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1 System of equations in the steady regime

• Balance of mass
div (ρu) = 0 (1)

ρ(x): Ω 7→ R . . . density of the fluid
u(x): Ω 7→ R3 . . . velocity field

• Balance of momentum

div (ρu⊗ u)− div S +∇p = ρf (2)

S . . . viscous part of the stress tensor (symmetric tensor)
f(x): Ω 7→ R3 . . . specific volume force
p. . . pressure (scalar quantity)



• Balance of total energy

div
(
ρEu

)
+ div (q + pu) = ρf · u + div

(
Su
)

(3)

E = 1
2|u|

2 + e. . . specific total energy
e . . . specific internal energy (scalar quantity)
q . . . heat flux (vector field)
(no energy sources assumed)



2 Thermodynamics

We will work with basic quantities: density ρ and temperature ϑ

We assume: e = e(ρ, ϑ), p = p(ρ, ϑ)

• Gibbs’ relation

1

ϑ

(
De(ρ, ϑ) + p(ρ, ϑ)D

(1

ρ

))
= Ds(ρ, ϑ) (4)

with s(ρ, ϑ) the specific entropy.



The entropy fulfills

• Entropy balance

div (ρsu) + div
(q
ϑ

)
= σ =

S : ∇u
ϑ

− q · ∇ϑ
ϑ2

(5)

• Second law of thermodynamics

σ =
S : ∇u
ϑ

− q · ∇ϑ
ϑ2

≥ 0 (6)



3 Constitutive relations

• Newtonian fluid

S = S(ϑ,∇u) = µ(ϑ)
[
∇u + (∇u)T − 2

3divuI
]

+ ξ(ϑ)divuI
(7)

µ, ξ: viscosity coefficients

• Fourier’s law
q = q(ϑ,∇ϑ) = −κ(ϑ)∇ϑ (8)

κ(·): R+ 7→ R+. . . heat conductivity



• Pressure law

p = p(ρ, ϑ) = ργ + ρϑ

or = (γ − 1)ρe(ρ, ϑ)
(9)

(in what follows, to avoid technicalities, we consider the former)

• Internal energy

e(ρ, ϑ) = cvϑ+
ργ−1

γ − 1
(10)



• Heat conductivity
κ(ϑ) ∼ (1 + ϑm) (11)

0 < m ∈ R

• Viscosity coefficients

C1(1 + ϑ)α ≤ µ(ϑ) ≤ C2(1 + ϑ)α

0 ≤ ξ(ϑ) ≤ C2(1 + ϑ)α
(12)

0 ≤ α ≤ 1



4 Classical formulation of the problem

We consider steady solutions in a bounded domain Ω ⊂ R3:

Steady compressible Navier–Stokes–Fourier system

div (ρu) = 0

div (ρu⊗ u)− div S(ϑ,∇u) +∇p(ρ, ϑ) = ρf

div
(
ρ
(1
2
|u|2 + e(ρ, ϑ)

)
u
)
− div (κ(ϑ)∇ϑ)

= div
(
− p(ρ, ϑ)u + S(ϑ,∇u)u

)
+ ρf · u

(13)



Boundary conditions at ∂Ω: velocity

u = 0

or
u · n = 0

(I− n⊗ n)(S(ϑ,∇u)n + λu) = 0

(14)

Boundary conditions at ∂Ω: temperature

κ(ϑ)
∂ϑ

∂n
+ L(ϑ)(ϑ−Θ0) = 0 (15)



Total mass ∫
Ω

ρ dx = M > 0 (16)

Instead of total energy balance we can consider the entropy balance

Entropy balance

div (ρs(ρ, ϑ)u)− div
(
κ(ϑ)
∇ϑ
ϑ

)
= σ

=
S(ϑ,∇u) : ∇u

ϑ
+
κ(ϑ)|∇ϑ|2

ϑ2

(17)



5 Weak solution to our problem

• Weak formulation of the continuity equation∫
Ω

%u · ∇ψ dx = 0 ∀ψ ∈ C1(Ω) (18)

• Renormalized continuity equation

(%,u) extended by zero outside Ω

∫
Ω

b(%)u·∇ψ dx+

∫
Ω

(
ub′(ρ)−b(ρ)

)
divudx = 0∀ψ ∈ C1

0(R3)

(19)
for all b ∈ C1([0,∞))∩W 1,∞(0,∞) with zb′(z) ∈ L∞(0,∞)



• Weak formulation of the momentum equation

∫
Ω

(
− ρ(u⊗ u) : ∇ϕϕϕ− p(ρ, ϑ)divϕϕϕ+ S(ϑ,∇u) : ∇ϕϕϕ

)
dx

=

∫
Ω

ρf ·ϕϕϕdx ∀ϕϕϕ ∈ C1
0(Ω;R3)

(20)

∫
Ω

(
− ρ(u⊗ u) : ∇ϕϕϕ− p(ρ, ϑ)divϕϕϕ+ S(ϑ,∇u) : ∇ϕϕϕ

)
dx

+λ

∫
∂Ω

u ·ϕϕϕdσ =

∫
Ω

ρf ·ϕϕϕdx

∀ϕϕϕ ∈ C1
n(Ω;R3)

(21)



• Weak formulation of the total energy balance

∫
Ω

−
(1

2
ρ|u|2 + ρe(ρ, ϑ)

)
u · ∇ψ dx

=

∫
Ω

(
ρf · uψ + p(ρ, ϑ)u · ∇ψ

)
dx

−
∫

Ω

((
S(ϑ,u)u

)
· ∇ψ + κ(ϑ)∇ϑ · ∇ψ

)
dx

−
∫
∂Ω

(
L(ϑ−Θ0)ψ + λ|u|2ψ

)
dσ

∀ψ ∈ C1(Ω)

(22)

Definition 1. The triple (ρ,u, ϑ), ρ ≥ 0, ϑ > 0 is called a
renormalized weak solution to our system (13)–(16) if

∫
Ω
ρ dx =

M , (18), (19), (20) (or (21)) and (22) hold true.



6 Entropy variational solution to our problem

• Weak formulation of the entropy inequality

∫
Ω

(S(ϑ,∇u) : ∇u
ϑ

+ κ(ϑ)
|∇ϑ|2

ϑ2

)
ψ dx+

∫
∂Ω

L

ϑ
Θ0ψ dσ

≤
∫
∂Ω

Lψ dσ +

∫
Ω

(
κ(ϑ)
∇ϑ : ∇ψ

ϑ
− ρs(ρ, ϑ)u · ∇ψ

)
dx

∀ nonnegative ψ ∈ C1(Ω)
(23)



• Global total energy balance∫
∂Ω

(
L(ϑ−Θ0) + λ|u|2

)
dσ =

∫
Ω

ρf · udx (24)

Definition 2. The triple (ρ,u, ϑ), ρ ≥ 0, ϑ > 0 is called a
renormalized variational entropy solution to our system (13)–(16),
if
∫

Ω
ρ dx = M (18), (19) and (20) or (21) are satisfied in the

same sense as in Definition 1, and we have the entropy inequality
(23) together with the global total energy balance (24).

Both type of solutions are reasonable in the sense that any smooth
weak or entropy variational solution is actually a classical solution to
(13)–(16).



7 Mathematical results

Until 2009, in the literature there was no existence results except
for small data results or one result by P.L. Lions, where, however, the
fixed mass was replaced by the finite Lp norm of the density for p
sufficiently large.



Mucha, M.P.: Commun. Math. Phys. (2009)

Assumptions: constant viscosity, slip boundary conditions for the
velocity, in the boundary conditions for the temperature L(ϑ) ∼
(1 + ϑ)l:

Aim: to find solutions with maximal possible regularity, i.e.
bounded density and gradient of temperature and velocity in any
Lq(Ω), q <∞

Approximate scheme: special approximation which gives bounded
density solutions with uniform control (goes back to our papers in
Nonlinearity (2006) and DCDS: Series S (2007) for the compressible
Navier–Stokes equations).



A priori estimates:

a) Global total energy balance∫
∂Ω

L(ϑ)(ϑ−Θ0) dσ ≤ C
(

1 +

∫
Ω

|%u · f |dx
)
. (25)

b) Entropy inequality

∫
Ω

S(∇u) : ∇u
ϑ

dx+

∫
Ω

1 + ϑm

ϑ2
|∇ϑ|2 dx

+

∫
∂Ω

L(ϑ)Θ0

ϑ
dσ ≤ C

∫
∂Ω

L(ϑ) dσ.
(26)



c) Take m = l + 1. Then

‖ϑ‖3m ≤ C
(

1 +

∫
Ω

|ρf · u|dx
)1/m

. (27)

d) Multiply the momentum equation by the solution to

divH = %γ − 1

|Ω|

∫
Ω

%γ dx

with H = 0 at ∂Ω such that

‖H‖1,q ≤ C‖%γ‖q, 1 < q <∞.



This gives control of density by velocity and temperature∫
Ω

%2γ dx ≤ RHS.

e) Finally, test the momentum equation by the velocity. This gives
the control of velocity by temperature and density∫

Ω

S(∇u) : ∇udx ≤ RHS.

This procedure can be closed, i.e. we get the estimates, if γ > 3,
m = l + 1 > 3γ−1

3γ−7.



Higher regularity: We cut off the continuity equation in the
approximate scheme for large %:

div (K(%)%u) = l.o.t.

Thus the density is bounded uniformly throughout the approximation
procedure. The slip boundary condition and constant viscosity
allow to write a nice elliptic problem for the vorticity, which leads
finally to higher regularity for the velocity, consequently also for the
temperature.

Limit passage: We use a version of the effective viscous flux
identity, but due to high regularity of the density we have no problems
with renormalized continuity equation and we even do not use it. The
solution even fulfills the internal energy balance.



Mucha, M.P.: M3AS (2010)

Assumptions: constant viscosity, slip or homogeneous Dirichlet
boundary conditions for the velocity, in the boundary conditions for
the temperature L(ϑ) ∼ (1 + ϑ)l:

Aim: to extend the results from the previous paper to situations
with lower γ

Approximate scheme: Since we do not expect anymore solutions
with bounded density (reasons: either γ < 3 or Dirichlet boundary
condition), we use standard elliptic regularization of the continuity
equations.



A priori estimates: The only difference is the fact that we allow
weaker estimates for the density. In d) we test by

divH = %s(γ) − 1

|Ω|

∫
Ω

%s(γ) dx.

We can close the estimates for γ > 7
3, the bound for m and l is the

same.

Limit passage: We use the effective viscous flux identity as well as
the renormalized continuity equation. Due to high γ our limit fulfills
the renormalized continuity equation directly. The solution fulfills
only the total energy balance.



Novotný, M.P.: J. Differential Equations (2011)

Assumptions: viscosity dependent on temperature:

µ(ϑ), ξ(ϑ) ∼ (1 + ϑ)

(α = 1), L ∼ const (l = 0) homogeneous Dirichlet condition for
the velocity. (But slip b.c. can be treated via the same method.)

Aim: to extend the interval for γ to include also some physically
interesting cases as e.g. γ = 5

3 or γ = 4
3. Another goal was to

present in details construction of approximation if the viscosity is
temperature dependent.

Approximate scheme: elliptic regularization of the continuity
equation, more steps than in the previous case with constant viscosity.



A priori estimates:

a) Global total energy balance∫
∂Ω

L(ϑ−Θ0) dσ ≤ C
(

1 +

∫
Ω

|%u · f |dx
)
. (28)

b) Entropy inequality

∫
Ω

S(ϑ,∇u) : ∇u
ϑ

dx+

∫
Ω

1 + ϑm

ϑ2
|∇ϑ|2 dx

+

∫
∂Ω

LΘ0

ϑ
dσ ≤ C

∫
∂Ω

Ldσ.
(29)



c) Main difference: due to Korn’s inequality we immediately have

‖u‖1,2 ≤ C

while for the temperature we get again

‖ϑ‖3m ≤ C
(

1 +

∫
Ω

|ρf · u|dx
)
. (30)

d) Multiply the momentum equation by the solution to

divH = %s(γ) − 1

|Ω|

∫
Ω

%s(γ) dx



with H = 0 at ∂Ω such that

‖H‖1,q ≤ C‖ρs(γ)‖q, 1 < q <∞.

These estimates imply the restriction: γ > 3
2! Under additional

assumptions on m we get a solution for any γ > 3
2.

Limit passage: We use a version of the effective viscous flux
identity, and the renormalized continuity equation to get the strong
convergence of the velocity. But for small γ we do not have for
free the renormalized continuity equation for the limit functions. We
use the technique of E. Feireisl developed for the evolutionary case:
the control of oscillation defect measure implies the renormalized
continuity equation. For γ > 5

3 and sufficiently large m we get the
total energy balance, in the other case only entropy inequality and
global total energy balance — the variational entropy solution.



Novotný, M.P.: SIAM J. Math. Anal. (2011)

Assumptions: the same as in the previous case.

Aim: to extend the interval for γ.

Approximate scheme: the same as before

A priori estimates: The main difference is that, following the
idea of Frehse, Steinhauer, Weigant (used for the Navier–Stokes
equations), we are able to get additional estimates for the density of
the form

sup
y∈Ω

∫
Ω

p(%, ϑ)

|x− y|t
dx < +∞



with t = t(m). This gives the a priori estimates for any γ > 1,
with some additional bounds on m.

Limit passage: More or less the same as above. But due to not
the best possible choice of carrying out this limit passage in the
convective term we got additional restriction γ > 3+

√
41

8 .

We improved the interval for weak solution: for γ > 4
3 and

sufficiently large m we get the total energy balance, in the other
cases only the entropy inequality and global total energy balance —
the variational entropy solution.



Kreml, Nečasová, M.P.: to appear in ZAMP

Assumptions: it involves also a model for radiation, more complex
than just adding ϑ4 to the pressure. We consider also viscosity of
the type µ(ϑ), ξ(ϑ) ∼ (1 + ϑ)α, 0 < α ≤ 1. More details about
the technique see the talk of O. Kreml.

Aim: to include also the physically relevant case α = 1
2.

Approximate scheme: the same as before.

A priori estimates: We use only estimates based on Bogovskii
operator estimates; hence we must restrict ourselves to γ > 3

2.
Another result with O. Kreml: we combine the local pressure
estimates with α < 1. This allows to treat the case γ < 3

2.

Limit passage: More or less the same as above.



Jesslé, Novotný, M.P.: submitted

Assumptions: The case of temperature dependent viscosity with
α = 1, with slip boundary condition.

Aim: to extend the interval for γ.

Approximate scheme: the same as before

A priori estimates: Based on the ideas from Jiang, Zhou and Jesslé,
Novotný for Navier–Stokes system, we are able to get additional
estimates for the density of the form

sup
y∈Ω

∫
Ω

p(%, ϑ) + %|u|2

|x− y|t
dx < +∞



with t = t(m), bigger than in the previous paper. This gives the a
priori estimates for any γ > 1, with some additional bounds on m.

More precisely, for 1 ≤ a ≤ γ, 0 < b < 1 we consider the
quantity

A =

∫
Ω

(ρa|u|2 + ρb|u|2b+2) dx (31)



We have

‖u‖1,2 ≤ C
‖ϑ‖3m ≤ C

(
1 +A

a−b
2(ab+a−2b)

)∫
Ω

(
ρsγ + ρ(s−1)γp(ρ, ϑ) + (ρ|u|2)s + δρβ+(s−1)γ

)
dx

≤ C(1 +A
sa−b
ab+a−b),

(32)

provided 1 < s < 1
2−a, 0 < (s − 1) a

a−1 < b < 1, s ≤ 6m
3m+2,

m > 2
3. The last estimates follows from Bogovskii type estimates.



Next we want to use of the test functions of the type

ϕi(x) =
(x− y)i
|x− y|t

.

We have to work separately near the boundary and in the interior.
Lemma 1. Let y ∈ Ω, R0 <

1
3dist (y, ∂Ω). Then∫

BR0
(y)

( p(ρ, ϑ)

|x− y|t
+

ρ|u|2

|x− y|t
)

dx

≤ C
(
1 + ‖p(ρ, ϑ)‖1 + ‖u‖1,2(1 + ‖ϑ‖3m) + ‖ρ|u|2‖1

)
,
(33)

provided t < min
{

3m−2
2m , 1

}
.



Proof. We use as test function in the approximative momentum
balance

ϕi(x) =
(x− y)i
|x− y|t

τ2

with τ ≡ 1 in BR0(y), R0 as above, τ ≡ 0 outside B2R0(y),
|∇τ | ≤ C

R0
. Note that

divϕϕϕ =
3− t
|x− y|t

τ2 + g1(x),

∂iϕj =
( δij
|x− y|t

− t(x− y)i(x− y)j
|x− y|t+2

)
τ2 + g2(x)

with g1, g2 in L∞(Ω). Thus we get the estimates from the pressure
term and the convective term. We control the elliptic term provided
1
q = 1− 1

2 −
1

3m > t
3, implying t < 3m−2

2m for m > 2
3.



Near the boundary, we use to use a similar test function. The
idea of Frehse, Steinhauer and Weigant, which can be used for both
slip and no slip boundary conditions, leads to artificial restrictions on
m and γ. The recent improvement by Jiang, Zhou allows to treat
the Dirichlet b.c. with less restriction, but the method presented
below for the slip b.c. is better. Assume for a moment that we deal
with a flat part of the boundary which is described by x3 = 0, i.e.
a(x′) = 0, x′ ∈ O ⊂ R2 with the normal vector n = (0, 0,−1)

and t1 = (1, 0, 0), t2 = (0, 1, 0) the tangent vectors. Consider
the points in the neighborhood of the origin. Then the test function
which replaces the test function above can be taken in the form



w(x) = v(x− y), where

v(z) =


1

|z|t
(z1, z2, z3) = (z · t1)t1 + (z · t2)t2

+((0, 0, z3 − a(z′)) · n)n, z3 ≥ 0,

1

|z|t
(z1, z2, 0) = (z · t1)t1 + (z · t2)t2, z3 < 0.

Note that if y ∈ Ω (i.e. y3 ≥ 0), then (w · n)(x) = w3(x) = 0

for x3 = 0. For a general C2 domain we use partition of unity and
local flattening of the boundary. Therefore we get the same result as
in Lemma 1 also in the neighborhood of the boundary, i.e. for any
point in Ω.



We distinguish two cases. For m ≥ 2 we have 3m−2
2m ≥ 1, hence

t < 1 is the only restriction. If m ∈ (2
3, 2), we have t < 3m−2

2m .

For m > 2, passing t→ 1−

Lemma 2. Let b ∈ ((s − 1) γ
γ−1, 1), 1 < s < 2

2−γ , m ≥ 2,
s ≤ 6m

3m+2. Then there exists C independent of δ such that for
any y ∈ Ω ∫

Ω

p(ρ, ϑ) + (ρ|u|2)b

|x− y|
dx

≤ C
(
1 + ‖p(ρ, ϑ)‖1

+(1 + ‖ϑ‖3m)‖u‖1,2 + ‖ρ|u|2‖1
)
.

(34)



If m < 2, we take 1 ≤ a < γ and relatively easily by Hölder’s
inequality
Lemma 3. Let b ∈ ((s − 1) γ

γ−1, 1), 1 < s < 2
2−γ , t >

max{3a−2γ
a , 3b−2

b }, m ∈ (2
3, 2). Then there exists C independent

of δ such that for any y ∈ Ω

∫
Ω

ρa + (ρ|u|2)b

|x− y|
dx

≤ C
(
1 + ‖p(ρ, ϑ)‖1 + (1 + ‖ϑ‖3m)‖u‖1,2

+‖ρ|u|2‖1
)max{aγ ,b}.

(35)



Let us consider

−∆h = ρa + ρb|u|2b − 1

|Ω|

∫
Ω

(
ρa + ρb|u|2b

)
dx,

∂h

∂n
|∂Ω = 0.

(36)

The unique strong solution can be written

h(y) =

∫
Ω

G(x, y)(ρaδ + ρbδ|uδ|2b) dx+ l.o.t.; (37)

as G(x, y) ≤ C|x− y|−1, we get



• m ≥ 2

‖h‖∞ ≤ C(1 +A
γ−b/s
bγ+γ−2b), (38)

• 2
3 < m < 2

‖h‖∞ ≤ C(1 +A
a−b/s
ab+a−2b

a
γ +A

a−b/s
ab+a−2bb), (39)

plus some additional restrictions. Now

A =

∫
Ω

−∆hu2 dx =

∫
Ω

∇h · ∇|u|2 dx ≤ 2‖∇u‖2B
1
2, (40)

B =

∫
Ω

|∇h⊗ u|2 dx. (41)



Employing once more integration by parts

B = −
∫

Ω

h∆h|u|2 dx−
∫

Ω

h∇h · ∇u · u dx

≤ ‖h‖∞(A+ ‖∇u‖2B
1
2),

i.e.
B ≤ ‖h‖∞A+

1

2
‖∇u||22‖h‖2∞. (42)

Therefore
A ≤ C‖∇u‖22‖h‖∞. (43)



Analyzing all conditions we have
Lemma 4. Let γ > 1 and m > 2

4γ−3. Then there exists s > 1

such that
supδ>0 ‖ρ‖γs < +∞
supδ>0 ‖ρu‖s < +∞
supδ>0 ‖ρ|u|2‖s < +∞
supδ>0 ‖u‖1,2 < +∞
supδ>0 ‖ϑ‖3m < +∞
supδ>0 ‖ϑm/2‖1,2 < +∞

(44)

Moreover, we can take s > 6
5 provided γ > 5

4, m >

max{1, 2γ+10
17γ−15}.



Limit passage: More or less the same as above; it is enough to show
the strong convergence of the density sequence; this can be achieved
by standard technique (effective viscous flux identity, oscillation defect
measure estimate implying the renormalized continuity equation for
the limit). Some improvements with respect to the previous paper
are needed to avoid additional restrictions on γ. However, we get
some additional restrictions on m = m(γ). We get the existence of
variational entropy solutions for γ > 1. We also improve the interval
for weak solution: for γ > 5

4 and sufficiently large m we get the
total energy balance, hence existence of weak solutions.



T H A N K Y O U

F O R Y O U R

A T T E N T I O N !


