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GENERALIZED W1,1-YOUNG MEASURES AND RELAXATION OF PROBLEMS

WITH LINEAR GROWTH

MARGARIDA BAIA, STEFAN KRÖMER, AND MARTIN KRU�ÍK

Abstract. We completely characterize generalized Young measures generated by sequences of gra-
dients of maps from W 1,1(Ω;RM ) where Ω ⊂ RN . This extends and completes previous analysis by
Kristensen and Rindler [18] where concentrations of the sequence of gradients at the boundary of
Ω were excluded. We apply our results to relaxation of non-quasiconvex variational problems with
linear growth at in�nity. We also link our characterization to Sou£ek spaces [28], an extension of
W 1,1(Ω;RM ) where gradients are considered as measures on Ω̄.

1. Introduction

Oscillations and concentrations appear in many problems of the calculus of variations, partial dif-
ferential equations, and/or optimal control theory; cf. [6] for an overview and examples from elasticity
and continuum mechanics of solids. While Young measures [33] successfully capture oscillatory be-
havior of sequences, they completely miss concentration e�ects. These concentrations e�ects may be
dealt with appropriate generalizations of Young measures, as in DiPerna's and Majda's treatment of
concentrations [10], following Alibert's and Bouchitté's approach in [1] (see also [11]), etc. Detailed
overviews of this subject may be found in [27, 30]. A general feature of all these approaches is the
description of oscillations and/or concentrations in sequences in terms of parametrized measures. Be-
sides the work of Kinderleherer and Pedregal [16, 17] dealing with Young measures, and thus with
oscillations only, both concentrations and oscillations were jointly treated in [20] in W 1,p for p > 1 and
in [18, 26] in W 1,1 and BV. Applications of parametrized measures in optimal control of dynamical
systems with linear growth involving oscillations and concentrations can be found e.g. in [8, 23, 27].

Explicit characterization of such parametrized measures is very important for applications because
it allows us to analyze limit problems. The parametrized measures generated by sequences of gradients
are of a particular interest in vectorial multidimensional calculus of variations, for instance when we
want to minimize integral functionals I(u) :=

∫
Ω
v(∇u(x)) dx with a non-convex (or non-quasiconvex)

integrand v having p-growth at in�nity, i.e., for large arguments. The functional F is then not
lower semicontinuous with respect to weak convergence in W 1,p(Ω;Rm) and its minimizers do not
necessarily exist. Parametrized measures are then applied to de�ne the so-called relaxed problem
tracing the limit behavior of minimizing sequences. For sequences of gradients of maps living in
W 1,p(Ω;RM ), Kinderlehrer and Pedregal characterized Young measures in [16, 17] for p = +∞ and
1 < p < +∞, respectively. If p > 1, concentrations e�ects in minimizing sequence of coercive
functionals are excluded using the so-called Decomposition Lemma proved in [13] which allows to
construct minimizing sequences which do not exhibit concentrations. Consequently, Young measures
su�ce to describe the relaxed functional. On the other hand, concentration e�ects can appear if v
is non-coercive, more precisely if |v(A)| ≤ C(1 + |A|p) for some C > 0. Generalizations of Young
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measures were used in [14, 15, 21] to analyze necessary and su�cient conditions guaranteeing weak
lower semicontinuity of F ; cf. also [6].

If p = 1, i.e, for functionals with linear growth, concentration e�ects are usually always relevant
and often prevent the existence of minimizers in W 1,1, a well-know fact intimately related to the lack of
re�exivity of W 1,1. For precisely that reason, the standard approach to handle functionals with linear
growth relies on extension to BV, which in particular allows to keep track of certain concentrations of
the gradient in the interior of the domain, as singular contributions of the derivative in BV. Moreover,
if the integrand lacks (quasi)convexity, oscillations and concentrations appear simultaneously and are
mutually interconnected. The methods used to characterize Young measures and their generalizations
for p > 1 cannot then be applied; in particular, the Decomposition Lemma [13, Lemma 1.2], which
allows us to replace a sequence of gradients generating a Young measure by a new sequence of gradients
such that the p-th power of the norm in equiintegrable, does not hold in W 1,1 or BV.

In [18], the authors resolved this problem assuming that concentrations do not appear at the
boundary of the domain Ω. As also shown in [18], in particular this is enough to discuss weak∗

lower semicontinuity for integral functionals in BV subject to a Dirichlet condition, because it is
then possible to extend both the integrand and the admissible functions to a larger domain Ω̃, where
everything will be �xed near the boundary. This of course excludes concentration e�ects near the
boundary of ∂Ω. On the other hand, as soon as there is at least a part of the boundary where we
do not impose a Dirichlet condition, one cannot fully avoid this phenomenon as the following simple
example illustrates.

Consider the following one-dimensional variational problem:

min
u∈W 1,1(0,1)

{
I(u) :=

∫ 1

0

((x− 1)2 + ε)|u′(x)|dx+ u(0)2 + (u(1)− 1)2

}
(1.1)

for given 0 < ε < 1. Notice that although no Dirichlet boundary condition was imposed, we still get
the following natural boundary conditions for critical points, at least formally:

(1 + ε)
u′

|u′|
%+ 2u = 0 at x = 0 and ε

u′

|u′|
%+ 2(u− 1) = 0 at x = 1 (nonlinear Robin condition),

where % is the outer normal at the boundary: %(0) = −1, %(1) = +1. Roughly speaking, members of
a minimizing sequence (un)n∈N for (1.1) will try to keep their derivative as small as possible but also
need to achieve some values close to zero and one at x = 0 and x = 1, respectively. Due to the weight
x 7→ (x− 1)2 + ε the best place to switch from one constant to another one is near x = 1. In fact, the
in�mum of I can be calculated explicitly, and we can also give an explicit minimizing sequence: For
every u admissible,

I(u) > ε

∫ 1

0

|u′(x)|dx+ u(0)2 + (u(1)− 1)2 ≥ ε(u(1)− u(0)) + u(0)2 + (u(1)− 1)2 .

The function (u(0), u(1)) 7→ ε(u(1) − u(0)) + u(0)2 + (u(1) − 1)2 is minimized for u(0) = ε/2 and
u(1) = (2− ε)/2 with the value (2ε− ε2)/2. On the other hand, take

un(x) :=

{
ε/2 if 0 ≤ x ≤ 1− 1/n

n(1− ε)x+ ε/2− (1− ε)(n− 1) otherwise.

We see that I(un) → (2ε − ε2)/2 as n → ∞, so it is a minimizing sequence. However, un → 0 in
L1(0, 1) and (u′n) concentrates at x = 1. In particular, no minimizer exists in the admissible class of
competitors in W 1,1(0, 1).

It is not entirely obvious how to relax I in BV, or other functionals (formally) involving a natural
boundary condition of Robin type. In fact, if we simply replace the integral part of I with its
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relaxation with respect to weak∗ convergence in BV while leaving the boundary term alone, we get
for all u ∈ BV (0, 1)

I1(u) :=

∫ 1

0

((x− 1)2 + ε) d|Du(x)|+ u(0)2 + (u(1)− 1)2.

where u(0) and u(1) are understood in the sense of trace in BV. However, this clearly is not the
right choice, because I1 is still not lower semicontinuous with respect to weak∗ convergence in BV
for ε < 2: with the minimizing sequence (un) de�ned above, we have un ⇀∗ 0 in BV and I1(un) =
I(un) → (4ε − ε2)/4 < I1(0) = 1. Now, the main issue is that the trace at x = 1 is not continuous
along (un), which here causes the term (un(1) − 1)2 to jump up in the limit, re�ecting the fact that
the concentration of (u′n) at x = 1 is being dropped in the weak∗-limit in BV . The natural way to
solve this dilemma is to consider a slightly larger space, and a good choice is X := BV (0, 1) × R2,
the closure of W 1,1 (and BV ), embedded into X by u ∈ W 1,1 7→ (u, (u(0), u(1))) ∈ X, with respect
to weak∗-convergence in X. Essentially, we now keep track of the �true� boundary value at x = 0, 1
along sequences in W 1,1 possibly di�erent from the trace of the limit function in BV , and it is not
di�cult to check that the relaxation of I (and I1) in X is given for all (u, (β0, β1)) ∈ BV (0, 1)×R2 by

I2(u, (β0, β1)) :=

∫ 1

0

((x− 1)2 + ε) d|Du(x)|+ (1 + ε) |u(0)− β0|+ β0
2 + ε |β1 − u(1)|+ (β1 − 1)2,

where u(0) and u(1) are understood in the sense of traces in BV . From this, we can deduce the correct
relaxation of I in BV : I3(u) := inf(β0,β1)∈R2 I2(u, (β0, β1)). However, this is far less natural than I2,
and essential information encoded by β1 at x = 1 is lost that way.

The example can be easily generalized to higher dimensions by considering Ω ⊂ RN a bounded
domain of class C1 with two disjoint parts of the boundary Γ0 and Γ1 of positive N − 1 dimensional
Hausdor� measure. For instance, for u ∈W 1,1(Ω;RM ) & u(0) = 0 on Γ0, a rough analogue of I (with
a slightly modi�ed boundary term to ensure J <∞ on W 1,1) is given by

minimize J(u) :=

∫
Ω

(dist2(x,Γ1) + ε)|∇u(x)|dx+

∫
Γ1

√
1 + (u(x)− ū(x))2 dHN−1(x) ,

where Ω ⊂ RN is a bounded domain with a C1 boundary , Γ1 ⊂ ∂Ω and ū is a given function in
L1(Γ1,HN−1b∂Ω;RM ). Above, �dist� denotes the distance function.

Concerning relaxation of this kind of functional, a natural replacement for the space X above is
the Sou£ek space W 1

µ(Ω̄) ∼= BV (Ω)×M(∂Ω), keeping track of the �true� boundary value as a measure
on ∂Ω (the so-called outer trace in W 1

µ(Ω̄)). For more details on W 1
µ(Ω̄) we refer to Section 7.

The previous example shows that concentration e�ects at the boundary can be quite relevant for
minimization problems with linear growth at in�nity, even if all terms of the functional are convex,
non-negative and coercive. Once oscillations favored by nonconvex integrands come into play on top of
that, we are lead to study the generalized gradient Young measures appearing as the natural limiting
object capturing this behavior.

The main goal of our work is to complete the characterization of generalized Young measures given
in [18] by deriving necessary and su�cient conditions which must be satis�ed at the boundary of the
domain Ω. In particular, our main result, summarized in Theorem 3.1, allows us to easily set up and
prove relaxation results for a large class problems like our example, �rst in the space of generalized
gradient Young measures and then in the Sou£ek space, as a straightforward corollary.

The plan of the paper is as follows. We �rst introduce necessary notation and collect some auxiliary
results in Section 2. Then we state the main result, i.e., characterization of generalized gradient
measures up to the boundary; cf. Section 3. Proofs of necessity and su�ciency of our new condition
at the boundary are the subject of Sections 5 and 6, respectively. The �rst one, in Section 7, is
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a relationship of generalized Young measures to the Sou£ek space [28] which is a kind of a �ner
completion of W 1,1(Ω;RM ) than BV (Ω;RM ). As an application of our results, we then present
a relaxation theorem for functionals on W 1,1(Ω;RM ) including integral terms on the boundary in
Section 9. Our work then closes with the Appendix which has three sections. Its �rst section contains
a proof of an auxiliary result related to weak* lower semicontinuity along sequences of gradients which
do not oscilate but concentrate at the boundary. The second section states a relationship between
generalized Young measures and DiPerna-Majda measures often used by the second and the third
author to characterize oscillations/concentrations in sequences of gradients. Finally, in the third
section we explain the connection between quasiconvexity at the boundary and a variant of it which
appears as an assumption in our relaxation theorem.

2. Notations and preliminaries

We start with some de�nitions and explanations of frequently used notation.

2.1. Notation. Throughout the text, unless otherwise speci�ed, we will use the following notation.

- Ω ⊂ RN , N ≥ 1, stands for a bounded domain with a boundary of class C1.
- |K| denotes the Lebesgue measure of K ⊂ RN .
- B denotes the open unit ball in RN centered at zero.
- Given a unit vector % ∈ RN , we de�ne the unit half-ball

D% = B ∩ {x ∈ RN ; % · x < 0} (2.1)

and Γ% := {x ∈ ∂D%; % · x = 0} ⊂ ∂D%.
- Br(x) := {y : |y − x| < r} (r > 0 and the center point x in an Euclidean vector space, with
norm |·|, that should be clear from the context).

- (K)r :=
⋃
x∈K Br(x) (open r-neighborhood of a set K ⊂ RN ).

- The unit spheres centered at zero in RN and RM×N are denoted by SN−1 and SM×N−1,
respectively.

- Given a ∈ RM and b ∈ RN , a ⊗ b is the matrix given by (a ⊗ b)ij = aibj for all 1 ≤ i ≤ M
and all 1 ≤ j ≤ N .

- Given real-valued functions x 7→ f(x) and y 7→ g(y), the function (x, y) 7→ (f ⊗ g)(x, y) is
de�ned by (f ⊗ g)(x, y) := f(x)g(y).

- C represents a generic positive constant whose value might change from line to line.

2.2. Space of functions. ByM(X) we denote the set of Radon measures on a Borel set X and by
M+

1 (X) its subset of probability measures. We recall that the support of a measure µ, suppµ, is the
smallest closed set X such that µ(A) = 0 if X ∩ A = ∅. Given a measure µ, we write �µ-almost all�
or �µ-a.e.� if we mean �up to a set with the µ-measure zero�. If µ = LN , the N -dimensional Lebesgue
measure, we usually omit writing it in the notation. As usual HN−1 represents the (N−1)-dimensional
Hausdor� measure in RN .

Given a domain Ω ⊂ RN the space C(Ω) consists of all real-valued continuous functions de�ned in
Ω and C0(Ω) stands for the subset of these functions whose support is contained in Ω. W 1,p(Ω;Rm),
1 ≤ p ≤ +∞, is the usual Sobolev space of measurable mappings which together with their �rst
(distributional) derivatives are pth-integrable (if p < +∞) or essentially bounded (if p = +∞). The
space of functions with bounded variation, BV(Ω;RM ) (see [2]), consists of all u ∈ L1(Ω;RM ) such
that its �rst order distributional derivatives Djui ∈ M(Ω). Given u ∈ BV(Ω;RM ) we denote by Du
the matrix-valued measure whose entries are Djui, ∇u is the density of the absolutely continuous
part of Du with respect to the Lebesgue measure, while Dus denotes the singular part of Du with
polar decomposition dDus(x) = dDus

d|Dus| (x)d |Dus| (x). We recall that (un)n∈N ⊂ BV(Ω;RM ) converges
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weakly∗ to u ∈ BV(Ω;RM ) if un → u strongly in L1(Ω;RM ) and Dun
∗
⇀ Du inM(Ω;RM×N ); see [2,

Def. 3.11].
Given µ ∈ M(Ω) we denote by |µ| its total variation (norm), i.e., |µ| := sup |

∫
Ω
f dµ| where the

supremum is taken over all f ∈ C0(Ω) such that ‖f‖C0(Ω) = 1.

2.3. Quasiconvex functions and functions with linear growth. Let Ω ⊂ RN be a bounded
Lipschitz domain. A function v : RM×N → R is said to be quasiconvex [9] if for any A ∈ RM×N and
any ϕ ∈W 1,∞

0 (Ω;RM )

v(A)|Ω| ≤
∫

Ω

v(A+∇ϕ(x)) dx . (2.2)

If v : RM×N → R is not quasiconvex its quasiconvex envelope Qv : Rm×n → R is de�ned by

Qv = sup
{
h ≤ v; h : RM×N → R quasiconvex

}
or Qv = −∞ if the set on the right-hand side is empty . If v is locally bounded and Borel measurable
then for any A ∈ RM×N (see [9])

Qv(A) = inf
ϕ∈W 1,∞

0 (Ω;RM )

1

|Ω|

∫
Ω

v(A+∇ϕ(x)) dx . (2.3)

Given a real-valued function v on some Euclidean space with norm |·|, v is said to have at most
linear growth if

|v(·)| ≤ C(1 + |·|) for a constant C ≥ 0.

Clearly �at most linear growth� only refers to the behavior of v for large norms of its arguments.
Throughout this work, we use nonlinear transformations of measures, more precisely, derivatives

in BV. A standard class of functions for which such nonlinear expressions can be de�ned is

Υ := {v ∈ C(RM×N ); v has at most linear growth & v∞ exists } (2.4)

where v∞ denotes the recession function of v (if it exists). We recall that a function v is positively one-
homogeneous if v(α·) = αv(·) for all α ≥ 0 and we observe that v∞ : RM×N → R is the (automatically
continuous and positively one-homogeneous) function de�ned by

v∞(A) := lim
α→+∞,t→A

1

α
v(αt). (2.5)

If v∞ exists, it coincides with the generalized recession function v] of v given by

v](A) := lim sup
α→+∞

1

α
v(αA). (2.6)

Note, however, that even if v] is continuous and the lim sup in (2.6) is a limit, this does not
guarantee (2.5).

2.4. Tools and notation for sequences and functionals on BV. Here we brie�y recall some no-
tation for nonlinear functionals on BV and some results of [5] which will be used below. In particular,
we rely on the following notion:

De�nition 2.1. Given a sequence (un) ⊂ BV(Ω;RM ) and a closed set K ⊂ Ω, we say that (Dun)
does not charge K, if |Dun| is tight in Ω̄ \K, i.e.,

sup
n∈N
|Dun|

(
(K)r ∩ Ω

)
−→
r→0+

0.
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Lemma 2.2 (Local decomposition in BV, [5, Lemma 4.2]). Let Ω ⊂ RN be open and bounded and

let Kj ⊂ Ω, j = 1, . . . , J , be a �nite family of compact sets such that Ω ⊂
⋃
j Kj. Then for every

bounded sequence (un) ⊂ BV(Ω;RM ) with un → 0 in L1(Ω;RM ), there exists a subsequence (un) (not
relabeled) which can be decomposed as

un = u1,n + . . .+ uJ,n,

where for each j ∈ {1, . . . , J}, (uj,n)n is a bounded sequence in BV(Ω;RM ) converging to zero in L1

such that the following two conditions hold for every j:

(i) {uj,n 6= 0} ⊂ {un 6= 0}, {uj,n 6= 0} ⊂ (Kj) 1
n
\
⋃
i<j(Ki) 1

2n
,

|Duj,n| is absolutely continuous w.r.t. |Dun|+ LN ,
and |Duj,n| ≤ |Dun|+ 1

n as measures;

(ii) (Duj,n) does not charge
⋃
i<jKi.

Moreover, if ∂Ω is Lipschitz and each un has vanishing trace on ∂Ω, this is inherited by uj,n.

As derived in [5] the properties of the component sequences found in Lemma 2.2 guarantee that at
least asymptotically as n→∞, they behave as if they had pairwise disjoint support. To present this
result we recall that if v ∈ Υ and u ∈ BV(Ω;RM ), v(Du) is de�ned as the real-valued measure given
by

dv(Du)(x) := v(∇u(x))dx+ v∞
( dDus

d |Dus|
(x)
)

d |Dus| (x), (2.7)

Proposition 2.3 (cf. [5, Proposition 4.3]). Suppose that v ∈ Υ. Then for every u ∈ BV(Ω;RM ) and
every decomposition of a bounded sequence un = u1,n + . . . + uJ,n ∈ BV(Ω;RM ) with the properties
listed in Lemma 2.2, we have that

v(Dun +Du)− v(Du)−
J∑
j=1

[
v
(
Duj,n +Du

)
− v(Du)

]
−→
n→∞

0

in total variation of measures.

Another useful observation is that for sequences purely concentrating at the boundary (but not in
the interior), it is always possible to add or remove a non-zero weak∗ limit:

Proposition 2.4 (cf. [5, Proposition 5.4] and its proof). Suppose that v ∈ Υ, and let (cn)n∈N ⊂
BV(Ω;RM ) be a bounded sequence such that Sn := {cn 6= 0} ∪ supp |Dcn| ⊂ (∂Ω)rn with a decreasing
sequence rn ↘ 0. Then for every c ∈ BV(Ω;RM ),

v(Dc+Dcn)− v(Dc)− v(Dcn) + v(0) −→
n→∞

0

in total variation of measures.

2.5. Functions with quasi-sublinear growth from below. This is a central condition for our
analysis and it �rst appeared in [5].

De�nition 2.5 (Quasi-sublinear growth from below). Assume that x0 ∈ ∂Ω. We say that a function
v : RM×N → R is quasi-sublinear from below (qslb) at x0 (shortly v ∈ QSLB(x0)) if

for every ε > 0, there exist δ = δ(ε) > 0, C = C(ε) ∈ R s.t.∫
Ω∩Bδ(x0)

v(∇u(x)) dx ≥ −ε
∫

Ω∩Bδ(x0)

|∇u(x)| dx− C

for every u ∈W 1,1(Bδ(x0) ∩ Ω;RM ) with compact support in Bδ(x0).
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If ∂Ω is of class C1 near x0 ∈ ∂Ω and v ∈ Υ then De�nition 2.5 is equivalent to the following
statement: We say that v ∈ QSLB(x0) if for every ε > 0, there exists C = C(ε) ≥ 0 such that∫

D%(x0)

v(∇u(x)) dx ≥ −ε
∫
D%(x0)

|∇u(x)| dx− C (2.8)

for all u ∈W 1,1
0 (B;RM ), where %(x0) is the outer unit normal to ∂Ω at x0.

In this case, we write (with slight abuse of the notation) v ∈ QSLB(%(x0)) to indicate the depedence
of the property of v on the normal vector to the boundary. De�nition 2.5 corresponds to the condition
used in Theorem 1.6 (ii) in [19] for p = 1 and to the notion of 1-quasisubcritical growth from below
at a boundary point as de�ned in [20].

Remark 2.6. As the name suggests quasi-sublinear growth from below is only a�ected by the behavior
of v for large arguments.

It holds that v ∈ QSLB(x0) if and only if v∞ ∈ QSLB(x0), assuming v∞ (see (2.5)) exists.
Moreover, for positively one-homogeneous functions such as v∞, (2.8) can be simpli�ed signi�cantly.
More precisely, we have v∞ ∈ QSLB(%(x0)) if and only if∫

D%(x0)

v∞(∇u(x)) dx ≥ 0 (2.9)

for all u ∈W 1,1
0 (B;RM ). For more details, we refer to [5, Section 3].

Functions with quasi-sublinear growth from below play a key role in characterization of weak*-lower
semicontinuity in BV . We recall the following de�nition.

De�nition 2.7 (w∗-lsc). We say that a functional F : BV(Ω;RM )→ R is sequentially weakly∗-lower
semicontinuous (w∗-lsc) in BV(Ω;RM ) if

lim inf
n→∞

F (un) ≥ F (u)

for every sequence (un) ⊂ BV(Ω;RM ) and such that un
∗
⇀u in BV.

Let f ∈ C(Ω̄; Υ) and F : BV(Ω;RM )→ R be de�ned as

F (u) :=

∫
Ω

df(x,Du)(x) , (2.10)

where

df(x,Du) := f(x,∇u(x))dx+ f∞
(
x,

dDu

d |Du|
(x)
)

d |Dsu| (x) .

The proof of next proposition, Proposition 2.8, is implicitly contained in that of Theorem 2.9 in
[5]. It shows that being of quasi-sublinear growth from below is su�cient to ensure weak* lower
semicontinuity along sequences concentrating at the boundary. For the convenience of the reader, a
proof of this proposition can be found in the Appendix A.

Proposition 2.8. Assume that f = g⊗v with (g, v) ∈ C(Ω̄)×Υ, f(x, ·) ∈ QSLB(x) for all x ∈ ∂Ω and
F is given by (2.10). Then F is weak*-lower semicontinuous along all sequences (cn)n∈N ⊂ BV(Ω;RN )
that are bounded and satisfy Sn := {cn 6= 0} ∪ supp |Dcn| ⊂ (∂Ω)rn for a decreasing sequence rn ↘ 0.

The dependence on the normal at a given boundary point is illustrated by the following lemma.

Lemma 2.9. Let v : RM×N → R be continuous and with linear growth. Given ρ1, ρ2 ∈ SN−1

if R21 ∈ RN×N is an orthogonal matrix such that ν2 = R21ρ1 then v ∈ QSLB(ν1) if and only if
A 7→ v(AR21) ∈ QSLB(ρ2).
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Proof. Let ϕ1 ∈W 1,1
0 (B;RM ). We have that∫

Dρ1

v(∇ϕ1) dx ≥ −ε
∫
Dρ1

|∇ϕ1|p dx− Cε

if and only if for ϕ2 ∈W 1,p
0 (B1;RM ), ϕ2(y) := ϕ1

(
R−1

21 y
)
,∫

Dρ2

v
(
(∇ϕ2)R21

)
dy ≥ −ε

∫
Dρ2

|∇ϕ2|p dy − Cε,

by the change of variables given by y = R21x. Here, note that Dρ2 = R21Dρ1 , |detR21| = 1 and
|(∇ϕ2)R21| = |∇ϕ2|. �

Similar to the well-known relationship of quasiconvexity and rank-1-convexity, the following can
be said about functions in QSLB:

Lemma 2.10. Let % ∈ SN−1 and let v ∈ QSLB(%) a positively one-homogeneous function. Then for
all matrices of the form A := a⊗ %, with some �xed a ∈ RM , we have that v(A) ≥ 0.

Proof. The proof is indirect. Assume by contradiction that v(A) < 0 for an admissible matrix A.
Let ε, r ∈ (0, 1

2 ) and de�ne

S(r) := {y ∈ ∂D%, |y| < r} ⊂ ∂D%

(see (2.1)) and let

Z−(r, ε) := {y − t% | y ∈ ∂D%, |y| < r, 0 < t < ε} ⊂ D%,

Z+(r, ε) := {y + t% | y ∈ ∂D%, |y| < r, 0 < t < ε} ⊂ D%,

denote the two cylinders of height ε on either side of their circular base S(r) located in the �at part
of ∂D%. Finally, let Z(r, ε) denote the interior of Z−(r, ε) ∪ Z+(r, ε). For �xed r > 0, we choose
ϕε ∈W 1,∞

0 (B) in such a way that

∇ϕε = A in Z−(r, ε), ∇ϕε = −A in Z+(r, ε), ∇ϕε = 0 in B \ Z(r + ε, ε),

and
|∇ϕε| ≤ |A| in Z(r + ε, ε) \ Z(r, ε),

which is, basically, (for r >> ε) a long, narrow �tent� on Z(r, ε) closed with �face walls� of similar
slope above Z(r + ε, ε) \ Z(r, ε). Because of v∞ ∈ QSLB(%), we have

0 ≤ 1

ε

∫
D%

v(∇ϕε) dx

=
1

ε

∣∣Z−(r, ε)
∣∣ v(A) +

1

ε

∫
Z−(r+ε,ε)\Z−(r,ε)

v(∇ϕε) dx

≤ HN−1(S(r))v(A) +HN−1(S(r + ε) \ S(r)) |A| ‖v‖L∞(SM×N−1) .

Since v(A) < 0 and HN−1(S(r+ ε) \ S(r)) ≤ Cε, we obtain a contradiction in the limit as ε→ 0. �

Remark 2.11. For general functions v ∈ QSLB(%) possessing a recession function v∞, we automatically
have v∞ ∈ QSLB(%), and by continuity, 1-homogeneity and (2.5),

v∞(A) = lim
t→+∞

1

t
v∞(ξ + tA) = lim

t→+∞

1

t
v(ξ + tA)

for all ξ, A ∈ RM×N . For v ∈ QSLB(%), the assertion of Lemma 2.10 therefore generalizes to

lim sup
t→+∞

1

t
v(ξ + t(a⊗ %)) ≥ 0, for all ξ ∈ RM×N , a ∈ RM ,

i.e., v has sublinear growth from below along rank-1 lines corresponding to the normal %.
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2.6. Young measures and their generalizations.

2.6.1. Young measures: the sets Y(Ω;RM×N ) and Y (Ω;RM×N ).

Young measures on a bounded domain Ω ⊂ RN are weakly*-measurable mappings x 7→ νx, x ∈ Ω,
with νx : Ω →M+

1 (RM×N ). We recall that the adjective �weakly*-measurable� means that, for any
v ∈ C0(RM×N ), the mapping x 7→

∫
RM×N v(A)dνx(A), x ∈ Ω, is measurable in the usual sense. Let us

also remind here that, by the Riesz theorem, M(RM×N ), normed by the total variation, is a Banach
space which is isometrically isomorphic with C0(RM×N )∗ (the dual space of C0(RM×N )).

We denote the set of all Young measures by Y(Ω;RM×N ). It is known that Y(Ω;RM×N ) is a
convex subset of L∞w∗(Ω;M(RM×N )) ∼= L1(Ω;C0(RM×N ))∗, where the subscript �w*� indicates the
property �weakly*-measurable�.

Let
C1(RM×N ) = {v ∈ C(RM×N ); lim

|A|→+∞
v(A)/|A| = 0} . (2.11)

As it was shown in [3, 30, 31], for every bounded sequence (Yk)k∈N ⊂ L1(Ω;RM×N ), there exists
a subsequence (not relabeled) and a Young measure ν = {νx}x∈Ω ∈ Y(Ω;RM×N ) such that for all
v ∈ C1(RM×N ) (see (2.11)) and all g ∈ L∞(Ω)

lim
k→∞

∫
Ω

g(x)v(Yk(x)) dx =

∫
Ω

g(x)

[∫
RM×N

v(A)dνx(A)

]
dx . (2.12)

Let us denote by Y (Ω;RM×N ) the set of all Young measures which are created in this way, i.e., by
considering all bounded sequences in L1(Ω;RM×N ).

If v has linear growth at in�nity the limit passage (2.12) generally does not hold due to concen-
tration e�ects created by (Yk) if this sequence is not uniformly integrable. For this reason, various
generalizations have been invented to allow for a description of limits in (2.12). We refer to [27] for a
survey of these approaches. The authors in [1] showed that if (Yk)k∈N ⊂ L1(Ω;RM×N ) is a bounded
sequence then there is a (non-relabeled) subsequence, a Young measure ν ∈ Y (Ω;RM×N ), a positive
measure λ ∈M(Ω̄) and a mapping ν∞ ∈ L∞w∗(Ω̄, λ;M(SM×N−1)) with values in probability measures
and de�ned for λ-almost all x ∈ Ω̄ such that for all g ∈ C(Ω̄) and all v ∈ Υ (c.f. (2.4))

lim
k→∞

∫
Ω

g(x)v(Yk(x)) dx =

∫
Ω

g(x)

[∫
RM×N

v(A)dνx(A)

]
dx

+

∫
Ω̄

g(x)

[∫
SM×N−1

v∞(A)dν∞x (A)

]
dλ(x) . (2.13)

Roughly speaking, λ measures how much (|Yk|) concentrates and ν∞ accounts for the spatial distri-
bution of concentrations. A closely related description can also be found in [11] and [13].

Continuous functions possessing recession function can be continuously extended by radial limits
to the compacti�cation of RM×N by the sphere. Indeed, de�ning d : RM×N → B, d(A) := A/(1+ |A|)
we can identify the compacti�cation by the sphere with B̄. Conversely, to any continuous function on
B̄ we can assign a function on RM×N which has the recession function. Notice also that positively
one-homogeneous functions are fully determined by their values on SM×N−1. If v ∈ Υ then we can
assume that

v(A)

1 + |A|
=

{
c+ v0,0(A) + v0,1

(
A
|A|

)
|A|

1+|A| if A 6= 0,

c+ v0,0(0) if A = 0 ,

where v0,0 ∈ C0(RM×N ), v0,1 ∈ C(SM×N−1) and c ∈ R. Consequently, for g ∈ C(Ω̄) the map
(x, s) 7→ g(x)v(s)/(1 + |s|) ∈ C(Ω̄) ⊗ C(B̄). By the Stone-Weierstrass Theorem equality (2.13) also
holds for test functions of the form (x,A) 7→ f(x,A) = f0(x,A/(1+|A|))(1+|A|) where f0 ∈ C(Ω̄×B̄).
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Notice that such a function f always has recession function f∞(x,A) = |A| f0(x, A|A| ), satisfying an
even stronger version of (2.5) additionally involving a kind of uniform convergence in x, namely,

f∞(x,A) = lim
α→+∞,t→A,y→x

1

α
f(y, αt). (2.14)

In particular, f∞ is always continuous in x. In general, (2.13) cannot be expected to hold with test
functions f having a (generalized) recession function with discontinuities in x.

2.6.2. The set of generalized Young measures Ygen(Ω̄;RM×N ). We denote by Λ := (ν, λ, ν∞) the triple
appearing in (2.13) and the set of all such triples is represented by Ygen(Ω̄;RM×N ), or brie�y Ygen.
For the right hand side of (2.13), given g ∈ C(Ω̄) and all v ∈ Υ, we occasionally use the short-hand
notation

〈〈Λ, g ⊗ v〉〉 :=

∫
Ω

g(x)〈νx, v〉dx+

∫
Ω̄

g(x)〈ν∞x , v∞〉dλ(x), (2.15)

where

〈νx, v〉 :=

∫
RM×N

v(A)dνx(A) and 〈ν∞x , v∞〉 :=

∫
SM×N−1

v∞(A)dν∞x (A).

Also note that actually, νx is only de�ned for a.e. x ∈ Ω (or, equivalently, a.e. x ∈ Ω̄, since ∂Ω has
vanishing Lebesgue measure), and ν∞x is only de�ned for λ-a.e. x ∈ Ω̄. Accordingly, given Λ1,Λ2 ∈
Ygen, Λ1 = (ν1, λ1, ν

∞
1 ), Λ2 = (ν2, λ2, ν

∞
2 ), with a slight abuse of notation we write Λ1 = Λ2 if

ν1,x = ν2,x for a.e. x ∈ Ω, λ1 = λ2 and ν∞1,x = ν∞2,x for λ1 or λ2-a.e. x ∈ Ω̄.

De�nition 2.12 (Generation). We say that Λ = (ν, λ, ν∞) is generated by a bounded sequence
(Yk) ⊂ L1(Ω;RM×N ) whenever (2.13) holds.

We observe that this notion also makes sense for slightly more general sequences, namely, if (Yk)
is a sequence of RM×N -valued Radon measures on Ω with bounded total variation. In that case, we
say that Λ = (ν, λ, ν∞) is generated by (Yk) if

lim
k→∞

∫
Ω̄

g(x)dv(Yk)(x) = 〈〈Λ, g ⊗ v〉〉 (2.16)

for every g ∈ C(Ω̄) and every v ∈ Υ. Analogous to the special case of BV derivatives mentioned
before here

dv(Yk)(x) := v
( dYk
dLN

(x)
)

dx+ v∞
( dYk
d |Yk|

(x)
)

d |Y sk | (x)

where dYk
dLN denotes the density of the absolutely continuous part of Yk w.r.t. the Lebesgue measure,

Y sk is its singular part and dYk
d|Yk| stands for the density of Yk with respect to its total variation |Yk|.

Example 2.13. Suppose that 0 ∈ Ω̄, take Y ∈ L1(B;RM×N ) and extend it by zero to the whole
space Ω (without renaming it). De�ne Yk(x) := kNY (kx) for all k ∈ N. Clearly (Yk)k∈N is uniformly
bounded in L1(Ω;RM×N ) and Yk → 0 in measure. Consequently, (Yk) generates Λ ∈ Ygen such that
νx = δ0, λ = ‖Y ‖L1δ0 and∫

SM×N−1

v∞(A)dν∞0 (A) = ‖Y ‖−1
L1

∫
Dρ

v∞(Y (z)) dz .

Notice that in this particular example, x = 0 is the only relevant point for ν∞x in Ω̄ because λ(Ω̄\{0}) =
0. This kind of example is also possible for gradients, i.e., if Y = ∇u for some u ∈ W 1,1(Ω;RM ). In
this case, we let Yk = ∇uk with uk(x) := kN−1u(kx), and consequently, Λ is a generalized gradient
Young measure as de�ned below.
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2.6.3. Piecewise generation of generalized Young measures. The natural embedding of a function space
containing a generating sequence, say, L1(Ω;RM×N ), into Ygen(Ω̄;RM×N ), is not linear, because in
Ygen, addition and multiplication with scalars is carried out after the application of a nonlinear test
function v. Nevertheless, in some special cases, a kind of additivity can be observed. Essentially, we
need two generating sequences lacking any kind of interaction. In terms of the generated generalized
Young measure, this is made precise by requiring them to be orthogonal in the following measure
theoretic sense:

De�nition 2.14. Given Ψ = (ηx, µ, η
∞
x ),Θ = (ϑx, σ, ϑ

∞
x ) ∈ Ygen, we write that Ψ ⊥ Θ if there are

two disjoint Borel sets S, T ⊂ Ω̄ such that Ω̄ = S ∪ T , µ(T ) = 0 = LN ({x ∈ T | ηx 6= δ0}) and
σ(S) = 0 = LN ({x ∈ S | ϑx 6= δ0}).

We now claim that for such a pair, the sum of the respective generating sequences will always
generate the sum χSΨ + χTΘ. The key ingredient for the proof is the following uniform continuity
property:

Proposition 2.15 (special case of [5, Proposition 4.5]). Let v ∈ Υ and g ∈ C(Ω̄). Then for every
pair of sequences (µk), (λk) ⊂M(Ω;RM×N ) such that |µk| (Ω) and |λk| (Ω) are bounded,

|µk − λk| → 0 implies that

∫
Ω

g(x)dv(µk)(x)−
∫

Ω

g(x)dv(λk)(x)→ 0.

Lemma 2.16 (additive behavior along generating sequences for orthogonal generalized Young mea-
sures). Let Ψ = (ηx, µ, η

∞
x ),Θ = (ϑx, σ, ϑ

∞
x ) ∈ Ygen be such that Ψ ⊥ Θ, and let Ω̄ = S∪̇T denote

the associated decomposition of Ω of De�nition 2.14. Moreover, let (wk), (zk) ⊂ L1 be two bounded
sequences generating Ψ and Θ, respectively. Then (wk + zk) generates

χSΨ + χTΘ := (χS(x)ηx + χT (x)ϑx, µ(S ∩ ·) + σ(T ∩ ·), χS(x)η∞x + χT (x)ϑ∞x ).

Remark 2.17. Lemma 2.16 also holds for more general generating sequences in M instead of L1. The
proof remains the same, apart from the fact that expressions like, say, v(wk)dx have to be replaced
by dv(wk)(x).

Proof of Lemma 2.16. Let Λ = (νx, λ, ν
∞
x ) be the generalized Young measure generated by (wk +

zk) (or a suitable subsequence, not relabeled). Since (Ψ, S, (wk)) and (Θ, T, (zk)) are interchangeable,
it su�ces to show that Λ = Ψ on S, i.e., νx = ηx for LN -a.e. x ∈ S, λ|S = µ|S and ν∞x = η∞x for
λ-a.e. x ∈ S.

By the inner regularity of the Borel measures µ̃, σ̃ de�ned by

dµ̃(x) := dµ(x) + 〈ηx, |·|〉dx, dσ̃(x) := dσ(x) + 〈ϑx, |·|〉dx,
there exist increasing sequences of compact sets S(m) ⊂ S and T (m) ⊂ T such that for all m ∈ N,∣∣∣µ̃(S(m))− µ̃(S)

∣∣∣ ≤ 1

m
and

∣∣∣σ̃(T (m))− σ̃(T )
∣∣∣ ≤ 1

m
.

Since µ̃(S \
⋃
m∈N S

(m)) = 0, it now su�ces to show that Λ = Ψ on S(m) for all m.

Suppose by contradiction that Λ 6= Ψ on S(m) for an m ∈ N. Consequently, there exist ε > 0,
g ∈ C(S(m)) and v ∈ Υ such that

ε <

∣∣∣∣∫
S(m)

g(x)
(
〈ηx, v〉dx+ 〈η∞x , v∞〉dµ(x)

)
−
∫
S(m)

g(x)
(
〈νx, v〉dx+ 〈ν∞x , v∞〉dλ(x)

)∣∣∣∣ (2.17)

By de�nition of Υ, there is a constant C > 0 such that |v(·)| ≤ C(1 + |·|) and |v∞(·)| ≤ C |·|. Due to
dominated convergence, there exists a neighborhood V of S(m) in Ω̄ such that

‖g‖L∞(S(m))

∫
V \S(m)

C
(

(1 + 〈νx, |·|〉) dx+ 〈ν∞x , |·|〉dλ(x)
)
≤ ε

3
, (2.18)
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where Λ := (νx, λ, ν
∞
x ) denotes the generalized Young measure generated by (|wk| + |zk|) (up to

a subsequence). Observe that besides for Λ, (2.18) also holds for any generalized Young measure
generated by a sequence (yk) such that |yk| ≤ |wk| + |zk| a.e. in Ω. Without changing notation, we
extend g to a function in C(Ω̄) in such a way that g = 0 on Ω̄ \ V and ‖g‖L∞(Ω̄) ≤ ‖g‖L∞(S(m)).

On the other hand, for any function ϕ ∈ C(Ω̄), we have∫
Ω

ϕ(x) |zk| dx→ 〈〈Θ, ϕ⊗ |·|〉〉 =

∫
Ω̄

ϕ(x) dσ̃(x).

In particular, for arbitrary but �xed m,h ∈ N and any set U = U(m,h) ⊂ Ω̄ which is relatively open
with respect to Ω̄ and satis�es S(m) ⊂ U ⊂ U ⊂ Ω̄ \ T (h), we may choose 0 ≤ ϕ ≤ 1 such that ϕ = 1
on U and ϕ = 0 on T (h), which yields that

lim sup
k

∫
U

|zk| dx ≤ σ̃(Ω̄ \ T (h)) = σ̃(T \ T (h)) ≤ 1

h
. (2.19)

By (2.19) and Proposition 2.15, we can choose h ∈ N large enough, together with an associated
neighborhood U = U(m,h) of S(m) in Ω̄, w.l.o.g. U ⊂ V , such that

lim sup
k

∣∣∣∣∫
Ω

g(x)v(wk + χUzk) dx−
∫

Ω

g(x)v(wk) dx

∣∣∣∣ ≤ ε

3
(2.20)

Recall that (wk) generates Ψ, and let ΛU denote the generalized Young measure generated by (wk +
χUzk) (up to a subsequence). Passing to the limit inside the modulus in (2.20), we get that

|〈〈ΛU , g ⊗ v〉〉 − 〈〈Ψ, g ⊗ v〉〉| ≤
ε

3
(2.21)

As remarked above just below (2.18), besides for Λ, (2.18) also holds for the generalized Young
measures ΛU = (νU,x, λU , ν

∞
U,x) and Ψ. Since g = 0 outside of V , we can apply these two estimates in

(2.21), and infer that∣∣∣∣∫
S(m)

g(x)
(
〈νU,x, v〉dx+ 〈ν∞U,x, v〉dλU (x)

)
−
∫
S(m)

g(x)
(
〈ηx, v〉dx+ 〈η∞x , v〉dµ(x)

)∣∣∣∣ ≤ ε. (2.22)

Since S(m) is compactly contained in U , the generating sequences of Λ and ΛU coincide on a whole
neighborhood of S(m), whence Λ = ΛU on S(m). Therefore, (2.22) contradicts (2.17). �

2.6.4. Generalized gradient Young measures: GYM(Ω̄;RM ).

The main topic of this article is an explicit characterization of the subclass of generalized Young
measures generated by gradients.

De�nition 2.18 (generalized gradient Young measures). We call Λ := (ν, λ, ν∞) ∈ Ygen a generalized
BV -gradient Young measure if it is generated by a sequence of derivatives in BV , i.e., if (2.16) holds
with Yk = Duk for a bounded sequence (uk) ⊂ BV (Ω;RM ). The class of all generalized BV -gradient
Young measures is denoted by GYM(Ω̄;RM ), or brie�y GYM.

Remark 2.19. As already pointed out in [18, Proposition 4], every Λ ∈ GYM can be generated by
(∇uk), for a suitable bounded sequence (uk) ∈ W 1,1(Ω;RM ). In other words, GYM is also the class
of all generalized W 1,1-gradient Young measures.

For generalized gradient Young measures satisfying λ(∂Ω) = 0, an explicit characterization is
provided by the following result.
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Theorem 2.20 ([18, Theorem 9]). Let Ω ⊂ RN be a bounded Lipschitz domain, and let Λ :=
(ν, λ, ν∞) ∈ Ygen(Ω̄;RM×N ) such that λ(∂Ω) = 0. Then Λ ∈ GYM if and only if the following
conditions hold:

(i)

∫
Ω

〈νx, |·|〉dx+

∫
Ω̄

〈ν∞x , |·|〉dλ(x) <∞,

and there exists u ∈ BV (Ω;RM ) and ωi ⊂ Ω, LN (ωi) = 0, such that for all v : RM×N → R continuous
and quasiconvex with at most linear growth,

(ii) v(∇u(x)) ≤ 〈νx, v〉+ 〈ν∞x , v]〉
dλ

dLN
(x) for all x ∈ Ω \ ωi,

(iii) v]
( dDus

d |Dus|
(x)
)
|Dus| ≤ 〈ν∞x , v]〉λs|Ω as measures.

Here λs denote the singular part of λ with respect to the Lebesgue measure LN , dλ
dLN is the density

of the absolutely continuous part of λ w.r.t. LN , v∞ and v] are the recession function of v and the
generalized recession function of v as introduced in (2.5) and (2.6), respectively.

Remark 2.21. As already pointed out in [18], (ii) and (iii) imply that Du is the center of mass of Λ,
i.e., dDu(x) = 〈νx, id〉dx+ 〈ν∞x , id〉dλ(x).

3. The main result

We prove the following theorem which fully characterizes elements of GYM.

Theorem 3.1 (characterization of GYM up to the boundary). Let Ω ⊂ RN be a bounded domain
of class C1, and let Λ := (ν, λ, ν∞) ∈ Ygen(Ω;RM×N ). Then Λ ∈ GYM if and only if the following
conditions hold:

(i)

∫
Ω

〈νx, |·|〉dx+

∫
Ω̄

〈ν∞x , |·|〉dλ(x) <∞,

there exists u ∈ BV (Ω;RM ) and ωi ⊂ Ω, LN (ωi) = 0, such that for all v : RM×N → R continuous
and quasiconvex with at most linear growth,

(ii) v(∇u(x)) ≤ 〈νx, v〉+ 〈ν∞x , v]〉
dλ

dLN
(x) for all x ∈ Ω \ ωi,

(iii) v]
( dDus

d |Dus|
(x)
)
|Dus| ≤ 〈ν∞x , v]〉λs|Ω as measures on Ω,

and there is ωb ⊂ ∂Ω, λ(ωb) = 0 such that

(iv) 0 ≤ 〈ν∞x , v∞〉 for all x ∈ ∂Ω \ ωb and all v ∈ Υ ∩QSLB(%(x)),

where %(x) is the outer unit normal to ∂Ω at x.

Remark 3.2. If N = 1, it is clear that GYM = Ygen, simply because all functions on a 1d-domain are
gradients of a potential. In Theorem 3.1, (i)�(iv) always hold for N = 1. More precisely, (i)�(iii)
then are a consequence of Jensen's inequality, since quasiconvexity reduces to convexity (also recall
that Du is the center of mass of Λ, cf. Remark 2.21). Similarly, (iv) becomes trivial because v ∈ QSLB
is equivalent to v∞ ≥ 0 for N = 1.

By Remark 3.2, it su�ces to prove Theorem 3.1 for N ≥ 2. The proof starts in Section 4 below,
where we split any given Λ ∈ Ygen into two essentially disjoint pieces: an inner part Λi and a boundary
part Λb. Due to Proposition 4.2, it will be enough to �nd conditions characterizing Λi ∈ GYM and
Λb ∈ GYM, separately (see Proposition 5.1 and Proposition 6.1). By Theorem 2.20 and the de�nition
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of Λi, conditions (i)�(iii) characterize Λi as an element of GYM. The proof of Theorem 3.1 will be
completed by showing that (iv) is a necessary and su�cient condition for Λb ∈ GYM (see Section 5
and Section 6).

4. Separating boundary and interior

The aim of this section is to show that when studying generalized gradient Young measures,
it is enough to look at interior and boundary parts separately. For this purpose, we decompose
Λ := (ν, λ, ν∞) ∈ Ygen into two parts: the inner part Λi = (νi, λi, ν

∞
i ) and the boundary part

Λb = (νb, λb, ν
∞
b ) de�ned as follows:

〈〈Λi, g ⊗ v〉〉 :=

∫
Ω

g(x)〈νx, v〉dx+

∫
Ω

g(x)〈ν∞x , v∞〉dλ(x) for all g ∈ C(Ω̄), v ∈ Υ, (4.1)

i.e., Λ|Ω = Λi|Ω and λi(∂Ω) = 0, and

〈〈Λb, g ⊗ v〉〉 :=

∫
Ω

g(x)v(0) dx+

∫
∂Ω

g(x)〈ν∞x , v∞〉dλ(x) for all g ∈ C(Ω̄), v ∈ Υ, (4.2)

i.e., Λ|∂Ω = Λb|∂Ω while Λb|Ω is the �trivial� measure (δ0, 0,−) generated by the constant sequence
0 ∈ RM×N (here, recall that ν∞x can be ignored on sets with λ-measure zero). Notice that (cf. (2.15))

〈〈Λ, g(x)v〉〉 = 〈〈Λi, g(x)v〉〉+ 〈〈Λb, g(x)v〉〉 −
∫

Ω

g(x)v(0) dx . (4.3)

Remark 4.1. In a sense, the term
∫

Ω
g(x)v(0) dx in the de�nition (4.2) of Λb = (νb, λb, ν

∞
b ) is arti�cial.

Without it, however, νb,x would be the zero measure, and to have Λb ∈ Ygen, we need in particular νb,x
to be a probability measure for a.e. x ∈ Ω. We therefore choose νb,x = δ0 for x ∈ Ω, which corresponds
to a generating sequence purely concentrating at the boundary.

Proposition 4.2. Let Λ := (ν, λ, ν∞) ∈ Ygen. Then Λ ∈ GYM if and only if both Λi ∈ GYM and
Λb ∈ GYM.

Proof. �only if�: Assuming that Λ ∈ GYM let us see that Λi ∈ GYM and Λb ∈ GYM. For this
purpose let (un) ⊂ BV (Ω;RM ) be a bounded sequence such that (Dun) generates Λ. Without loss of
generality, we may assume that un ⇀∗ u with some u ∈ BV . Using Lemma 2.2 with J = 2, K1 := ∂Ω
and K2 := Ω̄, we decompose ũn := un − u (or a suitable subsequence, not relabeled) as ũn = cn + dn
(cn = u1,n and dn = u2,n in Lemma 2.2).

We claim that (Dcn) and (Du + Ddn) generate Λb and Λi, respectively. To prove the claim let
Λ1 = (ν1,x, λ1, ν

∞
1,x) ∈ Ygen generated by (a subsequence not relabeled) of (Dcn), and analogously, let

Λ2 = (ν2,x, λ2, ν
∞
2,x) ∈ Ygen be generated by (a subsequence not relabeled of) (Du + Ddn). Since all

subsequences of (Dcn) and (Du+Ddn) have another subsequence generating some generalized Young
measure, it su�ces to show that

Λ1 = Λb and Λ2 = Λi.
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We start by observing that as a consequence of (4.3), the fact that (Dun) generates Λ, Proposition 2.3
and Proposition 2.4, then for every g ∈ C(Ω̄) and every v ∈ Υ, we have that

〈〈Λi, g ⊗ v〉〉+ 〈〈Λb, g ⊗ v〉〉 −
∫

Ω

g(x)v(0) dx

= 〈〈Λ, g ⊗ v〉〉 = lim
n

∫
Ω

g(x)dv(Du+Ddn +Dcn)(x)

= lim
n

∫
Ω

g(x)dv(Du+Ddn)(x) + lim
n

∫
Ω

g(x)dv(Du+Dcn)(x)−
∫

Ω

g(x)dv(Du)(x)

= lim
n

∫
Ω

g(x)dv(Du+Ddn)(x) + lim
n

∫
Ω

g(x)dv(Dcn)(x)−
∫

Ω

g(x)v(0) dx

= 〈〈Λ2, g(x)v〉〉+ 〈〈Λ1, g(x)v〉〉 −
∫

Ω

g(x)v(0) dx.

(4.4)

Moreover, since {cn 6= 0} ⊂ (∂Ω) 1
n
, it is clear that for every v ∈ Υ and every g ∈ Cc(Ω),

〈〈Λ1, g(x)v〉〉 = lim
n

∫
Ω

g(x)dv(Dcn)(x) =

∫
Ω

g(x)v(0) dx.

whence ν1,x = νb,x = δ0 for a.e. x ∈ Ω and λ1|Ω = λb|Ω = 0, meaning that Λ1|Ω = (δ0, 0, 0) = Λb|Ω.
In view of (4.4) with g ∈ Cc(Ω), this also implies that Λ2|Ω = Λi|Ω = Λ|Ω.

On the other hand, take now g ∈ C(∂Ω) and extend it (without changing its name) to a function
g ∈ C(Ω̄) by the Tietze theorem, and choose a sequence (gk)k∈N ⊂ C(Ω̄) such that gk = g on ∂Ω,
|gk| ≤ |g| on Ω and supp gk ⊂ (∂Ω) 1

k
. Since Λ2 is generated by (Du+Ddn), we have for every k∣∣〈〈Λ2, gk(x) |·|〉〉

∣∣ =
∣∣∣ lim
n

∫
Ω

gk(x)d |Du+Ddn| (x)
∣∣∣

≤ C ‖gk‖C(Ω) sup
n

∫
supp gk

(d |Du| (x) + d |Ddn| (x)) −→
k→+∞

0

by dominated convergence and the fact that (Ddn) does not charge ∂Ω. Again by dominated conver-
gence, we infer that ∫

∂Ω

g(x)dλ2(x) = lim
k
〈〈Λ2, gk(x) |·|〉〉 = 0.

Since this holds for arbitrary g ∈ C(∂Ω), we get λ2(∂Ω) = 0 = λi(∂Ω), meaning that Λ2|∂Ω = Λi|∂Ω.
In view of (4.4), we conclude that Λ|∂Ω = Λ1|∂Ω.

�if�: Assuming that Λi ∈ GYM and Λb ∈ GYM let us see that Λ ∈ GYM. Consider for that
(u

(i)
n ), (u

(b)
n ) ⊂ W 1,1(Ω;RM ) two sequences such that (∇u(i)

n ) generates Λi and (∇u(b)
n ) generates

Λb. Choosing subsequences if necessary, we may assume that u(i)
n

∗
⇀u(b) and u

(i)
n

∗
⇀u(b) in BV .

Moveover, since νb,x = δ0 for a.e. x ∈ Ω and λb(Ω) = 0, it is clear that Du(b) = 0 in Ω. Removing a
constant if necessary, which does not a�ect the measure generated by the gradients, we can modify
u

(b)
n so that u(b) = 0. We can decompose both sequences (or suitable subsequences) according to

Lemma 2.2 (again with J = 2, K1 = ∂Ω and K2 = Ω̄) into a part cn purely concentrating at the
boundary and an interior remainder dn which does not charge ∂Ω:

u(i)
n − u(i) = c(i)n + d(i)

n and u(b)
n = c(b)n + d(b)

n

Similarly as in the �rst part of the proof, (Dd
(i)
n +Du(i)) still generates (Λi)i = Λi, and (Dc

(b)
n ) still

generates (Λb)b = Λb. Moreover, Proposition 2.3 applies to the decomposition

wn := c(b)n + d(i)
n ,
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and together with Proposition 2.4 we get

lim
n

∫
Ω

g(x)dv(Du(i) +Dwn)

= lim
n

(∫
Ω

g(x)dv(Du(i) +Dd(i)
n ) +

∫
Ω

g(x)dv(Dc(b)n )−
∫

Ω

g(x)v(0) dx
)

= 〈〈Λi, g(x)v〉〉+ 〈〈Λb, g(x)v〉〉 −
∫

Ω

g(x)v(0) dx = 〈〈Λ, g ⊗ v〉〉

in view of (4.3), which proves that (Du(i) +Dwn) generates Λ. �

5. Necessary conditions at the boundary

In view of Proposition 4.2 (see also the end of Section 3) we will restrict ourselves to investigate
Λb = (δ0, λ(∂Ω ∩ ·), ν∞x ) ∈ Ygen (cf. (4.2)). Necessary conditions for Λb to be a generalized gradient
Young measure will be derived with the help of Corollary 2.8 and Remark 2.19.

Proposition 5.1. If Λb ∈ GYM then there is ωb ⊂ ∂Ω, λ(ωb) = 0 such that

0 ≤ 〈ν∞x , v∞〉
for all x ∈ ∂Ω \ ωb and all v ∈ Υ ∩QSLB(%(x)).

Proof. Suppose that (∇cn)n generates Λb for a bounded sequence (cn) ⊂ W 1,1(Ω;RM ), which in
particular imply that cn

∗
⇀ 0 in BV(Ω;RM ).

Given j ∈ N let us consider xji ∈ ∂Ω, i = 1, ..., Ij , such that

∂Ω ⊂ ∪Iji=1B(xji , 1/j).

Fix j ∈ N, let i ∈ {1, ..., Ij}, and let v ∈ Υ ∩ QSLB(y) for all y ∈ ∂Ω ∩ B(xji , 1/j). Take g ∈
C0(B(xji , 1/j)), 0 ≤ g, and extend it by zero to the whole Ω̄. Proposition 2.8 applied to f : (x,A) 7→
g(x)v(A) asserts that

lim
n→∞

∫
Ω

g(x)v(∇cn(x)) dx ≥
∫

Ω

g(x)v(0) dx. (5.1)

On the other hand, since (∇cn)n generates Λb = (δ0, λ(∂Ω ∩ ·), ν∞x ),

lim
n→∞

∫
Ω

g(x)v(∇cn) dx =

∫
Ω

g(x)v(0) dx+

∫
Ω̄

∫
SM×N−1

g(x)v∞(A)dνb,∞x (A)dλ(x)

which from (5.1) implies that∫
Ω̄

g(x)〈νb,∞x , v∞〉dλ(x) =

∫
Ω̄∩B(xji ,1/j)

g(x)〈νb,∞x , v∞〉dλ(x) ≥ 0. (5.2)

As g ∈ C0(B(xji , 1/j)), 0 ≤ g, is arbitrary, we conclude that

〈νb,∞x , v∞〉 ≥ 0

for x ∈ ∂Ω ∩B(xji , 1/j) \ Ei,j,v for some set Ei,j,v ⊂ ∂Ω ∩B(xji , 1/j) with λ(Ei,j,v) = 0.

Let {vk}k∈N be a dense subset of C(SM×N−1). Given ε > 0 de�ne

Ei,j,ε :=
⋃{

Ei,j,vk(·)+ε|·| : k ∈ N such that vk(·) + ε| · | ∈ QSLB(y), y ∈ B(xji , 1/j)
}

and observe that λ(Ei,j,ε) = 0. For each m ∈ N consider now εm = 1/m and de�ne E =
⋃
i,j,mEi,j,m.

Let us see that the claim holds taking ωb = E.
For this purpose let x0 ∈ ∂Ω \ ωb and v ∈ Υ ∩ QSLB(x0). Given m consider j large enough such

that v(·) + εm
2 | · | ∈ QSLB(y) for all y ∈ B(xji , 1/j) where i is chosen such that x0 ∈ B(xji , 1/j).
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Let now {vkl} be a subsequence of {vk} such that |vkl−v| < εm
2 in SM×N−1. Then vkl(·)+εm| · | ∈

QSLB(y) for all y ∈ B(xji , 1/j) and thus

〈νb,∞x0
, vkl(·) + εm| · |〉 ≥ 0.

The claim holds by letting l,m→ +∞.
�

6. Sufficient conditions at the boundary

The objective of this section is to prove that condition (iv) in Theorem 3.1 allows for a construction
of a sequence of gradients generating Λb = (δ0, λ(∂Ω ∩ ·), ν∞x ) ∈ Ygen (cf. (4.2)). More precisely we
will derive the following result.

Proposition 6.1. Assume that for λ-almost all x ∈ ∂Ω we have that

0 ≤
∫
SM×N−1

v∞(A)ν∞x (dA)

for all v ∈ Υ ∩QSLB(%(x)). Then Λb ∈ GYM.

To prove Proposition 6.1 (at the end of this section) we follow ideas developed in [21] and [13],
standardly relying on the Hahn-Banach theorem, allowing us to show that all GYM-measures that
concentrates at the boundary can be approximated in the weak*-convergence by a sequence of �ele-
mentary� measures.

Given a unit vector % in RN , we start by de�ning two sets of measures:

A% := {µ ∈M(SM×N−1); µ ≥ 0 , 〈µ; v〉 ≥ 0 for v ∈ C(SM×N−1) if v∞ ∈ QSLB(%)}

and
H% := {δ̄%,∇u, u ∈W 1,1

0 (B;RM )}
where for all v ∈ C(SM×N−1), given u ∈W 1,1

0 (B;RM ), the measure δ̄%,∇u is de�ned by

〈δ̄%,∇u, v〉 :=

∫
D%

v

(
∇u(x)

|∇u(x)|

)
|∇u(x)|dx .

Both H% and A% are sets of measures on the unit sphere in RM×N and, in addition, we observe that

H% ⊂ A%. (6.1)

Indeed to see (6.1) let δ̄%,∇u ∈ H% with u ∈ W 1,1
0 (B;RM ). Given v ∈ C(SM×N−1) extend it to

the whole space as a positively one-homogeneous function (without changing its name) so that in
particular v = v∞. Hence

〈δ̄%,∇u, v〉 =

∫
D%

v∞(∇u(x)) dx

and if v ∈ QSLB(%) then (see 2.9) it holds that
∫
D%
v∞(∇u(x)) dx ≥ 0 for all u ∈ W 1,1

0 (B;RM ) i.e.
δ̄%,∇u ∈ A%.

Lemma 6.2. Let N ≥ 2. Then the set H% is convex.

Proof. Consider u1, u2 ∈ W 1,1
0 (B;RM ). We need to show that for any 0 ≤ t ≤ 1 the convex

combination tδ̄%,∇u1
+ (1 − t)δ̄%,∇u2

∈ H%. Take x0 ∈ B ∩ {x ∈ RN ; % · x = 0} such that |x0| = 1/2
and de�ne

ũ1(x) := 3N−1u1(3x) and ũ2(x) := 3N−1u1(3(x− x0)).
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Observe that ũ1 ∈ W 1,1
0 (B(0, 1/3);RM ), ũ2 ∈ W 1,1

0 (B(x0, 1/3);RM ) and then extend these functions
by zero to the whole RN (without changing its name), so that, in particular, ũ1, ũ2 ∈ W 1,1

0 (B;RM )
and have disjoint supports. Let

u := tũ1 + (1− t)ũ2(x).

Given v ∈ C(SM×N−1) extend it, as before, to the whole space as a positively one-homogeneous
function. Thus∫

D%

v(∇u(x)) dx = t

∫
D%

v(3N∇u1(3x)) dx+ (1− t)
∫
D%∩(B(x0,1/3)

v(3N∇u1(3(x− x0)) dx

= t

∫
D%

v(∇u1(y)) dy + (1− t)
∫
D%

v(∇u2(y)) dy

which proves the claim. �

Next result is a standard application of the Hahn-Banach theorem.

Proposition 6.3. The set A% is the weak* closure of H%.

Proof. Assume that A% 6= H%w∗. As H% ⊂ A% and A% is clearly closed with respect to the weak*-
topology this implies that there exists µ0 ∈ A% such that µ0 /∈ H%w∗. Let v ∈ C(RM×N−1) and a ∈ R
such that

〈δ̄%,∇u, v〉 ≥ a
for all δ̄%,∇u ∈ H%. Then extending v, as before, to the whole space as a positively one-homogeneous
function, and noting that v = v∞ we get that

inf
u∈W 1,1

0 (B;RM )

∫
D%

v∞(∇u(x)) dx ≥ a

By one-homogeneity this forces a = 0 so that infu∈W 1,1
0 (B;RM )

∫
D%
v∞(∇u(x)) dx = 0. As a con-

sequence v∞ ∈ QSLB(%). Thus if µ ∈ A% in particular 〈µ, v〉 ≥ 0 = a, i.e., no element from A%

can be separated from H% by a hyperplane de�ned by v and a, which is a contradiction if we apply
Hahn-Banach theorem to the sets H% (recall that is convex) and {µ0}.

�

Remark 6.4. By de�nition, for any given u ∈W 1,1
0 (B;RM ), δ̄%,∇u ∈ H% if and only if the generalized

Young measure
(
δ0, λ := ‖∇u‖L1 δ0, ν

∞
0 := 1

‖∇u‖L1
δ̄%,∇u

)
on the half-ball D% is generated by (∇uk),

with uk(x) := kN−1u(kx). Notice that (uk) is a rather speci�c sequence �purely concentrating�
at 0 ∈ ∂D%, supported in balls of radius 1

k . In particular, Proposition 6.3 implies that whenever
Λ := (δ0, δ0, ν

∞
x ) is a generalized Young measure on D% such that µ := ν∞0 ∈ A%, Λ is generated by

a sequence (∇wj). More precisely, we can �nd a sequence (uj) ∈ W 1,1
0 (B;RM ) such that δ̄%,∇uj ⇀

∗

µ = ν∞0 ∈ A%, and then de�ne wj(x) = k(j)N−1uj(k(j)x) with k(j) → ∞ fast enough as j → ∞.
Also notice that since δ̄%,∇uj ⇀

∗ ν∞0 , we automatically have
∫
D%
|∇uj | dx→ 1 since ν∞0 is probability

measure on SMN−1, and therefore ‖∇wj‖L1 → 1 on D%.

Proposition 6.5. Assume that J ≥ 1, Λ := (δ0, ν
∞, λ) such that λ =

∑J
i=1 aiδxi where xi ∈ ∂Ω and

ai > 0 for 1 ≤ i ≤ J , and ν∞xi ∈ A
%(xi) for 1 ≤ i ≤ J with %(xi) ∈ RN the unit outer normal to ∂Ω at

xi. Then Λ ∈ GYM.

Proof. First notice that x 7→ ν∞x is de�ned λ-a.e. in Ω̄. Assume �rst that ν∞xi ∈ H%(xi) for all
1 ≤ i ≤ J . Therefore, there is ui ∈ W 1,1

0 (B;RM ) such that, for every v∞ ∈ C(RM×N ) positively one
homogeneous, ∫

D%(xi)

v∞(∇ui(y)) dy =

∫
SM×N−1

v∞(A)dν∞xi (A)
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by de�nition of H%(xi). Consequently,

lim
j→∞

ai

∫
Ω∩B(xi,1/j)

v∞(∇ui(j(x− xi)) dx = lim
j→∞

ai

∫
j(−xi+Ω∩B(xi,1/j))

v∞(∇ui(y)) dy

= ai

∫
D%(xi)

v∞(∇ui(y)) dy = ai

∫
SM×N−1

v∞(A)dν∞xi (A) .

(6.2)

Consequently, (
∑J
i=1 aij

N−1ui(j(x − xi)))j∈N ⊂ W 1,1(Ω;RM ) is a sequence such that the gradients
(
∑J
i=1 aij

N∇ui(j(x− xi)))j∈N generate Λ.

Assume now that ν∞xi ∈ A
%(xi). From Proposition 6.3, there is for each �xed 1 ≤ i ≤ J , (uki )k∈N ⊂

W 1,1
0 (B;RM ) such that for every v∞ ∈ C(SM×N−1) positively one homogeneous

lim
k→∞

lim
j→∞

ai

∫
Ω∩B(xi,1/j)

v∞(∇uki (j(x− xi)) dx = lim
k→∞

lim
j→∞

ai

∫
j(Ω∩B(xi,1/j)−xi)

v∞(∇uki (y) dy

= ai

∫
SM×N−1

v∞(A)dν∞xi (A) . (6.3)

As C(SM×N−1) is separable and ‖∇uki ‖L1(Ω;RM×N ) ≤ C for all k ∈ N the proof is �nished by a
diagonalization argument. �

The property of quasi-sublinear growth from below is inevitably connected with the boundary
normal. The following proposition shows that suitable rotations allow us to �average� along the
boundary.

Proposition 6.6. Let x0 ∈ ∂Ω. Moreover, let {R(x)}x∈∂Ω ⊂ SO(N) be a family of rotation matrices
such that x 7→ R(x) is continuous and bounded on a set Γ ⊂ ∂Ω and for each x ∈ Γ, %(x) = R(x)%(x0).
Given a measurable set E ⊂ Γ such that λ(E) > 0, we de�ne µx0 = µx0,E ∈ M(SM×N−1) as the
measure that satis�es∫

SM×N−1

v(A) dµ∞x0
(A) :=

1

λ(E)

∫
E

∫
SM×N−1

v(AR>(x))dν∞x (A) dλ(x)

for every v ∈ C(SM×N−1). If {ν∞x }x∈E satis�es for every v ∈ QSLB(x)

0 ≤
∫
SM×N−1

v(A)dν∞x (A) (6.4)

then for every v ∈ QSLB(x0)

0 ≤
∫
SM×N−1

v∞(A)dµ∞x0
(A). (6.5)

Proof. For every v ∈ ΥS(RM×N ) which is qslb at x0, A 7→ v(AR−1
x ) is qslb at x by Lemma 2.9.

Hence, (6.4) implies (6.5) by the de�nition of µx0 . �

Proof of Proposition 6.1. For each n ∈ N cover RN with a family of pairwise disjoint cubes of side
length 2−n, translates of Qn,0 := [0, 2−n)N , and let Qn,j , j ∈ J(n), be the collection of those cubes Q in
the family that satisfy λ(Q∩ ∂Ω) > 0. Moreover, for each n and each j ∈ J(n) let En,j := Qn,j ∩ ∂Ω,
choose a point xn,j ∈ En,j , and choose a family of rotations (Rn,j(x))x∈En,j ⊂ RN×N such that
Rn,j(xn,j) = I, %(x) = Rn,j(x)%(xn,j) for every x ∈ En,j , where %(x) denotes the outer normal at
x ∈ ∂Ω, x 7→ Rn,j(x) is continuous on En,j and

sup
j∈J(n)

sup
x∈En,j

∣∣Rn,j(x)−1 − I
∣∣ −→
n→∞

0, (6.6)
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which is possible, at least if n is large enough, since ∂Ω is of class C1. We de�ne for each n ∈ N

θn(x) :=
∑

j∈J(n)

λ(En,j)δxn,j (x) ,

and, for every v ∈ C(SM×N−1) and every j ∈ J(n),∫
SM×N−1

v(A)dη∞n,x(A) :=
1

λ(En,j)

∫
En,j

∫
SM×N−1

v(AR>(y))dν∞y (A) dλ(y) if x = xn,j .

Here, note that for x ∈ ∂Ω \ {xn,j | j ∈ J(n)}, the de�nition of ˆη∞n,x does not matter since
θn
(
∂Ω\{xn,j | j ∈ J(n)}

)
= 0. Clearly, (δ0, η

∞
n,x, θn) ∈ GYM, by Proposition 6.5 and Proposition 6.6.

Finally, observe that, by (6.6) and uniform continuity of continuous functions on compact sets, it
holds for any g ∈ C(Ω̄) and v ∈ C(SM×N−1) that,∫

∂Ω

g(x)

∫
SM×N−1

v(A)dη∞n,x(A) dθn(x) =
∑

j∈J(n)

g(xn,j)

∫
En,j

∫
SM×N−1

v(AR>n,j(y))dν∞y (A) dλ(y)

→
∫
∂Ω

g(y)

∫
SM×N−1

v(A)dν∞y (A) dλ(y) ,

as n→ +∞.
As (δ0, η

∞
n,x, θn) ∈ GYM for any n ∈ N, there is for every n a sequence (unj )j∈N ⊂ W 1,1(Ω;RM )

such that (∇unj )j∈N generates (δ0, η
∞
n,x, θn). Due to the fact that θn(Ω̄) = λ(Ω̄) there exists C > 0 such

that ‖∇unj ‖L1 < C for all j, n. Moreover, the addition of suitable constants to unj and the Poincaré
inequality gives us ‖unj ‖W 1,1 < C for all j, n. Moreover, due to separability of C(Ω̄) and C(SM×N−1)
we can extract a subsequence of (unj )j,n∈N such that the gradients generate Λb. Consequently, Λb ∈
GYM.

�

Applying Theorem 2.20 to Λi de�ned in (4.1) we see that Λ from Theorem 3.1 can be written as
Λ = Λi + Λb where Λi and Λb are as in Proposition 4.2. Altogether, Theorem 3.1 is proved.

7. The Sou£ek space W 1
µ and its relation to BV and GYM

Nowadays, it is well known that the extension of a functional with linear growth in W 1,1 subject
to Dirichlet boundary conditions leads to an unconstrained functional on BV , which, instead of
the boundary condition, has an extra term at the boundary penalizing the di�erence of the �inner�
trace and the �true� boundary value. Mostly forgotten by the modern literature covering this topic,
J. Sou£ek introduced and analyzed the larger space W 1

µ in [28]1 with a similar application in mind.
Since generalized BV -gradient Young measures are actually naturally embedded in W 1

µ , we want to
provide a short overview here. Besides, for the toy problem featured in the introduction, W 1

µ is a more
natural space than BV . As we shall see below, W 1

µ(Ω̄) is actually isomorphic to BV (Ω) ×M(∂Ω).
Here, the second component is a measure representing an arti�cial �outer� trace on the boundary.

Just like [28], we assume throughout this section that Ω ⊂ RN is a bounded domain of class C1.

De�nition 7.1 (Sou£ek space W 1
µ , [28, De�nition 1]). We de�ne W 1

µ(Ω̄) as the space of those (u, α) ∈
L1(Ω) ×M(Ω̄;RM ) which are in the weak∗-closure of W 1,1(Ω) on Ω̄ in the sense that for a suitable

1Here, we stick to the original notationW 1
µ(Ω̄) for the space of [28], although using BV (Ω̄) instead would also make

sense. The subscript µ in W 1
µ is not a parameter; it simply abbreviates �measure� and corresponds to the notation L1

µ

used in [28] for the space of Radon measures which we callM.
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sequence (un) ∈W 1,1(Ω),

un → u in L1(Ω), and
∫

Ω

ψ · ∇un dx→
∫

Ω̄

ψ · dα(x) for all ψ ∈ C(Ω̄;RN ).

The norm of W 1
µ is given by

‖(u, α)‖W 1
µ(Ω̄) := ‖u‖L1(Ω) +

N∑
i=1

‖αi‖M(Ω̄) , where α = (α1, . . . , αN ).

From the modern perspective, it is clear that any such u is an element of BV (Ω), and if we restrict
the vector-valued measure α to Ω, it coincides with the BV -derivative Du. In that sense, W 1

µ can
be naturally projected onto BV . However, α carries extra information on ∂Ω, and it turns out that
α|∂Ω is exactly the derivative of a jump at ∂Ω to some measure-valued �outer� trace that in particular
captures the boundary value along sequences satisfying a �xed Dirichlet condition.

More precisely, Sou£ek shows that any (u, α) ∈ W 1
µ(Ω̄) has two di�erent traces on ∂Ω: The �rst

one is the outer trace β ∈ M(∂Ω) characterized by the version of Green's formula derived in [28,
Theorem 1] (with % denoting the outer normal on ∂Ω):∫

∂Ω

ϕ% dβ =

∫
Ω

u∇ϕdx+

∫
Ω̄

ϕdα for every ϕ ∈ C1(Ω̄). (7.1)

The outer trace is weakly∗-continuous with respect to weak∗ convergence of (u, α) inM(Ω̄)×M(Ω̄;RN )
[28, Theorem 2], in strong contrast to the situation in BV . Here, observe that the kind of behavior
of a sequence that has to be ruled out in BV to ensure continuity of the trace (usually by imposing
strict convergence), namely, a jump moving to or growing at the boundary, is not lost in the weak ∗-
limit in W 1

µ(Ω) as it appears in α|∂Ω. In addition, in [28, De�nition 4] the inner trace β0 ∈ M(∂Ω)

of (u, α) ∈ W 1
µ is de�ned as the outer trace of (u, ᾱ), where ᾱ is obtained from α by dropping the

contribution on ∂Ω, i.e., ᾱ|Ω := α|Ω = Du and ᾱ|∂Ω := 0. Here, (u, ᾱ) ∈ W 1
µ due to [28, Theorem

8] (alternatively, one can use the fact that the BV -function u is the limit of a strictly convergent
sequence (un) ⊂ W 1,1 and observe that strict convergence implies that ∇un ⇀∗ ᾱ inM(Ω̄), whence
(u, ᾱ) ∈ W 1

µ). Due to (7.1) and the fact that α = Du on Ω, β0 coincides with trace of u in the
sense of BV . As a consequence (or, alternatively, due to [28, Theorem 10]), the inner trace in W 1

µ �
here �rst introduced as a Radon measure on ∂Ω � is actually absolutely continuous with respect to
the (N − 1)-dimensional Hausdor� measure on ∂Ω, and thus it can be interpreted as an element of
L1(∂Ω).

Remark 7.2. Just like α|∂Ω, the outer trace β can have singular contributions, possibly even charging
single points. In particular, this occurs whenever (u, α) is obtained as the weak∗ limit of a sequence
whose gradients concentrate at a single point at the boundary, as in Example 2.13. As a side e�ect,
the results presented here cannot be easily extended to domains with Lipschitz boundary even with
more re�ned tools from geometric measure theory: a normal % de�ned HN−1-a.e. is simply not good
enough to write (7.1) if β (and α|∂Ω) charges a set with Hausdor� dimension below N − 1.

Another simple but useful observation is that the remainder of the projection of (u, α) ∈W 1
µ �onto

BV � given by (u, ᾱ) ∈W 1
µ , the side (0, χ∂Ωα) = (u, α)−(u, ᾱ) (cf. [28, De�nition 4]) also is an element

of W 1
µ [28, Theorem 8]. In particular, the side of (u, α) satis�es (7.1), which reduces to∫

∂Ω

ϕ% d(β − β0) =

∫
∂Ω

ϕdα for every ϕ ∈ C1(Ω̄), (7.2)

where β and β0 denote the outer and inner trace of (u, α), respectively. A straightforward but
nonetheless remarkable consequence (also pointed out in [28, Theorem 9]) is that for every (u, α) ∈W 1

µ ,
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|α| =
∣∣β − β0

∣∣ on ∂Ω and

dαs

d |αs|
(x) =

d(β − β0)s

d |(β − β0)s|
(x)%(x) for |α|-a.e. x ∈ ∂Ω. (7.3)

Remark 7.3. If u is vector- instead of scalar-valued, (7.3) translates into saying that the then matrix-
valued measure αs is a matrix of rank one |α|-a.e. on ∂Ω, more precisely, of the form a(x)⊗ %(x) with
a suitable vector-valued a(x).

Similar to BV , W 1
µ can also be characterized using (7.1):

Theorem 7.4 ([28, Section 4]; see also [28, De�nition 2]). For any (u, α) ∈ W 1,µ, (7.1) is satis�es
with the outer trace β of (u, α). Conversely, for all (u, α, β) ∈ L1(Ω)×M(Ω̄;RN )×M(Ω̄) such that
(7.1) holds, (u, α) ∈W 1,µ and β is its outer trace.

All of the above has obvious extensions for the vector-valued case, i.e., for the space W 1
µ(Ω̄;RM ) ⊂

L1(Ω;RM ) ×M(Ω̄;RM×N ) with M > 1. Since we de�ned GYM in that case, we will stick to this
setting from now on. The relationship of BV , W 1

µ and GYM can be summarized as follows:

Theorem 7.5 (BV as a subset of W 1
µ). We have the following chain of (natural) continuous embed-

dings and isomorphisms:

BV (Ω) ↪→ BV (Ω;RM )× L1(∂Ω;RM ) ↪→ BV (Ω;RM )×M(∂Ω;RM ) ∼= W 1
µ(Ω̄;RM ).

Before giving a proof, let us discuss how GYM �ts into this picture. Roughly speaking, GYM
exclusively contains information on gradients, unlike the other spaces appearing in Theorem 7.5: for
each Λ ∈ GYM, the underlying deformation u is only determined up to a constant vector (Ω being
connected). For a meaningful comparison, we therefore have to remove these constants, or simply
drop u in the pair (u, α) ∈W 1

µ (recall that Du can be reconstructed from α anyway).

Theorem 7.6 (W 1
µ as a subset of GYM). Let

GW 1
µ := {α | (u, α) ∈W 1

µ for a suitable u ∈ L1}.

(i) For every α ∈ GW 1
µ(Ω̄;RM ), we have

Λ = Λ(α) :=
(
δ∇u(x), |αs| , δ dαs

d|αs| (x)

)
∈ GYM(Ω̄;RM ),

where ∇u denotes the densitiy of the absolutely continuous part of α (or Du = α|Ω) with respect
to LN , and αs is the singular part of α with polar decomposition dαs(x) = dαs

d|αs| (x)d |αs| (x).

(ii) Conversely, for every Λ ∈ GYM(Ω̄;RM ), we have an associated pair (u(Λ), α(Λ)) ∈W 1
µ(Ω̄;RM ),

where the underlying deformation u = u(Λ) is given by Theorem 3.1 (uniquely determined up
to a constant in RM ) and α = α(Λ) ∈ GW 1

µ(Ω̄;RM ) is the center of mass of Λ, i.e.,

dα(x) = 〈νx, id〉dx+ 〈ν∞x , id〉dλ(x).

Moreover, α(Λ(γ)) = γ for every γ ∈ GW 1
µ .

Proof of Theorem 7.5. The �rst two embeddings being trivial, we only have to show that BV (Ω)×
M(∂Ω) ∼= W 1

µ(Ω̄). Given (u, α) ∈ W 1
µ(Ω̄), we have (u, β) ∈ BV (Ω)×M(∂Ω), where β is the outer

trace of (u, α), and the operator W 1
µ(Ω̄) → BV (Ω) ×M(∂Ω), (u, α) 7→ (u, β), clearly is linear and

continuous. It is also one-to-one, because α|Ω = Du (the derivative of u ∈ BV ) and dα|∂Ω =
%(x)d(β − β0), where β0 the inner trace of (u, α) which is fully determined by u and α|Ω = Du.

It remains to show that (u, α) 7→ (u, β), W 1
µ(Ω̄) → BV (Ω) × M(∂Ω) is onto. Let (u, β) ∈

BV (Ω)×M(∂Ω). We de�ne α ∈ M(Ω̄;RN ) by α|Ω := Du and dα|∂Ω(x) := ρ(x)d(β − β0), with the
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trace β0 ∈ L1(∂Ω) ⊂M(∂Ω) of u in the sense of BV . Clearly, we have∫
∂Ω

ϕ% dβ0 =

∫
Ω

u∇ϕdx+

∫
Ω

ϕdDu for every ϕ ∈ C1(Ω̄),

i.e, (7.1) holds for (u, ᾱ, β0) =, β0). In addition, (7.2) holds by de�nition of α|∂Ω, and, equivalently,
(7.1) holds for (0, χ∂Ωα, β − β0). Adding up, we infer that (7.1) holds for (u, α, β) = (u, ᾱ, β0) +
(0, χ∂Ωα, β − β0). By Theorem 7.4, we conclude that (u, α) ∈W 1

µ and that β is its outer trace. �

Proof of Theorem 7.6. �Moreover�: This is clear from the de�nition of Λ(α) and α(Λ).
(i): Given α ∈ GW 1

µ , we de�ne Du := α|Ω (which really is the derivative of a function u ∈ BV since
α ∈ GW 1

µ), and claim that

Λ :=
(
δ∇u(x), |αs| , δ dαs

d|αs| (x)

)
∈ GYM(Ω̄;RM )

where ∇u = dα
dLN = dDu

dLN . It su�ces to check conditions (i)�(iv) in Theorem 3.1. Clearly, (i) is valid
since 〈〈Λ, 1⊗ |·|〉〉 =

∫
Ω
|∇u| dx+

∫
Ω̄
dαs <∞. Both (ii) and (iii) hold with equality by de�nition of

Λ and Du. Finally, (iv) is a consequence of the fact that dαs

d|αs| (x) is a matrix of rank 1 of the form
a(x)⊗ %(x) for |αs| a.e. x ∈ ∂Ω (see Remark 7.3) combined with Lemma 2.10.
(ii): Given Λ ∈ GYM(Ω̄;RM ), let (un) ⊂ W 1,1(Ω;RM ) be a sequence such that (∇un) generates Λ.
In particular, we have that∫

Ω

g(x)∇un(x) dx→
∫

Ω

〈νx, id〉dx+

∫
Ω̄

〈ν∞x , id〉dλ(x)

for all g ∈ C(Ω̄), This means that ∇un ⇀∗ α inM(Ω̄;RM×N ), where

dα(x) := 〈νx, id〉dx+ 〈ν∞x , id〉dλ(x),

whence α ∈ GW 1
µ . Now let u ∈ BV be the function given by Theorem 3.1. Since the identity

id : RM×N → RM×N is linear, ±id is quasiconvex and its own (generalized) recession function. Thus,
the inequalities (ii) and (iii) of Theorem 3.1 hold for f = id as well as for f = −id, which implies
equality in both cases. Hence,

∇u(x)dx = 〈νx, id〉dx+ 〈ν∞x , id〉
dλ

dLN
(x)dx and dDus(x) = 〈ν∞x , id〉dλs(x).

Combined, we get dDu(x) = ∇u(x)dx+dDus(x) = dα(x), and consequently, (u, α) ∈W 1
µ(Ω;RM ). �

8. Traces for GYM

In order to handle functionals with boundary terms, it is helpful to have a notion of trace for
elements of GYM. As always, we assume that Ω ⊂ RN is a bounded domain with a boundary of class
C1. Moreover, let Γ ⊂ ∂Ω be open in ∂Ω. Below, Lebesgue spaces on Γ and other subsets of ∂Ω are
always understood with respect to the surface measure HN−1.

De�nition 8.1 (inner and outer trace in GYM on Γ). Let Λ ∈ GYM, and let (u, α) be the associated
element of the Sou£ek space W 1

µ in the sense of Theorem 7.6 (ii), i.e., u is the underlying deformation
of Λ (de�ned up to a constant), and α is the center of mass of Λ. We de�ne the inner trace TiΛ of Λ
in L1(Γ;RM ) as the restriction to Γ of the inner trace of (u, α) ∈W 1

µ on ∂Ω (which coincides with the
trace of u in the sense of BV ). Analogously, the outer trace ToΛ ∈M(Γ;RM ) of Λ on Γ is de�ned as
the restriction to Γ of the outer trace of (u, α) ∈W 1

µ .
Remark 8.2.
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(i) Since the underlying deformation u ∈ BV of Λ is only de�ned up to a constant in RM , the
same holds for TiΛ and ToΛ, with the same constant for all three. In our applications below,
this does not really play a role, though, because either the constant does not matter, or one
of the three is given and the constant is therefore �xed, anyway.

(ii) If we express the derivative α of (u, α) ∈ W 1
µ , the element of the Sou£ek space associated to

Λ, as a generalized Young measure as in Theorem 7.6 (i), we get Λ̄, the center of mass of Λ.
Hence TiΛ = TiΛ̄ and ToΛ = ToΛ̄.

(iii) The inner trace of (u, α) ∈ W 1
µ was de�ned as the outer trace of (u, ᾱ) with ᾱ := χΩα.

Accordingly, we have TiΛ = ToΛ
i, where Λi = χΩΛ ∈ GYM is the interior part of Λ in the

sense of Section 4.
(iv) The explicit formula (7.3) for the di�erence between outer and inner trace in the Sou£ek space

translates as follows to the trace di�erence in GYM:

dToΛ(x)− TiΛ(x)dHN−1(x) = 〈ν∞x , id〉%(x)dλ(x), x ∈ Γ, (8.1)

where % is the outer normal on the boundary.

It is tempting to think that the traces of Λ ∈ GYM should be more general objects than the
traces of (u, α) ∈ W 1

µ , say, (generalized) Young measures on Γ instead of elements of L1(Γ;RM )

or M(Γ;RM ). However, as we shall see below, the inner trace enjoys a rather strong compactness
property in L1(Γ;RM ), so that a larger class is pointless, while for the outer trace, the informa-
tion contained in Λ simply does not su�ce to uniquely (up to a constant) determine the trace as a
(generalized) Young measure on Γ.

The following theorem describes the link between traces in GYM and the limits of traces of asso-
ciated generating sequences.

Theorem 8.3. Suppose that (uk) ⊂ BV is a bounded sequence generating Λ = (νx, λ, ν
∞
x ), and

uk ⇀
∗ u in BV . Then Tuk (the trace of uk on Γ in the sense of BV ) satis�es Tuk ⇀

∗ ToΛ in

M(Γ;RM ). Moreover, if λ(Γ) = 0, then Tuk → TiΛ = ToΛ = Tu strongly in L1.

Proof. Tuk ⇀
∗ ToΛ: This immediately follows from the weak∗-continuity of the outer trace in the

Sou£ek space.
�Moreover�: We only give a proof for the case where Γ is contained in a hyperplane in RN . The

general case can be recovered with standard tools in such a context, namely a decomposition of
unity, maps locally straightening the boundary, and suitable error estimates. Rotating and shifting if
necessary, we may even assume that Γ = {0}×Γ′ for a suitable open Γ′ ⊂ RN−1, and the outer outer
normal on Γ ⊂ ∂Ω is given by −e1 = (−1, 0, . . . , 0).

Since λ(Γ) = 0, ToΛ = TiΛ. It therefore su�ces to show that (Tuk) is Cauchy in L1(Λ;RM ).
Using the density of C1(Ω̄;RM ) in W 1,1(Ω;RM ), we may assume that (uk) ⊂ C1(Ω̄;RM ), while we
still have that uk ⇀∗ u in BV and (∇uk) generates Λ = (νx, λ, ν

∞
x ) ∈ GYM. The basic observation

now is the following: For any w ∈ C1(Ω̄;RM ), x′ ∈ Γ′ and t > 0 small enough so that (0, t)× Γ′ ⊂ Ω,
we have

1

t

∫ t

0

|w(x1, x
′)− w(0, x′)| dx1 =

1

t

∫ t

0

∣∣∣ ∫ x1

0

∂1w(s, x′) ds
∣∣∣ dx1 ≤

∫ t

0

|∂1w(s, x′)| ds (8.2)
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Due to (8.2),∫
Γ′
|uj(0, x′)− uk(0, x′)| dx′

=

∫
Γ′

1

t

∫ t

0

|uj(0, x′)− uk(0, x′)| dx1 dx
′

=

∫
Γ′

1

t

∫ t

0

|uj(0, x′)− uj(x1, x
′) + uk(x1, x

′)− uk(0, x′) + uj(x1, x
′)− uk(x1, x

′)| dx1 dx
′

≤
∫

Γ′

1

t

∫ t

0

|uj(0, x′)− uj(x1, x
′)|+ |uk(x1, x

′)− uk(0, x′)|+ |uj(x1, x
′)− uk(x1, x

′)| dx1 dx
′

≤
∫

Γ′

1

t

∫ t

0

|uj(0, x′)− uj(x1, x
′)|+ |uk(x1, x

′)− uk(0, x′)|+ |uj(x1, x
′)− uk(x1, x

′)| dx1 dx
′

≤
∫

(0,t)×Γ′
|∂1uj(x)|+ |∂1uk(x)| dx+

1

t

∫
(0,1)×Γ′

|uj(x)− uk(x)| dx

=: A(t, j, k) +
1

t
B(j, k)

Since (uk) is Cauchy in L1(Ω;RM ), for any t > 0 there is N0(t) such that B(j, k) ≤ t2 if j, k ≥ N0(t).
In addition, if λ(Γ) = 0,

lim
t→0

lim
k,j→∞

A(t, j, k) = 2

∫
Γ

〈ν∞x , |·e1|〉 dλ(x) = 0.

Hence, (Tuk) is Cauchy in L1(Γ′;RM ). �

The weak∗ convergence we get for a sequence of outer traces inM(Γ;RM ) is not su�cient to pass to
the limit in boundary terms like an integral functional on Γ with a nonlinear integrand. Unfortunately,
there seems to be no easy way to �x that, because GYM does not carry enough information to de�ne,
say, a (generalized) Young-measure outer trace:

Example 8.4. Let Γ′ := (0, 1), (0, 1) × Γ′ ⊂ Ω ⊂ R2, and Γ := {0} × Γ′ ⊂ ∂Ω (therefore, the outer
normal is % := (−1, 0) on Γ), and take two sequences (uk) and (vk) of scalar BV functions on Ω
purely concentrating on Γ, with uk = v0 = 0 on Ω \ (0, 1)2 and the following additional properties for
(x1, x

′) ∈ (0, 1)2:

• uk(x1, x
′) = 0 for x1 ≥ 1

k2 , ∇uk(x1, x
′) = k2% for x1 <

1
k2 . The trace is constant uk(0, x′) = 1

on Γ′, generating the Young measure δ1 on Γ′ as k → ∞ (as well as the generalized Young
measure (δ1, 0,−)).

• vk(x1, x
′) = 0 for x1 ≥ 1

k2 , ∇vk(x1, x) = 2k2% for (x1, x
′) ∈ (0, 1

k2 ) × (0, 1
k ), ∇vk(x1, x

′) = 0

for (x1, x
′) ∈ (0, 1

k2 ) × ( 1
k ,

2
k ), repeated 2/k-periodically in x′. Accordingly, the trace vk(0, ·)

alternates between 2 and 0. In the limit as k →∞, the sequence of traces generates the Young
measure 1

2δ2 + 1
2δ0 on Γ′ (as well as the generalized Young measure ( 1

2δ2 + 1
2δ0, 0,−)).

Despite their di�erent Young measure �traces�, both sequences generate the same generalized gradient
Young measure on Ω̄, namely (δ0, χΓH1, δ%): Concentrating at Γ with either gradient −k2%(x′) on a
set of measure 1

k2 or gradient −2k2%(x′) on a set of measure 1
2k2 give the same limit in GYM; the

interior jumps of vk on (x1, x
′) ∈ (0, 1

k )× (Γ′ ∩ { jk | j ∈ Z}) are negligible, because their jump height
is bounded (at most 2), and they are supported on a jump set whose surface measure is k+1

k2 → 0.

9. Relaxation of functionals defined on W 1,1

In this section, we state and prove a relaxation result in terms of generalized Young measure
suitable for functionals like the prototype in the introduction and higher-dimensional analogues. To
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include nonlinear boundary terms as in those examples, it would be ideal if we were able to characterize
under which circumstances a pair (Λ, β), a generalized gradient Young measure and its outer trace,
can be generated by a sequence in W 1,1 such that the traces converge to β strongly, not just weakly∗

inM, because this is crucial for the construction of recovery sequences even if the boundary integrand
is strictly convex. But so far, we are unable to provide such a result, not even for the case β ∈ L1. In
particular, Example 8.4 shows that one can easily choose the �wrong� recovery sequence once oscillating
traces on the boundary are possible. Of course, none of these issues are relevant for functionals with
linear boundary integrals, or no boundary integrals at all.

Below, we do allow nonlinear boundary terms, but avoid the issue with recovery sequences by
imposing a few extra, possibly technical conditions on the integrand that make oscillations on the
boundary energetically unfavorable, as well as concentrations at the boundary other that a simple
jump growing or moving there. Some extra notation is needed for that, which we will introduce next.

9.1. Prerequisites. For Λ ∈ GYM(Ω̄;RM ), we de�ne the �rst moment (sometimes also called center
of mass) 〈Λ, id〉 ∈ M(Ω̄;RM×N ) of Λ as

d〈Λ, id〉(x) := 〈νx, id〉dx+ 〈ν∞x , id〉dλ(x), (9.1)

i.e., for any g ∈ C(Ω̄)∫
Ω̄

g(x)d〈Λ, id〉(x) =

∫
Ω

g(x)

∫
RM×N

Adνx(A) dx+

∫
Ω̄

g(x)

∫
SM×N−1

Adν∞x (A) dλ(x) .

Alternatively, the �rst moment can also be written as a generalized Young measure Λ̄ = (ν̄x, λ̄, ν̄
∞
x )

where ν̄x and ν̄∞x consistently are Dirac masses:

ν̄x := δ〈νx,id〉, dλ̄(x) := |〈ν∞x , id〉| dλ(x), ν̄∞x := δ 〈ν∞x ,id〉
|〈ν∞x ,id〉|

.

Remark 9.1. Due to Theorem 7.6 (ii) and Remark 7.3, 〈ν∞x , id〉 is a rank one matrix of the form
%(x) ⊗ a(x) for λ-a.e. x ∈ ∂Ω, where %(x) denotes the outer normal as usual and a : ∂Ω → RM
is a suitable function. As a consequence, Λ ∈ GYM implies that Λ̄ ∈ GYM, by Theorem 3.1 and
Lemma 2.10.

Below, we will rely on a variant of quasiconvexity at the boundary, a Jensen-type inequality we
only need for recession functions:

De�nition 9.2 (JQCB(%)). Given a unit vector % ∈ SN−1 and v∞ : RM×N → R continuous and
positively 1-homogeneous, we say that v∞ ∈ JQCB(%) if

v∞
(∫

D%

∇ϕdy
)
≤
∫
D%

v∞(∇ϕ) dy for every ϕ ∈W 1,∞
0 (B;RM ), (9.2)

Remark 9.3. Clearly, all convex positively 1-homogeneous functions belong to JQCB(%). Moreover,
if v∞ is quasiconvex at the boundary with respect to the normal % as de�ned in [29, 24] (originally,
the notion is due to [4]), i.e., for every A there exists a vector b = b(A) ∈ RM such that∫

D%

[v∞(A+∇ϕ)− v∞(A)] dy ≥
∫
B∩{y|y·%=0}

b · ϕdHN−1(y) for every ϕ ∈W 1,∞
0 (B;RM ), (9.3)

then v∞ ∈ JQCB(%). However, the proof of the latter is not entirely trivial, mainly because we
cannot add non-constant a�ne functions to ϕ in (9.3) without leaving the class of admissible test
functions. Details are given in Appendix C.

Lemma 9.4. Let Λ = (νx, λ, ν
∞
x ) ∈ GYM(Ω̄;RM ). Then for λ-a.e. x ∈ ∂Ω,

v∞(〈ν∞x , id〉) ≤ 〈ν∞x , v∞〉 for every v ∈ Υ which is qcb at x.
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Proof. Fix x0 ∈ ∂Ω and let (ϕk) ⊂W 1,1(B;RM ) denote a bounded sequence such that suppϕk ⊂ 1
kB

and (∇ϕk) generates (δ0, δ0, ν
∞
x0

) on D% with the outer normal % at x0 (see Remark 6.4). Mollifying if
necessary, we may even assume that (ϕk) ⊂ C∞c (B;RM ) ⊂W 1,∞

0 (B;RM ). Since v∞ is qcb, we have

v∞
(∫

D%

∇ϕk dy
)
≤
∫
D%

v∞(∇ϕk) dy.

This implies the assertion in the limit as k → ∞ because v∞ is continuous,
∫
D%
∇ϕk dy → 〈ν∞x0

, id〉
and

∫
D%
v∞(∇ϕk) dy → 〈ν∞x0

, v∞〉.
�

9.2. Relaxation. Take Ω ∈ RN a bounded domain with a boundary of class C1. In addition, let
f : Ω̄× RM×N → R and g : ∂Ω× RM → R be continuous, such that:

c−1(−1 + |A|) ≤ f(x,A) ≤ c(1 + |A|) for all x ∈ Ω̄, A ∈ RM×N ; (f:1)

f has a recession function in the sense of (2.14); (f:2)

c−1(−1 + |µ|) ≤ g(x, µ) ≤ c(1 + |µ|) for all x ∈ Γ, µ ∈ RM ; (g:1)

g has a recession function in the sense of (2.14). (g:2)

Here, c is a suitable constant. We also de�ne

ΓR := {x ∈ ∂Ω\ | g(x, ·) 6= 0},
ΓN := ∂Ω \ ΓR.

By de�nition, ΓR and ΓN are disjoint and cover ∂Ω. Moreover, ΓN is closed, while ΓR is open in
∂Ω. Admissible functions remain unconstrained both on ΓR and ΓN , which for critical points formally
leads to natural boundary conditions of (nonlinear) Robin and Neumann type, respectively.

We are looking at the following problem:

minimize F (u) :=

∫
Ω

f(x,∇u(x)) dx+

∫
∂Ω

g(x, u) dHN−1(x)

subject to u ∈ AC ,
(9.4)

where C > 0 is given and

AC := {u ∈W 1,1(Ω;RM ); ‖u‖L1(∂Ω;RM ) ≤ C , ‖∇u‖L1(Ω;RM×N ) ≤ C} .
Here, u as a function on ∂Ω or subsets thereof is understood in the sense of trace, and Lebesgue spaces
on ∂Ω or its subsets are understood with respect to the measure HN−1. One particular example is
the toy problem (1.1) mentioned in the introduction.

A natural extension of (9.4) to W 1
µ is given by

minimize F̄ (u, α) :=

∫
Ω

df(x, α) +

∫
Γ

dg(x, β)

subject to (u, α) ∈ AC .
(9.5)

where β is the outer trace of (u, α) on ∂Ω, βs its singular part and dβ
dHN−1 the density of its absolutely

continuous part with respect to HN−1,

dg(x, β) := g
(
x,

dβ

dHN−1
(x)
)
dHN−1(x) + g∞

(
x,

dβs

d |βs|
(x)
)
d |βs| (x)

and

AC := {(u, α) ∈W 1
µ(Ω;RM ); ‖β‖M(∂Ω;RM ) ≤ C , ‖α‖M(Ω̄;RM×N ) ≤ C}
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Even more general, for Λ ∈ GYM with an outer trace β on ∂Ω we may consider:

minimize F̂ (Λ, β) := 〈〈Λ, f〉〉+

∫
Γ

dg(x, β)

subject to (Λ, β) ∈ ÂC ,
(9.6)

where

ÂC := {(Λ, β) ∈ GYMC(Ω̄;RM )×MC(∂Ω;RM ) : Λ = Λ̄ on Γ, β is an outer trace of Λ},
GYMC := {Λ ∈ GYM : 〈〈Λ, 1⊗ |·|〉〉 ≤ C}, MC := {β ∈M : ‖β‖M ≤ C}

Theorem 9.5. Assume that in addition to (f:1), (f:2), (g:1) and (g:2), g(z, ·) is convex, g∞(z, ·) ≥ 0
and f∞(z, ·) ∈ QSLB(%(z))∩ JQCB(%(z)) for every z ∈ ΓR. Then problem (9.6) is the relaxation of

both (9.4) and (9.5), i.e., inf F = inf F̄ = min F̂ . In addition, the following holds:

(i) Every minimizing sequence of either (9.4) or (9.5) contains a subsequence (not relabeled)
which generates a minimizer of (9.6) in the sense that

(∇uk) generates Λ ∈ GYM, and uk ⇀
∗ β in M(∂Ω;RM ), (9.7)

where on ∂Ω, uk ∈ L1(∂Ω;RM ) ⊂M(∂Ω;RM ) is understood in the sense of traces in W 1,1.

(ii) Conversely, for every (Λ, β) = ((νx, λ, ν
∞
x ), β) ∈ ÂC (arbitrary), we have F̂ (Λ, β) ≥ F̂ (Λ̃, β̃),

where (Λ̃, β̃) = ((ν̃x, λ̃, ν̃
∞
x ), β̃) ∈ ÂC is given by

Λ̃ :=

 (νx, λ, ν
∞
x ) on Ω ∪ ΓN ,(

−, |〈ν∞x , id〉| dλ
dHN−1HN−1, δ 〈ν∞x ,id〉

|〈ν∞x ,id〉|

)
on ΓR

β̃ :=

{
β on ΓN ,
dβ

dHN−1 (x)HN−1 on ΓR.

Moreover, if (Λ, β) is a minimizer of (9.6) (and thus also (Λ̃, β̃)), then (Λ̃, β̃) is generated by
a suitable minimizing sequence (uk) of (9.4), again in the sense of (9.7).

Remark 9.6. By de�nition, Λ̃ satis�es Λ̃ = Λ on Ω ∪ ΓN and Λ̃ = Λ̄ on ΓR, where Λ̄ denotes the �rst
moment of Λ as before. Analogous to Remark 9.1, it is clear that Λ̃ de�ned in that way really is an
element of GYM for each Λ ∈ GYM.

Remark 9.7. Above, the sets AC , ÃC , ÂC of admissible functions/gradient Young measures and their
(outer) traces have a built-in bound, determined by the constant C. In this way, we avoid having to
talk about coercivity conditions and a priori bounds. However, if a suitable a priori bound does hold,
then C > 0 can of course be chosen large enough so that all minimizing sequences will be admissible
up to a �nite number of members. In this case, Theorem 9.5 also holds without the arti�cial bound
given by C.

Proof of Theorem 9.5. Clearly, AC ⊂ AC ⊂ ÂC (embedded in the sense of Theorem 7.5 and
Theorem 7.6), F̄ = F on AC and F̂ = F̄ on AC . As a consequence,

inf
AC

F ≥ inf
AC

F̄ ≥ inf
ÂC

F̂ . (9.8)

In addition, ÂC is sequentially compact with respect the convergence in (9.7), i.e., weak∗ convergence
in GYM(Ω̄;RM ) ×M(∂Ω;RM ). Also observe that the �rst term in F̂ is a continuous function of
Λ with respect to weak∗ convergence in GYM. Since g is convex and continuous, just like g∞,
the corresponding second term in F̂ is a lower semicontinuous function of β with respect to weak∗

convergence in M. In particular, we get that F̂ attains its minimum in ÂC . It now su�ces to show
(i) and (ii), and we start with the latter.
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(ii): Let (Λ, β) ∈ ÂC . By de�nition, we also have (Λ̃, β̃) ∈ ÂC . We �rst show that

F̂ (Λ, β) ≥ F̂ (Λ̃, β̃) (9.9)

Since g ≥ 0 on ΓR, all singular contributions on ΓR in the boundary term are non-negative, and we
get ∫

∂Ω

dg(x, β) ≥
∫
∂Ω

dg(x, β̃).

In addition, since f∞(z, ·) ∈ QSLB(%(z)) for every z ∈ ΓR, we have 〈ν∞x , f∞(x, ·)〉 ≥ 0 for λ-
a.e. x ∈ ΓR, which allows us to drop any singular contribution with respect to HN−1 on ΓR in the
�rst integral in (9.6):∫

ΓR

〈ν∞x , f∞(x, ·)〉dλ ≥
∫

ΓR

〈ν∞x , f∞(x, ·)〉 dλ

dHN−1
(x)dHN−1.

Last but not least, due to the fact that f∞(z, ·) ∈ JQCB(%(z)) for every z ∈ ΓR and Lemma 9.4,∫
ΓR

〈ν∞x , f∞(x, ·)〉 dλ

dHN−1
(x)dHN−1 ≥

∫
ΓR

f∞(x, 〈ν∞x , id〉)
dλ

dHN−1
(x)dHN−1

=

∫
ΓR

f∞
(
x,
〈ν∞x , id〉
|〈ν∞x , id〉|

)
dλ̃

concluding the proof of (9.9).
In the rest of the proof, we repeatedly split generalized (gradient) Young measures into their

boundary and interior parts, respectively, as de�ned in Section 4. Furthermore, we will also use
a slightly more general modi�cation of a given generalized (gradient) Young measure, namely, for
Λ = (νx, λ, ν

∞
x ) ∈ Ygen and a Borel set Γ ⊂ Ω̄, with a slight abuse of notation we de�ne

χΓΛ := (χΓ(x)νx + χΩ̄\Γδ0, λ(Γ ∩ ·), χΓ(x)ν∞x ),

i.e., χΓΛ = Λ on Γ, whereas χΓΛ is the �trivial� generalized Young measure (δ0, 0,−) on Ω̄\Γ. In this
sense, we have in particular that Λi = χΩΛ and Λb = χ∂ΩΛ.

Now let (Λ, β) be a minimizer of (9.6). Since on ΓR, Λ̃ coincides with the center of mass of Λ,
χΓRΛ̃ can be interpreted as an element (0, α̃) ∈ W 1

µ according to Theorem 7.6 (ii), where dα̃(x) =

χΓR(x)〈ν∞x , id〉dλ(x). Since λ̃|ΓR is absolutely continuous with respect to HN−1 by de�nition, the outer
trace To(χΓRΛ̃) is also absolutely continuous with respect to HN−1. Therefore, To(χΓRΛ̃) is even the
trace of some w ∈ BV (RN \ Ω;RM ) on ∂Ω, and the extension χRN\Ωw of w to RN is an element
of BV (RN ;RM ). Consequently, we can choose a bounded sequence (wk) ⊂ W 1,1(RN ;RM ) such that
wk = w on RN \ Ω, wk → χRN\Ωw strictly in BV (RN ;RM ), wk = 0 on Ω \ (∂Ω) 1

k
. In particular,

(∇wk) ⊂ L1(Ω;RM×N ) generates χΓRΛ̃b = χΓRΛ̃. This also implies that ‖wk‖W 1,1 → ‖χΓRΛ̃b‖Ygen ,
and modifying wk by multiplying with a suitable sequence of constants converging to 1, we may assume
w.l.o.g. that ‖wk‖W 1,1 ≤ ‖χΓRΛ̃b‖Ygen for all k.

Now take two other bounded sequences (yk), (zk) ∈ W 1,1 such that (∇yk) generates χΓN Λ̃b =

χΓNΛ and (∇zk) generates Λ̃i = Λi = χΩΛ. In addition, w.l.o.g., we may assume that ‖yk‖W 1,1 ≤
〈〈χΓN Λ̃b, 1⊗ |·|〉〉 and ‖zk‖W 1,1 ≤ 〈〈Λ̃i, 1⊗ |·|〉〉. For uk := zk + yk +wk, we get that (∇uk) generates
Λ̃ due to Lemma 2.16. As a consequence, uk ⇀∗ β̃ = ToΛ̃ on ∂Ω.

To see that (uk) is a minimizing sequence for (9.4), observe the following: zk → TiΛ̃ strongly in L1

on ∂Ω by Theorem 8.3, yk → 0 strongly in L1 on every compact K ⊂ ΓR, and wk = γ̃ := To(χΓRΛ̃) =

χΓR(ToΛ̃ − TiΛ̃) is a constant sequence on ΓR. In particular, besides weak∗ convergence in M, we
also have

uk → TiΛ̃ + γ̃ = β̃ strongly in L1
loc(ΓR;RM ),
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and since both g and g∞ are continuous with g(x, ·) = 0 for x ∈ ΓN = ∂Ω \ ΓR, we conclude that∫
ΓR

g(x′, uk(x′)) dHN−1(x′)→
∫

ΓR

g(x′, β̃(x′)) dHN−1(x′)

Altogether, we have F (uk)→ F̂ (Λ̃, β̃) as k →∞.

(i): Let (uk) be a minimizing sequence of (9.4), which generates (Λ0, β0) ∈ ÂC . Due to lower
semicontinuity, F̂ (Λ0, β0) ≤ infAC F = limF (uk). Picking a minimizer (Λ̃, β̃) as in (ii), we get another
minimizing sequence (wk) such that infAC F = limF (wk) = F̂ (Λ̃, β̃) = minÂC F̂ . As a consequence,
minÂC F̂ ≤ F̂ (Λ0, β0) ≤ infAC F = minÂC F̂ , and we have equality everywhere. �

Appendix A. Proof of Proposition 2.8

We start with the following lemma.

Lemma A.1. (cf. [5, Proposition 5.5]) Assume that f = g ⊗ v with (g, v) ∈ C(Ω̄) × Υ and that F
is given by (2.10). Let U ⊂ BV(Ω;RN ) be an additively closed set, and suppose that F : U → R is
bounded from below. Then F is weak*-lower semicontinuous along all sequences (cn)n∈N ⊂ U that
are bounded in BV(Ω;RN ) and in addition satisfy that Sn := {cn 6= 0} ∪ supp |Dcn| ⊂ (∂Ω)rn for a

decreasing sequence rn ↘ 0, which, in particular, imply that cn
∗
⇀ 0 in BV(Ω;RN ).

Proof of Proposition 2.8. For �xed ε > 0, we cover ∂Ω by the following collection of balls:

∂Ω ⊂
⋃
x∈∂Ω

⋃
δ≤δ̃(x,ε)

Bδ(x), (A.1)

where δ̃(x, ε) is any such radius for which (2.5) holds; here we recall that if this condition holds with
the ball of radius δ̃(x, ε) it also holds for any ball of smaller radius.

Further, since ∂Ω is a compact we can chose from the cover in (A.1) a �nite subcover

∂Ω ⊂
J⋃
j=1

Bδj (xj)

with the radii bounded from below, i.e. δj ≥ δ0 for some δ0 = δ0(ε). In fact, since Bδj (xj) are open
and the collection is �nite, we may still �nd α > 0 so that balls of the radii δj − α still cover ∂Ω; i.e.

∂Ω ⊂
J⋃
j=1

Bδj−α(xj).

Let us now apply the local decomposition Lemma 2.2 to the sequence (cn)n∈N with the compact
sets

K1 = Bδ1−α(x1) ∩ Ω,

...

KJ = BδJ−α(xJ) ∩ Ω̄,

KJ+1 = Ω \
J⋃
j=1

Bδj−α(xj);

so we can write
cn = c1,n + c2,n + . . .+ cJ+1,n, (A.2)
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where cj,n are supported in Bδj (xj) for j = 1 . . . J is and cJ+1,n is supported in Ω. Notice that we need
n large enough dependening on α and δ0 in order to ful�ll these requirements. Moreover, c1,n . . . cJ,n
retain the property of the original sequence to be concentrating on the boundary while cJ+1,n = 0 for
large n, and so

F (0) = lim
n→∞

F (cJ+1,n). (A.3)

Further, we de�ne the auxiliary functionals

Gj(v) :=

∫
Ω∩Bδj (xj)

f(x,∇u(x)) + ε|∇u(x)|dx ,

u ∈ Uj :=
{
v ∈ BV(Ω ∩Bδj (xj);Rn) with v = 0 near ∂Bδj (xj)

}
.

Each is bounded from below due to the given quasisublinear growth from below (2.5). Therefore, they
are lower semicontinuous along sequences purely concentrating on the boundary due to Lemma A.1;
in particular, Gj is lower semicontinuous along (cj,n) (note that indeed (cj,n) vanishes near ∂Bδj (xj)).
As a consequence,

lim
n→∞

F (cj,n)− F (0) = lim
n→∞

Gj(cj,n)−G(0)− ε
∫

Ω∩Bδj (xj)

|∇cn(x)|dx

≥ −ε lim
n→∞

∫
Ω∩Bδj (xj)

|∇cn(x)|dx.

By (A.3) and Proposition 2.3 (which applies to F as well as to u 7→ |∇u|), the sum over j yields that

lim
n→∞

F (cn)− F (0) ≥ −ε lim
n→∞

∫
Ω

|∇cn(x)|dx, (A.4)

As ε > 0 is arbitrary and (cn)n is bounded in W 1,1(Ω;RM ) the claim follows.
The following appendix links together generalized Young measures and the so-called DiPerna-

Majda measures [10] which allow for much more general treatment of concentration e�ects and which
were used by the last two authors in many occasions [8, 12, 15, 20, 21]. We con�ne ourselve to a special
case of p = 1 and of the compacti�cation of RM×N by the sphere when one can show a one-to-one
correspondence of the DiPerna-Majda and generalized Young measures. More general ntegrands are
treated with this tool in [20, 22, 27].

Appendix B. Relation of generalized Young measures to DiPerna-Majda measures

A di�erent but equivalent description of oscillation and concentration e�ects in Lp-bounded se-
quences can be reached by means of DiPerna-Majda measures [10, 22, 23]. However, DiPerna-Majda
measures allow for much more general test functions if we replace the sphere used in the de�nition of
Ygen by a larger set. We refer to [27] for a comprehensive treatment.

In what follows we will work mostly with a particular compacti�cation of RM×N , namely, with the
compacti�cation by the sphere. We will consider the following ring of continuous bounded functions

S :=

{
v0 ∈ C(RM×N ) : there exist c ∈ R , v0,0 ∈ C0(RM×N ), and v0,1 ∈ C(SM×N−1) s.t.

v0(A) = c+ v0,0(A) + v0,1

(
A

|A|

)
|A|

1 + |A|
if A 6= 0 and v0(0) = v0,0(0) + c

}
, (B.1)

where SM×N−1 denotes the (MN − 1)-dimensional unit sphere in RM×N . Then βSRM×N is homeo-
morphic to the unit ball B(0, 1) ⊂ RM×N via the mapping d : RM×N → B(0, 1), d(A) := A/(1 + |A|)
for all A ∈ RM×N . Note that d(RM×N ) is dense in B(0, 1). Notice also that, in view of (2.4),
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Υ = {v : RM×N → R; v/(1 + | · |) ∈ S} .

Let σ ∈ M(Ω̄) be a positive Radon measure on a bounded domain Ω ⊂ RN . A mapping ν̂ :
x 7→ ν̂x belongs to the space L∞w (Ω̄, σ;M(βSRM×N )) if it is weakly* σ-measurable (i.e., for any
v0 ∈ C0(RM×N ), the mapping Ω̄ → R : x 7→

∫
βSRM×N v0(A)dν̂x(A) is σ-measurable in the usual

sense). If additionally ν̂x ∈ M+
1 (βSRM×N ) for σ-a.a. x ∈ Ω̄ the collection {ν̂x}x∈Ω̄ is the so-called

Young measure on (Ω̄, σ) [33], see also [3, 27, 31, 32].
DiPerna and Majda [10] shown that having a bounded sequence in (Yk)k∈N ⊂ L1(Ω;RM×N ) with

1 ≤ p < +∞ and Ω an open domain in RN , there exists its subsequence (denoted by the same indices),
a positive Radon measure σ ∈ M(Ω̄), and a Young measure ν̂ : x 7→ ν̂x on (Ω̄, σ) such that (σ, ν̂) is
attainable by this subsequence in the sense that ∀g∈C(Ω̄) ∀v0∈S:

lim
k→∞

∫
Ω

g(x)v(Yk(x))dx =

∫
Ω̄

∫
βSRM×n

g(x)v0(A)dν̂x(A)dσ(x) , (B.2)

where v ∈ Υ. In particular, putting v0 := v/(1 + | · |) = 1 in (B.2) we can see that

lim
k→∞

(1 + |Yk|) = σ weakly* in M(Ω̄) . (B.3)

If (B.2) holds, we say that {yk}∈N generates (σ, ν̂) and we denote the set of all such pairs (σ, ν̂) by
DM .

Comparing (B.3) and (2.13) applied for v(A) := |A| we immediately see that

σ =
( ∫

RM×N
(1 + |A|)dνx(A)

)
LN + λ . (B.4)

In particular, σs = λs, i.e., singular parts (in the Lebesgue decomposition) of both measures coincide.
In view of [12, (A.7)] for all g ∈ C(Ω̄) and all v ∈ ΥS(RM×N )

lim
k→∞

∫
Ω

g(x)v(yk(x))dx =

∫
Ω

∫
RM×N

g(x)v(A)dνx(A) dx+

∫
Ω̄

∫
βSRM×N\RM×N

g(x)
v∞(A)

1 + |A|
dν̂x(A) dσ(x) .

(B.5)

Comparing this with (2.13), we get∫
Ω̄

∫
βSRM×N\RM×N

g(x)
v∞(A)

1 + |A|
dν̂x(A) dσ(x) =

∫
Ω

∫
SM×N−1

v∞(A)ν∞x (dA)g(x) dλ(x) . (B.6)

Setting v∞(A) := |A| in the above identity (B.6) we get that

dλ

dσ
(x) = ν̂x(βSRM×N \ RM×N ) . (B.7)

Substituting back to (B.6) we �nally obtain that for σ-a.a. x ∈ Ω̄ and all continuous and positively
one homogeneous functions v∞∫

βSRM×N\RM×N

v∞(A)

1 + |A|
dν̂x(A) = ν̂x(βSRM×N \ RM×N )

∫
SM×N−1

v∞(A)ν∞x (dA) . (B.8)

Comparing (B.2) and (B.5) we get for all v ∈ Υ and almost all x ∈ Ω

dLN

dσ
(x)

∫
RM×N

v(A)dνx(A) =

∫
RM×N

v(A)

1 + |A|
dν̂x(A) , (B.9)

which connects the Young measure ν and the restriction of ν̂ on RM×N . Altogether , if (ν, λ, ν∞) ∈
Ygen we construct (σ, ν̂) ∈ DM from (B.4), (B.7), (B.8), and from (B.9) and similarly, given (σ, ν̂) ∈
DM we construct (ν, λ, ν∞) ∈ Ygen.
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Appendix C. Quasiconvexity at the boundary versus JQCB

We recall the following notion originally introduced in [4], in the form given in [29, 24]:

De�nition C.1 (qcb: quasiconvex at the boundary). Given v ∈ C(RM×N ), we say that v is quasi-
convex at the boundary (qcb) at the matrix A ∈ RM×N with respect to the normal % ∈ SN−1 if there
exists a vector b = b(A) ∈ RM such that∫

D%

[v(A+∇ϕ)− v(A)] dy ≥
∫
B∩{y|y·%=0}

b · ϕdHN−1(y) for every ϕ ∈W 1,∞
0 (B;RM ), (C.1)

Remark C.2.

(i) The half-ballD% = B∩{y|y·% < 0} is a prototypical example for a so-called �standard boundary
domain� with respect to %. Standard boundary domains are characterized by the fact that
their boundary contains a planar part perpendicular to %, and there, the test functions ϕ
remain unconstrained, while they have to vanish on the rest of the boundary. Quasiconvexity
at the boundary can be equivalently de�ned using another such domain instead of D% [29, 24].

(ii) The boundary integral on the right hand side of (C.1) can be rewritten as a volume integral,
using the Gauss Theorem and the boundary conditions for ϕ:∫

B∩{y|y·%=0}
b · ϕdHN−1(y) =

∫
D%

(b⊗ %) : Dϕdy (C.2)

(iii) Suppose that v has a recession function v∞. Then, if v is qcb at every A ∈ RM×N with respect
to %, so is v∞.

The link to JQCB(%) as introduced in De�nition 9.2 is the following:

Lemma C.3. Let % ∈ SN−1, and let v∞ : RM×N → R be continuous and positively 1-homogeneous.
If v∞ is qcb at A with respect to % for every A ∈ RM×N , then v∞ ∈ JQCB(%), i.e.,

v∞
(∫

D%

∇ϕdy
)
≤
∫
D%

v∞(∇ϕ) dy for every ϕ ∈W 1,∞
0 (B;RM ). (C.3)

Proof. Let Q = Q(%) ⊂ RN be an open unit cube centered at the origin, such that one of the sides
of Q is perpendicular to %, and let

Q% := Q ∩H%, where H% := {y ∈ RN |y · % < 0}.

Q% is another example for a standard boundary domain with respect to %, and it is not di�cult to
check (see [29, 24] for details) that for v = v∞, (C.1) is equivalent to∫

Q%

[v∞(A+∇ϕ)− v∞(A)] dy ≥
∫
Q%

(b⊗ %) : ∇ϕdy for every ϕ ∈W 1,∞
0 (Q;RM ), (C.4)

where we also used the analogue of (C.2) on Q%. Moreover, the class of test functions ϕ in (C.4)
can be extended to BV by a density argument. In particular, using the density of W 1,∞ in BV with
respect to strict convergence we get∫

H%

[dv∞(A+Dϕ)(y)− v∞(A) dy] ≥
∫
H%

(b⊗ %) : dDϕ(y)

for every ϕ ∈ BV (RN ;RM ) with ϕ = 0 on RN \ Q̄.
(C.5)

Finally, since dv∞(Ã + Dϕ)(y) − v∞(Ã) dy = 0 on RN \ suppϕ for all Ã ∈ RM×N , we may replace
the �xed matrix A by any measurable function F : RN → RM×N such that F (y) = A for all
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y ∈ H% ∩ suppϕ: ∫
H%

[dv∞(F +Dϕ)(y)− v∞(F (y)) dy] ≥
∫
H%

(b⊗ %) : dDϕ(y)

for every ϕ ∈ BV (RN ;RM ) with ϕ = 0 on RN \ Q̄.
(C.6)

Analogous to the equivalence of (C.1) and (C.4), our assertion (C.3) holds if and only if for every
ψ ∈W 1,∞

0 (Q;RM ),

v∞
(∫

H%

∇ψ dy
)
≤
∫
H%

v∞(∇ψ) dy. (C.7)

Therefore, given ψ ∈W 1,∞
0 (Q;RM ), let us see that (C.7) indeed holds.

Due to the boundary conditions of ψ,
∫
Q%

(∇Ψ(y))%⊥ dy = 0 for every vector %⊥ ∈ RN perpendic-

ular to %. Therefore, there exists a vector a = a(ψ) ∈ RM such that

a⊗ % =

∫
Q%

∇Ψ(y) dy ∈ RM×N .

We will use (C.6) with the following functions: For y ∈ Q% and k ≥ 2, de�ne Fk ∈ L∞(Q%;RM×N )
and ϕk ∈ BV (H%;RM ) such that

Fk(y) :=

{
0 for −1 < % · y < − 1

k ,
k(a⊗ %) for − 1

k ≤ % · y < 0,
∇ϕk(y) := −Fk(y)+∇ψk(y) with ψk(y) := kN−1ψ(ky),

extended by zero to all of RN . Here, notice that Fk(y) = ∇fk(y) where ∇fk is the absolutely
continuous part of the BV derivative Dfk(y) of a potential fk ∈ BV (RN ;RM ) such that

fk = 0 on RN \Q%,
fk is piecewise a�ne and continuous in Q% with

fk = 0 on {y ∈ Q% | % · y < − 1
k} and

∇fk = k(a⊗ %) on {y ∈ Q% | − 1
k < % · y < 0}.

In particular, ϕk := −fk + ψk ∈ BV (RN ;RM ) is admissible as a test function in (C.6), and Fk is
constant on suppϕk ∩H% ⊂ ( 1

k Q̄) ∩H% as required for (C.6). Consequently, the singular part of Dfk
is supported on the jump set of fk given by

Jk :=
{
y ∈ ∂Q%

∣∣ − 1
k ≤ % · y ≤ 0

}
∪ (∂Q% ∩ ∂H%),

fk(RN ) ⊂ [0, a] (the closed one-dimensional line segment connecting 0 and a in RM ), and

|Dfk| (Jk ∩H%) ≤ |a|HN−1(Jk ∩H%) = |a| 2N
k
→ 0 as k →∞. (C.8)

Moreover,∫
H%

dDϕk(y) = −
∫
Jk∩H%

dDfk(y)−
∫
H%

Fkdy +

∫
H%

∇ψkdy = 0− a⊗ %+ a⊗ % = 0.

Therefore, the right hand side of (C.6) with F = Fk and ϕ = ϕk vanishes, and we obtain∫
H%

[dv∞(Fk +Dϕk)(y)− v∞(Fk(y)) dy] ≥ 0. (C.9)
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Using �rst the de�nition of ϕk and then the de�nition of Fk, a change of variables z = ky and the
homogeneity of v∞, we infer that

0 ≤
∫
Jk∩H%

dv∞(Dfk)(y) +

∫
H%

[v∞(∇ψk(y))− v∞(Fk(y))] dy

=

∫
Jk∩H%

dv∞(Dfk)(y) +

∫
H%

v∞(∇ψ(z)) dz − v∞(a⊗ %).

(C.10)

Since
∫
Q%
∇ψ dy = a⊗ %, due to (C.8), passing to the limit as k →∞ we �nally get (C.7). �
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