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Abstract

Almost every nonsingular matrix A € R*™?™ can be decomposed into
the product of a symplectic matrix S and an upper J-triangular matrix
R. This decomposition is not unique. In this paper we analyze the free-
dom of choice in the symplectic and the upper J-triangular factors and
review several existing suggestions on how to choose the free parameters
in the SR decomposition. In particular we consider two choices leading
to the minimization of the condition number of the diagonal blocks in the
upper J-triangular factor and to the minimization of the conditioning of
the corresponding blocks in the symplectic factor. We develop bounds for
the extremal singular values of the whole upper J-triangular factor and
the whole symplectic factor in terms of the spectral properties of even-
dimensioned principal submatrices of the skew-symmetric matrix associ-
ated with the SR decomposition. The theoretical results are illustrated
on two small examples.

1 Introduction

For each natural number m we define the skew-symmetric matrix

0 I m,2m
J2m—<_I 0 >€R2 ’27

where I, € R"™™ denotes the identity matrix of the order m. It is clear that
Jom is nonsingular with Jy,! = JI = —Jo,. If Iny, = [eq, - . . €2 is the identity
matrix of order 2m we define a permutation matrix Ps,, € R?™2™ as

Py = [e1,€3,...,€am—1,€2,€4,...,€2m].
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It follows that P{ni = Pl = [e1,€mi1,€2,€mi2,---,€m,eam]. Using the per-
mutation matrix Py, the matrix Js,, can be permuted to the block diagonal
matrix Jon, € R?™2™ guch that
0 1
b ( _1 0 )).

Definition 1. A real square matriz S, € R?>™2™ s a symplectic matriz if
ST JomSom = Jom. Similarly, a real rectangular matriz Som,on € R2m:2n g
called semi-symplectic if ng’szQmSQm,gn = Jon.

- . 0 1
Jom = PonJom Pl = dl&g(( 1o ) ,

Ri1 Rip
Ro1 Rapo
triangular matriz if Ry 1, R12, and Ra 2 € R™™ are upper triangular matrices
and Ry € R™™ is strictly upper triangular matriz.

Definition 2. A matriz Rs,, = < > € R2m2m s an upper J-

Note that if R, is an upper J-triangular matrix, then the matrix figm =
Pngnggm € R?™2™ ig an upper triangular matrix of the form

Rit ... Run
R2m = 0 . P
0 0 Rm,’rn
where f{” €eR*2fori=1,...5;j=1,...,m and f{jyj is upper triangular for

j=1....,m

The question whether a square matrix of order 2m can be decomposed into
the product of a symplectic matrix and an upper J-triangular matrix is answered
in the following theorem.

Theorem 3. (SR decomposition) [3, Theorem 3.8] Let Ag,, =€ R*™:2™ pe
nonsingular and let Agm = AQmPQTm =c R2™2™  There exists a decomposi-
tion Aspm = SomRom, where Saom € R2Z™2™ s symplectic and Ray, is upper
J-triangular if and only if all leading principal minors of even dimension of the
matrix Cgm = AQmngAgm are nonzero. Then we have also the decomposztzon
Agm = ngRgm where the factor ng = Son, P. 2m satisfies SQmngng = ng
and the upper triangular factor R2m = PngngQm satisfies

éQm = A J2mA2m == PZmRQmJ2mR2mP2m
= PouRY . PL JomPomRPE, = RE JomRom.

It follows from [3] that the SR decomposition is unique up to a special trivial
(symplectic and upper J-triangular) factor that is characterized by the following
corollary.

Corollary 4. [3, Remark 3.9] Let Asy, = SamRom and Agy, = SomRom be
two SR decompositions of a nonsingular matriz As,, € R*™?™  Then there

D D .
1.1 .2 > € R2™:2m  where the matrices D, =

exists a matriz Do, = ( 0 p-1
1,1
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diag(dy1,...,dm,1) € R™™ and Dy = diag(di2,...,dm2) € R™™ are such
that Sop = Som Dyt and Ry = Doy Rop,.

2m

Hence there is a freedom in the choice of the symplectic and the upper J-
triangular factor. The SR decomposition is unique up to a special factor Da,,
that is at the same time symplectic and upper J-triangular leaving thus 2m
parameters free.

In order to obtain a unique decomposition, several options have been pro-
posed in the literature. Della-Dora [4] suggests to restrict the symplectic factor
Som to symplectic matrices with column sum equal to 1 in order to obtain a
unique decomposition. This is also investigated in [7].

Mehrmann [7] suggests to restrict the upper J-triangular factor Ra, =

(g;i gii) with additional constraints making the diagonal elements of R 5

zero and setting the diagonal of R; ; positive and in absolute value equal to the
corresponding diagonal elements of R 2. As shown in [7] (under the assump-
tion that all leading principal minors of even dimension of Copm are nonzero as
in Theorem 3), such an SR decomposition does always exist and is unique. This
choice of the parameters will be denoted by MEH in the following discussions.
Based on [7], Bunse-Gerstner [3] suggests to restrict the upper J-triangular fac-
tor to an upper J-triangular matrix where the upper right hand triangular part
R; > has a zero diagonal and the diagonal elements of R, ; are set to one in
order to obtain a unique decomposition.

These restrictions have been proposed solely in order to obtain a unique SR
decomposition for theoretical purposes. For the computation of the SR decom-
position the degree of freedom should rather be used to make the computation
as easy and stable as possible.

Salam considers in [8] symplectic Gram-Schmidt like algorithms. In that
context the SR decomposition of a matrix A = [a; as] € R?"*? is considered.
The SR decomposition A = SR, S = [s1 s3] € R**% and R = ("}' ;22) was
called the elementary SR decomposition (ESR). Clearly, 711722 = a?Jgag. Three
different versions (ESR1, ESR2 and ESR3) have been discussed:

ESR1 ry; = |jay||, r12 arbitrary,

ESR2 11 = ||(L1H, r12 = a{ag/Tll,

ESR3 11 = \V/ |CLTJQCL2|, T12 arbitrary.

It is shown that ESR1 results in ||s1|| = 1,]/s2]| > 1, while ESR2 results in
[Isi|| = 1, and ||s2|| has minimal 2-norm. For ESR3 it is immediate that r9o =
4711 depending on the sign of a?Jgag. The special case ESR3 with r12 = 0 was
also suggested in [7]. It will play an important role in our findings, hence we
introduce it here as

ESR4 11 = |G{J2(12|, T12 = 0.
For this case, we have ||s1]| = [lai[l/ /e Jzaz] and |lsa]| = llazll/ /[T Joaz],

that is. loull — sl

P lazll T lisall
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In the context of the Hamiltonian Lanczos process it has been proposed to

choose ||s1|| = 1,851 = 0,57 Jsy =1 (that is, s; and sy are chosen orthogonal
as well as J-orthogonal), see, e.g. [6, 1, 2]. In [1] it is shown that this minimizes
the condition number of S in case ||s1]| = 1. This is the same as ESR2.

To the best of our knowledge there are no further theoretical results on
how to make use of the freedom of choice in the symplectic and the upper J-
triangular factors in the SR decomposition. The SR decomposition is usually
not computed explicitly, algorithms based on the SR decomposition work in an
implicit fashion as in the QR context. The choice of freedom in the symplectic
and the upper J-triangular factors translates into the choice of freedom in the
symplectic transformation and in the parameters of the upper Hessenberg-like
form used. More knowledge about the effects of different choice for the freedom
in the SR decomposition will help in choosing the free parameters in the implicit
SR algorithms, see, e.g. [5] and the references therein. Moreover, algorithms
based on the SR decomposition need some sort of re-orthogonalization with
respect to the bilinear form imposed by J. The SR decomposition can be seen
such an orthogonalization process. Hence, the choice of freedom in the SR
decomposition means freedom in normalization.

The goal of this paper is to analyze how to make use of the freedom of choice
in the symplectic and the upper J-triangular factors in the SR decomposition
in order to yield stable algorithms. In particular, we will try to interpret some
of the existing suggestions on how to choose the free parameters in terms of the
conditioning of parts of the symplectic factor S or the triangular factor R.

The organization of the paper is as follows. In Section 2 the minimization of
the condition number of the diagonal blocks RM, j=1,...,m in the triangular
factor Ra, is considered. It turns out that the particular choice of parameters
denoted by MEH [7] or ESR4 [8] yields this minimum. Section 3 is devoted to
the orthogonalization with respect to the bilinear form that is induced by the
skew-symmetric matrix Jo,,. In particular, we discuss how to choose f{m, j=
1,...,m in order to minimize the conditioning of the corresponding blocks Sj =
[82j—1, 82;] in the symplectic factor Sa,,. It turns out that ESR2 is locally worse
than ESR3. A new choice (denoted here as ESR5) which is better than ESR2
and as good as ESR3 will be introduced. In Section 4 we develop bounds for the
extremal singular values of the upper J-triangular factor Rs,, and the symplectic
factor Ss,, in terms of the spectral properties of principal submatrices of the
matrix Ca,,. In Section 5 we illustrate our results on two small model examples.

2 Minimization of the condition number of the
diagonal blocks R, ,, in the triangular factor

In this section, it will be shown that ESR4 as well as MEH minimizes the
condition number of the diagonal blocks R,, ,, in the triangular factor Ray,.
For n =1,...,m we introduce the rectangular submatrices

2m,2n
Agm,gn = [0,1, ey agn] e R
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and R

Aomon = AsmonPay = [a1,. .., G2,) € RZ™?"
for the matrices A, and As,, as in Theorem 3. In addition, we define the rect-
angular matrices Sam.on = [51,- -, 52,] € R¥™2" and So, 00 = SomonPs, =
[31,...,820] € R*™?". From S5, JomSom = Jom and from the 2 x 2 block
diagonal structure of the matrix Js,, it follows that
(1) SQTm,QnJQmSQm,Zn = J2n-

Consequently, the matrices Sayy, 25, are semi-symplectic with
ng,QﬂJQWSQW’Qn = Pg;Lng,QnJQmSZanPZn = PQY;LJQnPQn = Jgn.

Moreover, from the upper triangular structure of the factor Ra,, in the de-
composition Agm = ngRQm one can easily conclude that the same holds
also for the R factor in the SR decomposition of each rectangular submatrix
Agm on = ng QnRQn Here Rzn € R?™27 ig the leading principal submatrix of
order 2n of the upper triangular factor Ry, and thus it is also upper triangular.
The factor Ry, can be computed from the Cholesky-like decomposition of the
skew-symmetric matrix

Cl 1 .- Cl,n

2)  Cop= : : = A%
Coa -oo Cun

J27rLA2m 2n — R2nJ2nR2n

2m,2n

as (1) holds (please note, that a corresponding observation has been made for
Rzm in Theorem 3). Here an is partitioned into 2 x 2 blocks CZ g

We also have the decomposition Agy, 2n = Agm)gnP271 = ng}gnRgnP;nT =
Som,2nRon, where Ry, is defined as Rg, = P{rllenP{nT. Then R, is a factor
from the Cholesky-like decomposition Ag‘m}QnJQmAQm’Qn = RL JonRon.

We consider the following partitioning of the skew-symmetric matrix Con
and the upper triangular matrix Rag,

Cl,n
. Copn : A .
(3) Cop = i A ) Cj7n:_CT,J’
CZL 1,n
Cn,l e Cn,n—l C’VL,TL
Rl,n
RQn _ Re2(n—1)
Rnfl,n
0 Rn,n

and the partitioning of the matrix Ja, = diag(jg(n_l), jg) Given the matrix
Rz(nq) at the step n — 1, it follows then from (2) that the off-diagonal blocks
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R;,, can be computed via forward substitution

Rln Cln

) )

(4) : = _J2(n71)R27(:—1) :
Rn—l,n Cn—l,n
as R;&_l) is a lower triangular matrix. It is also easy to see from (2) and (4)

that the diagonal block f{nn satisfies

A~ T A~
Rl,n RLn
Rz;nj2Rn,n = Cn,n - j2(n71)
Rn—l n f{n—l,n
Cl,n g Cl,n
~ . ; 7 —T
= Cun— Rz( 71)J2("_1)R2(n71)
Cn—l,n Cn—l,n
Cl,n ’ Cl n
() = Cun— : Con-1)
CAjnfl;n Cnfl,n
T .
Cl,n Cl,n
. A—1 .
— A : T Y2(n-1)
szfl,n Cnfl,n
Chnon I
as Rg(n_l)jZ(n—l)RQ(n—l) = C'Q(H_l). Hence Rnn can be recovered from the

Cholesky-like decomposition of the 2x 2 Schur-complement matrix* C’Qn\ég(n_l),
ie.

(6) Rz;nj2f{n,n = CA(Zn\é’2(n—1)~

The matrices Cs, and C’g(,b_l) are skew-symmetric and therefore the Schur-

complement matrix C,\Cy(n—1) is also skew-symmetric with
~ OA :l:HGQn\CA’Q(n—l) ||
FIICon\Con—1l 0

X1 X .
lFor X = (Xéi X;z) € R»T™n+m o nonsingular X1,1 € R"™ X120 € R™™, Xo1 €

Can\Catnny = ( ) = #1Can\Car- ol

R™ ™ X9 2 € R™™ we denote the Schur complement by X\X1,1 = X2 — X2,1X1_%X172.
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Denoting the nonzero elements of Rnn by 711, 712 and rey we get
s o _ ri1 0 0 1 11 T12
Rn’nJ2Rn’n - < 12 T929 ) ( -1 0 0 799

_ 0 711722
—T117T22 0

The freedom of 2m free parameters in the SR decomposition discussed in Corol-
lary 4 is thus reflected in a free choice of the off-diagonal element r12 and the
choice of one of the diagonal elements 717 or ray for each block R,, ,,. This fixes

the other diagonal element as ri11792 = i||CA'2n\CA'2(n,1) || has to be satisfied for
each block I—A{n,n, wheren =1,...,m.

The condition number of the diagonal matrix block ﬁnn can be expressed
by the eigenvalues of the symmetric positive definite matrix

2
sT (i 0 i1 T2\ 11 711712
Rn,anm - 0 - 2 2 .
T12  T22 722 r11T12  Tg + 739

Obviously, k(R ») can be expressed in terms of the parameters r11, roo and
r12. The eigenvalues of Rannn are

2 2 2 2 2 2 2
ri] + 71y + 175 4 (11 + 712 +73) 2 .2
—T11722-
2 4

As 111720 = £[|Cop\Con_1y || is a fixed constant and |Ry, n % = 73 + 13, + 1,
we have

 Raall3 o+ 1R nlh = 401G\ Gy 2
1R nll — /Rl — 41Co\Cogy 12

9 /55
R n,n

Indeed x(R,,,,) is an increasing function of | Ry, ,||%, so if we want to keep the
diti ber of R, , small st minimize its Frobenius R 2

condition number of R,, ,, small, we must minimize its Frobenius norm ||R, | -

4 1Cen\Cotuny |

T

This leads to 12 = 0 and to minimization of 7%, as a function

of r11. This function is minimized for

(7) ri = tras = £4/[1Con\Cogn 1) -

Hence, while ]?{z;njgﬁnn = i||é’2n\é’2(n_1)||j2 has to hold (6), in this optimal
case the matrix anﬁnn satisfies

(8) RY o Ran = [Con\Con1) | 2.

Note that this choice exactly corresponds to the choice MEH [7] and to the
version ERS4, that is, ESR3 with the choice 712 = 0 in [8]. It is also clear
that the scaling that minimizes the condition number of R, ;, is not necessarily
the one that minimizes the condition number of the block S,, = [32,—1, $24)

in the semi-symplectic factor ng)gn. This aspect will be further discussed in
Section 3.
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3 Minimization of the condition number of the
blocks S,, in the semi-symplectic factor

The SR decomposition of the rectangular matrix Agm,gn = ng’gnﬁgn can be
seen as an orthogonalization process with respect a bilinear form induced by the
skew-symmetric matrix Js,,. Indeed, if this process is applied to certain blocks
of two column vectors of A2m72n, then as its outputs we get the block columns
of the semi-symplectic factor ng,gn and the upper triangular factor Rgn that
contains the orthogonalization coefficients. If we consider the two-vector par-
titioning of matrices A2m72n = [142,,“2@_1),‘&”] with A,, = [G2n—1,d2y] and
5‘2W2n = [S‘gmg(n,l),gn] with S,, = [S2n—1, 82n], then the last two columns of
Agm)gn = ggm)QnRQn represent the recurrence for computing the vectors Sn and
the diagonal block Rnn as

Rl,n
‘§2m,2(n—1) + San,n = An
1A%nfl,n

Note that S, € R2™2 ig semi-symplectic with
SZJQmSn = j27

i.e. we have §2Tn71J2m§2n = 1. Introducing the matrix
(9) fjn = [ﬁ2n717ﬁ2n] = San,n
we can write
Rl,n
(10) Uy = An — Sam2(n-1) )

Rn—l,n

where the off-diagonal blocks Ry, ..., Rpn_1,, with (4) and (2) satisfy

IA{l,n
: 7—1 »—T AT N
: - J2(n—1)R2(n—1)A2m,2(n71)J2mAn
Rn—l,n
11 _ j—l ST J A
( ) - 2(n—1)"2m,2(n—1)Y2mn

as ngyg(n,l) = Ameg(nfl)é;(,lnil). Consequently, the columns of U,, can be

formally seen as the result of the orthogonalization of the columns of A, against
the previously computed vectors of the semi-symplectic matrix Sa,, 2(,—1) With
respect to the bilinear form induced by the skew-symmetric matrix Ja,

[AJn = An - SQm,Z(nfl)J !

- R
2(n—1)92m.2(n—1)J2m An.
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The last term can be rewritten using (2) and S2m72(n71) = A2m72(n,1)R2(n71)

S 2n-1)Ja(—1)S2m 2(m-1) TomAn = Asm 201 Co 1

Hence, from (10) and (11) we obtain for U,

(12) U, = [AQm,Q(nfl),An] 2(n—1)

Clearly, ﬁn depends on Agm,gn and C'Qn (except of Cnn)
Under the assumptions of Theorem 3 the diagonal elements of Ry, have to
be nonzero. Hence the diagonal elements of each R, , are nonzero. From

IAj777jt]2mﬂrn = RZ;JLSZJQmSanm = Rz;nJQRn,na

we obtain the Cholesky-like decomposition

T . N
11 T12 0 1 T T2\ 0 0 JomTion
0 T22 -1 0 0 T22 B ﬁ%—‘nJmeLanl 0
which implies 42, Jo,, 72, # 0. Moreover, due to (6)
[AJZ;JQm[AJn = CA12n\CA'2(n—1)~

The computation of Rnn can be viewed as a kind of normalization in the or-
thogonalization process whereas

(13) T11Te2 = U3, 1 Jom oy, = i||CA'2n\CA'2(n71)H-

Note that dg,—1 and 42, are given from previous projections in (10). They
depend on Agm o5 02 (n—1) and Cl nfori=1,...,n—1, see (12). Moreover,
they determine the elements r11 and rqg, Whereas 799 already depends on 71
and the corresponding Schur complement éQqL\OQ(n_l).

As already noted there is a freedom in the choice of r15 and one of the
elements r1; and r95. Choosing 711 fixes 99 due to the restriction (13). Con—
sidering the formula (9) with the fixed left-hand side Un7 we now ask for Rn n
such that the conditioning of S, is minimal. Recall, in Section 2 we minimized
the condition number of Rn,n, that is, we minimized the upper bound for its
condition number in the bound (S, < &(U,)&(Rn.n)-

Now we want to choose Rnn such that H(Sn) is minimal. The eigenvalues
of the matrix S{Sn satisfy the quadratic equation

(14) (1820111 = M) ([182all* = X) = (820-1, 320)* = 0,
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and therefore, for the squares of the singular values of S,, we have

R R 4
I8ul2, o2 () = IS T i\/ ISnlk: _ geqsrs,).

It follows from (9) that STS,, = R,
det(UU,) = [[U, 202

ZT(UT0,)R; L and hence using the identity

(U,,) and (13) we see that

det(SLS,) = det(R,%)det(ULU,)det(R, 1)
det(UZUn)

(7"117"22)2
. . 2
_ HUn”(’min(Un)
(Gon—1, Jombon)

does not depend on the parameters r1; and r15. Here (-, -) denotes the standard
inner product, (z,y) = 27y. Consequently, the condition number

1812 + /18412 — 4det(37S,)

18412 — /18412 — 4det(37S,)

“2(Sn) =

is minimized if we minimize [Sull% = [|82n—1]|% + /52| as a function of 71, and

2n—
r12. Noting that STS,, = (U Ry )T U, f{L ) also yields

(15) 82n-1l> = lldzn_1l®/r3,
(16) 32,17 = lriztion—1 — r11t2,]?/ (Gi2n—1, Jomian)?,
and
. R Uop—1,T19Uon—1 — T11U
(17) (Szn—l,Szn):*( on—1, "12U2n—1 — T11U2)

11 (U2n—1, J2mlan)

Taking the partial derivatives

b S 2 o 1112 fom 1. 1 ~ 2
[Snlle  _ _2|\Uzn3 1 e A(u% 1’”%") Lo ([ 2| n
orn 7 (Gon—1, Jomlan)? (T2n—1, J2mlan)

8||Sn||%F — 2 ([ ti2n — 1”2 — % (ti2n 1, U2n)
8"412 (u2n 1, J2mu2n)2 (u2n 1, JQmUQn)Q ’

we obtain two nonlinear equations for the stationary point in the form
(18) r12|[@2n—1]1* = P11 (fi2n—1, f2n) = 0,

N N N tian—1]|*(2n—1, Jomlzn)?
riallazn]|® = ria(ion—1,20) = (LR 2;; 1 Jaman) .
11
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This leads to the formulas for the minimizer

(19) T HaQn—l‘”(ﬂQn—laJ2mﬂ2n)|1/2
(IUnllomin(Un))*/2
(ﬁ2n717 a2n) | (a2n717 JZmQQn) ‘ 1/2

Ha%fl H(Hfjn”UmM(ﬁn))l/z

(20) T12

This choice implies that (17) gives
(§27L—17 §2n) =0.

Hence, the necessary condition (18) implies the orthogonality of §3, with respect
to §a,—1. Further, from (15), (16), (19) and (20) it follows, that

Hfjnnamm(ﬁn) A2 ||[jn||0mm(ﬂn)
[[$2n |l

A 2
Sop— = 7= - (@ 7 ’
8201 |(Gi2n—1, Jomlizn)|’ |(2n—1, Jomlzn)]

and therefore,

||0n ||0'min (ﬁn)

21 STS, = — -
( ) " ‘(u2n71a J2mu2n)|

1.

Thus the block S, is well-conditioned with /—@(Sn) = 1. Recall that here we
considered the general case r1; # r92 and no restriction on r15 together with
the restriction (13). This lead to the choice (19) and (20), which will be denoted
by ESR5 from now on;

ESR5 111 # rog, 11 as in (19) and 12 as in (20).

Note that both choices ESR2 and ESR5 lead to S, with orthogonal columns,
but in ESR5 the norms of §5,,_1 and $»,, are equilibrated, while in ESR2 we have
I32n—1|| = 1 and ||82,|| > 1 (see [8]) that leads often to much larger condition
number of Sn than in ESR5. This will be illustrated also in Section 5.

4 Condition number of factors in the SR decom-
position

It follows from Section 2 that for ESR4, that is, under the optimal choice (7) of
the parameters 711 and rq

[r11] = |razl, r11722 = (Q2n—1, Jomlan), rig = 0,

the norms of f{nn and IA{;&I are determined by the norm of the Schur complement

matrix ||C'2n\é’2(n_1)|| = |(tizn—1, J2amli2n )| whereas

(22) ||Rn,nH = |(a2n717J2mﬂ2n)|1/2a ||RZ,11|| = |(a2n71>J2ma2n)|_1/2~
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This gives H(Rnn) — 1. Moreover, using S,, = ﬁnf{;% we get
(23) [1Sull = |(d2n—1, Jamtion)| "2 Unll, IS = (@201, Jamzn)[V/2[[U} ]

leading to £(S,) = k(U,). Here XT denotes the Moore-Penrose pseudoinverse
of a (possibly rectangular) matrix X.

On the other hand, it follows from Section 3 that for ESRS5, that is, under
the optimal choice (7) of the parameters r1; and 712

||ﬁ2n71|||(ﬁ2n717J2mﬁ2n)|1/2 r o (ﬁ2n717ﬁ2n)|(a2n71aJ2mﬁ2n)|1/2
~ 9 12 — A~ ]

(Hfjn”Umin(Un))l/2 ||ﬁ2n71 H (Hfjn||‘7min(Un))1/2

with 799 given from the the condition 711799 = (ti2n—1, Jomlan), the norms of
S, and SL satisfy

. 10,1
|(Gi2n—1, Jomlion)|/2K1/2(U,,)
(24) 18t = \(ﬂzn—hJ2mﬂ2n)|1/2”UL||_

K1/2(0,,)
This gives £(S,) = 1. Moreover, from UTU,, = anSESnRM and (21) we get

||Rn,n|| - |(ﬁ2n—1a JQmﬁQn)|1/2/€1/2(ﬁn)7
(25) ||R_Z|| |(ﬁ2n71aJ2mﬁ2n)|_1/2"€1/2(An)

n

leading to x(Ry, ) = £(Up).

We have max,—1. . ||Snull < [|Soml. A similar statement holds for the
minimal singular values min,—1 Umm(gn) > O'min(ng). It is also clear
that for each n =1,..., m we have

|‘S2m,2nH S ||‘§2m||7 Umin(SQm,Qn) Z Jmin(S2m)~

Thus H(nggn) < k(Sam). For the symplectic factor So,m we have that ngJnggm =
Jom and thus . o

Sam = J3m ST 2m-
Therefore, the condition number of Som is given by the square of its norm as
%(S2m) = ||S2m||*. The norm of Ss,, can be bounded as

192mll < > lISall
n=1

The matrix Jf?gm is block upper triangular and therefore the norms of all
diagonal blocks R, , represent the lower bounds for its norm;

max Ryl < || R2ml-
n=1,....m
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< IRzl
In the following theorems we give upper bounds for the norm of R2m and Ra,,
in terms of the norms of the diagonal blocks Rn » and R~

A similar statement can be given for the inverses max,—i1 .. m ||Rn n|
yoeos

n=1...,m.

’ﬂ’ﬂ7

Theorem 5. Let Agm R2™:2m gnd Agm on € R2™27 e the matrices defined
as in Theorem 3 such that no leading principal minor of even dimension of the
matriz Cay, = AZmJQmAQm vanishes (i.e. an = A2m QnJQmAQm on 18 NONSIN-

gular for all n = 1,. ,m). In the SR decomposition of Ay, the triangular
factor Rom is chosen such that (13) holds for each diagonal 2 x 2 block R,L ns
n = 1,...,m. Then the norm of the inverse of the triangular factor Ra,, is
bounded by

1Rl < IR 1 +Z|\A2m,2nU IR

Proof. Observe that
él n

A A 1 ’
RQn _ RQ(n—l) R2(n 1 Cg(n 1)

Cn—l,n

0

‘ Rn,n
as the off-diagonal blocks Ifiln satisfy (4) and C’g(n,l) = Rg(nfl)jg(n,l)}?g(n,l).

Hence, the inverse of the triangular matrix Ry, can be expressed as

Cl,n
H—1 A—1 S —
(26) Rz_nl — Rz(nq) _02(n71) . : Rn,ln
Cn 1.n
0o | R, !

n,n

Considering the identity (12) the previous expression can be rewritten as follows
- Aol o
]—22711 = ( 2(871) Agm 2nU Rn,ln ) .

Using the triangular inequality the norm of ]A%Q_nl can be bounded by

1B < IRl + AL 2 UaRL

< Bz |+ 1AL 5, allIREA.
It follows immediately
1ol < R0 o)l + D 1AL 2, UnllIRS I
n=m-—1
<
m
< |R1 1H+ZHA2m2nU ||||Rnn||
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Therefore, we obtain the statement of our theorem. O

Since the matrix Rgm represents the upper triangular factor in the Cholesky-
like decomposmon Copm = Rsznggm we can bound its norm via ||R2m|\ <
|Com||| B3, || and the bound for ||Ry,}|| formulated in Theorem 5. The norm

of Ry, can be also bounded directly in terms of the norms of diagonal blocks
Ron,n=1,...,m.

Theorem 6. Under the same assumptions as in Theorem &5 the square of the
norm of the triangular factor Rg,, can be bounded as

| ol < Z (Ml + IR 1AL 2 O] ) -

Proof. Consider the following partitioning of Rom,

IA{Ln e IA{I,m
Ry = R2(n 1) : :
f{n—l,n cU 1in—l,m
0 ‘ R2(m—n+1)

with the trailing principal submatrix }?g(m_n_H) € R2(m—nt1)2(m—n+1) fo5p pp =
1,...m. Then due to Rgp = Rom (n = 1) and (11) we have

D Rn,n Rn+1,m e Rn,m
Roym—nt1) = 0 Rotmm
_ < Rn,n _jglszj2m (AnJrl T Am) )
0 RQ(m—n)

Using the triangular inequality the norm of ]:Zg(m_m_l) can be then bounded by

A

1Rotm-nsnll < I Rogmmll + IRanll + 15 ' SE Jam (Ana -~ A
1R m—m) | 4 [ Russnll + 1Rz MO T2 (Apr -~ A

IN

as S, = fjnﬁgln Similarly, it follows immediately from the previous recurrence
that

”RQmH < ||R2(m 2) |+Z”Rnn”"’||Rnn||||UTJ2m(An+1"'Am)”
n=1
< ..
<3 (Bl IR IO o (R A

n=1
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The statement of our theorem now follows from the identity

Cint1 - Cim

UL Jom (Apgr -+ Ap) = (Agmﬁnfjn)’r

Cn,n+1 e Cn,m

considering that the norm of its rightmost matrix can be bounded by the norm
of the matrix Csy,,. O

The norm of the matrix A2m 5, Uy that appears in the statements of Theo-
rem 5 and Theorem 6 can be bounded as

Cin
1AL 2 Unll < 14 (1C50 s, : [
Cn-in
Crn
< 141Gyl : [
Ch-1n
< 141Gy ol

Similarly, it follows from (5) that the norm of the Schur complement matrix

[(tion—1, Jambon)| = ||CA’2n\C'2(n,1) || can be bounded from above by
C%,n Cl,n
ICo\Cotnp)l < ] I+ 15y 5 y
Cn—l,n A~
C Cn—l,n
< 1Conll(L+ 1G5 HIConll).

The norm of its inverse (C’gn\ég(n,l))_l can be bounded by the norm of C;!

2n

as the inverse of the Schur complement (C’zn\éz(n_l))’l is the lower right block
in the inverse of the matrix Cy,!. This leads to the lower bound

/1Con I < 1C2n\Con—) -

If the principal submatrix C'Q(n_l) is ill-conditioned, then one may observe a
significant growth of entries in the Schur complement matrix which leads to large
norm of the diagonal block Rnn If in such case the principal submatrix Coy, is
well-conditioned, the lower bound for ||C'2n\é2(n 1l is a large underestimate
of the actual size of the norm of the Schur complement matrix. Conversely, if
02 (n—1) is well-conditioned and Co,, is ill- conditioned, the size of the norm of
the Schur complement matrix can be rather small. However, this leads to an
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increase of the norm of R, 1. Similar considerations can be done also for the

norms of the blocks gn

The condition number of U, plays an important role when comparing the
singular values of the blocks f{n » and S, in ESR4 and ESR5, respectively. It
follows from (22) and (24) that the norms of R,,,, and Rnn are by a factor

of £1/2(U,,) larger in ESR5 than in ESR4, while the identities (23) and (25)
show that that the norms of S,, and Si in ESR5 are by a factor of x'/2(U,,)
smaller than those in ESR4. Using (9) the extremal singular values of U,, can
be bounded by

Cl,n
[Onll < [ Azm,nll | 1+ 1C50n s, : NE
C’rzfl,n
and
cl,n
Umzn(Un) > O'min(AQm,Qn) 1+0'72nzn(02_(i;, 1) )
Cn 1,n

v

Omin (A2m,2n)-

5 Numerical examples

Recall from Theorem 3 that the upper triangular factor Ro,, of the SR decom-
position As,, = Som Rom can be obtained from the Cholesky-like decomposition

C’Zm - Agmj2mfi2m - R;anmR2m

It was shown in [9] that given the fixed skew-symmetric matrix Cop, the fac-
torization Cy, = A2m on Jom Ao 2n, Where Agm on € R¥™27 is an arbitrary
rectangular matrix is not unique. Several classes of matrices have been dis-
cussed in [9] including the analysis of the conditioning of such factors that
must always satisfy /@2(1[127”72”) > K(égn). The author also gives the charac-
terization of matrices with minimal condition number that lead to the equality
K2 (/Algmgn) = h}(égn). We will consider a well-conditioned Cs and, among the
potentially many matrices 121472 that lead to this same Cs, two examples:

e an ill-conditioned A4 o with k (fl4 9) > H(CQ) where ESR4 and ESR5 be-
have very differently: for ESR4 a well-conditioned Ry and ill- conditioned

S2 is obtained, while a well-conditioned Sg and ill-conditioned R2 is ob-
tained for ESRS.

e a well-conditioned /Al472 with n(fl4,2) ~ 1, where we will show that both
Sy and Ry are not well-conditioned but quite similar for ESR4 and ESRS5.
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In both examples we also look at the conditioning of factors in the ESR2 case.
In particular, we will consider the 2 x 2 skew-symmetric matrix Cs

A 0 e
02_(_50)7

where ¢ is a small positive parameter. It appears that both singular values of
Cy are equal to € and thus Cy itself is well-conditioned with x(Cs) = 1.
First we consider the 4 x 2 matrix

Ay =

SO = O M
o= O O

such that AZ2J4A4,2 = (5. It is easy to show that 121472 is ill-conditioned with
K(Aygo) ~ 2, whereas | Assll = V2 and opmin(Ags) = =

Case ESR4: First we will consider the ESR4 setting. Due to (2) the factor
Ry has to satisfy RY JyRy = Cy. As r12 = 0 this yields the decomposition

0 e\ _ Ar 0 1) 4 ~ [ Ve 0
(Lo)=m{ o) = me( )
The singular values of the diagonal matrix Ry are both equal to V€, but the

factor Ry remains perfectly conditioned with K(Rg) = 1. The factor S has the
following form

Ve 0O
N 0 0
Se=1| 1 1
Ve e
0 0
The norm of S is equal to ||Ss|| = % and the minimal singular value of Sy is

equal to its reciprocal o(Sy) = 7; Thus S5 is ill-conditioned with the condition

number given as x(Ss) = IQ(A4)2) =2

Case ESR5: The situation changes dramatically when we consider the case
ESR5. The elements of the factor Rs are given by

2 Ve
RQZ(\/1+6 TFEQ )

0 V14e?

The singular values of R, are equal to ||R2|| = /2 and O'min<R2) =5 The fac-

tor Ry is ill-conditioned with the condition number given as k(Ry) = k(A42) =

)
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%. The factor S5 is given by

€ 1 1
V1te2 € V1+e2
52 = 11 €
€ V1+e? Vite?
0 0

The columns of S5 are orthogonal with respect to the standard inner product
and have the same norm. Thus S5 is perfectly conditioned with x(S3) = 1.

Case ESR2: Note that due to the property ||Call = ||Az||omin(A2) = € the
scheme ESR2 coincides with the scheme ESR5 on this example.

In our second example the 4 x 2 matrix A4 2 is chosen as

Ay =

SO =M
O~ O M

such that AZ)Q J4A4,2 = (. However, A472 is now well-conditioned with IQ(A4)2) =
||A4,2|| =+/1+ 2¢2 and O'min(A4’2) =1.

Case ESR4: The factor Ry for ESRA4 is the same as in the first example
s (VE O
. ( ST

It is perfectly conditioned with K(RQ) = 1. The factor S, is given by

Ve Ve

= 0

Sy = ©

. v
0 %
0 0
with the norm ||5'2|| = 7%‘;25 The minimal singular value of Sy is equal to
0(5’2) = L. Nevertheless, the factor Sy remains well-conditioned for small

v
values of ¢ as its condition number is given by k(S;) = 1 + 2¢2.

Case ESR5: The factor R» is equal to

V1+e2\/e e2\/e
Ry — Vit2e2 V1te2 V1f2e2?
2 0 Ve V1+2e2

V14e2
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It is easy to show that the singular values of R are both approximately equal
to ||Rz|| & omin(R2) &= V/e. The factor Ry remains also well-conditioned for
small values of €. The factor S5 is given by

VE V14262 NG
Vife? 1+e2 v1+2e2
R Vit2eZ eve
Sy = NG V1te2 V14262
0 V14e2
Ve V1+2e?
0 0

As before, the columns of Sy are orthogonal with respect to the standard inner
product and have the same norm. Thus Sy is perfectly conditioned, £(S2) = 1.

Case ESR2: The situation is quite different from ESR5 if we consider the
case ESR2. The elements of the factor Ry are given by

2 e?
RQ: < Vvi+4e @ >
0 V1+e2

The singular values of Ry are approximately equal to ||Ry|| = v1+¢2 and

Omin (RQ) = . The factor R, is ill-conditioned. Its the condition number is

V1+e2
€

approximately equal to K}(Rg) = . The factor S, is given by

£ 1

V1t+e2 V1+e?
[

1

[N

e 1+

1+

s
[\
I
¥

m
M

S O 4
=%

The factor S has now orthogonal columns with respect to the standard in-
ner product, but their norms are significantly different making the factor ill-

conditioned. Its minimum singular value is equal to Umin(gz) =1 and its norm

V1te+e?

and condition number are equal to £(32) = [|Ss|| = NG

6 Conclusions

In this paper we have con51dered the decomposition Agm = ngRgm into a ma-
trix So,, with S2mJ2mng = Jom and an upper triangular matrix Rgm Assum-
ing that all principal minors of even dimension of the matrix 027n = A2m ngAgm
are nonzero, we have analyzed the conditioning of the triangular factor Ro,, from
Cholesky—hke factorization of Cb,, = RQmngRgm The norms of Ra,, and its
inverse RQm can be bounded in terms of the norms of inverses of principal sub-
matrices of even dimension and the block columns of C’gm, and in terms of
spectral properties of diagonal blocks f{n,n, n=1,...,m, in the resulting trian-

gular factor Rap,. Since there is a freedom in the choice of these blocks we have
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analyzed two choices: the choice ESR4 that minimizes the condition number
of the diagonal block Rnn and the choice ESR5 that minimizes the condition
number of the block S,, in the symplectic factor Som at each stepn=1,...m.
Since the decomposition Agm = S'gm]:?gm can be seen as an orthogonalization
process with respect to a bilinear form induced by the skew-symmetric matrix
Jom, the computation of blocks g and ﬁn n in the elementary SR decomposi—
tion (ESR) can be seen as a kind of normalization. The spectral properties of S,
and R,, ,, depend on the conditioning of the matrix U, =5 Rn n. Our analysis
indicates that if the condition numbers of U,, are large, there can be a significant
difference in the conditioning of the resulting triangular and symplectic factors
in ESR4 and ESR5. This difference can be small in the case of well-conditioned
matrices U, as also indicated in one of our numerical examples.
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