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Abstract

This work is devoted to the proposal of a new flux limiter that makes the algebraic flux
correction finite element scheme linearity and positivity preserving on general simplicial
meshes. Minimal assumptions on the limiter are given in order to guarantee the validity of
the discrete maximum principle, and then a precise definition of it is proposed and analyzed.
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1. Introduction

The numerical stability of a convection-diffusion equation is, for the most part, due to
the presence of the diffusion term. Then, when convection dominates diffusion, it is natu-
ral to expect that instabilities appear in the numerical solution. These instabilities result
in the presence of large over and undershoots, which are a sign of a violation of the dis-
crete maximum principle (DMP). To correct the violation of the DMP, many methods have
been proposed and analyzed over the years. The first attempt is to add enough numerical
diffusion to make the problem diffusion-dominated, and then the DMP follows under ap-
propriate assumptions (see, e.g., [22]). This crude strategy leads to numerical results which
are extremely diffusive, and then not usable in practice. This fact motivated the introduc-
tion of the so-called shock-capturing methods, which are characterized by adding an extra
term to the discrete formulation. This extra term contains a viscosity coefficient which is
solution-dependent, hence making the method nonlinear (see [20] for a review). Nonlinear
discretizations are not necessarily guaranteed to preserve the DMP, and, up to our best
knowledge, the first one was the work [30]. Later approaches include [8, 10, 2, 3, 13, 4].
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All the above-mentioned references share two main hypotheses, namely, the need to
use first-order polynomials, and certain assumptions on the mesh. More precisely, in the
two-dimensional case the mesh is supposed to be a Delaunay one. This restriction can
be tracked back to the first work concerning the validity of the DMP, even for a Laplace
equation, i.e., the work [12]. Since then, several generalizations and attempts to overcome
that restriction have been done. For example, in [9] an anisotropic Laplacian was added to
the formulation, and the DMP can be proved for more general cases. More recently, in the
context of hyperbolic equations, the works [17, 16] propose methods that can overcome this
restriction, while at the same time providing approximations that converge to the entropy
solution. It is important to remark that these last references’ possible extension to the case
in which diffusion is present in the equations does not seem to be an easy task.

One particular nonlinear discretization, designed to satisfy the DMP by construction, is
the one known as Algebraic Flux Correction (AFC) method. The origins of this method can
be tracked back to [7, 31], and it has enjoyed a large development in the last decade thanks
to the work of D. Kuzmin and co-workers (see [23–27], and [28] for a recent review). This
class of methods, unlike previous discretizations, is not based on a variational formulation of
the problem, but rather in a rewriting of the resulting linear system in which the right-hand
side is written as the sum of antidiffusive fluxes. This rewriting shows that these fluxes are
responsible for the violation of the DMP, and then AFC schemes limit them using solution-
dependent limiters. Despite the fact of providing good numerical results (apart from the
above-cited references, see also the review works [21, 1] for some further numerical results),
until very recently, no mathematical analysis had been carried out for the AFC schemes.
The first works in this direction are, up to our best knowledge, [5, 6]. Surprisingly, the
proof of the DMP given in [6] also requires the use of a Delaunay mesh. Then, despite the
fact that the geometry of the mesh does not enter explicitly in the definition of the AFC
methods, some results on them still depend on the geometry of the mesh. This fact motivates
the search for modifications of the limiters that generate methods satisfying the DMP on
general meshes.

Another important property that is often requested to numerical discretizations is the
so-called linearity preservation. This property requests that the modification added to the
formulation vanishes if the solution is a first-order polynomial (at least locally). This re-
striction, which can be interpreted as a weak consistency requirement, is believed to lead to
improved accuracy in smooth regions. In fact, in previous works, linearity preservation has
been linked to good convergence properties for diffusion problems (see, e.g., [19, 29]). Even
if this is a requirement that may seem natural, this condition has been proposed in a very
heuristic manner. As a matter of fact, in many works the proposed method has been claimed
to be linearity preserving, but a proof of this fact is just hinted, or even lacking. In addition,
although this property, so far, has not been proved mathematically to be a sufficient, or
even a necessary, condition for good numerical behavior, it has been observed in different
works (see, e.g., [11], and, especially, the introduction in [14] for a discussion), that linearity
preservation improves the quality of the numerical solution on distorted meshes.

Based on the above considerations, our main objective in this work is to propose a
definition of the limiters in an AFC method that achieves two main goals: satisfaction of
the DMP and linearity preservation, both in general simplicial meshes. To achieve this, we
write down the main requirements to be satisfied by the limiters, and proceed to modify
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the algorithm proposed in [27] in such a way that these two properties are valid in general
meshes. More precisely, the limiters from [27] are modified with factors that depend on the
geometry of the elements that share a given node of the triangulation. Hence, this approach
introduces explicit geometric information about the mesh into the algorithm.

Numerical studies will support the analytical results. In addition they show that the
numerical solutions obtained with the new limiter possess further desirable properties com-
pared with the solutions computed with the limiter from [24]: there is an optimal convergence
on distorted meshes in the diffusion-dominated regime and a sharper layer is obtained in a
standard test problem for the convection-dominated case.

The rest of the paper is organized as follows. In Section 2, AFC schemes are presented in
their most general form. Then, the minimal requirements on the limiter in order to satisfy
the DMP are laid down in Section 3. Our concrete proposal for the limiter is given in
Section 4. Section 5 is devoted to the application of the AFC scheme to the convection-
diffusion-reaction equation and its analysis. The final ingredient in the definition of the
limiter, namely, the computation of the multiplicative factor introduced in order to make
the method linearity preserving, is presented in Section 6. Finally, some numerical results
supporting our claims are given in Section 7.

2. An algebraic flux correction scheme

Consider a linear boundary value problem for which the maximum principle holds. Let
us discretize this problem by the finite element method. Then, the discrete solution can be
represented by a vector U ∈ RN of its coefficients with respect to a basis of the respective
finite element space. Let us assume that the last N −M components of U (0 < M < N)
correspond to nodes where Dirichlet boundary conditions are prescribed whereas the first
M components of U are computed using the finite element discretization of the underlying
partial differential equation. Then U ≡ (u1, . . . , uN) satisfies a system of linear equations of
the form

N∑
j=1

aij uj = gi , i = 1, . . . ,M , (1)

ui = ubi , i = M + 1, . . . , N . (2)

We assume that the matrix (aij)
M
i,j=1 is positive definite, i.e.,

M∑
i,j=1

ui aij uj > 0 ∀ (u1, . . . , uM) ∈ RM \ {0} . (3)

To introduce an algebraic flux correction scheme, we first extend the matrix of (1) to
a matrix A = (aij)

N
i,j=1. For example, one can simply use the finite element matrix corre-

sponding to the above-mentioned finite element discretization in the case when homogeneous
natural boundary conditions are used instead of the Dirichlet ones. We shall consider this
matrix with the following modification:

aji := 0 if aij < 0 , i = 1, . . . ,M , j = M + 1, . . . , N . (4)
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This reduces the amount of artificial diffusion introduced by the matrix D defined next.
Using the matrix A = (aij)

N
i,j=1, we introduce a symmetric artificial diffusion matrix

D = (dij)
N
i,j=1 with entries

dij = dji = −max{aij, 0, aji} ∀ i 6= j , dii = −
∑
j 6=i

dij . (5)

This definition guarantees that the matrix Ã := A + D has positive diagonal entries and
non-positive off-diagonal entries. If, in addition,

N∑
j=1

aij ≥ 0 , i = 1, . . . ,M , (6)

then the matrix Ã satisfies sufficient conditions to preserve the discrete maximum principle.
Note that the property (6) is usually satisfied by finite element discretizations of elliptic
equations arising in applications.

Going back to the solution of (1), this system is equivalent to

(ÃU)i = gi + (DU)i , i = 1, . . . ,M . (7)

Since the row sums of the matrix D vanish, it follows that

(DU)i =
∑
j 6=i

fij , i = 1, . . . , N ,

where fij = dij (uj −ui). Clearly, fij = −fji for all i, j = 1, . . . , N . The idea of the algebraic
flux correction scheme is to limit those anti-diffusive fluxes fij that would otherwise cause
spurious oscillations. To this end, system (1) (or, equivalently, (7)) is replaced by

(ÃU)i = gi +
∑
j 6=i

αij fij , i = 1, . . . ,M , (8)

with solution-dependent correction factors αij ∈ [0, 1]. For αij = 1, the original system (1)
is recovered. Hence, intuitively, the coefficients αij should be as close to 1 as possible to
limit the modifications of the original problem. So far, these coefficients have been chosen
in various ways, and their definition is always based on the above fluxes fij, see [23–27] for
examples. To guarantee that the resulting scheme is conservative, and to be able to show
existence of solutions, one should require that the coefficients αij are symmetric, i.e.,

αij = αji , i, j = 1, . . . ,M . (9)

Rewriting the equation (8) using the definition of the matrix Ã, one obtains the following
expression for the algebraic flux correction scheme:

N∑
j=1

aij uj +
N∑
j=1

(1− αij) dij (uj − ui) = gi , i = 1, . . . ,M , (10)

ui = ubi , i = M + 1, . . . , N , (11)
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where αij = αij(u1, . . . , uN) ∈ [0, 1], i = 1, . . . ,M , j = 1, . . . , N , satisfy (9).
The following theorem states sufficient conditions on the limiters αij assuring the solv-

ability of the nonlinear discrete problem (10), (11). Our proposal for such limiters will be
given in Section 4.

Theorem 1. Let (3) hold. For any i ∈ {1, . . . ,M}, j ∈ {1, . . . , N}, let αij : RN → [0, 1]
be such that αij(u1, . . . , uN)(uj − ui) is a continuous function of u1, . . . , uN . Finally, let the
functions αij satisfy (9). Then there exists a solution of the nonlinear problem (10), (11).

Proof. See [6, Theorem 3.3].

3. The discrete maximum principle

As it was mentioned in the introduction, the main motivation of AFC schemes is to
respect the DMP. In this section, we state some minimal assumptions on the limiters αij in
order to satisfy this property.

Given i ∈ {1, . . . ,M}, the discrete maximum principle will be formulated locally, with
respect to an index set Si ⊂ {1, . . . , N}. We assume that

Si ⊃ {j ∈ {1, . . . , N} \ {i} : aij 6= 0 or aji > 0} , i = 1, . . . ,M . (12)

The proof of the discrete maximum principle requires only that {αijdij}j∈Si
vanish if ui is

a strict local extremum. More precisely, we assume that, for any i ∈ {1, . . . ,M} and any
U = (u1, . . . , uN) ∈ RN , the limiters αij satisfy

ui > uj ∀ j ∈ Si or ui < uj ∀ j ∈ Si ⇒ αij(U)dij = 0 ∀ j ∈ Si . (13)

The matrix A will be supposed to satisfy (6). Then the only assumption on A for proving
the local discrete maximum principle at i ∈ {1, . . . ,M} will be that

there exists j ∈ {1, . . . , N}, j 6= i : aij < 0 or aij < aji . (14)

Note that the diagonal entry aii can be arbitrary. The condition (14) is typically satisfied,
in particular, by the matrix associated to a finite element discretization of the convection-
diffusion equation (see Lemma 7 and Remark 8 below for details). If (14) does not hold
but

Ai :=
N∑
j=1

aij > 0 , (15)

then still a slightly weaker statement on the DMP can be proved. If Ai = 0 and aii > 0 (as
implied by (3)), then (14) is always satisfied.

With the above hypotheses, we prove the main result of this section.

Theorem 2. Let the matrix A satisfy (6) and let the limiters αij satisfy (13). Let (u1, . . . , uN) ∈
RN satisfy (10). Consider any i ∈ {1, . . . ,M}. If (14) holds, one has

gi ≤ 0 ⇒
(
if ui ≥ 0, then ui ≤ max

j∈Si

uj
)
, (16)

gi ≥ 0 ⇒
(
if ui ≤ 0, then ui ≥ min

j∈Si

uj
)
. (17)
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If Ai > 0, one has

gi ≤ 0 ⇒
(
if ui > 0, then ui ≤ max

j∈Si

uj
)
, (18)

gi ≥ 0 ⇒
(
if ui < 0, then ui ≥ min

j∈Si

uj
)
. (19)

Consequently, if (14) holds or Ai > 0, one has

gi ≤ 0 ⇒ ui ≤ max
j∈Si

u+
j , (20)

gi ≥ 0 ⇒ ui ≥ min
j∈Si

u−j , (21)

where u+
j := max{0, uj} and u−j := min{0, uj}.

Proof. Since dij = 0 for any i ∈ {1, . . . ,M} and j 6∈ Si ∪ {i}, the equation (10) can be
written in the form

Ai ui +
∑
j∈Si

[aij + (1− αij(U)) dij] (uj − ui) = gi , i = 1, . . . ,M . (22)

Consider any i ∈ {1, . . . ,M} and let gi ≤ 0 and ui ≥ 0. Let us assume that ui > uj for all
j ∈ Si. Then (22) and (13) imply that

Ai ui +
∑
j∈Si

(aij + dij) (uj − ui) = gi . (23)

Due to the definition of dij (cf. (5)), one has aij + dij ≤ 0 for j 6= i. Moreover, if (14) holds,
there is j ∈ Si such that aij + dij < 0. Hence the left-hand side of (23) is strictly positive,
which is a contradiction. If Ai > 0 and ui > 0, then (23) implies that gi ≥ Ai ui > 0. This
is, again, a contradiction. Therefore, there is j ∈ Si such that ui ≤ uj, which proves (16)
and (18). The statements (17) and (19) follow in an analogous way. Finally, (20) and (21)
are immediate consequences of the preceding statements.

Assuming equality instead of inequality in (6), the following stronger result can be proved.

Theorem 3. Let the limiters αij satisfy (13) and let (u1, . . . , uN) ∈ RN satisfy (10). Con-
sider any i ∈ {1, . . . ,M}. If Ai = 0 and (14) holds, then one has

gi ≤ 0 ⇒ ui ≤ max
j∈Si

uj ,

gi ≥ 0 ⇒ ui ≥ min
j∈Si

uj .

Proof. The proof from the previous result can be applied, with the minor difference that,
since Ai = 0, the restriction on the sign of ui is not needed.
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4. Definition of αij

Last section imposed minimal conditions that the limiter αij used in (10) should satisfy
in order to guarantee the discrete maximum principle. In this section we design a limiter
that fulfills those hypotheses. This proposal is related to the one from [27]. As a matter
of fact, the main difference is the definition of the constant γi below, which will be later
derived to impose linearity preservation on general meshes. We shall show that it provides
limiters that guarantee the solvability of (10), (11), and the validity of the discrete maximum
principle.

First, for any i ∈ {1, . . . ,M}, we set

umax
i := max

j∈Si∪{i}
uj , umin

i := min
j∈Si∪{i}

uj , qi := γi
∑
j∈Si

dij , (24)

where Si is an index set satisfying (12) and γi > 0 is a fixed constant, whose value will be
defined later (see (42) in Theorem 10). Furthermore, for any i ∈ {1, . . . ,M}, we set

P+
i :=

∑
j∈Si

f+
ij , P−i :=

∑
j∈Si

f−ij , Q+
i := qi (ui − umax

i ) , Q−i := qi (ui − umin
i ) ,

and we define

R+
i := min

{
1,
Q+

i

P+
i

}
, R−i := min

{
1,
Q−i
P−i

}
.

If P+
i or P−i vanishes, we set R+

i := 1 or R−i := 1, respectively. Finally, we set

α̃ij :=


R+

i if fij > 0 ,
1 if fij = 0 ,
R−i if fij < 0 ,

i = 1, . . . ,M, j = 1, . . . , N ,

and define

αij := min{α̃ij, α̃ji} , i, j = 1, . . . ,M ,

αij := α̃ij , i = 1, . . . ,M, j = M + 1, . . . , N .

The symmetry condition (9) is guaranteed by the last step of this algorithm.
The following result shows that the above limiter satisfies (13). Then, the resulting

method respects the discrete maximum principle, independently of the geometry of the
mesh, provided A satisfies (6) and at least one of the conditions (14) and (15) for any
i ∈ {1, . . . ,M}.

Lemma 4. The limiter αij defined in this section satisfies (13).

Proof. Consider any i ∈ {1, . . . ,M} and U = (u1, . . . , uN) ∈ RN such that ui > uj for all
j ∈ Si. Then, umax

i = ui and hence Q+
i = 0. Choose any j ∈ Si and let us show that

αij(U)dij = 0. It suffices to consider dij 6= 0. But then fij > 0 and hence P+
i > 0, leading

to R+
i = 0. Consequently α̃ij(U) = 0, thus giving αij(U) = 0. If ui < uj for all j ∈ Si, then

the proof is analogous.
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In addition to the last lemma, the following result states that the limiter αij satisfies the
continuity conditions from Theorem 1, and hence problem (10), (11) has a solution. Its proof
is very similar to [6, Lemma 4.1], and then we give an abridged form of it for completeness.

Lemma 5. The above coefficients αij are such that φij(U) := αij(u1, . . . , uN)(uj − ui) are
continuous functions of u1, . . . , uN on RN .

Proof. Consider any i ∈ {1, . . . ,M}, j ∈ {1, . . . , N}. Let us first investigate the continuity
of α̃ij. It suffices to consider the case α̃ij 6≡ 1 (and hence dij 6= 0 and j ∈ Si). Let
U = {ui}Ni=1 ∈ RN . We first consider ui > uj. Then, fij > 0 and one obtains

α̃ij(U) = R+
i =

min{P+
i , Q

+
i }

|fij|+ P̃+
i

with P̃+
i =

∑
k∈Si\{j}

f+
ik .

Since ui > uj, there is a neighborhood of U where the denominator of the above expression
does not vanish, and then the function α̃ij is continuous in U . Now, if uj > ui, by the
same arguments one can deduce that α̃ij is continuous in U . Thus, if ui 6= uj, then α̃ij, and
therefore φij, is continuous in U . Finally, if ui = uj, then φij(U) = 0. Let V = {vi}Ni=1 ∈ RN .
Then, since αij(U) ∈ [0, 1], one obtains

|φij(V )− φij(U)| = |φij(V )| = |αij(V )| |vj − vi| ≤ |vj − uj − (vi − ui)| ≤
√

2‖V − U‖RN .

Then, φij(V )→ φij(U) if V → U and φij is continuous in U . This finishes the proof.

We finish this section by making some comments on the choice of the factors γi used in
(24). First, the proof of the discrete maximum principle is independent of their values, and
then, it can be applied for choices other than the one introduced in this paper, e.g., the ones
from [27]. Once this is said, the actual value of γi has two main impacts in the performance of
the AFC scheme. First, if chosen appropriately (as it will be done in Section 6 below), then it
can be proved that the resulting scheme is linearity preserving on general meshes. Second, it
influences the amount of artificial diffusion added by the AFC term to the original system (1).
If γi’s are increased, then more limiters αij will be equal to 1 and hence less artificial diffusion
will be added. If γi’s are decreased, then more limiters αij will be smaller than 1 and hence
more artificial diffusion will be added. Thus, to reduce smearing of approximate solutions
represented by the values u1, . . . , uN , large values of γi’s are convenient. The downside of
this is that, for large values of γi’s, the limiters αij(u1, . . . , uN) change very rapidly near local
extrema in ui and hence the numerical solution of the nonlinear algebraic problem becomes
more involved.

5. The AFC scheme for convection-diffusion-reaction equations

Let Ω ⊂ Rd, d = 2, 3, be a bounded polyhedral domain with Lipschitz boundary. Let us
consider the steady-state convection-diffusion-reaction equation

−ε∆u+ b · ∇u+ c u = g in Ω , u = ub on ∂Ω , (25)
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where ε ∈ (0, ε0) with ε0 < +∞ is a constant, and b ∈ W 1,∞(Ω)d, c ∈ L∞(Ω), g ∈ L2(Ω),

and ub ∈ H
1
2 (∂Ω) ∩ C(∂Ω) are given functions satisfying

∇ · b = 0 , c ≥ σ0 ≥ 0 in Ω ,

where σ0 is a constant. The weak solution of (25) is a function u ∈ H1(Ω) such that u = ub
on ∂Ω and

a(u, v) = (g, v) ∀ v ∈ H1
0 (Ω) , (26)

with
a(u, v) = ε (∇u,∇v) + (b · ∇u, v) + (c u, v) .

Here we adopt the usual notation for Sobolev spaces. In particular, (·, ·) denotes the inner
product in L2(Ω) or L2(Ω)d. Since c ≥ σ0 in Ω and b is solenoidal, then

a(v, v) ≥ ‖v‖2
a ∀ v ∈ H1

0 (Ω) , (27)

with
‖v‖2

a = ε |v|21,Ω + σ0 ‖v‖2
0,Ω .

It is well known that the weak solution of (25) exists, is unique, and satisfies the maximum
principle (cf. [15]).

Let Th belong to a regular family of triangulations of Ω consisting of simplices. We
introduce the finite element spaces

Wh = {vh ∈ C(Ω) : vh|T ∈ P1(T ) ∀T ∈ Th} , Vh = Wh ∩H1
0 (Ω) ,

consisting of continuous piecewise linear functions. From now on, we denote by x1, . . . , xN the
vertices of the triangulation Th and assume that x1, . . . , xM ∈ Ω and xM+1, . . . , xN ∈ ∂Ω.
Furthermore, we denote by ϕ1, . . . , ϕN the usual basis functions of Wh, i.e., we assume
that ϕi(xj) = δij, i, j = 1, . . . , N , where δij is the Kronecker symbol. Then the functions
ϕ1, . . . , ϕM form a basis in Vh.

Now, an approximate solution of the variational problem (26) can be introduced as the
solution of the following finite-dimensional problem:

Find uh ∈ Wh such that uh(xi) = ub(xi), i = M + 1, . . . , N , and

a(uh, vh) = (g, vh) ∀ vh ∈ Vh . (28)

We denote

aij = a(ϕj, ϕi) , i, j = 1, . . . , N , (29)

gi = (g, ϕi) , i = 1, . . . ,M , (30)

ubi = ub(xi) , i = M + 1, . . . , N . (31)

Then uh solves (28) if and only if its coefficient vector with respect to the basis of Wh satisfies
the relations (1) and (2). The bilinear form a defines the matrix A = (aij)

N
i,j=1 whose entries

are given by (29) and (4). Finally, thanks to (27) the matrix (aij)
M
i,j=1 satisfies (3), and it

follows that the problem (28) has a unique solution.
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The artificial diffusion matrix D = (dij)
N
i,j=1 is defined using (5). We introduce the

nonlinear form

dh(w; z, v) :=
N∑

i,j=1

(1− αij(w)) dij (z(xj)− z(xi)) v(xi) ∀ w, z, v ∈ C(Ω) ,

with αij(w) := αij({w(xi)}Ni=1). Then the corresponding flux correction scheme (10), (11)
can be rewritten as the following variational problem:

Find uh ∈ Wh such that uh(xi) = ub(xi), i = M + 1, . . . , N , and

a(uh, vh) + dh(uh;uh, vh) = (g, vh) ∀ vh ∈ Vh . (32)

Since the limiters αij defined in the last section satisfy the assumptions of Theorem 1, and
the bilinear form a is elliptic, then the problem (32) has a solution. A natural (solution
dependent) norm on Vh corresponding to the left-hand side of (32) is defined by

‖vh‖h :=
(
‖vh‖2

a + dh(uh; vh, vh)
)1/2

, vh ∈ Vh .

Assuming that u ∈ H2(Ω) and following completely analogous steps as the ones from [6,
Section 7] it follows that, if σ0 > 0, the following error bound holds

‖u− uh‖h ≤ C h ‖u‖2,Ω + (dh(uh; ihu, ihu))1/2 , (33)

where C > 0 is independent of u, h, and ε, and ihu stands for the Lagrange interpolate of
u. For the last term in (33), using the proof from [6, Lemma 7.3], it follows that

dh(wh; ihu, ihu) ≤ C max
i,j=1,...,N

(|dij| |xi − xj|2−d) |ihu|21,Ω ∀ wh ∈ Wh, u ∈ C(Ω) , (34)

where C is independent of h and the data of problem (25). This result shows that the
error ‖u − uh‖h will tend to zero as long as the product |dij| |xi − xj|2−d tends to zero.
This implies that the method will converge as long as the matrix A tends to be an M -
matrix, and this speed of convergence is fast enough to compensate for the negative power
of h arising from |xi − xj|2−d in the three-dimensional case. Hence, it is natural to expect
that the convergence properties of the method will vary according to the geometry of the
mesh. In particular, for the convection-dominated regime, an O(h1/2) estimate of ‖u −
uh‖h can be shown irrespectively of the geometry of the mesh. On the contrary, for the
diffusion-dominated regime, the convergence rates will vary dramatically depending on the
geometrical properties of the mesh (see [6] for details). This was illustrated numerically in [6]
for the limiter defined in [24]. In some particular cases a better than expected convergence
was observed, but the theoretical justification of this fact, which requires a more refined
estimation of dh(uh; ihu, ihu) for particular limiters, does not seem to be an easy task, and
it will be the subject of our future research.

The above results are valid for any limiters αij satisfying the assumptions of Section 2
(resp. of Theorem 1) and hence, in particular, for the limiter from Section 4. To apply this
limiter, we have to specify the sets Si satisfying (12). The simplest possibility is to use

Si = {j ∈ {1, . . . , N} \ {i} : xi and xj are end points of the same edge} , (35)
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where i = 1, . . . ,M . This definition of Si was used in the computations reported in Section 7.
To finish the definition of αij, we have to define the factors γi used in (24). This will be done
in the following section.

Remark 6. Usually, results on the discrete maximum principle like in Theorems 2 and 3 are
proved for Delaunay meshes with respect to sets Si = {j ∈ {1, . . . , N} \ {i} : aij 6= 0}. For
c = 0, this definition and the set used in (12) coincide in Delaunay meshes. Indeed, for such a
mesh, the validity of aji > 0 in (12) implies that aij 6= 0 since aij +aji = 2 ε (∇ϕi,∇ϕj) ≤ 0.
Whenever c > 0, then both definitions no longer coincide, the set induced by (12) can be
larger, and hence the final result is slightly weaker. The stronger assumption (12) is made
in order to guarantee our results to be valid on arbitrary meshes.

We close this section by showing that the matrix A defined above satisfies the assumptions
made on it to prove the discrete maximum principle.

Lemma 7. The matrix A defined in (29) and (4) satisfies the assumption (6). Moreover,
for any i ∈ {1, . . . ,M}, the assumption (14) holds if Ai = 0 or

there exists j ∈ {1, . . . , N} : (b · ∇ϕj, ϕi) 6= 0 . (36)

Proof. The validity of (6) follows immediately from the property
∑N

j=1 ϕj = 1 and the
nonnegativity of c. Consider any i ∈ {1, . . . ,M}. If Ai = 0, then there is j ∈ {1, . . . , N},
j 6= i, with aij < 0 since aii ≥ ε |ϕi|21,Ω > 0. Hence (14) holds. Let us assume (36) and let
(14) does not hold, i.e.,

aij ≥ 0 and aij ≥ aji ∀ j ∈ {1, . . . , N} , j 6= i . (37)

Under this assumption, then the modification (4) is not used for the matrix entries in (37),
and the original matrix remains unchanged. Hence, in view of the second inequality in (37),
one has

(b · ∇ϕj, ϕi) ≥ (b · ∇ϕi, ϕj) = −(b · ∇ϕj, ϕi) ∀ j ∈ {1, . . . , N} , j 6= i ,

so that
(b · ∇ϕj, ϕi) ≥ 0 ∀ j ∈ {1, . . . , N} , j 6= i .

Since (b · ∇ϕi, ϕi) = 0 and
∑N

j=1(b · ∇ϕj, ϕi) = 0, one deduces that

(b · ∇ϕj, ϕi) = 0 ∀ j ∈ {1, . . . , N} ,

which is in contradiction with (36).

Remark 8. According to the previous lemma, the validity of (14) is not guaranteed if the
convection term does not contribute to the i-th row of the matrix A. Although this cannot
be excluded, it is a rather exceptional situation and hence (14) will typically hold if b does
not vanish identically in suppϕi. Lemma 7 also shows that (14) holds if c ≡ 0 since then
Ai = 0 for any i ∈ {1, . . . ,M}. Thus, if the reaction term for c > 0 is discretized using a
lumping like in [6], the off-diagonal entries of A are the same as for c ≡ 0 and hence (14)
again holds although Ai > 0.

11



Figure 1: Examples of patches ∆i for d = 2.

6. Linearity preservation

Let us consider the limiter from Section 4 with the sets Si defined in (35). In this section
we finish the definition of this limiter by specifying the parameters γi that make it possible
to prove that the resulting scheme is linearity preserving on general meshes. We recall that
x1, . . . , xN stand for the vertices of Th, and that x1, . . . , xM ∈ Ω. We shall show that the
factors γi in (24) can be defined in such a way that

α̃ij(u) = 1 ∀ u ∈ P1(Rd) , i = 1, . . . ,M, j = 1, . . . , N . (38)

Then the AFC scheme (10), (11) will be linearity preserving. Let us consider any function
u ∈ P1(Rd) and set ui = u(xi), i = 1, . . . , N . Then, if one wants to satisfy (38), one needs

Q+
i ≥ P+

i if fij > 0 , Q−i ≤ P−i if fij < 0 . (39)

Sufficient conditions for (39) are the inequalities

ui − umin
i ≤ γi (umax

i − ui) , umax
i − ui ≤ γi (ui − umin

i ) . (40)

Note that it suffices to find γi such that

ui − umin
i ≤ γi (umax

i − ui) ∀ u ∈ P1(Rd) , (41)

since then the second inequality in (40) follows from (41) by changing the sign of u. Thus, the
validity of (41) assures that the AFC scheme (10), (11) based on the limiter from Section 4
is linearity preserving.

To discuss the validity of (41), it is convenient to introduce the patch ∆i = suppϕi for
any interior vertex xi of the triangulation Th. Thus, ∆i is a patch consisting of simplices
T ∈ Th sharing the vertex xi, see Fig. 1. Then the sets Si defined in (35) satisfy

Si = {j ∈ {1, . . . , N} : xj ∈ ∂∆i} ,

and one has
umin
i = min

∆i

u , umax
i = max

∆i

u .

Note that, for u ∈ P1(Rd), umin
i and umax

i are attained at vertices lying on ∂∆i.
If the patch ∆i is symmetric with respect to the vertex xi (like the first three patches

from the left in Fig. 1), then the inequality (41) holds with γi = 1 as the following lemma
shows.
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Lemma 9. Let ∆i be symmetric with respect to xi. Then

ui − umin
i = umax

i − ui ∀ u ∈ P1(Rd) .

Proof. Let us assume that ui − umin
i < umax

i − ui. There exists a vertex xj ∈ ∂∆i such that
umax
i = uj. Furthermore, due to the symmetry of ∆i, there is a vertex xk ∈ ∂∆i such that

(xj + xk)/2 = xi. Then uj + uk = 2ui and hence

ui − umin
i < umax

i − ui = uj − ui = ui − uk .

Consequently, uk < umin
i , which is a contradiction. Analogously, it can be shown that

ui − umin
i > umax

i − ui leads to a contradiction.

For general patches ∆i, a possible factor γi is computed in the following theorem.

Theorem 10. Let x1, . . . , xM ∈ Ω. For any i ∈ {1, . . . ,M}, let ∆i be the above-defined
patch corresponding to the vertex xi and let ∆conv

i be its convex hull. Let

γi =

max
xj∈∂∆i

|xi − xj|

dist(xi, ∂∆conv
i )

, i = 1, . . . ,M . (42)

Then the inequalities (41) hold and hence the AFC scheme (10), (11) with the limiter from
Section 4 is linearity preserving.

Proof. For simplicity, we shall present the proof for d = 2. For d = 3 one can proceed
analogously. Consider a patch ∆i and let u ∈ P1(R2) be any nonconstant linear function.
Let p be the line in the direction of ∇u containing the vertex xi. Then there are uniquely
determined points A,B ∈ p such that u(A) = umin

i , u(B) = umax
i . Let qA and qB be lines

orthogonal to p intersecting the line p at the points A and B, respectively, see Fig. 2. Since
u is constant along lines perpendicular to p, the patch ∆i is contained in the strip between
the lines qA and qB. Consequently, each of these lines intersects ∆i only at points on ∂∆i

comprising at least one vertex. Moreover, any such vertex lies on the boundary of the convex
hull ∆conv

i . To find a constant γi for which the inequality (41) holds, we have to estimate
the ratio

ui − umin
i

umax
i − ui

=
u(xi)− u(A)

u(B)− u(xi)
=
|xi − A|
|B − xi|

.

Since qA contains a vertex xk lying on ∂∆conv
i , one has

|xi − A| ≤ |xi − xk| ≤ max
xj∈∂∆conv

i

|xi − xj| = max
xj∈∂∆i

|xi − xj| .

On the other hand, if TB is a triangle whose vertices are xi and two consecutive vertices on
∂∆conv

i such that the half-line xiB intersects TB (see Fig. 2), then

|B − xi| ≥ dist(xi, EB) ,

where EB is the edge of TB opposite xi. Consequently,

|B − xi| ≥ dist(xi, ∂∆conv
i ) ,

which gives (42).

13



q

q

xi

A

B

TB

BE

p

B

A

Figure 2: Patch ∆i with notation from the proof of Theorem 10.

Remark 11. For the patches in Fig. 1, the formula (42) gives the values 2,
√

2,
√

2, 2,
and 2, respectively (from the left to the right). Since the first three patches from the left are
symmetric, Lemma 9 shows that the formula (42) is not optimal in general. The last two
patches in Fig. 1 are nonsymmetric and, for the linear function u(x, y) = x+ y, one obtains
ui − umin

i = 2 (umax
i − ui). Thus, for these two patches, the formula (42) gives the optimal

values.
This possible lack of optimality arises from the fact that we have used the worst case

scenario, this is, when the extrema of the function u are attained at the vertices closest to,
and furthest away from, xi, to derive the formula (42). This reasoning on the worst case
scenario is adapted to three space dimensions in a straightforward way.

Remark 12. Let us briefly mention the computation of the denominator in (42). First,
any vertex xj ∈ ∂∆i is shifted in the direction of the edge xixj on the boundary of the
convex hull ∆conv

i . Then one goes through all simplices T forming ∆conv
i and, denoting by

E the edge (or face) of T opposite xi, one computes dist(xi, E). This is particularly easy
in the two-dimensional case: If T possesses an obtuse angle at an end point of E, say P ,
then dist(xi, E) = |xi − P |. If both angles of T at the end points of E are not obtuse, then
dist(xi, E) = 2 |T |/|E|. In the three-dimensional case, the computation of dist(xi, E) is more
involved. Nevertheless, one can replace it by 3 |T |/|E| ≤ dist(xi, E) (and possibly increase
the value of γi).

We finish this section by stating that the definition of the limiter presented in this work
introduces explicit geometric information about the mesh into the method. This is not the
standard way of defining the limiters (as the usual definitions use only the matrix entries
and the solution values), and is different from the one used in [27], but it has been proved
to be of fundamental importance to ensure linearity preservation on general meshes.
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Figure 3: Distorted mesh used in the simulations (left) and starting point for its construction (right).

7. Numerical studies

The numerical studies will illustrate the properties of the AFC scheme (10), (11) with the
limiter proposed in Section 4 for the convection-diffusion-reaction equation from Section 5.
If not specified otherwise, the parameters γi from (24) are defined by the formula (42). In
addition, the results will be compared with those obtained with the limiter from [24]. The
limiter from [24] can be considered as kind of standard limiter for algebraic stabilizations of
steady-state convection-diffusion-reaction equations so far.

For the sake of brevity, only results computed on a distorted mesh, see Fig. 3 (left), will
be presented in detail. The mesh was constructed starting from the Delaunay mesh depicted
in Fig. 3 (right) by shifting interior nodes to the right by half of the horizontal mesh width
on each even horizontal mesh line. Therefore, for the most diagonal edges, the sum of the
two angles opposite the edge is greater than 5π/4 and hence the mesh is not of Delaunay
type. We shall characterize the meshes by the number of edges ne along one horizontal (or
equally vertical) mesh line (thus, ne = 6 for both meshes in Fig. 3).

Results for three examples will be presented. In the first example, the order of convergence
is studied, in both the convection-dominated and diffusion-dominated regime. The second
example investigates the linearity preservation property. Finally, a standard test problem
with boundary layers and an interior layer is considered.

The nonlinear discrete problems were solved with a damped Newton’s method.

Example 1. Polynomial solution. Problem (25) is considered with Ω = (0, 1)2, b = (3, 2)T ,
c = 1, ub = 0, and the right-hand side g chosen such that, for a given value of ε,

u(x, y) = 100 x2 (1− x)2 y (1− y) (1− 2y)

is the solution of (25).

The order of convergence of the error eh := u − uh measured in various norms for the
limiter proposed in Section 4 is presented in Table 1 for the convection-dominated case and
in Table 2 for the diffusion-dominated regime. In addition, the tables show the consistency
error d

1/2
h (uh) := dh(uh; ihu, ihu)1/2, cf. the estimate (33).

Concerning the convection-dominated case, results for the limiter from [24] on a mesh of
the same type can be found in [6, Table 6]. Comparing the results, it can be seen that for
both limiters the convergence orders of eh are similar in all three norms. We could observe
that this statement holds also for other meshes, in particular for more regular ones.

The situation is much different in the diffusion-dominated regime. Whereas the limiter
from Section 4 leads to errors that decay with an optimal rate, see Table 2, the method
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Table 1: Example 1, ε = 10−8, numerical results for αij from Section 4.

ne ‖eh‖0,Ω ord. |eh|1,Ω ord. d
1/2
h (uh) ord. ‖eh‖h ord.

16 2.722e−2 1.15 1.401e+0 0.02 9.086e−2 1.76 7.428e−2 1.21
32 1.035e−2 1.40 1.041e+0 0.43 2.287e−2 1.99 2.563e−2 1.54
64 5.099e−3 1.02 8.907e−1 0.23 6.219e−3 1.88 1.113e−2 1.20
128 2.555e−3 1.00 8.952e−1 -0.01 2.308e−3 1.43 5.240e−3 1.09
256 1.299e−3 0.98 8.991e−1 -0.01 8.409e−4 1.46 2.538e−3 1.05

with the limiter from [24] does not converge at all, compare [6, Table 10]. This favorable
behavior of the new limiter seems to be important in situations where the convection field
is a flow field. In this case there might be subregions of the domain in which the problem is
diffusion-dominated.

We believe that the optimal convergence of the limiter proposed in Section 4 is connected
with its linearity preservation property on general simplicial meshes. A similar behavior has
been observed in [29], where linearity preserving limiters are used to approximate a diffusion
problem. The theoretical justification of this statement is not yet available, and will be the
topic of our future research.

Table 2: Example 1, ε = 10, numerical results for αij from Section 4.

ne ‖eh‖0,Ω ord. |eh|1,Ω ord. d
1/2
h (uh) ord. ‖eh‖h ord.

16 1.786e−2 1.74 4.726e−1 0.87 9.284e−1 1.13 1.522e+0 0.88
32 4.218e−3 2.08 2.404e−1 0.98 3.035e−1 1.61 7.633e−1 1.00
64 1.016e−3 2.05 1.213e−1 0.99 1.077e−1 1.49 3.841e−1 0.99
128 2.545e−4 2.00 6.082e−2 1.00 3.816e−2 1.50 1.924e−1 1.00
256 6.439e−5 1.98 3.045e−2 1.00 1.361e−2 1.49 9.632e−2 1.00
512 1.628e−5 1.98 1.524e−2 1.00 4.896e−3 1.47 4.819e−2 1.00

A further support of the above claim is given in Table 3. Here we present results obtained
with the limiter from Section 4 for parameters γi defined as a quarter of the value provided
by the formula (42). Then the method is not linearity preserving and we observe that the
errors of the approximate solutions do not converge to zero.

Example 2. Linear solution. The data for this example were chosen to be Ω = (0, 1)2,
ε = 10−8, b = (2 y− x,−3x+ y)T , c = 0, and the boundary condition ub and the right-hand
side g were set such that

u(x, y) = 2 x+ 3 y

is the solution of (25).

This example serves for showing on the one hand the linearity preservation of the limiter
from Section 4 on the considered distorted mesh. On the other hand, it also demonstrates
that the limiter from [24] does not possess this property. Results for simulations with ne = 8
are presented in Fig. 4 and for a closer inspection also a cross-section of the two solutions is
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Table 3: Example 1, ε = 10, numerical results for αij from Section 4 and γi replaced by γi/4.

ne ‖eh‖0,Ω ord. |eh|1,Ω ord. d
1/2
h (uh) ord. ‖eh‖h ord.

16 4.543e−2 0.91 5.801e−1 0.68 2.753e+0 0.32 2.051e+0 0.65
32 3.095e−2 0.55 3.939e−1 0.56 2.362e+0 0.22 1.404e+0 0.55
64 2.622e−2 0.24 3.138e−1 0.33 2.199e+0 0.10 1.127e+0 0.32
128 2.428e−2 0.11 2.826e−1 0.15 2.118e+0 0.05 1.018e+0 0.15
256 2.341e−2 0.05 2.707e−1 0.06 2.078e+0 0.03 9.756e−1 0.06
512 2.301e−2 0.03 2.660e−1 0.03 2.059e+0 0.01 9.582e−1 0.03

shown in Fig. 5. The limiter proposed in Section 4 provides a solution which is virtually the
analytical solution (the maximum error is of the order of 10−10, which is in accordance with
the stopping criterion for the nonlinear iteration). For the limiter from [24], the violation of
the linearity preservation is clearly visible.
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Figure 4: Example 2, solution with the limiter from Section 4 (left) and that from [24] (right).
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Figure 5: Example 2, cross section of the solutions at y = 0.5.
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Figure 6: Example 3, solutions obtained with the limiter defined in Section 4 (left) and the limiter from [24]
(right).

 0  0.2  0.4  0.6  0.8  1  0  0.2  0.4  0.6  0.8  1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  0  0.2  0.4  0.6  0.8  1

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 7: Example 3, solutions obtained with the limiter defined in Section 4 (left) and the limiter from [24]
(right). Both solutions respect the discrete maximum principle. The solution with the proposed limiter shows
a sharper interior layer, especially at the bottom. A slight smearing can be observed along the boundary
layer at y = 0 for the limiter from [24].

Example 3. Solution with layers. The final example considers a standard test problem
defined in [18]. This problem is given by Ω = (0, 1)2, ε = 10−8, b = (cos(−π/3), sin(−π/3))T ,
c = 0, g = 0, and the boundary condition

ub(x, y) =

{
0 for x = 1 or y ≤ 0.7,
1 else.

Note that the boundary condition from Example 3 can be easily changed to an infinitely
smooth function that coincides with ub from Example 3 at all boundary vertices of the mesh
used for the computations presented in this section. Then Example 3 also formally fits into
the framework considered in Section 5.

The solutions computed with both limiters are presented in Figs. 6 and 7. It can be
observed that both definitions of the limiters provide an acceptable solution. They obey the
DMP and all boundary layers are sharp. A close look at the interior layer, in particular at
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the bottom, shows that the layer of the solution computed with the limiter from Section 4
is a little bit sharper. Also, a slight smearing of the boundary layer at y = 0 is visible for
the limiter from [24].

8. Conclusions and outlook

This paper proposed a new limiter for algebraic stabilizations of steady-state convection-
diffusion-reaction equations within the framework of finite element methods. The main goal
of the construction of the new limiter was that the resulting scheme should obey the DMP
and it should possess the linearity preservation property on general simplicial meshes. Both
properties could be achieved and proved. The definition of the new limiter does not only
rely on algebraic data but also requires some geometric information (on the local mesh). We
think that the enrichment of algebraic stabilizations with geometric information is in general
a promising approach for designing stabilized methods.

The numerical studies showed an optimal order of convergence in the diffusion-dominated
regime, which is not present for the limiter from [24]. As already mentioned, we believe that
this behavior of the new limiter is somehow connected to the linearity preservation, but
the proof is open. A further topic of our future work will be the analysis, and possibly
improvement, of algebraic stabilizations for time-dependent problems.
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