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Buoyancy driven flow

∂~u

∂t
+ ~u · ∇~u− ν∇2~u+∇p = ~jT in W ≡ Ω× (0, T )

∇ · ~u = 0 in W
∂T

∂t
+ ~u · ∇T − ν∇2T = 0 in W

Boundary and Initial conditions

~u = ~0 on Γ× [0, T ]; ~u(~x, 0) = ~0 in Ω.

T = Tg on ΓD × [0, T ]; ν∇T · ~n = 0 on ΓN × [0, T ];

T (~x, 0) = 0 in Ω.
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Buoyancy driven flow

∂~u

∂t
+ ~u · ∇~u− ν∇2~u+∇p = ~jT in W ≡ Ω× (0, T )

∇ · ~u = 0 in W
∂T

∂t
+ ~u · ∇T − ν∇2T = 0 in W

Boundary and Initial conditions

~u = ~0 on Γ× [0, T ]; ~u(~x, 0) = ~0 in Ω.

T = Tg on ΓD × [0, T ]; ν∇T · ~n = 0 on ΓN × [0, T ];

T (~x, 0) = 0 in Ω.

ν =
√

Pr/Ra , ν = 1/
√
Pr · Ra, Tg = (1− e−10t)T∞ .
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Rayleigh–Bénard | Pr = 7.1, Ra = 15000 .

Stationary streamlines: time = 300.00
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Rayleigh–Bénard | Pr = 7.1, Ra = 15000 .

Stationary streamlines: time = 300.00
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Rayleigh–Bénard | Pr = 7.1, Ra = 1.5× 104 .

Isotherms: time = 100.72

Isotherms: time = 119.28

Isotherms: time = 300.00
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Rayleigh–Bénard | Pr = 7.1, Ra = 1.5× 104 .
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MIT test problem | Pr = 0.71, Ra = 3.4× 105 .

time = 826.53 time = 828.23 time = 829.96
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MIT test problem | Pr = 7.1, Ra = 3.4× 105 .
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 IFISS
HOME DOWNLOAD DOCUMENTATION PUBLICATIONS

Incompressible Flow & Iterative Solver Software

An open-source software package

Summary
IFISS is a graphical package for the interactive numerical study of incompressible flow problems
which can be run under Matlab or Octave. It includes algorithms for discretization by mixed finite
element methods and a posteriori error estimation of the computed solutions. The package can
also be used as a computational laboratory for experimenting with state-of-the-art preconditioned
iterative solvers for the discrete linear equation systems that arise in incompressible flow
modelling. 

Key Features
Key features include 

implementation of a variety of mixed finite element approximation methods;

automatic calculation of stabilization parameters where appropriate;

a posteriori error estimation for steady problems;

a range of state-of-the-art preconditioned Krylov subspace solvers ;

built-in geometric and algebraic multigrid solvers and preconditioners;

fully implicit self-adaptive time stepping algorithms;

useful visualization tools.

The developers of the IFISS package are David Silvester (School of Mathematics, University of
Manchester), Howard Elman (Computer Science Department, University of Maryland), and Alison
Ramage (Department of Mathematics and Statistics, University of Strathclyde).

Links

Download

Documentation

Publications

Overview

Sample output

Contact

The IFISS logo represents the
solution of the double glazing

convection-diffusion problem. It can
be reproduced in IFISS via the
function ifisslogo.

This webpage is based on a CSS template from Free CSS Templates. BIRS workshop | September 2012 – p. 9/37



“Smart Integrator” (SI)

• Optimal time-stepping: time-steps automatically chosen
to “follow the physics”.

• Black-box implementation: few parameters that have to
be estimated a priori.

• Algorithm efficiency: solve linear equations at every
timestep.
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“Smart Integrator” (SI)

• Optimal time-stepping: time-steps automatically chosen
to “follow the physics”.

• Black-box implementation: few parameters that have to
be estimated a priori.

• Algorithm efficiency: solve linear equations at every
timestep.

• Solver efficiency: see later ...
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PART I
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Trapezoidal Rule (TR) time discretization

Subdivide [0, T ] into time levels {ti}Ni=1. Given (~un, pn, Tn) at

time tn, kn+1 := tn+1 − tn, compute (~un+1, pn+1, Tn+1) via

2
kn+1

~un+1 −ν∇2~un+1 + ~un+1 · ∇~un+1 +∇pn+1 − ~jTn+1 =

2
kn+1

~un + ∂~u
∂t

n
in Ω

−∇ · ~un+1 = 0 in Ω

~un+1 = ~0 on Γ

2
kn+1

Tn+1 −ν∇2Tn+1 + ~un+1 · ∇Tn+1 = 2
kn+1

Tn + ∂T
∂t

n
in Ω

Tn+1 = Tn+1
g on ΓD

ν∇Tn+1 · ~n = 0 on ΓN .
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Linearization

Subdivide [0, T ] into time levels {ti}Ni=1. Given (~un, pn, Tn) at

time tn, kn+1 := tn+1 − tn, compute (~un+1, pn+1, Tn+1) via

2
kn+1

~un+1 −ν∇2~un+1 + ~wn+1 · ∇~un+1 +∇pn+1 − ~jTn+1 =

2
kn+1

~un + ∂~u
∂t

n
in Ω

−∇ · ~un+1 = 0 in Ω

~un+1 = ~0 on Γ.

2
kn+1

Tn+1 −ν∇2Tn+1 + ~wn+1 · ∇Tn+1 = 2
kn+1

Tn + ∂T
∂t

n
in Ω

Tn+1 = Tn+1
g on ΓD

ν∇Tn+1 · ~n = 0 on ΓN ,

with ~wn+1 = (1 + kn+1

kn
)~un − kn+1

kn
~un−1.

BIRS workshop | September 2012 – p. 13/37



Adaptive Time Stepping TR–AB2

The adaptive time step selection is based on coupled
physics.

Given L2 error estimates ‖~en+1

h ‖ and ‖en+1

h ‖ for the velocity

and temperature respectively, the subsequent TR–AB2 time
step kn+2 is computed using

kn+2 = kn+1

(
εt

√
∥
∥~en+1

h

∥
∥
2
+
∥
∥en+1

h

∥
∥
2

)1/3

.
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Adaptive time stepping components

• Starting from rest, ~u0 = ~0, and given a steady-state
temperature boundary condition T (~x, t) = T∞, we model
the impulse with a time-dependent boundary condition:

T (~x, t) = (1− e−10t)T∞ on ΓD × [0, T ].

We also choose a very small initial timestep, typically,

k1 = 10−9.
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Adaptive time stepping components

• Starting from rest, ~u0 = ~0, and given a steady-state
temperature boundary condition T (~x, t) = T∞, we model
the impulse with a time-dependent boundary condition:

T (~x, t) = (1− e−10t)T∞ on ΓD × [0, T ].

We also choose a very small initial timestep, typically,

k1 = 10−9.

• The following parameters must be specified:

time accuracy tolerance εt (10−5)

GMRES tolerance itol (10−6)

GMRES iteration limit maxit (50)
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PROBLEM # 1

Vanilla TR is not L–stable
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Isothermal flow over step | Re = 100 .

Stationary streamlines: time = 0.20

Stationary streamlines: time = 0.99

Stationary streamlines: time = 200.00
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Rayleigh–Bénard | Pr = 7.1, Ra = 1.5× 104 .
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PROBLEM # 2

linearized TR is not coupled physics
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MIT test problem | Pr = 0.71, Ra = 3.4× 105 .

~g TcTh
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MIT test problem | Pr = 0.71, Ra = 3.4× 105 .

x=1/2

y=4

31× 248 stretched grid
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MIT test problem | Pr = 0.71, Ra = 3.4× 105 .
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MIT test problem | Pr = 0.71, Ra = 3.4× 105 .

MIT Benchmark εt = 3 · 10−5 εt = 1 · 10−6

(∆p)min −0.0125 −0.0178 −0.0135

(∆p)max 0.0074 0.0116 0.0082

∆(∆p) 0.0198 0.0294 0.0218

∆p −0.0026 −0.0031 −0.0027

Tmin 0.2461 0.2362 0.2442

Tmax 0.2872 0.3012 0.2896

∆T 0.0411 0.0650 0.0454

T 0.2666 0.2687 0.2669

Period 3.4135 3.382 3.412
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MIT test problem | Pr = 0.71, Ra = 3.4× 105 .
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Temperature evolution at the MIT reference point.
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PART II
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“Smart Integrator” (SI) revisited

• Optimal time-stepping

• Black-box implementation

• Algorithm efficiency

• Solver efficiency: the linear solver convergence rate is
robust with respect to the mesh size h and the flow
problem parameters.
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Finite element matrix formulation

Introducing the basis sets

Xh = span{~φi}nu

i=1
, Velocity basis functions;

Mh = span{ψj}np

j=1
, Pressure basis functions.

Th = span{φk}nT

k=1
, Temperature basis functions;

gives the method-of-lines discretized system:






M 0 0

0 0 0

0 0 M











∂~u
∂t
∂p
∂t
∂T
∂t




+






F BT − ◦

M

B 0 0

0 0 F











~u

p

T




 =






~0

0

g






with a (vertical–) mass matrix:

(
◦
M

)ij = ([0, φi], φj)
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Preconditioning strategy






F BT − ◦

M

B 0 0

0 0 F




P−1 P






αu

αp

αT




 =






f
u

f
p

f
T






Given S = BF−1BT , a perfect preconditioner is given by






F BT − ◦

M

B 0 0

0 0 F











F−1 F−1BTS−1 F−1 ◦

MF−1

0 −S−1 0

0 0 F−1






︸ ︷︷ ︸

P−1

=






I 0 0

BF−1 I BF−1 ◦

MF−1

0 0 I
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For an efficient preconditioner we need to construct a
sparse approximation to the “exact” Schur complement

S−1 = (BF−1BT )−1

For an efficient implementation we must also have an
efficient AMG (convection-diffusion) solver ...
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HSL HSL MI20

PACKAGE SPECIFICATION HSL 2007

1 SUMMARY

Given an n×n sparse matrix A and an n−vector z, HSL MI20 computes the vector x=Mz, whereM is an algebraic

multigrid (AMG) v-cycle preconditioner for A. A classical AMG method is used, as described in [1] (see also Section

5 below for a brief description of the algorithm). The matrix A must have positive diagonal entries and (most of) the

off-diagonal entries must be negative (the diagonal should be large compared to the sum of the off-diagonals). During

the multigrid coarsening process, positive off-diagonal entries are ignored and, when calculating the interpolation

weights, positive off-diagonal entries are added to the diagonal.

Reference

[1] K. Stüben. An Introduction to Algebraic Multigrid. In U. Trottenberg, C. Oosterlee, A. Schüller, eds, ‘Multigrid’,

Academic Press, 2001, pp 413-532.

ATTRIBUTES — Version: 1.1.0 Types: Real (single, double). Uses: HSL MA48, HSL MC65, HSL ZD11, and the

LAPACK routines GETRF and GETRS. Date: September 2006. Origin: J. W. Boyle, University of Manchester and J.

A. Scott, Rutherford Appleton Laboratory. Language: Fortran 95, plus allocatable dummy arguments and allocatable

components of derived types. Remark: The development of HSL MI20 was funded by EPSRC grants EP/C000528/1

and GR/S42170.
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Schur complement approximation – I

Introducing the diagonal of the velocity mass matrix

M∗ ∼Mij = (~φi, ~φj),

gives the “least-squares commutator preconditioner”:

(BF−1BT )−1 ≈ (BM−1
∗ BT

︸ ︷︷ ︸

amg

)−1(BM−1
∗ FM−1

∗ BT )(BM−1
∗ BT

︸ ︷︷ ︸

amg

)−1
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Schur complement approximation – II

Introducing associated pressure matrices

Mp ∼ (∇ψi,∇ψj), mass

Ap ∼ (∇ψi,∇ψj), diffusion

Np ∼ (~wh · ∇ψi, ψj), convection

Fp =
2

kn+1

Mp + νAp +Np, convection-diffusion

gives the “pressure convection-diffusion preconditioner”:

(BF−1BT )−1 ≈M−1
p Fp A

−1
p

︸︷︷︸

amg
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Rayleigh–Bénard | Pr = 7.1, Ra = 1.5× 104 .
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MIT test problem | Pr = 0.71, Ra = 3.4× 105 .

700 705 710 715 720
0.22

0.24

0.26

0.28

0.3

0.32
tol = 3e-5

840 845 850 855 860
0.22

0.24

0.26

0.28

0.3

0.32
tol = 1e-6

Temperature evolution at the MIT reference point.

BIRS workshop | September 2012 – p. 35/37



MIT test problem | Pr = 0.71, Ra = 3.4× 105 .
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What have we achieved?

• Black-box implementation: few parameters that have to
be estimated a priori.

• Optimal complexity: essentially O(n) flops per iteration,
where n is dimension of the discrete system.

• Efficient linear algebra: convergence rate is
(essentially) independent of h. Given an appropriate
time accuracy tolerance convergence is also robust with
respect to diffusion parameters ν and ν.
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• Optimal complexity: essentially O(n) flops per iteration,
where n is dimension of the discrete system.

• Efficient linear algebra: convergence rate is
(essentially) independent of h. Given an appropriate
time accuracy tolerance convergence is also robust with
respect to diffusion parameters ν and ν.

Silvester, D., Bespalov, A. and Powell, C.
A framework for the development of implicit solvers for
incompressible flow problems
Discrete and Continuous Dynamical Systems — Series
S (DCDS–S), 5:1195–1221, 2012.
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