minors are the only mappings depending exclusively
on ∇u which have this property. Thus in view of Theorem 4.3, any null Lagrangian can be written as an
affine combination of elements of T, i.e., for any A ∈ Rm×n

L(A) = c0 + c · T(A) ,(4.4)

where c0 ∈ R and c ∈ Rσ are arbitrary constants. Let us note however, that it has been realized independently
in e.g. [52, 53] that minors are the only maps for which the Euler-Lagrange equation of J(u) =

∫
Ω
L(∇u)dx

is satisfied identically.
As we saw in Example 3.2, Theorem 4.4 fails if p = i. Nevertheless, the results can be much improved

if we additionally assume that, for every k ∈ N, Ti(∇uk) ≥ 0 almost everywhere in Ω. Indeed, Müller [117]
proved the following result.

Proposition 4.5 (Higher integrability of determinant). Assume that ω ⊂ Ω ⊂ Rn is compact, u ∈
W 1,n(Ω;Rn), and that det∇u ≥ 0 almost everywhere in Ω. Then

‖(det∇u) ln(2 + det∇u)‖L1(ω) ≤ C(ω, ‖u‖W 1,n(Ω;Rn))(4.5)

for some C(ω, ‖u‖W 1,n(Ω;Rn)) > 0 a constant depending only on ω and the Sobolev norm of u in Ω.

This proposition results in the following Corollary:

Corollary 4.6 (Uniform integrability of determinant). If {uk}k∈N ⊂ W 1,n(Ω;Rn) is bounded and
det∇uk ≥ 0 almost everywhere in Ω for all k ∈ N then det∇uk ⇀ det∇u in L1(ω) for every compact set
ω ⊂ Ω.

A related statement was achieved by Kinderlehrer and Pedregal in [87]. It says that under the assump-
tions of Corollary 4.6 and if uk = u on ∂Ω for all k ∈ N the claim of Corollary 4.6 holds for ω := Ω.
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4.2. Explicit characterization of null Lagrangians of higher order. Null-Lagrangians of higher
order are of the same structure as those of the first order. Indeed, they also correspond to minors. In order
to make the statement more precise, we assume that K := (k1, . . . , kr) is such that 1 ≤ ki ≤ n and denote
by α := (ν1, J1; ν2, J2; . . . ; Jr, νr) with |Ji| = k−1 and where 1 ≤ νi ≤ m. We define the k-th order Jacobian
determinant JαK : X → R by the formula

JαK(∇u) =
∂(∂uν1J1 , . . . , ∂u

νr
Jr

)

∂(xk1 , . . . , xkr )
= det

(
∂uνiJi
∂xkj

)
.

Then any null Lagrangian of higher order is just an affine combination of JαK , i.e.,

Theorem 4.7 (See [13]). Let L ∈ C(X(n,m, k)). Then L is a null Lagrangian if and only if it is an
affine combination of k-th order Jacobian determinant, i.e.,

L = C0 +
∑
α,K

CαKJ
α
K

for some constants C0 and CαK .

Remark 4.4. The maximum degree of nonzero JαK(∇ky) is denoted by R. It can be shown that R =
min(m,n) if k = 1 and R := n for k > 1.

4.3. Null Lagrangians with lower order terms. As pointed out in Remark 4.3, the notion of null
Lagrangians can be generalized also to functionals of the type (1.5); i.e. those containing also lower order
terms. A characterization of these null Lagrangians is due to Olver and Sivaloganathan [122] who considered
the first order case; i.e., null Lagrangians for those functionals which can also depend on x and u.

Based on Olver’s results [121], they showed in [122] that such null Lagrangians are given by the formula

L̃(x, u,∇u) = C0(x, u) +
∑
i

Ci(x, u)Ti(∇u) ,

where C0 is a real-valued C1-function and Ci are C1-functions of its arguments for 1 ≤ i ≤ min(m,n) with
values in Rd(i), i > 0. This means that they are determined by the already known null Lagrangians of the
first order. Let us remark, that it is noted in [122] that the result generalizes analogously to the higher order
case.

5. Null Lagrangians at the boundary. We have seen that null Lagrangians of the first order are
exactly those functions that fulfill (1.4) in the definition of quasiconvexity with an equality. This, of course,
assures that null-Lagrangians are weakly* continuous with respect to the W 1,∞(Ω;Rm) weak* topology; in
addition, due to Theorem 4.4, the are weakly continuous with respect to the W 1,p(Ω;Rm) weak topology if
p > min(m,n) with Ω ⊂ Rn.

However, in the critical case when p = min(m,n) the weak continuity fails. In fact, as we have seen
in Example 3.2 for n = m = p = 2 the functional (1.5) with k = 1 and v(x, u,∇u) = det(∇u) is not even
weakly lower semicontinuous, even though the determinant itself is definitely a null-Lagrangian. Once again,
the reason for the failure of weak continuity are concentrations on the boundary combined with the fact that
null-Lagrangians are unbounded from below.

Nevertheless, as we have seen in Section 3.1, at least for p-homogeneous functions, weak lower semicon-
tinuity can be assured for for functionals with integrands that are quasiconvex at the boundary; i.e., fulfill
(3.13). Thus, a proper equivalent of null Lagrangians in this case are those functions that fulfill (3.13) with
an equality—these functions are referred to as null Lagrangians at the boundary. We study these functions
in this section.

Clearly, null Lagrangians at the boundary form a subset of null Lagrangians of the first order. Moreover,
they have exactly the sought properties: If N is a null Lagrangian at the boundary then it is a polyno-
mial of order p, say. If, additionally {uk}k∈N ⊂ W 1,p(Ω;Rm) converges weakly to u ∈ W 1,p(Ω;Rm) then
{N (∇uk)}k∈N ⊂ L1(Ω) weak* converges to N (∇u) inM(Ω̄), i.e., in measures on the closure of the domain.
This means that the L1-bounded sequence {N (∇uk)} converges to a Radon measure whose singular part
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vanishes. Thus, functionals with integrands that are null-Lagrangians at the boundary are weakly contin-
uous even in the critical case. Null Lagrangians at the boundary can be also used to construct functions
quasiconvex at the boundary; cf. Definition 3.11.

We first give a formal definition of null Lagrangians at the boundary.

Definition 5.1. Let % ∈ Rn be a unit vector and let N : Rm×n → R be a given function.
(i) N is called a null Lagrangian at the boundary at given A ∈ Rm×n if both N and −N are quasiconvex

at the boundary at A in the sense of Definition 3.11; cf. [144]. This means that there is q ∈ Rm
such that for all ϕ ∈W 1,∞

Γρ
(Dρ;Rm) it holds∫

Γρ

q · ϕ(x) dS +N (A)Ln(D%) =

∫
Dρ

N (A+∇ϕ(x)) dx .(5.1)

(ii) If N is a null Lagrangian at the boundary at every F ∈ Rm×n, we call it a null Lagrangian at the
boundary.

The following theorem explicitly characterizes all possible null Lagrangians at the boundary. It was
first proved by P. Sprenger in his thesis [141, Satz 1.27]. Later on, the proof was slightly simplified in [84].
Before stating the result we recall that SO(n) := {R ∈ Rn×n; R>R = RR> = I , detR = 1} denotes the
set of orientation-preserving rotations and if we write A = (B|%) for some B ∈ Rn×(n−1) and % ∈ Rn then
A ∈ Rn×n, its last column is % and Aij = Bij for 1 ≤ i ≤ n and 1 ≤ j ≤ n− 1. We remind also that Ti(A)
denotes the vector of all subdeterminants of A of order i.

Theorem 5.2. Let % ∈ Rn be a unit vector and let N : Rm×n → R be a given continuous function.
Then the following three statements are equivalent.

(i) N satisfies (5.1) for every F ∈ Rm×n;
(ii) N satisfies (5.1) for F = 0,

(iii) There are constants β̃s ∈ R(ms )×(n−1
s ), 1 ≤ s ≤ min(m,n− 1), such that for all H ∈ Rm×n,

N (H) = N (0) +

min(m,n−1)∑
i=1

β̃i · Ti(HR̃),(5.2)

where R̃ ∈ Rn×(n−1) is a matrix such that R = (R̃|%) belongs to SO(n);
(iv) N (F + a⊗ %) = N (F ) for every F ∈ Rm×n and every a ∈ Rm.

If m = n = 3 the only nonlinear null Lagrangian at the boundary with the normal % is

N (F ) = Cof F · (a⊗ %) = a · Cof F%

where a ∈ R3 is some fixed vector; see [144].
In the following theorem, we let % freely move along the boundary which introduces an x-dependence to

the problem. Then the vector a may depend on x as well.

Theorem 5.3 (due to [100]). Let Ω ⊂ R3 be a smooth bounded domain. Let {uk} ⊂ W 1,2(Ω;R3) be
such that uk ⇀ u in W 1,2(Ω;R3). Let N (x, F ) := Cof F · (a(x)⊗ %(x)), where a, % ∈ C(Ω̄;R3), % coincides
at ∂Ω with the outer unit normal to ∂Ω. Then for all g ∈ C(Ω̄)

lim
k→∞

∫
Ω

g(x)N (x,∇uk(x)) dx =

∫
Ω

g(x)N (x,∇u(x)) dx .(5.3)

If, moreover, for all k ∈ N N (·,∇uk) ≥ 0 almost everywhere in Ω then N (·,∇uk) ⇀ h(·,∇u) in L1(Ω).

Notice that even though {N (·,∇uk)}k∈N is bounded merely in L1(Ω) its weak* limit in measures is
h(·,∇u) ∈ L1(Ω), i.e., a measure which is absolutely continuous with respect to the Lebesgue measure on
Ω. This holds independently of {∇uk}. Therefore, the fact that N is a null Lagrangian at the boundary
automatically improved regularity of the limit measure, namely its singular part vanishes. In order to
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understand why this happens, denote P(x) := I− %(x)⊗ %(x) the orthogonal projector on the plane with the
normal %(x), i.e., a tangent plane to ∂Ω at x ∈ ∂Ω. Then

Cof(FP) = CofFCofP = (CofF )(%⊗ %) .

Consequently,

Cof(FP)% = (CofF )% ,

and if F is a placeholder for ∇u we see that N (x, ·) only depends on the surface gradient of u. In other
words, concentrations in the sequence of normal derivatives, {∇uk(%⊗%)}k∈N, are filtered out. The following
two statements describing weak sequential continuity of null Lagrangians at the boundary can be found in
[84]. They apply to cases in which the condition (ii) from Theorem 3.3 is always satisfied.

Theorem 5.4 (see [84]). Let m,n ∈ N with n ≥ 2, let Ω ⊂ Rn be open and bounded with a boundary of
class C1, and let N : Ω × Rm×n → R be a continuous function. In addition, suppose that for every x ∈ Ω,
N (x, ·) is a null Lagrangian and for every x ∈ ∂Ω, N (x, ·) is a null Lagrangian at the boundary with respect
to %(x), the outer normal to ∂Ω at x. Hence, by Theorem 5.2, N (x, ·) is a polynomial, the degree of which
we denote by dN (x). Finally, let p ∈ (1,∞) with p ≥ dv(x) for every x ∈ Ω and let {uk} ⊂ W 1,p(Ω;Rm) be
a sequence such that uk ⇀ u in W 1,p. If

N (x,∇uk(x)) ≥ 0 for every k ∈ N and a.e. x ∈ Ω,

then N (·,∇un) ⇀ N (·,∇u) weakly in L1(Ω).

Theorem 5.5 (see [84]). Let h : Ω×R→ R∪{+∞} be such that h(·, s) is measurable for all s ∈ R and
h(x, ·) is convex for almost all x ∈ Ω. Let N and dN be as in Theorem 5.4. Then

∫
Ω
h(x,N (x,∇u(x))) dx

is weakly lower semicontinuous on the set {u ∈W 1,p(Ω;Rm);N (·,∇u) ≥ 0 in Ω}.

Let us finally point out that A 7→ h(N (A)) for a convex function h is quasiconvex at the boundary [15].

6. Polyconvexity and applications to hyperelasticity. We saw that, at least for integrands bounded
from below and satisfying (i) in Definition 3.2, quasiconvexity is an equivalent condition for weak lower semi-
continuity. This presents an explicit characterization of the latter since it is not necessary to examine all
weakly converging sequences. Nevertheless, in practice quasiconvexity is almost impossible to verify since,
in a sense, its verification calls for solving a minimization problem itself. Therefore, it is desirable to find
at least sufficient conditions for weak lower semicontinuity that can be easily verified. Such a notion, called
polyconvexity introduced by J.M. Ball, can be designed by employing the null Lagrangians introduced in the
last section.

We start with the definition of polyconvexity for first order functionals I(u) =
∫

Ω
v(∇u(x))dx.

Definition 6.1 (Due to [8]). We say that v : Rm×n → R∪ {+∞} is polyconvex if there exists a convex
function h : Rσ → R ∪ {+∞} such that v(A) = h(T(A))10 for all A ∈ Rm×n.

Remark 6.1. Interestingly, already Morrey in [114, Thm. 5.3] proved that one-homogeneous convex
functions depending on minors are quasiconvex.

If h is affine in the above definition, we call v polyaffine. In this case, v(A) is a linear combination of
all minors of A plus a real constant. Consequently, any polyconvex function is bounded from below by a
polyaffine function. Similarly, as in the convex case, a polyconvex function is found by forming the supremum
of all polyaffine functions lying below it see e.g. [42, Rem. 6.7]; i.e., we have the following lemma.

Lemma 6.2. The function v : Rm×n → R is polyconvex if and only if

v(A) = sup{ϕ(A);ϕ polyaffine and ϕ ≤ v}.

10Recall that T(A) denotes the vector of all minors of A.
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It is a straightforward idea to generalize polyconvexity to higher-order variational problems, i.e., those
that depend on higher-order gradients of a mapping. The attractiveness of such problems for applications
is clear. Suitably chosen terms depending on higher-order gradients allow for compactness of a minimizing
sequence in some stronger topology than the weak one on W 1,p which enable us to pass to a limit in lower-
order terms without restrictive assumptions on their convexity properties. Thus, for example, models of
shape memory alloys (see Section 7) can be treated by this approach; cf. e.g. [118, 119].

Thus, we extend the notion of polyconvexity to higher order problems (1.5) and it employs the notion
of null Lagrangians of higher order and is due to to Ball, Currie, and Olver [13].

Definition 6.3 (Higher-order polyconvexity). Let 1 ≤ r ≤ R where R is defined in Remark 4.4.
Let U ⊂ X(n,m, k) be open. A function G : U → R is r-polyconvex if there exists a convex function
h : Co(J [r](U)) → R such that v(A) = h(J [r](A)) for all A ∈ U ; here Co(J [r](U)) is the convex hull of
J [r](U). G is polyconvex if it is R-polyconvex. Here Jr(H) := (Jr,1(H), . . . , Jr,Nr (H)) is a Nr-tuple with
the property that any Jacobian determinant of degree r can be written as a linear combination of elements
of Jr. Consequently, J [r] := (J1, . . . , Jr). If h is affine then we call v r-polyaffine.

Since polyconvexity implies quasiconvexity, we may deduce by the results in Section 3 that polycon-
vex functions in the class Fp(Ω) (from Definition 3.2) are weakly lower semicontinuous. Yet, weak lower
semicontinuity can be proved for wider class of polyconvex functions than those in Fp(Ω); in particular, the
functions do not have to be of p-growth. This is of great importance in elasticity as explained later in this
section.

The proof of weak lower semicontinuity of polyconvex functions is actually based on convexity and weak
continuity of null Lagrangians. Thus, since weak lower semicontinuity can be shown for arbitrarily growing
convex functions, it generalizes to polyconvex ones, too. The following result for convex functions can be
found in [13, Thm. 5.4] and is based on results by Eisen [51] who proved this theorem for Φ < +∞.

Theorem 6.4 (weak lower semicontinuity). Let Φ : Ω × Rs × Rσ → R ∪ {+∞} satisfy the following
properties

(i) Φ(·, z, a) : Ω→ R ∪ {+∞} is measurable for all (z, a) ∈ Rs × Rσ,
(ii) Φ(x, ·, ·) : Rs × Rσ → R ∪ {+∞} is continuous for almost every x ∈ Ω,

(iii) Φ(x, z, ·) : Rσ → R ∪ {+∞} is convex.
Assume further that for all (z, a) ∈ Rs × Rσ Φ(·, z, a) ≥ φ for some φ ∈ L1(Ω). Let zk → z almost

everywhere in Ω and let ak⇀a in L1(Ω;Rσ). Then∫
Ω

Φ(x, z(x), a(x)) dx ≤ lim inf
k→∞

∫
Ω

Φ(x, zk(x), ak(x)) dx .

Using this theorem, we may easily deduce weak lower semicontinuity of polyconvex functions. For the
sake of clarity, let us start with first order problems. Then, consider uk⇀u in W 1,p(Ω;Rm) as k → ∞
where p > min(m,n). Then uk → u in Lp(Ω;Rm), so, for a (non-relabeled) subsequence, even uk → u
almost everywhere in Ω. Hence, we can apply Theorem 6.4 with zk := uk, ak := T(∇uk) and v(x, y,∇y) :=
Φ(x, y,T(∇y)) to obtain the following corollary:

Corollary 6.5. Let v : Ω× Rm × Rm×n → R ∪ {+∞} satisfy the following properties
(i) v(·, z, A) : Ω→ R ∪ {+∞} is measurable for all (z,A) ∈ Rm × Rm×n,

(ii) v(x, ·, ·) : Rm × Rm×n → R ∪ {+∞} is continuous for almost every x ∈ Ω,
(iii) v(x, z,A) = Φ(x, z,T(A)) where Φ satisfies (i)–(iii) from Theorem 6.4.

If uk⇀u in W 1,p(Ω;Rm) as k →∞ where p > min(m,n) then∫
Ω

v(x, u(x),∇u(x)) dx ≤ lim inf
k→∞

∫
Ω

v(x, uk(x),∇uk(x)) dx .

Similarly as in the case of first order problems, we can exploit (v) of Theorem 4.3 and Theorem 6.4 to
show the existence of minimizers to energy functionals (1.5). Let us present the result just for functionals
(1.5) with k = 2; generalizations for higher k are straightforward and can be found in [13].
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Corollary 6.6 (after [13]). Assume that Ω ⊂ Rn is a bounded smooth domain and that 1 ≤ r ≤ R.
Let v : Ω× Y (n,m, 2)→ R ∪ {+∞} in

I(u) =

∫
Ω

v(x, u,∇u,∇2u)dx

satisfy the following assumptions:
(i) v(x,H,A) = h(x,H, J [r](A)), where h(x, ·, ·) : (Rm × Rm×n) × J [r](X(n,m, 2)) → R ∪ {+∞} is

continuous for almost every x ∈ Ω,
(ii) h(·, H, J [r](A)) : Ω→ R∪{+∞} is measurable for all (H,J [r](A)) ∈ (Rm×Rm×n)×J [r](X(n,m, 2)),

(iii) h(x,H, ·) : J [r](X)→ R ∪ {+∞} is convex for almost all x ∈ Ω and all F ∈ Rm×n,
(iv) v(x,H,A) ≥ C(−1 + |A|p) for some C > 0, p > n, almost all x ∈ Ω and all A ∈ Rm×n,

Let further for some u0, u1 ∈W 2,p(Ω;Rm)

Y := {u ∈W 2,p(Ω;Rm) : u = u0 on ΓD , ∇u = ∇u1 on ΓD} 6= ∅

and such that infY I(u) < +∞. Then there is a minimum of I(u) on Y.

It is important to realize that main strength of polyconvexity consists in the fact that convexity in
subdeterminants can be advantageously combined with the Mazur lemma to show weak lower semicontinuity
in similar a way like in the proof for mere convex and lower semicontinuous integrands. This contrasts with
proofs available for quasiconvex integrands where manipulations with boundary conditions are usually needed
to prove the result. This is already clearly visible in Meyers paper [110]. These manipulations typically
destroy any pointwise constraints on the determinant of ∇y, which, however, are crucial in elasticity. We
shall return to this issue in Section 7.

6.1. Rank-1 convexity. Since polyconvexity is an explicit sufficient condition for quasiconvexity, we
may ask if similarly a simpler necessary condition can be found. This is indeed so, the sought notion of
convexity is rank-1 convexity :

Definition 6.7 (Due to [115]). We say that f : Rm×n → R is rank-1 convex if

(6.1) f(λA1 + (1− λ)A2) ≤ λf(A1) + (1− λ)f(A2).

for all λ ∈ [0, 1] and all A1, A2 such that rank(A1 −A2) ≤ 1.

The relations among the introduced notions of convexity are as follows:

convexity⇒ polyconvexity⇒ quasiconvexity⇒ rank-1 convexity;

however, none of the converse implications holds if f : Rm×n → R and m > 2 and n ≥ 2. To see that
polyconvexity does not imply convexity (even for m,m > 1) just consider the function v(F ) := det(F ) which
is even polyaffine but not convex. Also quasiconvexity does not imply polyconvexity even for m,n > 1 as
was shown in e.g. [3, 151]. Šverák’s important counter example [148] is a construction of a function that is
rank-1 convex, but not quasiconvex and holds for m ≥ 3 and n ≥ 2. For m = 2 and n ≥ 2 the question of
equivalence between quasiconvexity and rank-1 convexity is still unsolved. On the other hand, it was shown
in [155] that rank-one convexity coincides with quasiconvexity for quadratic forms in any dimension.

Open problem 6.8. Let m = 2 and n ≥ 2. Does rank-1 convexity imply quasiconvexity for v : Rm×n →
R.

Notice that, if m = 1 or n = 1 all the generalized notions of convexity trivially coincide with standard
convexity itself.

An equivalent to rank-1 convexity can also be defined for higher-order problems–the corresponding
notion is called Λ-convexity. Following [13], we define a nonconvex cone Λ ⊂ X(n,m, k) as Λ := {a ⊗l b :
a ∈ Rm, b ∈ Rn} where (a⊗l b)iK = aibK .

Definition 6.9. A function f : X → R is called Λ-convex if t 7→ f(A+ tB) : R→ R is convex for any
A ∈ X(n,m, k) and any B ∈ Λ.
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Notice that for l = 1 Λ-convexity coincides with rank-1 convexity. If f is twice continuously differentiable
then Λ-convexity is equivalent to the Legendre-Hadamard condition

m∑
j,k=1

∑
|J|=|K|=l

∂2f(A)

∂AjJ∂A
k
K

ajakbJbK ≥ 0

for all A ∈ X(n,m, k), a ∈ Rm, and b ∈ Rn.

Proposition 6.10 (see [13]). Continuous and k-quasiconvex functions f : X(n,m, k) → R are Λ-
convex.

Hence, Λ-convexity forms a necessary condition for (k-)quasiconvexity. This proposition was first proved
by Meyers [110, Thm. 7] for smooth functions and then generalized in [13] to the continuous case. The
opposite assertion does not hold. Indeed, if n = l = 2 and m = 3 then we have the following example due to
Ball, Currie, and Olver for f : X → R

v(∇2u) =

3∑
i,j,k=1

εijk
∂2ui

∂x2
1

∂2uj

∂x1∂x2

∂2uk

∂x2
3

.

This function is even Λ-affine (i.e., both ±v are Λ-convex) but not a null Lagrangian and it is not quasiconvex.
As Λ-convexity replaces rank-one convexity in the current setting we see, that this example is a reminiscent
of Šverák’s example mentioned above.

6.2. Applications to hyperelasticity in the first order setting. In elasticity, one is interested
in modeling the response of a rubber-like material to the action of applied outer forces. This response is
obtained by solving a minimization problem; to be more specific, we are to minimize the free energy of the
material. We will see that polyconvexity is perfectly fitted to the setting in elasticity and that existence
of minimizers can be assured for polyconvex energies. We give a short introduction to this matter in this
section and refer the reader e.g. to the monographs [74, 75, 144] for more details on the physical modeling.

Take a bounded Lipschitz domain Ω ⊂ Rn which, for n = 3, plays a role of a reference configuration
of an elastic material. For given applied loads, we search for a mapping y : Ω → Rm, the deformation of
the material, which describes the new “shape” y(Ω) of the body. The mapping y is found by solving the
following system of equations

− div S = f in Ω,(6.2)

Sν = g on ΓN,(6.3)

y = y0 on ΓD.(6.4)

Here, (6.2) is the reduced version of Newton’s law of motion for the (quasi)static case, f is the applied volume
force. Further, (6.3) represents the action of applied surface forces g (ν denotes the outer unit normal vector
to ΓN) and (6.4) models that the body may be clamped at some part of the boundary to a prescribed shape
y0. We shall require that ΓD ⊂ ∂Ω is disjoint from ΓN and of positive (n−1)-dimensional Lebesgue measure.

The material properties of the specimen are encoded in the first Piola-Kirchhoff stress tensor S : Ω →
Rm×n in (6.2) and (6.3). The form of the Piola-Kirchhoff stress tensor cannot be deduced from first principles
within continuum mechanics11 but has to be prescribed phenomenologically. The prescription for S is called
the constitutive relation of the given material. In the easiest case, we assume the form S(x) = Ŝ(x,∇y(x)) for
some given Ŝ. Materials for which this assumption is adequate are sometimes referred to a simple materials
as opposed to non-simple materials for which Ŝ may depend also higher gradients of y. Later, in subsection
6.3, we will consider also these sophisticated constitutive relations.

11Though it may be deduced from first principles when, e.g., working on a lattice of atoms and sending the number of atoms
to infinity. In some cases, one may perform this discrete-to-continuum transition rigorously by means of a so-called Γ-limit; cf.
e.g. [2, 32] or [102] for details
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Hyperelasticity is a part of elasticity where an additional assumption is made; namely, that S has a
potential W : Rn×n → [0; +∞] such that

Sij(x) =
∂W (F )

∂Fij
|F=∇y(x) .

This assumption emphasizes the idea that there are no energy losses in elasticity and all work, made by
external forces and/or Dirichlet boundary conditions, stored in the material can be fully exploited.

In the following, let us restrict our attention to deformations of bulks, i.e. we do not treat plates and
rods, and set thus m = n. In order to fulfill the basic physical requirements, W has to satisfy the following
relations:

W (RF ) = W (F ) for all F ∈ Rn×n and for all R ∈ SO(n)(6.5)

W (F ) = +∞ if detF ≤ 0, and(6.6)

W (F )→ +∞ if detF → 0+.(6.7)

Indeed, assumption (6.5) is a consequence of the axiom of frame indifference [37]; in other words the as-
sumptions assures that material properties are independent of the position of the observer. Conditions (6.6)
and (6.7) ensure, respectively, that the material does not locally penetrate itself and that compression of a
finite volume of the specimen into zero volume is not possible. These conditions, however, do not yet assure
that the body does not penetrate through itself, which is also natural to assume from a physical point of
view. Nevertheless, we shall see in the end of this section that with additional assumptions on the growth
of the energy and, e.g., the boundary conditions even complete non-interpenetration can be assured.

The assumptions (6.5)-(6.7) rule out that W (x, ·) can be convex. Moreover, due to (6.6)-(6.7) even if
W (x, ·) was quasiconvex, we could not apply the theorems in Section 3 since W cannot be an element of the
class Fp(Ω). Nevertheless, polyconvexity is fully compatible with these assumptions.

The mechanical model is that stable states of the system are found by minimizing the overall free energy

(6.8) E(y) =

∫
Ω

W (∇y(x)) dx,

subject to (6.4). Smooth minimizers fulfill the balance equations (6.2)-(6.3); however, even in the smooth
case there might exist solutions to (6.2)-(6.3) which are not minimizers of (6.8). Nevertheless, such solutions
are thought to be metastable and hence left after a small perturbation. Thus, minimizing (6.8) is the proper
way to find indeed stable states.

Remark 6.2. Let us note that, since the minimizers of (6.8) might be non-smooth, it is not guaranteed
that they will satisfy the Euler-Lagrange equations either in strong or weak form. Indeed, in [16] even one-
dimensional examples of smooth W were given such that the minimizer does not fulfill the Euler-Lagrange
equation.

One of the reasons why deducing the Euler-Lagrange equation might be difficult is that even the calculation
of the variation of E itself can pose difficulties. Indeed, due to (6.6), the minimizer y might be such that
E(y+tϕ) is infinite for all small enough t > 0 and a large class of ϕ. Let us refer to [16] for explicit examples
in which this situation occurs.

Remark 6.3. Let us notice that the condition (6.6) is really necessarily to be stated explicitly. Namely,
from the physical point of view, the frame-indifference (6.5) requires that W (F ) := W̃ (C) where C := F>F
is the so-called right Cauchy-Green strain tensor. Note that F>Q>QF = F>F for any orthogonal matrix
Q. Hence, pointwise minimizers the energy density W contain the set {QF0 : Q ∈ O(n)} for some given
matrix F0 with detF0 > 0 which is a pointwise minimizer itself. Besides the physically acceptable energy
wells {RF0 : R ∈ SO(n)} other minimizers live on a “dark” wells {RF0 : R ∈ O(n) \ SO(n)} which is not
mechanically admissible. Those wells are excluded by (6.6).

In order to prove existence of stable states, that is minimizers of (6.8), we assume suitable growth of the
energy density:

(6.9) W (F ) ≥ C(−1 + |F |p) for all F ∈ Rn×n and for some C > 0,
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The existence theorem follows then directly from Corollary 6.5.

Theorem 6.11. Let Ω ⊂ R3 be a Lipschitz bounded domain, p > 3, y0 ∈ W 1,p(Ω;R3), and ΓD ⊂ ∂Ω
have a finite two-dimensional Lebesgue measure. Let W satisfy (i)-(iii) from Corollary 6.5 with m = n = 3.
Let further (6.5)–(6.7) and (6.9) hold. If

Y := {y ∈W 1,p(Ω;R3) : y = y0 on ΓD}

is such that infY I < +∞ then there is a minimizer of E on Y.

This result can be generalized for different growth conditions like the one considered in (6.13) below.
Even more general settings can be found in [37] where various additional requirements on minimizers, as e.g.
conditions ensuring a friction-less contact (Signorini problem); are included, too.

Let us mention a few important examples of polyconvex stored energy densities. Contrary to nontrivial
examples of quasiconvex functions, it is relatively easy to design a polyconvex function. To ease our notation
we only define the densities for matrices of positive determinant. Otherwise, it is implicitly extended by
infinity. We refer to [136, 137, 138] for for examples of polyconvex functions with various special symmetries.

Example 6.4 (Compressible Mooney-Rivlin material.). This material has a stored energy of the form

W (F ) = a|F |2 + b|CofF |2 + γ(detF ) ,(6.10)

where a, b > 0 and γ(δ) = c1δ
2 − c2 log δ, c1, c2 > 0.

It can be shown that for n = 3

W (F ) =
λ

2
(trE)2 + µ|E|2 +O(|E|3) , E = (C − I)/2

where λ and µ are the usual Lamé constants, and I denotes the identity matrix. Indeed, it is a matter
of a tedious computation to show that, given λ, µ, the following equations must be fulfilled by a, b, c1, c2:
c2 := (λ+ 2µ)/2 2a+ 2b = µ, and 4b+ 4c1 = λ.

Example 6.5 (Compressible neo-Hookean material.). This material has a stored energy of the form

W (F ) = a|F |2 + γ(detF )(6.11)

with the same constants as for the compressible Mooney-Rivlin materials.

Example 6.6 (Ogden material.). This material has a stored energy of the form (recall that C = F>F )

W (F ) =

M∑
i=1

aitrC
γi/2 +

N∑
i=1

bitr(Cof C)δi/2 + γ(detF )(6.12)

and ai, bi > 0, limδ→0+
γ(δ) = +∞ for γ : R+ → R convex growing suitably at infinity.

If W satisfies conditions (6.6)-(6.7) then any y ∈ C1(Ω,R3) for which E(y) from (6.8) is finite is also
locally invertible. This follows from the standard inverse function theorem. Nevertheless, what is actually
desired for a physical deformation is that it is injective [37]. Indeed, non-injectivity of the deformation would
mean that two material points from the reference configuration would be mapped to just one in the deformed
configuration which means that the specimen penetrated through itself. Thus, additional assumptions to
(6.6)-(6.7) on W are needed to assure global invertibility of y. Preferably, these assumptions should be
compatible with polyconvexity and weak lower semicontinuity.

Take a diffeomorphism y : Ω → y(Ω) with det∇y > 0 on Ω. Then, we have by the change of variables
formula for p > 1∫
y(Ω)

|∇y−1(w)|pdw =

∫
Ω

|∇y−1(y(x))|p det∇y(x)dx =

∫
Ω

|(∇y(x))−1|pdet∇y(x)dx =

∫
Ω

|Cof>∇y(x)|p

(det∇y(x))p−1
dx
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where we used that ∇y−1(y(x)) = (∇y(x))−1 for all x in Ω and that for any invertible matrix the relation

A−1 = Cof>A
detA holds.

Therefore, for energies satisfying a stricter growth condition than (6.9) in the form of

(6.13) W (F ) ≥ C
(
−1 + |F |p +

|CofF>|p

(detF )p−1

)
for a.a. x ∈ Ω and for some C > 0,

one could rather expect that deformations on which E(y) is finite are invertible. This is indeed so, as the
Theorem 6.12 (below) shows.

Nevertheless, before proceeding to the theorem, let us point out that the new growth condition (6.13) is
fully compatible with polyconvexity. Indeed, since the function g(x, y) = xp

yp−1 is convex for p > 1 on the set

{(x, y) ∈ R2; y > 0}, |cof>A|p
(detA)p−1 is polyconvex on the set of matrices having a positive determinant.

Theorem 6.12 (Taken from [9]). Let Ω ⊂ Rn be a bounded Lipschitz domain. Let y0 : Ω → Rn be
continuous in Ω and one-to-one in Ω such that y0(Ω) is also bounded and Lipschitz. Let y ∈ W 1,p(Ω;Rn)
for some p > n, y(x) = y0(x) for all x ∈ ∂Ω, and let det∇y > 0 a.e. in Ω. Finally, assume that for some
q > n

(6.14)

∫
Ω

|(∇y(x))−1|q det∇y(x) dx < +∞ .

Then y(Ω) = y0(Ω) and y is a homeomorphism of Ω onto y0(Ω). Moreover, the inverse map y−1 ∈
W 1,q(y0(Ω);Rn) and ∇y−1(w) = (∇y(x))−1 for w = y(x) and a.a. x ∈ Ω.

Let us note that the Sobolev regularity needed in the theorem has been weakened later in [147]. Indeed,
in this work it was shown that an inverse to deformation can be defined even for p > n− 1 and q ≥ p

p−1 .

Theorem 6.12 assures injectivity of y under the growth (6.13) if a up-to-the-boundary injective Dirichlet
condition is prescribed. This, however, has the disadvantage that we could not model situations in which
hard loads (Dirichlet boundary conditions) are prescribed only on a part on the boundary.

One possible remedy is to minimize E along with the so-called Ciarlet-Nečas condition

(6.15)

∫
Ω

det∇y(x)dx ≤ Ln(y(Ω)),

that was introduced in [38] (for n = 3) in order to assure global injectivity of deformations. It was shown
in [38] that C1-functions satisfying (6.15) and that det∇y > 0 are actually injective. The result generalizes
to W 1,p-functions as well, but injectivity is obtained only almost everywhere in the deformed configuration;
i.e., almost every point in the deformed configuration has only one pre-image.

Remark 6.7. Maps that are injective almost everywhere in the deformed configuration still include
rather nonphysical situations. For example a dense, countable set of points could be mapped to one point.
This can be prevented if the deformation is injective everywhere.

Using condition (6.15), this can be achieved for finite deformations of the energy E with a density
W satisfying (6.13) for p = r = n = 2. This setting is the most explored one due to its relations to
quasiconformal maps (see Section 7). Such deformations are open (that is they maps open sets to open
sets) and discrete (the set of pre-images for any point does not accumulate) and, moreover, satisfy the Lusin
N -condition (i.e. they map sets of zero measure again to sets of zero measure); cf. e.g. [77]).

Then, we have by the area formula∫
Ω

det∇ydx =

∫
Rn
N(y,Ω, z)dz =

∫
y(Ω)

N(y,Ω, z)dz

where N(y,Ω, z) is defined as the number of pre-images of z ∈ y(Ω) in Ω. So the Ciarlet-Nečas condition
is satisfied if and only if N(y,Ω, z) = 1 almost everywhere on y(Ω). Also we can immediately see that the
reverse inequality to (6.15) always holds.
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Further, if there existed z ∈ y(Ω) that had at least to two pre-images x1 and x2 then we could find an
ε > 0 such that B(x1, ε) ∩ B(x2, ε) = ∅ and B(xj , ε) ⊂ Ω for j = 1, 2. On the other hand, for the images
we have that y(B(x1, ε)∩ y(B(x2, ε)) 6= ∅. In fact, y(B(x1, ε))∩ y(B(x2, ε)) is of positive measure since both
y(B(xj , ε)) are open. Therefore, there exists a set of positive measure where N(y,Ω, z) is at least two; a
contradiction to (6.15).

6.3. Applications to hyperelasticity in the higher order setting. Let us now turn our attention
to models of hyperelastic materials depending on higher-order gradients. Such materials are called non-
simple of grade N , where N refers to the highest derivatives appearing in the stored energy density. The
concept of such materials has been developing for long time, since the work by R.A. Toupin [153], under
various names as non-simple materials as e.g. in [65, 90, 128, 143] or multipolar materials (in particular
fluids).

Here, we will consider only second-grade non-simple materials, i.e., those for which second-order defor-
mation gradients (first-order strain gradients) are involved. The main mathematical advantage of nonsimple
materials is that higher-order deformation gradients bring additional regularity of deformations and, pos-
sibly, also compactness of the set of admissible deformations in a stronger topology. Moreover, there the
stored energy can be even convex in the highest derivatives of the deformation which is helpful in proving
existence of minimizers. The downside of this approach is that there are not many physically justified models
of non-simple materials and material constants are rarely available.

For non-simple materials of grade two, we define an energy functional

E(y) :=

∫
Ω

W (∇y(x),∇2y(x)) dx−
∫

Ω

f(x) · y(x) dx−
∫

ΓN

(
g(x) · y(x) + ĝ1(x) · ∂y(x)

∂ν

)
dS ,(6.16)

where ĝ1 : ΓN → Rn is the surface density of (hypertraction) forces balancing the hyperstress

x 7→ ∂

∂Gijk
W (F,G)|F=∇y(x), G=∇2y(x) .(6.17)

The corresponding first Piola-Kirchhoff stress tensor is constructed as follows.
Denote for i, j ∈ {1, . . . , n}

Hij(x, F,G) :=

n∑
k=1

∂

∂Gijk
W (F,G) .

Then for x ∈ Ω, F := ∇y(x), and G := ∇2y(x) we evaluate the first Piola-Kirchhof stress tensor as

Sij(x) =
∂W (F,G)

∂Fij
−Hij(x, F,G) .

We will assume that

y 7→
∫

Ω

f(x) · y(x) dx+

∫
ΓN

(g(x) · y(x) + ĝ1(x) · ∂y(x)

∂ν
) dS(6.18)

is a linear functional evaluating the work of external forces on the specimen. The other terms containing f
and g are volume and surface forces. Here we, however, assume for simplicity that f , ĝ1, and g depend only
on x ∈ and x ∈ ΓN, respectively.

Notice that existence of minimizers of E(y) is guaranteed by Corollary 6.6.
Similarly, as in the case of simple materials, it allows for formal derivation of Euler-Lagrange equations

for minimizers of I. Again, the approach is far from being rigorous because, in particular, we should compose
deformations rather than to add them to each other. Contrary to the simple-material situation, here the
smoothness of ∂Ω is important because the mean curvature κ of the boundary enters the equations. Details
on surface differential operators can be found, for example in [127].
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7. Weak lower semicontinuity in general hyperelasticity. We have seen in the last section that
polyconvexity is relatively easy to be verified and it ensures weak lower semicontinuity of the corresponding
energy functional. Nevertheless, there are materials that cannot be modeled by polyconvex energy densities.

A prototypical example are systems featuring phase transition with each phase characterized by some
specific deformation of the underlying atomic lattice. This setup is for example found in shape-memory
alloys (see e.g. the monographs [28, 50, 63, 64, 126], or a recent review [82]). Shape memory alloys are
intermetallic materials which have a high-temperature highly symmetric phase called austenite and a low
temperature phase called martensite which can, however, exist in several variants. Such systems are (for a
suitable temperature range) typically modeled by a multi-well stored energy of the form{

W (QUi) = 0 ∀i = 1 . . .M , ∀Q ∈ SO(n),

W (F ) > 0 ∀F 6= QUi ∀i = 1 . . .M , ∀Q ∈ SO(n),
(7.1)

where U1 . . . UM is a given set of matrices representing the phases found in the material and SO(n) is the set
of rotations in Rn×n. These materials form complicated patterns (microstructures) composed from different
variants of martensite cf. Figure 1.

Figure 1. Laminated microstructure in CuAlNi. Courtesy of P. Šittner (Inst. of Physics, CAS, Prague)

Now, an energy density as given in (7.1) is neither polyconvex nor quasiconvex. and its construction
is a modeling issue [158]. Therefore, for constructing an appropriate model one is to find the weakly lower
semicontinuous envelope of (1.2) with an energy density given by (7.1); in other words, one seeks the
supremum of weakly lower semicontinuous functionals lying below the given energy. We refer also to the
subsection 7.1 on more details on how this relaxation of the problem may be performed.

In order to find the weakly lower semicontinuous envelope of (7.1), a precise characterization of weak
lower semicontinuity in terms of convexity conditions on W is needed. We have found these conditions in
Section 3; however, only under the growth condition (i) in Definition 3.2. Yet, this is incompatible with the
physical assumptions formulated in (6.6)-(6.7).

For such energies it is no longer known that quasiconvexity implies weak lower semicontinuity. Indeed,
this is one of the standing problems in elasticity, which was formulated by Ball in the following way:
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Open problem 7.1 (Problem 1 in [11]). “Prove the existence of energy minimizers for elastostatics for
quasiconvex stored-energy functions satisfying (6.7).”

Let us remark that these difficulties persist even if we used a geometrically linear description of energy
wells; see [36], for instance.

Remark 7.1. Notice that if (7.1) is additively enriched by a convex term of the form ε
∫

Ω
|∇2y|pdx,

which is usually interpreted as some kind of interfacial energy of the microstructure, Corollary 6.6 can be
readily applied to show the existence of minimizers for E.

Let us also point out that a different approach has been proposed recently [145, 146]. There, a new
notion of interface polyconvexity has been introduced which enables to prove existence of minimizers for
simple materials with additional phase field variable.

Remark 7.2. It has been pointed out in [11, 12] that one of the reasons why this problem is hard to
solve is the fact that quasiconvexity possesses no local characterization [96].

Let us stress that Problem 7.1 is an important attempt towards combining quasiconvexity and elasticity
but additional steps are still required. Namely, if u : Ω→ Rm entering (1.2) ought to represent a deformation
of a physical body, it should be injective and orientation-preserving. Notice that this is not automatically
satisfied for all maps on which the functional (1.2) is finite even if W fulfills (6.6)-(6.7). However, we may
rely on Theorem 6.12 to assure this, provided suitable coercivity of the energy.

An alternative (and related approach) is to study directly weak lower semicontinuity along sequences
found in a suitable class of mappings that are injective and orientation-preserving. As a first step, one may
study classes of functions that fulfill some constraint on the Jacobian, e.g. that det∇u > 0.

Even though Problem 7.1 remains widely open to date, it has been approached it from different per-
spectives recently. We review the results within this section.

In [91, 92], the authors study weak lower semicontinuity along sequences in {uk} ⊂ W 1,p(Ω;Rm) with
p < n satisfying that det∇uk > 0. They proved that (1.3) with v = v(x,∇u) is weak lower semi-continuous
along such sequences if and only if it is W 1,p-orientation preserving quasiconvex, i.e.

v(x,A) ≤ 1

Ln(Ω)

∫
Ω

v(x,∇ϕ(x))dx,

for all A with det(A) > 0, all ϕ ∈W 1,p(Ω;Rm) satisfying that ϕ(x) = Ax on ∂Ω and det∇ϕ(x) > 0 for a.a.
x ∈ Ω.

However, in [92] the authors also show that, in fact, for p < n no W 1,p-orientation preserving quasiconvex
integrands exist that would satisfy the natural coercivity/growth condition

1

C

(
|A|p + κ(detA)

)
≤ v(x,A) ≤ C

(
|A|p + κ(detA)

)
for almost all x ∈ Ω. Here, κ is a convex function satisfying that lims→0 κ(s) =∞, κ(s) =∞ for s ≤ 0 and

lim sups→∞
κ(s)
sp/n

<∞. Notice that this growth condition is compatible with (6.6)-(6.7).
The proof in [91] is based on the so-called convex integration, a technique for solving differential in-

clusions. It goes back to Gromov [72] and it found applications in various problems including continuum
mechanics and regularity theory; see e.g. [120]. We refer also to the monograph [43] where solutions to
partial differential inclusions by means of Baire category methods are introduced, too. Interestingly, convex
integration is an approach that found applications also in fluid dynamics [48].

To the best of our knowledge, the only works in which the authors actually considered equivalent char-
acterization of weak lower semicontinuity for injective maps are [25] and [26] where the authors studied
bi-Lipschitz and quasiconformal maps in the plane, respectively.

Here, by bi-Lipschitz maps the following set is meant

W 1,∞,−∞
+ (Ω;R2) =

{
y : Ω 7→ y(Ω) an orientation preserving homeomorphism;

y ∈W 1,∞(Ω;R2) and y−1 ∈W 1,∞(y(Ω);R2)
}
,(7.2)
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while quasiconformal maps are introduced as follows

QC(Ω;R2) =
{
y ∈W 1,2(Ω;R2) : y is a homeomorphism and ∃K ≥ 1 such that

|∇y|2 ≤ K det∇y a.e. in Ω
}
.(7.3)

It is natural to expect that weak lower semicontinuity of the functional

I(y) =

∫
Ω

v(∇y)dx,

along sequences in W 1,∞,−∞
+ (Ω;R2) or QC(Ω;R2) is connected to a suitable notion of quasiconvexity of v.

One even expects a weaker notion than the one from Definition 1.2 since the set of possible sequences along
which semicontinuity is studied is restricted. Indeed, the perfectly fitted notion to this setting seems to be an
alternation of Definition 1.2 where only function from W 1,∞,−∞

+ (Ω;R2) or QC(Ω;R2) enter as test functions.
Exactly this result has been achieved in [25] and [26]; we review the result in Proposition 7.3.

First, let us introduce a notion of weak convergence on W 1,∞,−∞
+ (Ω;R2) and QC(Ω;R2). We say that

yk
∗
⇀y in W 1,∞,−∞

+ (Ω;R2) if the sequence has uniformly bounded bi-Lipschitz constants12 and yk
∗
⇀y in

W 1,∞(Ω;R2). Note that the weak limit is bi-Lipschitz, too.
For a sequence {yk}k∈N ⊂ QC(Ω;R2), we say that it converges weakly to y ∈W 1,2(Ω;R2) in QC(Ω;R2)

if yk ⇀ y in W 1,2(Ω;R2), there exists a K ≥ 1 such that the yk are all K-quasiconformal and y(x) is
non-constant. Here it is important to assume that the limit function is non-constant for otherwise the limit
function may not quasiconformal.13

Moreover, let us introduce the notions of bi-quasiconvexity and quasiconformal quasiconvexity.

Definition 7.2. We say that a Borel measurable and bounded from below function f : R2×2 → Ω is
bi-quasiconvex if

L2(Ω)f(A) ≤
∫

Ω

f(∇ϕ(x)) dx(7.5)

for all ϕ ∈W 1,∞,−∞
+ (Ω;R2), ϕ = Ax on ∂Ω and all A with detA > 0.

We say that f is quasiconformally quasiconvex if (7.5) holds for all A with det(A) > 0. and all ϕ ∈
QC(Ω;R2) such that ϕ(x) = Ax on ∂Ω.

Then we have the following result:

Proposition 7.3 (from [25] and [26]). Let Ω ⊂ R2 be a bounded Lipschitz domain. Let v be continuous
on the set of matrices with a positive determinant. Then v is bi-quasiconvex if and only if

y 7→ I(y) =

∫
Ω

v(∇y(x)) dx

is sequentially weakly* lower semicontinuous on W 1,∞,−∞
+ (Ω;R2).

Moreover, let v satisfy

0 ≤ v(A) ≤ c(1 + |A|2) with c > 0

on the set of matrices with a positive determinant. Then v is quasiconformally quasiconvex if and only if I
is weakly lower semicontinuous on QC(Ω;R2).

12Notice that a function y ∈W 1,∞,−∞
+ (Ω;R2) satisfies for all x1, x2 ∈ Ω

(7.4)
1

L
|x1 − x2| ≤ |y(x1)− y(x2)| ≤ L|x1 − x2| .

for some L ≥ 1. This L is then called the bi-Lipschitz constant of y.
13Because a sequence of uniformly K-quasiconformal maps converges locally uniformly either to K-quasiconformal function

or a constant and the locally uniform convergence is implied by the notion of weak convergence in QC(Ω;R2) [5].
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At the heart of the proof of Proposition 7.3 is the construction of a suitable cutoff method that is
compatible with the bi-Lipschitz or the quasiconformal setting. Notice that the standard cutoff method
cannot be used since it relies on convex averaging. Thus, as neither W 1,∞,−∞

+ (Ω;R2) nor QC(Ω;R2) are
convex, we may “fall out” from these sets when relying on the standard cutoff method.

The approach taken in [25] and [26] is based on the characterization of the trace operator on sets
W 1,∞,−∞

+ (Ω;R2) as well as QC(Ω;R2) due to [47, 154] and [27], respectively.
Even though Proposition 7.3 provides us with an weak lower semicontinuity result, this is not yet enough

to prove existence of minimizers for functionals with densities from some suitable class. This is so, because
bi-Lipschitz as well as quasiconformal maps include a L∞-type constraint which can be enforced by letting
the stored energy density be finite only on a suitable subset of R2×2; yet, this subset is usually left when
employing cutoff methods—this happens even in the standard cases [42]. Thus letting v being infinite on
some set of matrices is incompatible with the proof of Proposition 7.3.

The usual remedy for proving existence of minimizers or relaxation results is to work with Lp-type (with
p finite) constraints only. In the setting from above this would mean to work with so-called bi-Sobolev classes
(see e.g. [79]) for 1 < p <∞:

W 1,p,−p
+ (Ω;R2) =

{
y : Ω 7→ y(Ω) an orientation preserving homeomorphism;

y ∈W 1,p(Ω;R2) and y−1 ∈W 1,p(y(Ω);R2)
}
.

However, for these classes of functions, the approach from [25] and [26] cannot be adopted since a complete
characterization of the trace operator on these classes is missing to date. In fact, we have the following

Open problem 7.4. Characterize the class of functions X (∂Ω;R2) such that

Tr : W 1,p,−p
+ (Ω;R2)

onto−→ X (∂Ω;R2)

at least for Ω being the unit square.

Let us note that the above problem may play a role also when smooth approximation (by diffemorphisms)
of deformations in elasticity is concerned. Indeed, the standard techniques of smoothing Sobolev functions (by
a mollification kernel) fail under the injectivity requirement since they essentially rely on convex averaging.

Recently, several results on smoothing even under these constraints appeared [81, 46, 113, 78, 80] using
completely different techniques and limiting their scope to planar deformations. In particular, in [81] the
authors could prove that a homeomorphism in W 1,p(Ω;R2) can be strongly approximated by diffeomorphisms
in the W 1,p-norm for p > 1. For p = 1 this result has recently been extended in [80].

Nevertheless, in elasticity, one might rather be interested in approximating a function in W 1,p,−p
+ (Ω;R2)

together with its inverse. To the authors knowledge, the only result in this direction is the one by [46] who
showed that bi-Lipschitz maps can we strongly approximated together with their inverse in the W 1,p-norm
for any finite p. Yet, for functions in W 1,p,−p

+ (Ω;R2) with p < ∞ the problem remains largely open as
mentioned also in [81].

To end this section let us remark (by formulating several open problems) that the relation of bi-
quasiconvexity to the standard notions of convexity mentioned in this paper is still unexplored. We focus here
only on bi-quasiconvexity but similar problems could be formulated also for quasiconformal quasiconvexity,
too.

It is clear from the definitions that any function that is quasiconvex on the set of matrices with a
positive determinant is also bi-quasiconvex. Moreover, bi-quasiconvexity implies, at least in the plane, rank-
1 convexity on the set of matrices with a positive determinant.

Remark 7.3. To see why bi-quasiconvexity implies rank-1 convexity on the set of matrices with a positive
determinant, we proceed as follows. First, notice that the determinant changes affinely on rank-1 lines due
to the formula

(7.6) det(A+ λa⊗ n) = detA
(
1 + λn·(A−1a)

)
,
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where a and n are some arbitrary vectors. Therefore, rank-1 convexity on the set of matrices with a positive
determinant is really meaningful, since all matrices on a rank-1 line between two matrices with a positive
determinant have this property, too.

Next we mimic the proof from [42, Lemma 3.11 and Theorem 5.3] showing that quasiconvexity implies
rank-1 convexity. Without loss of generalization, we suppose that Ω is the unit square and that we want to
show rank-1 convexity along the line A + a ⊗ e1 with e1 the unit vector in the first coordinate. Then we
consider the following sequence of mappings

yn(x) = yn(x1, x2) =

{
Ax for x1 ∈

[
k
n ,

k
n + λ 1

n

)
for k = 0 . . . n− 1,

(A+ a⊗ e1)x for x1 ∈
[
k
n + λ 1

n ,
k+1
n

)
for k = 0 . . . n− 1,

with some λ ∈ [0, 1]. Notice that {yn} are Lipschitz, injective and that (∇y)−1 is uniformly bounded and
det(∇y) is bounded away from zero. Thus, {yn} is a sequence of uniformly bi-Lipschitz maps that converges
weakly to λAx + (1 − λ)(A + a ⊗ e1)x. We may therefore use the cut-off technique from [25] to modify the
sequence in such a way that it attains exactly the value of the weak limit at the boundary. Then, the same
procedure as in [42, Theorem 5.3] gives the rank-1 convexity.

In summary, we have the following series of implications

quasiconvexity on R2×2
+ ⇒ bi-quasiconvexity⇒ rank-1 convexity on R2×2

+ ,

where we denoted by R2×2
+ the two-times-two matrices with positive determinant. But it is unclear whether

some of the converse implications holds, too. We have the following:

Open problem 7.5. Does rank-1 convexity on R2×2
+ imply bi-quasiconvexity?

Open problem 7.6. Does bi-quasiconvexity imply quasiconvexity on R2×2
+ ?

7.1. Relaxation of non(quasi)convex variational problems. As we have already seen, mathemat-
ical (hyper)elasticity is the area of analysis where mechanical requirements are above current tools and results
available in the calculus of variations. Orientation preservation and injectivity for simple non-polyconvex
materials are prominent examples. Resorting to non-simple materials depending on second-order deforma-
tion gradients might seem as a way out. What is a physically acceptable form of the higher-order energy
density is, however, a largely open problem. We refer e.g. to [17] for a discussion on this topic.

Another approach is to accept the fact that our minimization problem may have no solution and to trace
out behavior of minimizing sequences driving the elastic energy functional to its infimum on a given set of
deformations and to read off some effective material properties out of their patterns. This is the idea of
relaxation in the variational calculus. We explain main ideas on the example from the introduction. Assume
we want to

minimize E(y) :=

∫
Ω

W (∇y(x)) dx ,(7.7)

for y ∈ Y. Here Y stands for an admissible set of deformations equipped with some topology. In typical
situations, Y is a subset of a Sobolev space and the topology is the weak one on this space. If no minimizer
exists but the infimum is finite we want to find a new functional ER defined over Y such that the following
properties hold:

(i) minY ER = infY E ,
(ii) if {yk}k∈N ⊂ Y is a minimizing sequence of E then its convergent subsequences converge to minimizers

of ER on Y, and
(iii) any minimizer of ER is a limit of a minimizing sequence of E .
Notice that it is already implicitly assumed in (i) that minimizers of ER do exist on Y. Conditions (ii)

and (iii) state that, roughly speaking, there is a “one-to-one” correspondence between minimizing sequences
of E and minimizers of ER. If (i)-(iii) hold we say that ER is the relaxation of E and that ER is the relaxed
functional. The concept of relaxation is also very closely related to Γ-convergence and Γ-limits introduced
by E. de Giorgi. We refer to [30, 44] for a modern exposition.
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If Y ⊂W 1,p(Ω;Rn) and the continuous stored energy W : Rm×n → R fulfills

c(−1 + |F |p) ≤W (F ) ≤ C(1 + |F |p)(7.8)

with C > c > 0, and 1 < p < +∞ then Dacorogna [40] showed14 that

ER(y) :=

∫
Ω

QW (∇y(x)) dx ,(7.9)

where QW : Rm×n → R is the quasiconvex envelope (or quasiconvexification) of W which is the largest
quasiconvex function not exceeding W . It can also be evaluated at any A ∈ Rm×n as

QW (A) := Ln(Ω)−1 inf
ϕ∈W 1,∞

0 (Ω;Rm)

∫
Ω

W (A+∇ϕ(x)) dx .(7.10)

The definition of QW does not depend on a (Lipschitz) domain Ω but as we see, calculation of QW
requires to solve again a minimization problem. Not surprisingly, there are only a few cases where QW is
known in a closed form. We wish to point out [49] where the authors calculated the quasiconvex envelope of
the stored energy density arising in modeling of nematic elastomers in three dimensions, and [103, 104, 129]
where the quasiconvex envelope of an isotropic homogeneous Saint-Venant Kirchoff energy density (m = n =
3)

W (F ) :=
µ

4
‖C − I‖2 +

λ

8
(trC − 3)2

is derived. Here λ, µ are Lamé constants of the material, and C = F>F is the right Cauchy-Green strain
tensor. Notice that W is convex in C but it is not even rank-one convex in F .

As to relaxation of multi-variant materials we refer to [89] where a geometrically linear two well-problem
is considered such that elastic tensors of both variants are equal. It was later extended in [35] where non-equal
moduli are admitted.

Another fairly popular and powerful tool for relaxation of variational problems in elasticity are so-called
Young measures [157]. They allows us to describe the limit of a weakly converging sequence composed with
a nonlinear function. In addition to the information contained in the weak limit (that is averaged patterns
of the sequence), Young measures encode much more details. The original result of L.C. Young holds for
L∞-bounded sequences, the theorem below valid for Lp can be found in [10, 135].

Theorem 7.7 (Lp-Young measures). If Ω ⊂ Rn is bounded and {ξk}k∈N ⊂ Lp(Ω;Rm×n), 1 ≤ p <
+∞ is a bounded sequence then there exists a (non-relabeled) subsequence and a family of parametrized
(by x ∈ Ω) probability measures ν = {νx}x∈Ω supported on Rm×n such that for every f ∈ C(Rm×n),
lim|A|→∞ f(A)/|A|p = 0 and every g ∈ L∞(Ω)

lim
k→∞

∫
Ω

f(ξk(x))g(x) dx =

∫
Ω

∫
Rm×n

f(A)νx(dA)g(x) dx .(7.11)

If {|ξk|p}k∈N is relatively weakly compact in L1(Ω) then (7.11) holds even if |f(A)| ≤ C(1 + |A|p) for some
C > 0 and all A ∈ Rm×n.

The measure ν from Theorem 7.7 is called an Lp-Young measure generated by {ξk}.
The original energy functional introduced in (7.7) is then extended by continuity to obtain its relaxed

version. Indeed, if {yk} ⊂ W 1,p(Ω;Rm) is a bounded minimizing sequence for E we can assume that
{|∇yk|p}k∈N is relatively weakly compact in L1(Ω) due to the Decomposition Lemma 3.6. Then applying
Theorem 7.7 to ξk := ∇yk we get

inf E = lim
k→∞

E(yk) =

∫
Ω

∫
Rm×n

W (A)νx(dA) dx .

14In fact, Dacorogna’s result is stated for more general integrands, namely |W (F )| ≤ C(1 + |F |p) with QW > −∞, In this
case, however, fixed Dirichlet boundary conditions must be inevitably assigned on the whole ∂Ω. This is again strongly related
to condition (ii) in Meyers ’ Theorem 3.3.
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Figure 2. An illustration of the calculation of a relaxed energy of a cube under loading. The cube in the middle is the
specimen and on the sides the calculated microstructure in form of laminates is shown in a few elements. The gray scale
indicates volume fractions of the phases involved.

This, however, holds only if |W | ≤ C(1+|·|p). In particular, constraints (6.6) and (6.7) cannot be imposed
on W . An additional difficulty arises from the fact that created Young measure is generated by {∇yk}, i.e., by
gradients. A characterization of admissible measures, called gradient Young measures, involves quasiconvex
functions again [88, 86, 123, 119, 133] which makes the aim of obtaining a closed formula of QW by means of
parametrized measures unreachable, too. Nevertheless, subsets (called “laminates”) and supersets of gradient
Young measures are known and can be advantageously exploited in numerical minimization of (7.7) – see
for example the illustration in Figure 2. See [6, 21, 22, 23, 24, 50, 99] for instance, for a numerical treatment
of parametrized measures and a review paper by Luskin [106] on different finite-element approaches.

Recently, Conti and Dolzmann [39] proved that (7.9) is the relaxed problem corresponding to (7.7) even
if (7.8) is replaced by{

c(−1 + |F |p + θ(detF )) ≤W (F ) ≤ C(1 + |F |p + θ(detF ) if detF > 0,

W (F ) = +∞ otherwise.

Here, C > c > 0, p ≥ 1, and θ : (0; +∞]→ [0; +∞) is a suitable convex function. They, however, require for
the result to hold that QW is polyconvex. Needless to say that this assumption is extremely hard to verify.
Results applicable to a generic situation are missing, so far.

To summarize, we clearly see that even current cutting-edge tools and weapons of mathematical analysis
and calculus of variations are not tailored to fight deep problems in elasticity and new techniques are needed
to solve them.

8. A-quasiconvexity. In this section, we summarize results about weak lower semicontinuity of integral
functionals along sequence which satisfy a first-order linear differential constraint. Clearly, gradients as curl-
free fields are included in this setting and therefore this is really a generalization of (some) previously
mentioned results. As emphasized by L. Tartar, besides curl-free fields there are also other PDE important
constraints on possible minimizers. Such a setting naturally arises in electromagnetism, linearized elasticity
or even higher-order gradients, to name a few. Tartar’s program was materialized by Dacorogna in [41] and
then studied by many other authors, too.

The problem studied in this section can be formulated as follows: Having a sequence {uk} ⊂ Lp(Ω;Rm),
1 < p < +∞ such that each member satisfies a linear differential constraint Auk = 0 (A-free sequence),
or Auk → 0 in W−1,p(Ω;Rn) (asymptotically A-free sequence), what conditions on v precisely ensure weak
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lower semicontinuity of integral functionals in the form

(8.1) I(u) :=

∫
Ω

v(x, u(x)) dx .

Here A is a first-order linear differential operator.
To the best of our knowledge, the first result of this type was proved in [60] for nonnegative integrands.

In this case, the crucial necessary and sufficient condition ensuring weak lower semicontinuity of I in (8.1) is
the so-called A-quasiconvexity; cf. Def. 8.1 below. However, if we refrain from considering only nonnegative
integrands, this condition is not necessarily sufficient as we already observed in the case A :=curl.

8.1. The operator A and A-quasiconvexity. Following [60], we consider linear operators A(i) :
Rm → Rd, i = 1, . . . , n, and define A : Lp(Ω;Rm)→W−1,p(Ω;Rd) by

Au :=

n∑
i=1

A(i) ∂u

∂xi
,where u : Ω→ Rm ,

i.e., for all w ∈W 1,p′

0 (Ω;Rd)

〈Au,w〉 = −
n∑
i=1

∫
Ω

A(i)u(x) · ∂w(x)

∂xi
dx .

For w ∈ Rn we define the linear map

A(w) :=

n∑
i=1

wiA
(i) : Rm → Rd .

In this review, we assume that there is r ∈ N ∪ {0} such that

rank A(w) = r for all w ∈ Rn , |w| = 1 ,(8.2)

i.e., A has the so-called constant-rank property. Below we use kerA to denote the set of all locally integrable
functions u such that Au = 0 in the sense of distributions, i.e.,

∫
Ω
u · A∗w dx = 0 for all w ∈ C∞ compactly

supported in Ω. Here, A∗ = −
∑n
i=1

(
A(i)

)T ∂u
∂xi

is the formal adjoint of A. Of course, kerA depends on the
considered domain Ω, which always should be clear from the context below.

Definition 8.1 (cf. [60, Def. 3.1, 3.2]). We say that a continuous function f : Rm → R, satisfying that
|f(s)| ≤ C(1 + |s|p) for some C > 0, is A-quasiconvex if for all s0 ∈ Rm and all ϕ ∈ Lp#(Q;Rm)∩ kerA with∫
Q
ϕ(x) dx = 0 it holds

f(s0) ≤
∫
Q

f(s0 + ϕ(x)) dx .

In the above definition, we used the space of Q-periodic Lebesgue integrable functions:

Lp#(Rn;Rm) := {u ∈ Lploc(Rn;Rm) : u is Q-periodic}

Here, Q denotes the unit cube (−1/2, 1/2)n in Rn, and we say that u : Rn → Rm is Q-periodic if for all
x ∈ Rn and all z ∈ Zn it holds that u(x+ z) = u(x) .

Fonseca and Müller [60] proved the following result linking A-quasiconvexity and weak lower semiconti-
nuity. Notice that the integrand is more general than that one in (8.1).

Theorem 8.2. Let Ω ⊂ Rn be open and bounded and let v : Ω×Rd×Rm → [0; +∞) be a Carathéodory
integrand. Let

0 ≤ v(x, z, u) ≤ a(x, z)(1 + |u|p)
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for almost every x ∈ Ω and all (z, u) ∈ Rd × Rm, 1 < p < +∞, and some 0 ≤ a ∈ L∞loc(Ω;Rd). Assume that
zk → z in measure and that uk⇀u in Lp(Ω;Rd),‖Auk‖W−1,p(Ω;Rm) → 0.

Then

lim inf
k→∞

∫
Ω

v(x, zk, uk) dx ≥
∫

Ω

v(x, z, u) dx

if and only if v(x, z, ·) is A-quasiconvex for almost all x ∈ Ω and all z ∈ Rd.

The following definition is motivated by our discussion above Theorem 3.7. It first appeared in [57].

Definition 8.3. Let 1 < p < +∞ and {uk}k∈N ⊂ Lp(Ω;Rm) ∩ kerA. We say that {uk} has an A-free
p-equiintegrable extension if for every domain Ω̃ ⊂ Rn such that Ω ⊂ Ω̃, there is a sequence {ũk}k∈N ⊂
Lp(Ω̃;Rm) ∩ kerA such that
(i) ũk = uk a.e. in Ω for all k ∈ N,
(ii) {|ũk|p}k∈N is equiintegrable on Ω̃ \ Ω, and
(iii) there is C > 0 such that ‖ũk‖Lp(Ω̃;Rm) ≤ C‖uk‖Lp(Ω;Rm) for all k ∈ N.

Then we have the following result proved in [57].

Theorem 8.4. Let 0 ≤ g ∈ C(Ω̄), let |v0| ≤ C(1+ | · |p) be A-quasiconvex, satisfy (3.1), have a recession
function, and let 1 < p < +∞. Let {uk} ⊂ Lp(Ω;Rm) ∩ kerA, uk⇀u weakly, and assume that {uk} has an
A-free p-equiintegrable extension. Then I(u) ≤ lim infk→∞ I(uk), where

I(u) :=

∫
Ω

g(x)v0(u(x)) dx.(8.3)

Surprisingly, it is shown in [60, p. 1380] that also higher-order gradients can be recast as A-free mappings.
They construct A such that Au = 0 if and only if u = ∇kw for some w ∈W k,p(Ω;Rm). In this situation, A-
quasiconvexity coincides with Meyers’ k-quasiconvexity. Then, it follows from Theorem 8.4 that taking w0 ∈
W k,p(Ω;Rm), g, and v as in the theorem then I(w) :=

∫
Ω
g(x)v(∇kw(x)) dx is weakly lower semicontinuous

on

{w ∈W k,p(Ω;Rm) : w = w0 on ∂Ω} .

This result affirmatively answers Meyer’s conjecture in this particular setting15, namely mappings sat-
isfying Dirichlet boundary conditions (belonging to a “Dirichlet class”) make (ii) to hold automatically in
Theorem 3.3.

9. Suggestions for further reading. The above exposition aims at reflecting developments in weak
lower semicontinuity related to Meyers’ paper [110] with the emphasize on applications to static problems
in continuum mechanics of solids. We dare to hope that it provides a fairly completely picture of the theory
starting in 1965 to current trends.

We saw that weak lower semicontinuity serves as a main ingredient of proofs of existence of minimizers
to variational integrals and outlined applications in elastostatics. Even in the static case, models of elas-
ticity can be combined with other phenomena, as magnetism, for instance. This leads to magnetoelasticity
(magnetostriction), a property of NiMnGa, for instance. We refer e.g. to [54] for a physical background.

Weak lower semicontinuity finds its application in dynamical problems, too. For example, it is the main
tool to prove existence of solutions in time-discrete approximations of evolution in various models. We refer
e.g. to [111] for many such instances. We also refer to [68] and references therein for further results concerning
mathematical treatment of nonlinear elasticity.

Let us finally point out that treatment of A-quasiconvexity for integrands whose negative part growth
with the p-th power is a very subtle issue which has recently been treated in [93]. There is a new condition
called A-quasiconvexity at the boundary which is introduced in two forms depending whether u can be

15In fact, one can consider integrands of the form v(x,∇kw(x)) whenever v(x, ·) is k-quasiconvex for all x ∈ Ω̄, |v(x,A)| ≤
C(1 + |A|p), v(·;A) is continuous in Ω̄ for all A ∈ X(n,m, k), and v(x, ·) possesses a recession function.
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extended to a larger domain preserving the A-free property or not. This allows us to remove the assumption
on the existence of an A-free p-equiintegrable extension from Theorem 8.4.
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[85] Ka lamajska, A., Kruž́ık, M.: Oscillations and concentrations in sequences of gradients. ESAIM Control. Optim. Calc.

Var. 14 (2008), 71–104.

[86] Kinderlehrer, D., Pedregal, P.: Characterization of Young measures generated by gradients. Arch. Rat. Mech. Anal.

115 (1991), 329–365.

[87] Kinderlehrer, D., Pedregal, P.: Weak convergence of integrands and the Young measure representation. SIAM J.

Math. Anal. 23 (1992), 1–19.

[88] Kinderlehrer, D., Pedregal, P.: Gradient Young measures generated by sequences in Sobolev spaces. J. Geom. Anal.

4 (1994), 59–90.

[89] Kohn, R.V.: The relaxation of a double-well energy. Cont. Mech. Thermodyn. 3 (1991), 193–236.
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