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Abstract

We combine two scale convergence, theory of monotone operators and results on
approximation of Sobolev functions by Lipschitz functions to prove a homoge-
nization process for a flow of an electrorheological fluid. We avoid the necessity
of testing the weak formulation of the initial and homogenized systems by cor-
responding weak solutions, which allows mild assumptions on lower bound for
a growth of the elliptic term. We show that the stress tensor for homogenized
problems depends on the symmetric part of the velocity gradient involving the
limit of a sequence selected from a family of solutions of initial problems.
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1. Introduction

Electrorheological fluids are special liquids characterized by their ability to
change significantly the mechanical properties when an electric field is applied.
This behavior has been extensively investigated for the development of smart
fluids, which are currently exploited in technological applications, e.g. brakes,
clutches or shock absorbers. Results of the ongoing research indicate their pos-
sible applications also in electronics. One approach for modeling of the flow of
electrorheological fluids is the utilization of a system of partial differential equa-
tions derived by Rajagopal and Růžička, for details see [14]. This system in the
case of an isothermal, homogeneous (with density equal to one), incompressible
electrorheological fluid reads

∂tu− div S + div(u⊗ u) +∇π = f , div u = 0, (1)
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where u is the velocity, S the extra stress tensor, div(u ⊗ u) is the convective
term with u⊗ u denoting the tensor product of the vector u with itself defined
as (uiuj)i,j=1,...,n, π is the pressure and f the external body force. The stress
tensor S is assumed to depend on the symmetric part Du of the velocity gradient
∇u. The presence of an electric field is captured by the supposed dependence
of S on the spatial variable in such a way that the growth of S corresponds to
|Du|p(·)−1 for some variable exponent p.

For this setting assuming additionally a periodic variable exponent with a
small period ε, it was shown by Zhikov in [19] that as ε → 0 a subsequence of
solutions of initial problems converges to a solution of the homogenized problem
having the extra stress tensor independent of the spatial variable. Zhikov’s
approach is based on the fact that the regularity of solutions of the initial as
well as homogenized problem allows to use these solutions as a test function. In
fact, this sufficient regularity is ensured by the value of the lower bound for the
variable exponent p ≥ p0 := max((d+

√
3d2 + 4d)/(d+ 2), 3d/(d+ 2)).

In the seminal article [10] a method of Lipschitz approximation of Sobolev
functions is developed that allows to decrease the lower bound for p. In the ar-
ticle [10] the method is applied to the problem of existence of a weak solution to
the stationary generalized Navier-Stokes model. The stationary problem with
elliptic operator with Orlicz growth is studied in [6]. It took lot of work till
the approach was modified in such a way that it is applicable to evolutionary
problems. See [7], where the existence of a weak solution to the evolutionary
generalized Navier Stokes problem is studied. The method is used to a evolu-
tionary problem in Orlicz setting in the article [4]. The existence of a solutions
to the problem (1) can be shown if p > 2d/(d + 2). It is natural to ask: “Can
one proceed with the homogenization process also if the lower bound for p is
between p0 and 2d/(d + 2)?” This paper should be regarded as the first step
on the way for the answer to this question. To concentrate on the interplay be-
tween method of Lipschitz approximations and two scale convergence we start
with the stationary problem first.

Let us introduce the problem, which we deal with. The domain Ω ⊂ Rd is
supposed to be bounded and Lipschitz, Y = (0, 1]d. For ε ∈ (0, 1) we consider
the following stationary version of the problem (1)

−div
(
S
(x
ε
,Duε

)
− uε ⊗ uε

)
+∇πε = −div F, div uε = 0 in Ω,

uε = 0 on ∂Ω,

∫
Ω

πε = 0.

(2)

The tensor S : Rd ×Rd×d
sym → Rd×d

sym is given in a special form

S(y, ξ) = δ|ξ|β−2ξ + A(y, ξ), (3)

where δ > 0, β > 2d/(d + 2). There is a Y -periodic function p : Rd → [1, β]
such that A fulfills:

Assumption 1.1. 1. A is Y−periodic in the first variable,
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2. A(y, ·) is continuous,

3. for ξ1 6= ξ2 (A(y, ξ1)−A(y, ξ2)) · (ξ1 − ξ2) > 0,

4. there are c1, c2 > 0 : A(y, ξ) · ξ ≥ c1(|ξ|p(y) − 1), |A(y, ξ)|p′(y) ≤
c2(|ξ|p(y) + 1), where p′(y) = p(y)

p(y)−1 .

For problem (2) we establish a homogenized problem

−div
(
Ŝ(Du)− u⊗ u

)
+∇π = −div F in Ω, div u = 0 in Ω,

u = 0 on ∂Ω,

∫
Ω

π = 0.

(4)

Our effort will be spent on determining the homogenized stress tensor Ŝ.
The situation is similar to the limit passage in the stress tensor in the proof of
the existence of weak solutions of generalized Navier-Stokes equations. However,
one cannot straightforwardly adopt the methods, which are successfully applied
for existence proofs, because of oscillations which occur in the spatial variable
of the stress tensor. We prove

Theorem 1.1. Let Ω ⊂ Rd be a bounded Lipschitz domain, β > 2d/(d+2), the
measurable function p : Rd → [1, β] be Y periodic, S satisfy Assumption 1.1 and
F ∈ Lβ′(Ω; Rd×d

sym). Let {(uε, πε)} be a family of weak solutions of the system (2)
constructed in Theorem 3.1. Then a sequence {εk} exists such that as k → +∞

εk → 0, uεk ⇀ u in W 1,β
0 (Ω; Rd), πεk ⇀ π in Ls(Ω),

where s is determined in (11) and (u, π) is a weak solution of the system (4)

with Ŝ given by (14).

2. Preliminaries

The following function spaces appear further:
C∞0,div(Ω) =

{
u ∈ C∞0 (Ω; Rd) : div u = 0 in Ω

}
, C∞per(Y ) = {u ∈ C∞(Rd) :

u Y -periodic}, C∞per,div(Y ) = {u ∈ C∞per(Rd) : div u = 0 in Y }, W 1,β
per (Y,Rd) is a

closure of {u ∈ C∞per(Y ),
∫
Y

u = 0} in the classical Sobolev norm, D
(
Ω;C∞per(Y )

)
is the space of smooth functions u : Ω ×Rd → R such that u(x, ·) ∈ C∞per(Y )
for any x ∈ Ω and there is K b Ω such that for any x ∈ Ω \K: u(x, ·) = 0 in
Rd.

We introduce a closed subspace of Lβ(Y ; Rd×d
sym) and its annihilator, a sub-

space of Lβ
′
(Y ; Rd×d

sym), by

G(Y ) =
{
Dw : w ∈W 1,β

per (Y ; Rd),div w = 0 in Y
}
,

G⊥(Y ) =

{
V∗ ∈ Lβ

′
(Y ; Rd×d

sym) : ∀V ∈ G(Y )

∫
Y

V∗(y) ·V(y) dy = 0

}
.
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Note that C∞per,div(Y ) is dense in G(Y ). If we consider the set Rd×d
sym as a subset

of constant functions of Lβ(Y ; Rd×d
sym) then Rd×d

sym ∩G(Y ) = ∅.

Proposition 2.1. We have the following identification for the annihilator of
the direct sum Rd×d

sym ⊕G(Y )

(
Rd×d
sym ⊕G(Y )

)⊥
=
(
G⊥(Y )

)
0

=

{
V∗ ∈ G⊥;

∫
Y

V∗ = 0

}
.

Proof. Clearly,
(
G⊥(Y )

)
0
⊂
(
Rd×d
sym ⊕G(Y )

)⊥
. By the definition of the annihi-

lator, V∗ ∈
(
Rd×d
sym ⊕G(Y )

)⊥
means that for any η ∈ Rd×d

sym,V ∈ G(Y ) there

holds
∫
Y

V∗(η + V) = 0. The choice η = 0 implies V∗ ∈ G⊥(Y ) and setting
V = 0,η =

∫
Y

V∗ we get
∫
Y

V∗ = 0.

For the sake of clarity, we recall the meaning of differential operators ap-
pearing in the paper. Let us consider u : Ω× Y → Rd then

∇xu =

(
∂ui
∂xj

)d
i,j=1

, divx u =

d∑
i=1

∂ui
∂xi

, ∇yu =

(
∂ui
∂yj

)d
i,j=1

, divy u =

d∑
i=1

∂ui
∂yi

.

We omit the subscript if the function depends on the variable from one domain
only. Throughout the paper the identity matrix is denoted by I, the zero matrix
by O. The generic constants are denoted by c. When circumstances require it,
we may also include quantities, on which the constant depend, e.g. c(d) for the
dependence on the dimension d. If we want to distinguish between different
constants in one formula, we utilize subscripts, e.g. c1, c2 etc.

Let M,N be open subsets of Rd. M b N means that M ⊂ M ⊂ N , M
being compact.

2.1. Lebesgue spaces with variable exponents

Definition 2.1. We introduce the modular

ρp,Ω(u) =

∫
Ω

|u(x)|p(x) dx

for u ∈ L1(Ω). The variable exponent Lebesgue space Lp(·)(Ω) is defined as

Lp(·)(Ω) = {u ∈ L1(Ω) : ρp,Ω(u) <∞}

and endowed with the norm

‖u‖Lp(·)(Ω) = inf
{
λ > 0 : ρp,Ω

(u
λ

)
≤ 1
}
.

Proposition 2.2. Let Ω ⊂ Rd be bounded. Then the embedding Lp(·)(Ω) ↪→
Lq(·)(Ω) holds if and only if q ≤ p almost everywhere in Ω.

Proof. See [5, Section 3.3].
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2.2. Generalized Orlicz and Sobolev-Orlicz spaces

Definition 2.2 ([12], Section 14.1). Let ϕ be a function on a Banach space X.
The conjugate function of ϕ is the function on X∗ defined for ζ ∈ X∗ by

ϕ∗(ζ) = sup
ξ∈X
{ζ(ξ)− ϕ(ξ)}.

Definition 2.3. We say that a function ϕ : Rn → R is a generalized N−function
if ϕ is convex, even and is superlinear, i.e.

lim
|ξ|→0

ϕ(ξ)

|ξ|
= 0, lim

|ξ|→∞

ϕ(ξ)

|ξ|
=∞. (5)

We say that the generalized N−function ϕ satisfies ∆2−condition if there is
C > 0 such that for all ξ ∈ Rn ϕ(2ξ) ≤ Cϕ(ξ).
We introduce the modular

ρϕ,Ω(v) =

∫
Ω

ϕ(v(x)) dx

and if ϕ satisfies ∆2-condition we define the Orlicz space

Lϕ(Ω; Rn) = {v ∈ L1(Ω; Rn) : ρϕ,Ω (v) <∞},

endowed with the norm

‖v‖Lϕ(Ω) = inf
{
λ > 0 : ρϕ,Ω

(v

λ

)
≤ 1
}
.

The notion of generalized N−function was introduced in [15]. In [16], Orlicz
spaces generated by such functions were introduced and their basic properties
were studied.

2.3. Auxiliary tools

Lemma 2.1 (Biting lemma). Let E ⊂ Rd be a bounded domain and {vn}
be a sequence of functions bounded in L1(E). Then there exists a subsequence
{vnk} ⊂ {vn}, a function v ∈ L1(E) and a sequence of measurable sets {Ej}, E ⊇
E1 ⊇ E2 ⊇ · · · with |Ej | → 0 as j → +∞ such that for each j: vnk ⇀ v in
L1(E \ Ej) as k → +∞.

Proof. See [3].

Theorem 2.1 (Dunford). Let Σ ∈ Rd be a measurable set. A subset M of
L1(Σ) is relatively weakly compact if and only if it is bounded and uniformly
integrable, i.e. for any θ > 0 there is δ > 0 such that for any f ∈ M and a
measurable K ⊂ Σ with |K| < δ we have

∫
K
|f | < θ.

Proof. See [8, Section III.2 Theorem 15].
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Lemma 2.2. Let Σ ⊂ Rd be an open set, p, q, r > 1. Assume

un ⇀ u in Lp(Σ; Rd),vn ⇀ v in Lq(Σ; Rd) as n→ +∞ and 1
p + 1

q = 1
r < 1.

In addition, let for a certain s > 1 {div un} be precompact in
(
W 1,s

0 (Σ; Rd)
)∗

,

{curl vn} = {∇(vn)− (∇(vn))T } be precompact in
(
W 1,s

0 (Σ; Rd)d
)∗

. Then

un · vn ⇀ u · v in Lr(Σ).

Proof. See [9, Theorem 10.21].

Lemma 2.3. Let Σ ⊂ Rd be a bounded Lipschitz domain, q ∈ (1,∞) and
denote Lq0(Σ) = {h ∈ Lq :

∫
Σ
h = 0}. There exists a continuous linear operator

B : Lq0(Σ)→W 1,q
0 (Σ; Rd) such that divBh = h for any h ∈ Lq0(Σ).

Proof. See [9, Theorem 10.11].

Theorem 2.2. Let Ω ⊂ Rd be open and Φ : Y ×Rd×d
sym → R satisfy:

(i) Φ is Carathéodory, i.e. for all ξ ∈ Rd×d
sym Φ(·, ξ) is measurable, for almost

all y ∈ Ω Φ(y, ·) is continuous,

(ii) for almost all y ∈ Ω Φ(y, ·) is convex,

(iii) Φ ≥ 0.

Then for every Uε,U0 ∈ L1(Ω × Y ; Rd×d
sym) such that Uε ⇀ U in L1(Ω ×

Y ; Rd×d
sym), we have that

lim inf
ε→0

∫
Ω×Y

Φ (y,Uε(x, y)) dy dx ≥
∫

Ω×Y
Φ(y,U(x, y)) dy dx.

Proof. See [11, Theorem 4.5], where a more general assertion is proved.

Theorem 2.3. Let X be a Banach space, V be a subspace of X, A be a closed
convex functional on X and A be continuous at some x ∈ X. Then

inf
V
A+ inf

V ⊥
A∗ = 0.

Proof. See [12, Theorem 14.2], where a more general assertion is proved.

Remark 2.1. We observe that if g is a functional on a Banach space X and
η ∈ X∗ then

∀ξ ∈ X∗ : (g − η)(ξ) = sup
x∈X
{〈η + ξ, x〉 − g(x)} = g∗(η + ξ). (6)

Moreover, if g is closed, convex and continuous at some x ∈ X, V is a subspace
of X, we obtain combining Theorem 2.3 and (6) (for A(x) := (g − η)(x))

inf
x∈V
{g(x)− 〈η, x〉}+ inf

ξ∈V ⊥
g∗(η + ξ) = 0. (7)
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For f ∈ L1(Rd), we define the Hardy-Littlewood maximal function as

(Mf)(x) = sup
r>0

1

|Br(x)|

∫
Br(x)

|f(y)| dy,

where Br(x) stands for a ball having a center at x and radius r.

Theorem 2.4. Let Ω ⊂ Rd be open and bounded with a Lipschitz boundary and
α ≥ 1. Then there is c > 0 such that for any v ∈W 1,α

0 (Ω; Rd) and every λ > 0
there is vλ ∈W 1,∞

0 (Ω; Rd) satisfying

‖vλ‖W 1,∞(Ω) ≤ λ,

|{x ∈ Ω : v(x) 6= vλ(x)}| ≤ c
‖v‖αW 1,α(Ω)

λα
.

(8)

Proof. The similar assertion, formulated for functions that do not vanish on
∂Ω, appeared in [1]. For our purposes we refer to [6, Theorem 2.3], which
for any v ∈ W 1,α

0 (Ω; Rd) and any numbers θ, λ > 0 ensures the existence of
vθ,σ ∈W 1,∞

0 (Ω; Rd) such that

‖vθ,σ‖L∞(Ω) ≤ θ, ‖∇vθ,σ‖L∞(Ω) ≤ c(d,Ω)σ

and up to a set of Lebesgue measure zero

|{vθ,σ 6= v}| ⊂ Ω ∩ ({M(v) > θ} ∪ {M(∇v) > σ}) .

We pick v ∈ W 1,α
0 (Ω; Rd) and λ > 0. We apply [6, Theorem 2.3] with λ, λ

c(d,Ω)

and denote vλ = vλ, λ
c(d,Ω)

to conclude (8)1. Moreover, since we have for any

f ∈ Lα(Rd) and σ > 0

|{|f | > σ}| ≤
∫
Rd

(
|f |
σ

)α
=
‖f‖αLα(Rd)

σα
,

we obtain for α > 1 using the strong type estimate for the maximal function,
see [17, Theorem 1]

|{vθ,σ 6= v}| ≤
‖M(v)‖αLα(Rd)

λα
+ c
‖M(∇v)‖αLα(Rd)

λα
≤ c
‖v‖αW 1,α(Ω)

λ
.

For α = 1 the estimate (8)2 is a direct consequence of the weak type estimate
of the maximal function, see again [17, Theorem 1].

2.4. Two-scale convergence

The following concept of convergence was introduced by Nguetseng in his
seminal paper [13]: a sequence {uε} bounded in L2(Ω) is said weakly two-scale
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convergent to u0 ∈ L2(Ω × Y ) if for any smooth function ψ : Rd × Rd → R,
which is Y−periodic in the second argument,

lim
ε→0

∫
Ω

uε(x)ψ
(
x,
x

ε

)
dx =

∫
Ω×Y

u0(x, y)ψ(x, y) dx dy. (9)

Properties of this notion of convergence were investigated and applied to a num-
ber of problems, see [2], and the concept was also extended to Lp, p ≥ 1. It was
shown later that there is an alternative approach, so called periodic unfolding,
for the introduction of the weak two-scale convergence, which allows to repre-
sent the two-scale convergence by means of the standard weak convergence in
a Lebesgue space on the product Ω × Y . In the same manner the strong two-
scale convergence is introduced. Since it is known that both presented notions
of the weak two-scale convergence are equivalent, see [18], all properties known
for the weak two-scale convergence introduced via (9) hold also for the second
approach. We introduce the weak two-scale convergence via periodic unfolding.

Definition 2.4. We define functions n : R→ Z, r : R→ [0, 1), N : Rd → Zd

and R : Rd → Y as

n(x) = max{n ∈ Z : n ≤ x}, r(x) = x− n(x),

N(x) = (n(x1), . . . , n(xd)), R(x) = x−N(x).

Then we have for any x ∈ Rd and ε > 0, a two-scale decomposition x =
ε
(
N
(
x
ε

)
+R

(
x
ε

))
. We also define for any ε > 0 a two-scale composition func-

tion Tε : Rd × Y → Rd as Tε(x, y) = ε
(
N
(
x
ε

)
+ y
)
.

Remark 2.2. It follows that Tε(x, y)→ x uniformly in Rd × Y as ε→ 0 since
Tε(x, y) = x+ ε

(
y −R

(
x
ε

))
.

Definition 2.5. We say that a sequence of functions {vε} ⊂ Lr(Rd)

1. converges to v0 weakly two-scale in Lr(Rd × Y ), vε
2−s−−⇀ v0, if vε ◦ Tε

converges to v0 weakly in Lr(Rd × Y ),

2. converges to v0 strongly two-scale in Lr(Rd × Y ), vε
2−s−−→ v0, if vε ◦ Tε

converges to v0 strongly in Lr(Rd × Y ).

Remark 2.3. We define two-scale convergence in Lr(Ω× Y ) as two-scale con-
vergence in Lr(Rd × Y ) for functions extended by zero to Rd \ Ω.

Lemma 2.4. Let g ∈ L1(Rd;Cper(Y )). Then, for any ε > 0, the function
(x, y) 7→ g(Tε(x, y), y) is integrable and∫

Rd

g
(
x,
x

ε

)
dx =

∫
Rd

∫
Y

g(Tε(x, y), y) dy dx.

Proof. See [18, Lemma 1.1]
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Lemma 2.5.

(i) Let v ∈ Lr(Ω;Cper(Y )), r ∈ [1,∞), v be Y−periodic, define vε(x) =

v(xε , x) for x ∈ Ω. Then vε
2−s−−→ v in Lr(Ω× Y ) as ε→ 0.

(ii) Let vε
2−s−−⇀ v0 in Lr(Ω× Y ) then vε ⇀

∫
Y
v0(·, y) dy in Lr(Ω).

(iii) Let {vε} be a bounded sequence in Lr(Ω), r ∈ (1,∞). Then there is v0 ∈
Lr(Ω × Y ) and a sequence εk → 0 as k → +∞ such that vεk

2−s−−⇀ v0 in
Lr(Ω× Y ) as k → +∞.

(iv) Let Ω be bounded and {vε} converge weakly to v in W 1,r(Ω), r ∈ (1,∞)
as ε → 0. Then there is v0 ∈ Lr(Ω;W 1,r

per(Y )) and a sequence εk → 0
as k → +∞ such that vεk converges strongly to v in Lr(Ω) and ∇vεk
converges weakly two-scale to ∇xv +∇yv0 in Lr(Ω× Y )d as k → +∞.

(v) Let r ∈ [1,∞) and Φ : Rd ×Rd×d
sym → R satisfy:

(a) Φ is Carathéodory,

(b) Φ(·, ξ) is Y−periodic for any ξ ∈ Rd×d
sym, Φ(y, ·) is convex for almost

all y ∈ Y ,

(c) Φ ≥ 0, Φ(·, 0) = 0.

If Uε 2−s−−⇀ U0 in Lr(Ω× Y ; Rd×d
sym) then

lim inf
ε→0

∫
Ω

Φ
(x
ε
,Uε(x)

)
dx ≥

∫
Ω×Y

Φ(y,U0(x, y)) dy dx.

(vi) Let vε
2−s−−⇀ v0 in Lr(Ω×Y ) and wε

2−s−−→ w0 in Lr
′
(Ω×Y ) then

∫
Ω
vεwε →∫

Ω

∫
Y
v0w0.

Proof. The equalities

vε ◦ Tε(x, y) = v

(
Tε(x, y),

Tε(x, y)

ε

)
= v(Tε(x, y), y)

hold by definition of Tε and Y−periodicity of v. If v ∈ C(Ω× Y ), Remark 2.2
immediately implies∫

Ω×Y
|v(Tε(x, y), y)− v(x, y)|r dxdy → 0 as ε→ 0.

For general v ∈ Lr(Ω;Cper(Y )) we need to approximate v by a continuous func-
tion and then proceed as in the proof of mean continuity of Lebesgue integrable
functions.

We obtain (ii) if functions independent of y-variable are considered in the
definition (9) of the weak convergence in Lr(Ω× Y ).
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The assertion (iii) is a direct consequence of Lemma 2.4, the weak compact-
ness of bounded sets in Lr(Ω× Y ) and Definition 2.51.

For the proof of (iv) with r = 2 see [2, Proposition 1.14. (i)], the proof for
general r 6= 2 is analogous.

Let us show (v). It follows from Lemma 2.4 and Theorem 2.2, that for
Uε,U0 extended by zero in Rd \ Ω

lim inf
ε→0

∫
Ω

Φ
(x
ε
,Uε(x)

)
dx = lim inf

ε→0

∫
Ω×Y

Φ (y,Uε(Tε(x, y)) dx dy

≥
∫

Ω×Y
Φ(y,U0(x, y)) dx dy.

Hence we conclude (v).
Statement (vi) follows immediately from definition of the weak and strong

two-scale convergence and Lemma 2.5 applied to function g = vεwε independent
of y, see [18, Proposition 1.4].

3. Existence of weak solutions of the problems (2) and (4)

Definition 3.1. Let F ∈ Lβ′(Ω; Rd×d
sym), S be defined by (3) and ε > 0 be fixed

and
Sε = S

(x
ε
,Duε

)
. (10)

Let s be determined by

s =

{
min

{
dβ

2(d−β) , β
′
}

β < d,

β′ β ≥ d.
(11)

We say that a pair (uε, πε) ∈ W 1,β
0,div(Ω; Rd) × Ls(Ω) is a weak solution of the

problem (2) if for any w ∈ C∞0 (Ω; Rd)∫
Ω

(Sε − uε ⊗ uε − πεI) : Dw =

∫
Ω

F : Dw. (12)

Theorem 3.1. Let Ω ⊂ Rd be a bounded Lipschitz domain, ε > 0 be fixed,
F ∈ Lβ′(Ω; Rd×d

sym), β > 2d/(d+2), the measurable function p : Rd → [1, β] be Y
periodic, Assumption 1.1 be fulfilled. Then there exists a weak solution (uε, πε)
of (2). Moreover, there is c > 0 independent of ε such that

‖Duε‖Lβ(Ω) ≤ c,

‖πε‖Ls(Ω) ≤ c.
(13)

Proof. Due to assumptions on the function p, namely its boundedness from
above by β, we can adopt the technique used for the proof in [6, Theorem 3.1].
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In accordance with [19] the homogenized tensor Ŝ : Rd×d
sym → Rd×d

sym is deter-
mined by

Ŝ(ξ) =

∫
Y

S(y, ξ + V(y)) dy, (14)

where the function V is a solution of the cell problem: Let ξ ∈ Rd×d
sym be fixed.

We seek V ∈ G(Y ) such that for any W ∈ G(Y )∫
Y

S(y, ξ + V(y))W(y) dy = 0. (15)

Since G(Y ) is reflexive and the tensor S is strictly monotone, the existence and
uniqueness of V follows using the theory of monotone operators.

Before we show the existence result for the homogenized problem, we inves-
tigate a functional f : Rd×d

sym → R defined as

f(ξ) = min
V∈G(Y )

∫
Y

|ξ + V(y)|β

β
dy. (16)

We notice that minimum on the right hand side is always attained since a power
of the modulus is convex and continuous and G(Y ) is reflexive.

Lemma 3.1.

(i) f is positive for ξ 6= 0, even and convex,

(ii) there are constants c1, c2 > 0 such that c1|ξ|β ≤ f(ξ) ≤ c2|ξ|β,

(iii) f is a generalized N−function,

(iv) f satisfies the ∆2−condition.

Proof. First, we recall that by the definition of G(Y )

G(Y ) ∩Rd×d
sym = {0}. (17)

Let us assume, contrary to (i), that f(ξ) = 0 for some ξ 6= 0. Then we obtain
from the definition of f that V = −ξ for almost all y ∈ Y , which is impossible
due to (17). The fact that f is even immediately follows since G(Y ) is a subspace
of Lβ(Y ; Rd×d

sym). When showing convexity of f , we choose ξ1, ξ2 ∈ Rd×d
sym and

find V1,V2 ∈ G(Y ) such that f(ξi) =
∫
Y
|ξi+Vi|β

β dy, i = 1, 2. Then for

λ ∈ (0, 1) we have by the definition of f and due to the convexity of power of
the modulus

f(λξ1 + (1− λ)ξ2) ≤
∫
Y

|λξ1 + (1− λ)ξ2 + λV1 + (1− λ)V2|β

β

≤ λf(ξ1) + (1− λ)f(ξ2),

i.e. f is convex.
Since f is convex, it is locally Lipschitz continuous. Especially it is Lipschitz

11



continuous and therefore continuous on the unit sphere SRd×d
sym

, which is compact

in Rd×d
sym. Hence f attains its minimum value fmin and maximum value fmax

on SRd×d
sym

. We have for ξ 6= 0 that

f(ξ) = min
V∈G(Y )

∫
Y

|ξ + V(y)|β

β
dy = |ξ|β min

V∈G(Y )

∫
Y

∣∣∣ ξ
|ξ| + V(y)

∣∣∣β
β

dy

since G(Y ) is a subspace of Lβ(Y ; Rd×d
sym). Hence we realize |ξ|βfmin ≤ f(ξ) ≤

|ξ|βfmax, i.e. we have shown (ii).
To verify that f is an N−function it suffices to show its superlinear growth
which immediately follows from inequalities in (ii).
To show that f satisfies ∆2−condition, we choose ξ ∈ Rd×d

sym and find V ∈ G(Y )
that minimizes the integral in (16). Then we obtain due to the upper and lower
bound for p

f(2ξ) ≤
∫
Y

|2ξ + 2V(y)|β

β
dy ≤ 2βf(ξ).

Lemma 3.2. A conjugate functional to f is given by

f∗(ξ) = min
V∗∈G⊥(Y )∫
Y

V∗(y) dy=ξ

∫
Y

|V∗(y)|β′

β′
dy. (18)

Proof. Since

f∗(ξ) = sup
η∈Rd×d

sym

{
η · ξ − inf

V∈G(Y )

∫
Y

|V + η|β

β

}

= sup
η∈Rd×d

sym

{
− inf

V∈G(Y )

∫
Y

|V + η|β

β
− (V + η) · ξ

}

= − inf
η∈Rd×d

sym

inf
V∈G(Y )

{∫
Y

|V + η|β

β
− (V + η) · ξ

}

= − inf
V∈Rd×d

sym⊕G(Y )

{∫
Y

|V|β

β
−V · ξ

}
,

where we also used that
∫
Y

V = 0 since V is a symmetric gradient of some

Y−periodic function, and F (V) =
∫
Y
|V|β is closed because it is continuous

with respect to the strong topology of Lβ(Y ; Rd×d
sym). The identity (7) and

Proposition 2.1 yield

f∗(ξ) = inf
V∗∈(G⊥(Y ))0

∫
Y

|V∗ + ξ|β′

β′
.

Hence we conclude (18).

12



Proposition 3.1. f∗ is convex and satisfies ∆2−condition.

Proof. To show convexity of f∗, we choose ξi ∈ Rd×d
sym and denote by V∗i ∈

G⊥(Y ) the corresponding minimizers of (18), i.e. f∗(ξi) =
∫
Y
|V∗i (y)|β

′

β′ dy, i =

1, 2. Then we have for λ ∈ (0, 1)

f∗(λξ1 + (1− λ)ξ2) ≤
∫
Y

|λV∗1 + (1− λ)V∗2|β
′

β′
≤ λf∗(ξ1) + (1− λ)f∗(ξ2).

Let us show that f∗ satisfies ∆2−condition. We choose ξ ∈ Rd×d
sym and the

corresponding minimizer of (18) denoted by V∗ ∈ G⊥(Y ). Then we infer

f∗(2ξ) ≤
∫
Y

|2V∗|β′

β′
dy ≤ 2β

′
f∗(ξ).

The reason why we deal with the generalized N−functions f and f∗ is that
they indicate properties of the homogenized tensor, namely its coerciveness and
growth.

Proposition 3.2. There are constants ĉ1, ĉ2 > 0 such that for any ξ ∈ Rd×d
sym

Ŝ(ξ) · ξ ≤ ĉ1f(ξ)− 1,

f∗(Ŝ(ξ)) ≤ ĉ2f(ξ) + 1.

Moreover, Ŝ is monotone.

Proof. See [19, Proposition 2].

Regarding to the properties of the functionals f, f∗, it is meaningful to in-
troduce spaces Lf (Ω) and Lf

∗
(Ω) in the sense of Definition 2.3. Moreover, we

define
W f

0,div(Ω) = {u ∈W 1,1
0,div(Ω; Rd) : Du ∈ Lf (Ω)}.

Definition 3.2. Let s be determined by (11). We say that a pair (u, π) ∈
W f

0,div(Ω)×Ls(Ω) is a weak solution of the problem (4) if for any w ∈ C∞0 (Ω; Rd)∫
Ω

(Ŝ(Du)− u⊗ u− πI) : Dw =

∫
Ω

F : Dw.

Theorem 3.2. Let F ∈ Lβ′(Ω; Rd×d
sym) and β > 2d

d+2 . Then there exists a weak
solution (u, π) of the problem (4).

Proof. One proceeds in the same manner as in the proof of [6, Theorem 3.1]

since the tensor Ŝ enjoys properties listed in Proposition 3.2, W f
0,div(Ω) is com-

pactly embedded into L2(Ω; Rd) due to the assumed lower bound for β and

Lemma 3.1 (ii), which also implies that C∞0,div(Ω; Rd) is dense in W f
0,div(Ω).
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4. Proof of the main theorem

Lemma 4.1. Let s be given by (11) and the functions uε, πε,Sε,F be ex-
tended by zero on Rd \ Ω for ε > 0. Let functions πε,1 ∈ Lβ

′
(Rd), πε,2 ∈

L
β∗
2 (Rd), πε,3 ∈ Lβ′(Ω) be defined as

πε,1 = div divN (Sε) ,

πε,2 = −div divN (F + uε ⊗ uε) ,

πε,3 = πε − πε,1 − πε,2.

Here N (Sε) denotes the componentwise Newton potential of Sε. Then

{πε,1} is bounded in Lβ
′
(Rd),

{πε,2} is precompact in Lq(Rd) for any q ∈ [1, s),

{πε,3} is precompact in Lβ
′
(O) for any O b Ω.

(19)

Proof. Applying the theory of Calderon-Zygmund operators, see [5, Section 6.3],
yields the estimate

‖πε,1‖Lβ′ (Rd) ≤ c‖S
ε‖Lβ′ (Rd) (20)

and the precompactness of {πε,2} in Lq(Rd), q ∈ [1, s) since {F + uε ⊗ uε}
is precompact in Lq(Rd; Rd×d

sym). It follows from (12) and (13) that {πε,3} are
harmonic functions in Ω and bounded in L1(Ω). Hence {πε,3} is precompact in
Lβ
′
(O) for any O b Ω.

Lemma 4.2. Let Sε be defined by (10) and πε,1 be defined in Lemma 4.1.
Then there is a sequence εk → 0 as k → +∞ and a sequence of measurable sets
Ω1 ⊂ Ω2 ⊂ · · · ⊂ Ωn ⊂ · · · ⊂ Ω with |Ω \ Ωn| → 0 as n → +∞ such that for
any n ∈ N and θ > 0 there is δ > 0 such that for any k ∈ N and K ⊂ Ωn with
|K| < δ

‖Sk‖Lβ′ (K) + ‖πk,1‖Lβ(K) < θ
1
β , (21)

where we denoted Sk = Sεk and πk,1 = πεk,1 for k ∈ N.

Proof. Let us denote gε = |Sε|β′ + |πε,1|β′ . The apriori estimate (13)1, the
growth condition on S and (19)1 imply the boundedness of {gε} in L1(Ω). The
application of Chacon’s biting lemma 2.1 on {gε} yields the existence of sets
Ωn ⊂ Ω with |Ω \ Ωn| → 0 as n → +∞ and the existence of a subsequence
{gεk} and a function g ∈ L1(Ω) such that gεk ⇀ g in L1(Ωn) as k → +∞. The
equiintegrability of {gεk} on Ωn follows according to Dunford theorem 2.1.

¿From now on we deal only with sequences {Sk}, {uk}, {πk}, {πk,1}, {πk,2},
{πk,3} extracted in the previous Lemma.
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Lemma 4.3. Let s be determined by (11). There exists a subsequence of

{(uk, πk)} (that will not be relabeled), functions u ∈ W 1,β
0,div(Ω; Rd), π ∈ Ls(Ω),

S ∈ Lβ′(Ω; Rd×d
sym) and π1 ∈ Lβ′(Ω) such that as k → +∞

uk ⇀ u in W 1,β
0 (Ω; Rd),

uk → u in Lβ∗(Ω; Rd),

πk ⇀ π in Ls(Ω),

πk,1 ⇀ π1 in Lβ
′
(Ω),

Sk ⇀ S in Lβ
′
(Ω; Rd×d

sym).

(22)

The limit functions u, π,S satisfy for any w ∈ C∞0 (Ω)∫
Ω

(S− u⊗ u− πI) : Dw =

∫
Ω

F : Dw.

Proof. The statement follows in a standard way from (13), Sobolev embedding
theorem, (19)1, (3) and (12).

The rest of the paper is devoted to finding the relation between S and Du.

Lemma 4.4. There exist subsequences of {uk}, {Sk}, {πk,1} (that will not be
relabeled) and functions u0 ∈ Lβ

(
Ω;W 1,β

per (Y )d
)
, S0 ∈ Lβ′(Ω × Y ; Rd×d

sym) and

π1 ∈ Lβ′(Ω× Y ) such that as k → +∞

Duk
2−s−−⇀ Du + Dyu

0 in Lβ(Ω× Y ; Rd×d
sym), (23)

Sk
2−s−−⇀ S0 in Lβ

′
(Ω× Y ; Rd×d

sym), (24)

πk,1
2−s−−⇀ π1 in Lβ

′
(Ω× Y ). (25)

Moreover, the limit functions satisfy

for almost all x ∈ Ω : Dyu
0(x, ·) ∈ G(Y ), (26)

for almost all x ∈ Ω : S0(x, ·) ∈ G⊥(Y ), (27)

for almost all x ∈ Ω : π1(x, ·)I ∈ G⊥(Y ), (28)

u ∈W f
0,div(Ω), (29)∫

Y

S0 = S, S ∈ Lf
∗
(Ω), (30)

∫
Y

π1 = π1, π1I ∈ Lf
∗
(Ω), (31)
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where the functions S and π1 come from Lemma 4.3.

Proof. Lemma 4.3 and Lemma 2.5 (iv) imply (23). Statements (24) and (25)
follow from (13)1, (19)1, the assumption on growth of S and Lemma 2.5 (iii).
Let us show (26). The convergence (23) means that for anyψ ∈ D

(
Ω;C∞per(Y )d×d

)
lim

k→+∞

∫
Ω

Duk(x)ψ

(
x,

x

εk

)
dx =

∫
Ω

∫
Y

(
Du(x) + Dyu

0(x, y)
)
ψ(x, y) dx dy.

(32)
We pick a ∈ D(Ω), b ∈ C∞per(Y ) and put ψ(x, y) = a(x)b(y)I in (32). Obviously,

we get using the weak convergence of {uk} in W 1,β
0 (Ω; Rd)

0 = lim
k→+∞

∫
Ω

div uk(x)a(x)b

(
x

εk

)
dx = lim

k→+∞

∫
Ω

Duk(x)a(x)b

(
x

εk

)
: I dx

=

∫
Ω

∫
Y

(
Du(x) + Dyu

0(x, y)
)
a(x)b(y) : I dy dx

=

∫
Ω

div u(x)a(x)

∫
Y

b(y) dy dx+

∫
Ω

∫
Y

divy u0(x, y)b(y) dy a(x) dx

=

∫
Ω

∫
Y

divy u0(x, y)b(y) dy a(x) dx.

Hence for a.a. x ∈ Ω divy u(x, ·)0 = 0 a.e. in Y , i.e. we conclude (26).
We show that for any σ ∈ C∞0 (Ω) and h ∈ C∞per,div(Y ; Rd)∫

Ω

∫
Y

S0(x, y)Dh(y) dyσ(x) dx = 0. (33)

Since εkσ(x)h
(
x
εk

)
is not solenoidal, the correction Bk(x) = B

(
εkh

(
x
εk

)
∇σ(x)

)
that satisfies

div Bk(x) = εkh(
x

εk
)∇σ(x) in x ∈ Ω, Bk = 0 on ∂Ω,

‖∇Bk‖Lγ(Ω) ≤ c(γ, ‖h‖L∞(Y ), ‖∇σ‖L∞(Ω))εk

with an arbitrary γ ∈ (1,∞), is introduced to allow using εkσ(x)h
(
x
εk

)
− Bk

as a test function in (12). Then we employ convergences as k → +∞

Bk → 0 in Lγ(Ω; Rd),

DBk → 0 in Lγ(Ω; Rd×d
sym),

σuk ⊗ uk → σu⊗ u in L1(Ω; Rd×d
sym),

Sk
2−s−−⇀ S0 in Lβ

′
(Ω; Rd×d

sym),
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to obtain from (12) by (9) and Lemma 2.51 that∫
Ω

∫
Y

(S0(x, y)− u(x)⊗ u(x)− F(x))Dyh(y) dyσ(x) dx = 0.

Hence (33) and thus (27) follow due to an obvious fact
∫
Y

Dyh(y) = 0.
We use (23) and Lemma 2.5 (v) to infer∫

Ω

∫
Y

|Du(x) + Dyu
0(x, y)|β dy dx ≤ lim inf

ε→0

∫
Ω

|Duε(x)|β dx.

Hence we obtain due to the definition of f , (26) and the apriori estimate (13)1∫
Ω

f(Du(x)) dx ≤
∫

Ω

∫
Y

|Du(x) + Dyu
0(x, y)|β dy dx <∞. (34)

Similarly, (13)1, the assumption on growth of S, Lemma 2.5 (v) and (ii) together
with the definition of f∗ imply (30).
Finally, we infer that for any W = Dw ∈ G(Y ) and almost all x ∈ Ω∫

Y

π1(x, y)I : W(y) dy =

∫
Y

π1(x, y) divy w(y) dy = 0.

Hence π1(x, ·)I ∈ G⊥(Y ), Lemma 2.5 (v) and (ii) together with the definition
of f∗ imply (31).

Lemma 4.5. There is c > 0 and a subsequence of {uk}+∞k=1 (that will not be
relabelled) such that

∀k, λ ∈ N : ‖Duk,λ‖Lβ(Ω) ≤ c, (35)

∀λ ∈ N : Duk,λ −⇀∗ Duλ as k → +∞ in L∞(Ω; Rd), (36)

where we denoted by uk,λ functions constructed to uk by Theorem 2.4. Moreover,
a subsequence {uλk}+∞k=1 can be selected such that

Duλk ⇀ Du as k → +∞ in Lβ(Ω; Rd×d
sym), . (37)

Proof. The application of Theorem 2.4 to the sequence {uk} yields for any
λ ∈ N the existence of a sequence {uk,λ} ⊂W 1,∞

0 (Ω; Rd) satisfying

‖uk,λ‖W 1,∞(Ω) ≤ λ, |{x ∈ Ω : uk(x) 6= uk,λ(x)}| ≤ c
‖uk‖β

W 1,β(Ω)

λβ
. (38)

Utilizing (38), Friedrichs and Korn’s inequalities, we obtain∫
Ω

|Duk,λ|β =

∫
{uε=uk,λ}

|Duk,λ|β +

∫
{uε 6=uk,λ}

|Duk,λ|β

≤
∫

Ω

|Duk|β + λβ |{x ∈ Ω : uk(x) 6= uk,λ(x)}| ≤ c‖Duk‖β
Lβ(Ω)

,
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which implies (35) due to (13).
The convergence (36) follows from (38)1 by diagonal procedure. Moreover,

the estimate (35), (36) and the weak lower semicontinuity of the Lβ−norm imply
the existence of a positive constant c such that

∀λ ∈ N : ‖Duλ‖Lβ(Ω) ≤ c.

Hence we can pick a function ũ ∈W 1,β
0 (Ω; Rd) and a subsequence {λk}+∞k=1 such

that
uλk ⇀ ũ as k → +∞ in W 1,β(Ω; Rd).

It remains to show ũ = u. Using the boundedness of the sequences {uk}, {uk,λ}
in W 1,β(Ω; Rd) and the estimate (38)2, we obtain∫

Ω

|uk,λ−uk| =
∫
{uk,λ 6=uε}

|uk,λ−uk| ≤ ‖uk,λ−uk‖Lβ(Ω)|{uk,λ 6= uk}|
1
β′ ≤ c

λβ−1
.

Moreover, the compact embedding W 1,β(Ω; Rd)↪→L1(Ω; Rd) implies

‖uλ − u‖L1(Ω) = lim
k→+∞

‖uk,λ − uk‖L1(Ω).

Therefore uλ → u in L1(Ω) and we conclude ũ = u a.e. in Ω.

Remark 4.1. The improvement of Lemma 4.5 for the case when δ = 0 in (3)
requires a variant of Theorem 2.4. The proof of Theorem 2.4 is based on the
boundedness of the maximal operator in Lβ(Rd). The above expressed case of

the stress tensor leads to spaces Lp(
x
ε ). For the boundedness of the maximal

operator on Lebesgue space with variable exponent p it is necessary to assume
that p is log-Hölder continuous, i.e. there are cplog > 0 and p∞ ∈ R such that

for any x, y ∈ Rd

|p(x)− p(y)| ≤ c

log
(
e+ 1

|x−y|

) , |p(x)− p∞| ≤
c

log(e+ |x|)
,

see [5, Chapter 4 of Part I]. As estimates of the norm of the maximal operator in
the proof of Theorem 2.4 are independent of ε, the same is needed also in the case

of Lebesgue spaces Lp(
x
ε ). But it is unclear whether this uniform boundedness

of the maximal operator holds or not. In particular, it does not follow from the
log-Hölder continuity of p.

In the rest of the paper we denote for any k, l ∈ N the function uk,l := uk,λl ,
where {λl} is sequence constructed in Lemma 4.5.

Lemma 4.6. Let {Ωn}, {Sk} be from Lemma 4.2, O b Ω be arbitrary open and
denote Ω̃n = Ωn ∩O. Then for each n ∈ N

lim
k→+∞

∫
Ω̃n

Sk : Duk =

∫
Ω̃n

S : Du. (39)
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Proof. We observe that whenever there exist n0 ∈ N and a sequence of measur-
able sets {Ej} such that

⋃
Ej ⊂ Ωn0 and |Ej | → 0 as j → 0 then

‖Sk‖Lβ′ (Ej) + ‖πk,1‖Lβ′ (Ej) → 0 as j → +∞ (40)

uniformly with respect to k ∈ N, which is a direct consequence of Lemma 4.2.
For fixed n ∈ N and any k, l ∈ N we decompose using the solenoidality of

uk ∫
Ω̃n

Sk : Duk =

∫
Ω̃n

(Sk − πk,1I) : Duk =

∫
Ω̃n

(Sk − πk,1I) : D
(
uk − uk,l

)
+

∫
Ω̃n

(Sk − πk,1I) : Duk,l = Ik,l + IIk,l.

We want to perform the limit passage k → +∞ and then l→ +∞ in both terms
on the right hand side of the latter equality. We denote Ω̃k,ln = Ω̃n∩{uk 6= uk,l}
and estimate using Hölder’s inequality, (20), (13)1 and (35)

|Ik,l| ≤ 2‖Sk − πk,1I‖Lβ′ (Ω̃k,ln )‖D(uk − uk,l)‖Lβ(Ω̃k,ln )

≤ c
(
‖Sk‖Lβ′ (Ω̃k,ln ) + ‖πk,1‖Lβ′ (Ω̃k,ln )

)
.

As |Ω̃k,ln | ≤ cλ
−β
l by (38)2, we get by (40) that for any θ > 0 there exists l0 ∈ N

such that for any l > l0 and k ∈ N we have |Ik,l| < θ and therefore

lim
l→+∞

lim
k→+∞

Ik,l = lim
k→+∞

lim
l→+∞

Ik,l = 0.

For the limit passage k → +∞ in IIk,l we employ Lemma 2.2. Let us pick

q ∈ (1, s), where s is determined by (11). We have for any w ∈W 1,q′

0 (O; Rd)〈
div(Sk − πk,1I),w

〉
= −

∫
O

(
F + uk ⊗ uk + (πk,2 + πk,3)I

)
: Dw.

It follows from Lemma 4.1 that {F + uk ⊗ uk + (πk,2 + πk,3)I} is precompact
in Lq(O; Rd×d

sym). Therefore we obtain that {div(Sk + πk,1I)} is precompact in

W−1,q(O; Rd). We observe that curl(∇uk,l) = 0. Then Lemma 2.2 and the
convergences (22)4,5 and (36) imply

(Sk−πk,1I) : Duk,l = (Sk−πk,1I) : ∇uk,l ⇀ (S−π1I) : ∇ul = (S−π1I) : Dul

in Lr(O) for any r > 1 as k → +∞. Hence we deduce using (37) and the
solenoidality of u

lim
l→+∞

lim
k→+∞

IIk,l = lim
l→+∞

lim
k→+∞

∫
O

(Sk − πk,1I) : Duk,lχΩ̃n

= lim
l→+∞

∫
O

(S− π1I) : DulχΩ̃n
=

∫
Ω̃n

S : Du.

(41)
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Proof of Theorem 1.1. It remains to show the relation

S(x) =

∫
Y

S(x,Du(x) + Dyu
0(x, y)) dy for almost all x ∈ Ω. (42)

We fix n ∈ N, a corresponding Ωn from Lemma 4.2 and O b Ω. Keeping the
notation of Lemma 4.6, using (30), (26) and (27), it follows from (39) that

lim
k→+∞

∫
Ω̃n

Sk : Duk =

∫
Ω̃n

∫
Y

S0 : (Du + Dyu
0). (43)

We choose U ∈ Lβ(Ω̃n;Cper(Y ; Rd×d
sym)). The monotonicity of S implies

0 ≤
∫

Ω̃n

(
Sk(x)− S

(
xε−1
k ,U

(
x, xε−1

k

)))
:
(
Duk(x)−U

(
x, xε−1

k

))
dx

=

∫
Ω̃n

Sk(x) : Duk(x) dx−
∫

Ω̃n

S
(
xε−1
k ,U

(
x, xε−1

k

))
: Duk(x) dx

−
∫

Ω̃n

Sk(x) : U
(
x, xε−1

k

)
dx+

∫
Ω̃n

S
(
xε−1
k ,U

(
x, xε−1

k

))
: U

(
x, xε−1

k

)
dx

= Ik − IIk − IIIk + IV k.

We want to pass to the limit as k → +∞ in Ik, IIk, IIIk, IV k. We use (43) for
the passage in Ik. Applying Lemma 2.5 (i) to S(y,U(x, y)) and U yields

S
(
xε−1
k ,U

(
x, xε−1

k

)) 2−s−−→ S(y,U(x, y)) in Lβ
′
(Ω× Y ; Rd×d

sym),

U
(
x, xε−1

k

) 2−s−−→ U(x, y) in Lβ(Ω× Y ; Rd×d
sym)

as k → +∞. Employing these convergences and (23) we infer

lim
k→+∞

IIk =

∫
Ω̃n

∫
Y

S(y,U(x, y)) : (Du(x) + Dyu
0(x, y) dy dx,

lim
k→+∞

IIIk =

∫
Ω̃n

∫
Y

S0(x, y) : U(x, y) dy dx,

lim
k→+∞

IV k =

∫
Ω̃n

∫
Y

S(y,U(x, y)) : U(x, y) dy dx.

Thus one obtains for any n ∈ N and U ∈ Lβ(Ω̃n;Cper(Y ; Rd×d
sym))∫

Ω̃n

∫
Y

(
S0(x, y)− S(y,U(x, y))

)
:
(
Du(x) + Dyu

0(x, y)−U(x, y)
)
≥ 0.

(44)
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To be able to apply Minty’s trick, we need (44) to be satisfied for any U ∈
Lβ(Ω̃n×Y ; Rd×d

sym). In order to obtain that we consider U ∈ Lβ(Ω̃n×Y ; Rd×d
sym)

and {Uk} ⊂ Lβ(Ω̃n;Cper(Y ; Rd×d
sym)) such that Uk → U in Lβ(Ω̃n × Y ; Rd×d

sym).
Then we have due to the growth of S and theory of Nemytskii operators that
S(y,Uk) → S(y,U) in Lβ

′
(Ω̃n × Y ; Rd×d

sym). Therefore one deduces the accom-

plishment of (44) for any U ∈ Lβ(Ω̃n × Y ; Rd×d
sym). Minty’s trick yields that

S0(x, y) = S(y,Du(x) + Dyu
0(x, y)) for almost all (x, y) ∈ Ω̃n × Y . Since

|Ω \ Ωn| → 0 and O b Ω was arbitrary, we have for almost all (x, y) ∈ Ω × Y
S0(x, y) = S(y,Du(x) + Dyu

0(x, y)). Moreover, due to the properties (26) and
(27) we obtain that Dyu

0 is a solution of the cell problem (15) with ξ = Du(x).
Consequently, (30) and the definition of the homogenized tensor imply for x ∈ Ω

S(x) =

∫
Y

S(y,Du(x) + Dyu
0(x, y)) dy = Ŝ(Du(x)).
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tial operators and integral functionals, Springer-Verlag, Berlin, 1994, Trans-
lated from the Russian by G. A. Yosifian [G. A. Iosif′yan]. MR 1329546
(96h:35003b)

[13] G. Nguetseng, A general convergence result for a functional related to the
theory of homogenization, SIAM J. Math. Anal. 20 (1989), no. 3, 608–623.
MR 990867 (90j:35030)
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