Modeling of two-phase flow in geophysics: compaction, differentiation, partial melting, and melt migration

Ondřej Šrámek University of Maryland, Department of Geology

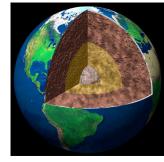
presented on Sep 18, 2012 at BIRS workshop "Model reduction in continuum thermodynamics: Modeling, analysis and computation" BIRS, Banff, Canada, Sep 16–21, 2012

Collaborators: David Bercovici, Stéphane Labrosse, Laura Milelli, Yanick Ricard

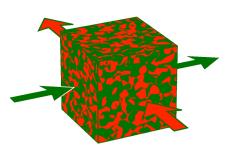
Geophysics, geodynamics

Earth & planets

their evolution, formation, structure



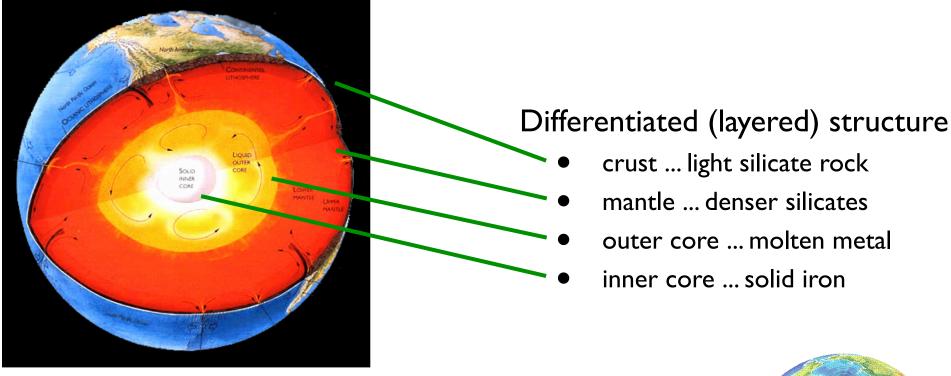
two-phase flow and deformation



Outline

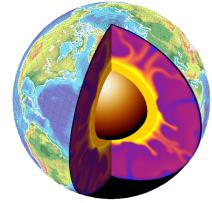
- geophysical motivation multi-phase problems
- specific two-phase model
- applications
 - planetary core formation
 - coupling of deformation and melting

Earth structure



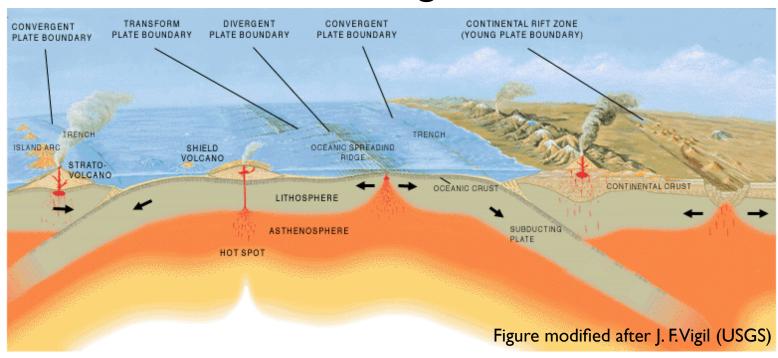
Dynamic interior – convection

- convection in molten outer core (geodynamo)
- convection in Earth mantle (plate tectonics at the surface)



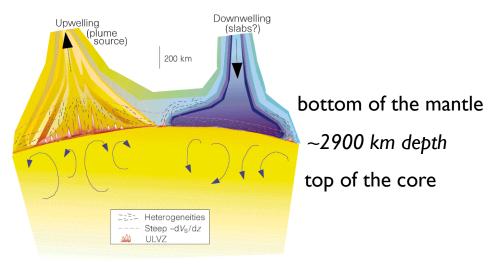
We have learned great deal using geodynamical modeling constrained by observations (seismology, gravity, geochemistry), realistic material parameters (high-pressure mineral physics). Single-/multi-phase models.

Shallow magmatism

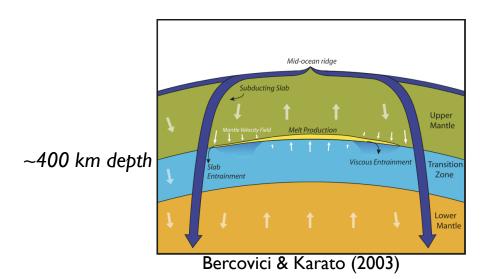


- mid-ocean ridges pressure-release melting
- hot spots melting due to high temperature
- arc volcanism dehydration melting (composition)

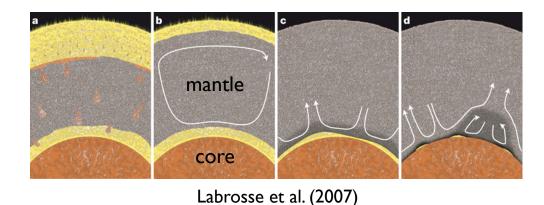
Partially molten regions in deeper Earth (?)



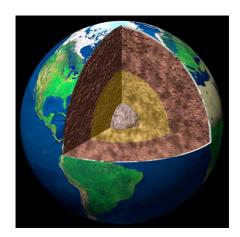
Lay et al. (1998) bottom of Earth's mantle (~2800 km depth)



partial melt layer at ~400 km depth?



basal magma ocean in the mantle

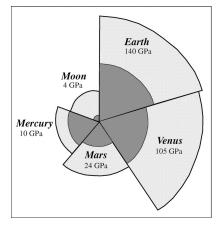


mushy layer at inner core—outer core boundary

Planetary accretion and differentiation

- terrestrial planets: metallic core & silicate mantle
- the core-mantle differentiation during/after the late stage of planetary growth

building block (chondtiric meteorite)



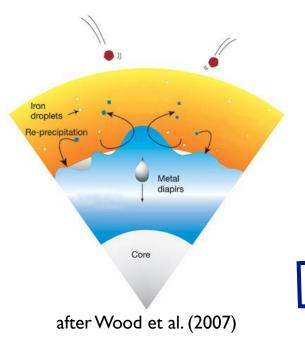
differentiated planets

after Ahrens (1990)

High temperature conditions Probably extensive melting

protoplanetary disk





- accretion heat from impacts
- radiogenic heat from short-lived isotopes
- ΔT_{impact} may melt the metal, or even the silicates (magma ocean)
- easy differentiation if (partially) molten
- heating by differentiation
 - further melting

Geophysical two-phase (multi-phase) problems

- partial melting: solid & melt (shallow & deep Earth)
 melt generation, migration, focussing, extraction
- planetary differentiation: silicate & metal
- other geoscience problems
 (e.g., icy satellites, glaciology, sediments and soils, fluid migration, hydrocarbon reservoirs and CO₂ sequestration, ...)
- phase vs. component ... grain/pore scale
- highly viscous flow ... acceleration, inertia neglected often a large difference in viscosities between phases

Two-phase models in geophysics

- effort to understand mid-ocean ridges
- early 70's (Sleep 1974, Turcotte & Ahern 1978, Ahern & Turcotte 1979)
- Mid 1980's:
- McKenzie (1984), Ribe (1985), Scott & Stevenson (1986)
 - general model of partially molten regions
 - porous flow of melt through viscous deformable matrix, or Darcy + deformation

Recently developed two-phase model

- Bercovici, Ricard & Schubert (2001), Ricard & Bercovici (2003)
- accounts for the mechanical and thermodynamical effects of the interface (interfacial surface tension)
- requires a difference in pressures between the two phases
- phase change included (Šrámek et al. 2007)

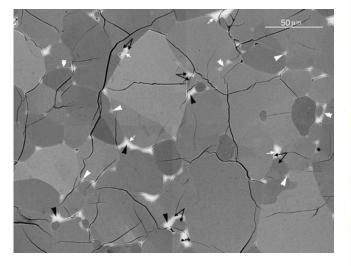
Recently developed two-phase model

- Bercovici, Ricard & Schubert (2001), Ricard & Bercovici (2003)
- accounts for the mechanical and thermodynamical effects of the interface (interfacial surface tension)
- requires a difference in pressures between the two phases
- phase change included (Šrámek et al. 2007)
- Original motivation: non-equilibrium surface energy treatment
 - → isotropic damage (void generation and growth)
 - → description of weakening and shear localization
 - → generation of plate tectonics
- I will not present the model in its most general form
- Will show a limited version two-phase single-component model of compaction and phase change

Model assumptions

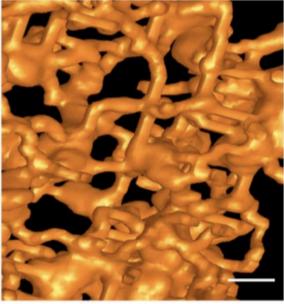
- each phase is an incompressible viscous fluid
- special case: very large viscosity ratio
- interaction: Darcy "fluid" flow through a deformable "matrix" ... interconnectivity

basaltic melt in olivine matrix

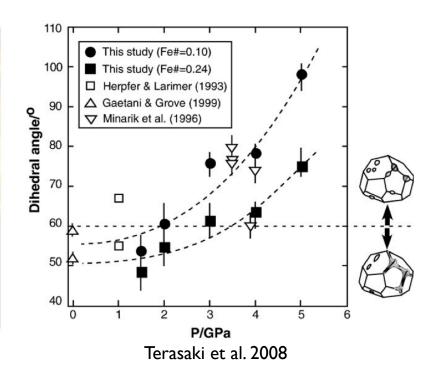


Cmíral et al. (1998)

FeS melt in solid metal

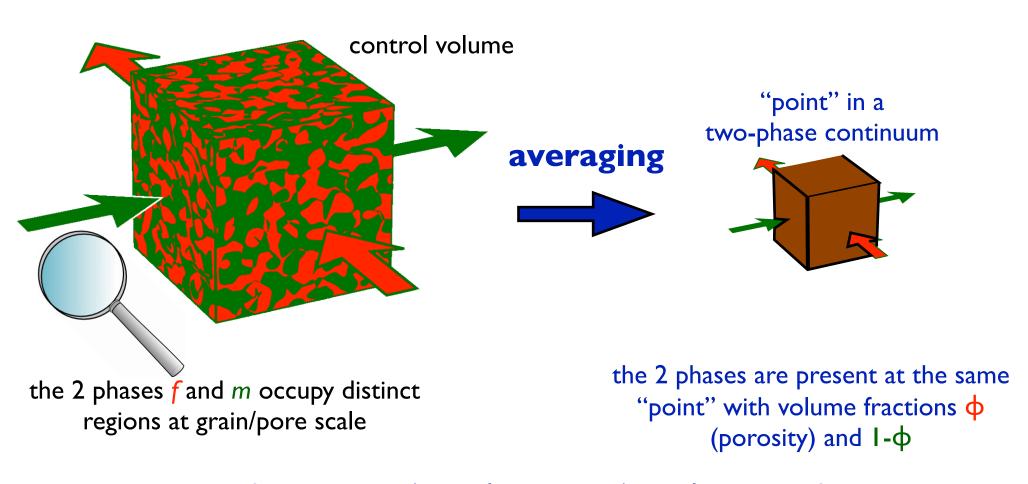


Roberts et al. (2007)



Two-phase continuum description

"fluid" phase ... index f
"matrix" phase ... index m



other quantities (e.g., velocities v_f , v_m) are also averaged and assumed continuous in space

Mass conservation

- incompressible viscous fluids
- matrix skeleton/fluid network "compressible"

$$\frac{\partial \phi}{\partial t} + \boldsymbol{\nabla} \cdot (\phi \mathbf{v}_f) = \frac{\Delta \Gamma}{\rho_f}$$

$$-\frac{\partial \phi}{\partial t} + \boldsymbol{\nabla} \cdot [(1 - \phi) \mathbf{v}_m] = -\frac{\Delta \Gamma}{\rho_m}$$

- porosity Φ
- averaged velocities v_m, v_f
- melting rate $\Delta\Gamma$
- densities ρ_m , ρ_f

Momentum equations

force balance for the individual phases in the limit $\mu_f << \mu_m$ inertial terms neglected

generalized Darcy's law

$$-\phi \left[\frac{\nabla P_f - \rho_f \mathbf{g}}{\uparrow} \right] + c \Delta \mathbf{v} = 0$$

non-hydrostatic pressure gradient

interaction coefficient (cf. Darcy's law)

$$c = \frac{\mu_f \phi^2}{k(\phi)} = \frac{\mu_f}{k_0}$$
 permeability exponent = 2

matrix momentum equation

$$-(1-\phi)[\nabla P_m - \rho_m \mathbf{g}] + \nabla \cdot [(1-\phi)\underline{\boldsymbol{\tau}}_m] - c\Delta \mathbf{v} + \Delta P \nabla \phi + \nabla(\sigma \alpha) = 0$$

deviatoric viscous stress in the matrix

$$oldsymbol{ au}_m = \mu_m \left(oldsymbol{
abla} \mathbf{v}_m + [oldsymbol{
abla} \mathbf{v}_m]^T - rac{2}{3} oldsymbol{
abla} \cdot \mathbf{v}_m \mathbf{I}
ight)$$

interfacial surface tension

coefficient of interfacial surface tension area density

Energy balance for the two-phase mixture

thermal equilibrium between the phases

Energy balance for the two-phase mixture

thermal equilibrium between the phases

9 equations written mass, momentum, energy

but II unknowns

2 velocities, 2 pressures, temperature, porosity, melting rate

non-equilibrium thermodynamics provides 2 additional relations

Non-equilibrium thermodynamics

flux force

$$\begin{pmatrix} \frac{D_m \phi}{Dt} \\ \Delta \Gamma \end{pmatrix} = \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \end{pmatrix} \begin{pmatrix} -\Delta P - \sigma \frac{d\alpha}{d\phi} \\ \Delta \varepsilon - T\Delta s + \frac{P_m}{\rho_m} - \frac{P_f}{\rho_f} \end{pmatrix}$$

2nd law of thermodynamics
Onsager's relations
micromechanical model
limiting cases

relation for pressure difference

 $\frac{\mathrm{d} \alpha}{\mathrm{d} \phi}$ sum of principal interface curvatures

$$\Delta P + \sigma \frac{\mathrm{d}\alpha}{\mathrm{d}\phi} = -\frac{4}{3} \frac{\mu_m}{\phi} \, \nabla \cdot \mathbf{v}_m$$

deviation of pressure difference from the static Laplace's condition

compaction/dilation of the matrix

kinetic relation for melting rate

 \propto

$$\Delta\Gamma = \chi \left(\Delta\varepsilon - T\Delta s - P_f \frac{\Delta\rho}{\rho_f \rho_m} - \frac{\sigma}{\rho_m} \frac{d\alpha}{d\phi} \right)$$

melting rate ∝

departure from equilibrium

Overview of the model

$$\frac{\partial \phi}{\partial t} + \nabla \cdot [\phi \mathbf{v}_f] = \frac{\Delta \Gamma}{\rho_f}$$

$$-\frac{\partial \phi}{\partial t} + \nabla \cdot [(1 - \phi)\mathbf{v}_m] = -\frac{\Delta \Gamma}{\rho_m}$$

$$-\phi[\nabla P_f - \rho_f \mathbf{g}] + c\Delta \mathbf{v} = 0$$

$$-(1 - \phi)[\nabla P_m - \rho_m \mathbf{g}] + \nabla \cdot [(1 - \phi)\underline{\boldsymbol{\tau}}_m] - c\Delta \mathbf{v} + \Delta P \nabla \phi = 0$$
momentum (2x)

$$\phi \rho_f C_f \frac{\mathbf{D}_f T}{\mathbf{D} t} + (1 - \phi) \rho_m C_m \frac{\mathbf{D}_m T}{\mathbf{D} t} = -T \Delta s \Delta \Gamma + Q - \mathbf{\nabla} \cdot \mathbf{q} + \Psi + \frac{4}{3} \mu_m \frac{1 - \phi}{\phi} (\mathbf{\nabla} \cdot \mathbf{v}_m)^2 + \frac{\Delta \Gamma^2}{\chi}$$

energy

$$\Delta P = -\frac{4}{3} \frac{\mu_m}{\phi} \, \mathbf{\nabla} \cdot \mathbf{v}_m$$
 pressure difference

$$\Delta\Gamma = \chi \left(\Delta\varepsilon - T\Delta s - P_f \frac{\Delta\rho}{\rho_f\rho_m}\right) \qquad \text{melting rate}$$

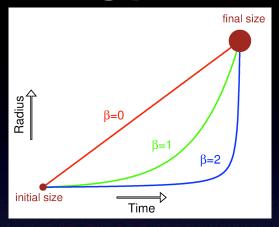
$$oldsymbol{ au}_m = \mu_m \left(oldsymbol{
abla} \mathbf{v}_m + [oldsymbol{
abla} \mathbf{v}_m]^T - rac{2}{3} oldsymbol{
abla} \cdot \mathbf{v}_m \mathbf{I}
ight) \quad ext{rheology}$$

Two-phase model for geophysical flows

- consistent description of mechanics and thermodynamics of a deforming two-phase medium
- includes phase change (melting/freezing)
- accounts for coupling between phase change, interfacial effects and viscous deformation
- set of continuum mechanics PDEs
- generalization: multi-component (Rudge et al. 2011)

Application I: metal-silicate segregation and core formation

Accreting planetesimal

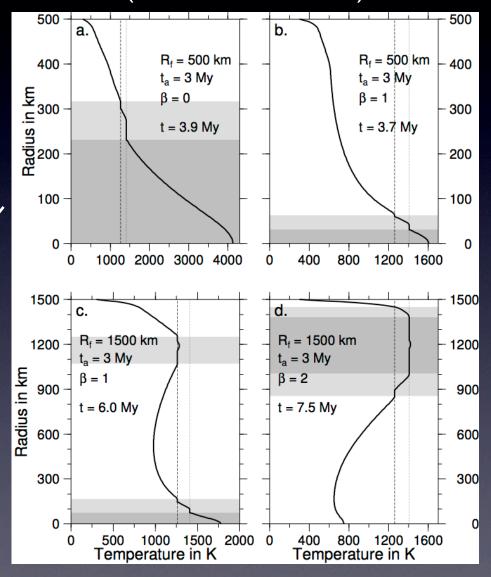


- radiogenic heating –
 ²⁶Al, 0.74 My half-life, volumetric
- impactor heating (gravitational) near-surface

smaller final size, 'melting from the center outward

larger final size, strong near-surface heating

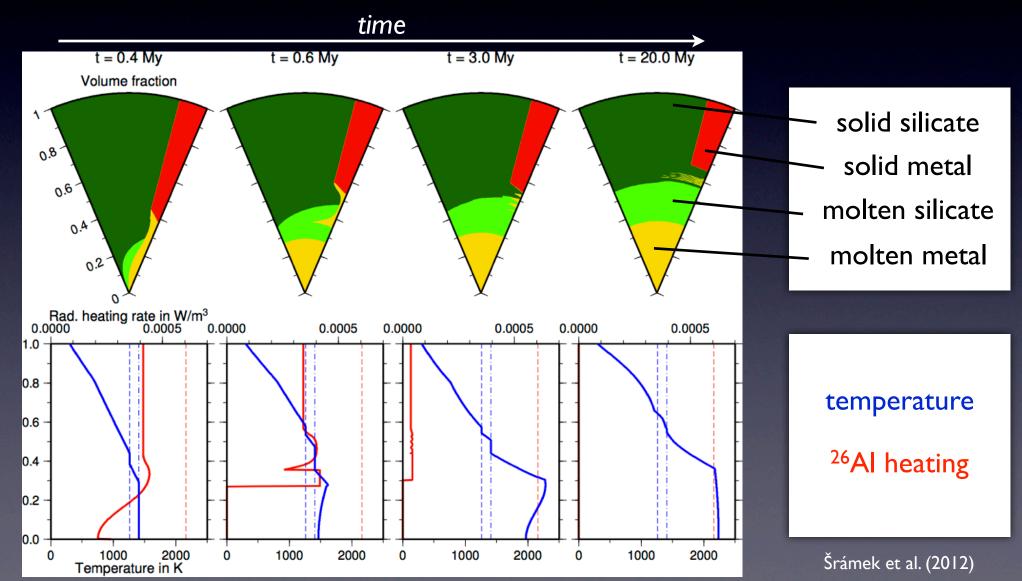
Examples of thermal structure (no differentiation)



melting => differentiation

Thermal evolution with differentiation

- spherically symmetric case
- initial state: cold (all solid), 20% metal & 80% silicate
- porous flow and deformation if partially molten or ~instantaneous separation when fully molten



2-D Cartesian model of core formation

solved using finite differences on a staggered grid



$$\phi(\mathbf{v}_f - \mathbf{v}_m)$$
 =0 if metal solid ... single phase \neq 0 if metal molten ... phases separate

Simplifications

- silicates never melt
- viscosities of the silicates and solid metal are equal

2-D Cartesian model – numerical method

average momentum equation:

direct solver (F. Dubuffet)

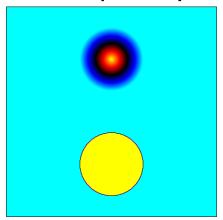
Darcy separation and compaction:

ADI iterative

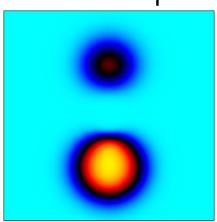
porosity advection:

TVD flux limiter scheme

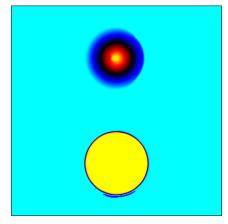
initial porosity



2π-rotation: upwind



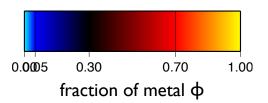
 2π -rotation: our method



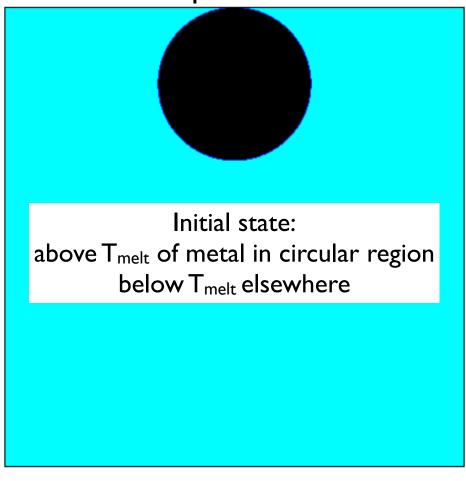
Ricard et al. (2009), Šrámek et al. (2010)

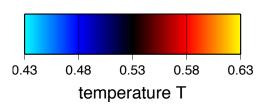
fraction of metal φ

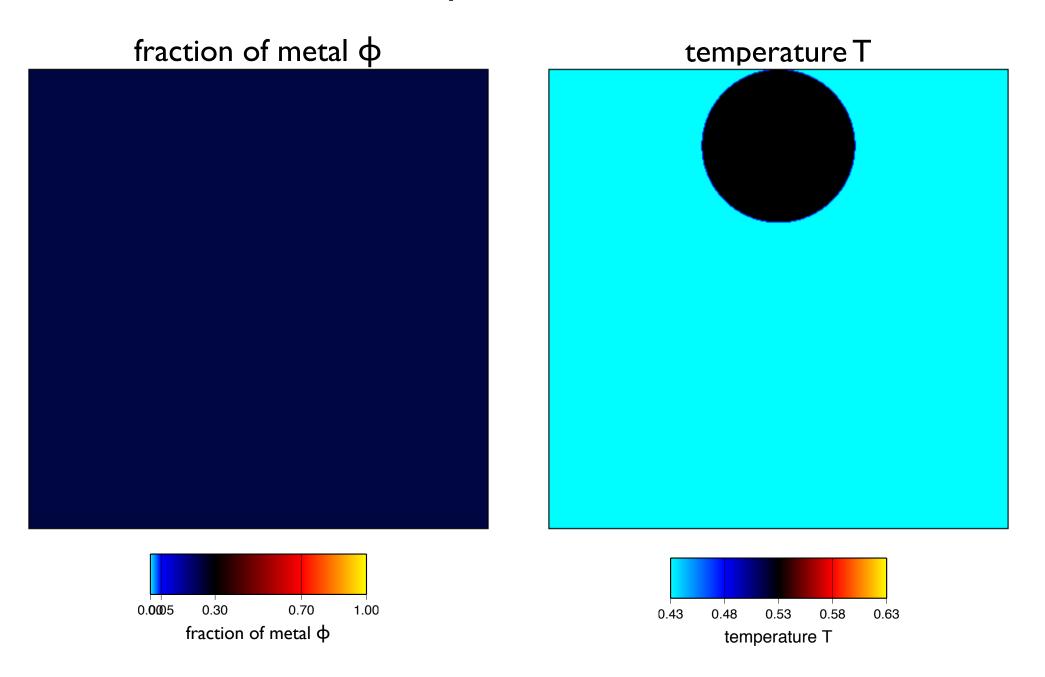
Initial state: uniform metal fraction 25%

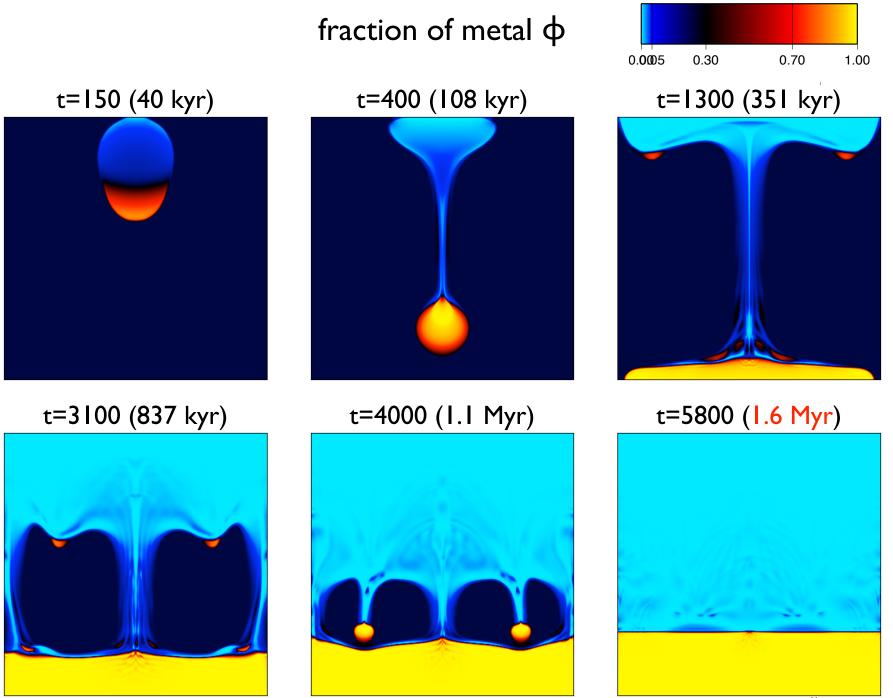


temperature T



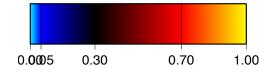






Ricard et al. (2009), Šrámek et al. (2010)





t=150 (40 kyr)

t=400 (108 kyr)

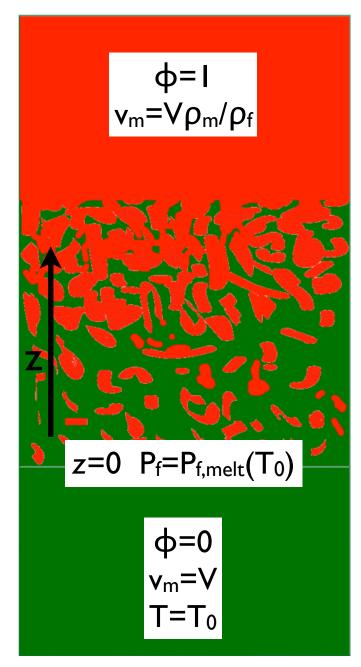
t=1300 (351 kyr)

- a single impact may trigger a large scale (whole planet) core segregation
- time scale of core formation ~I Myr
- possible improvements:
 - spherical model (3-D) + coupled Poisson equation for gravitational potential
 - account for silicate melting
 - chemical (dis)equilibration between core and mantle

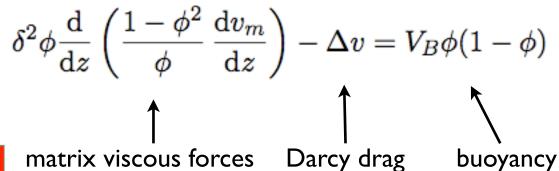
Application II: Coupling between compaction and melting

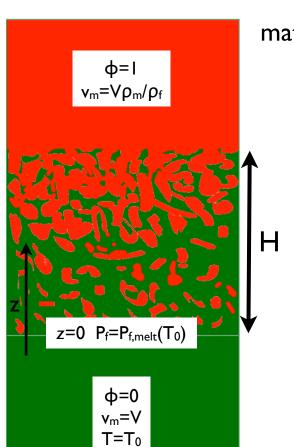
- aspect of partial melting below midocean ridges
- equilibrium pressure release melting
- steady state, I-D
- univariant melting (single component)
- solid matrix upwelling at a prescribed velocity V
- two-phase region between pure solid $(\phi=0)$ and pure melt $(\phi=1)$

Does deformation affect melting?



Force balance in the two-phase zone





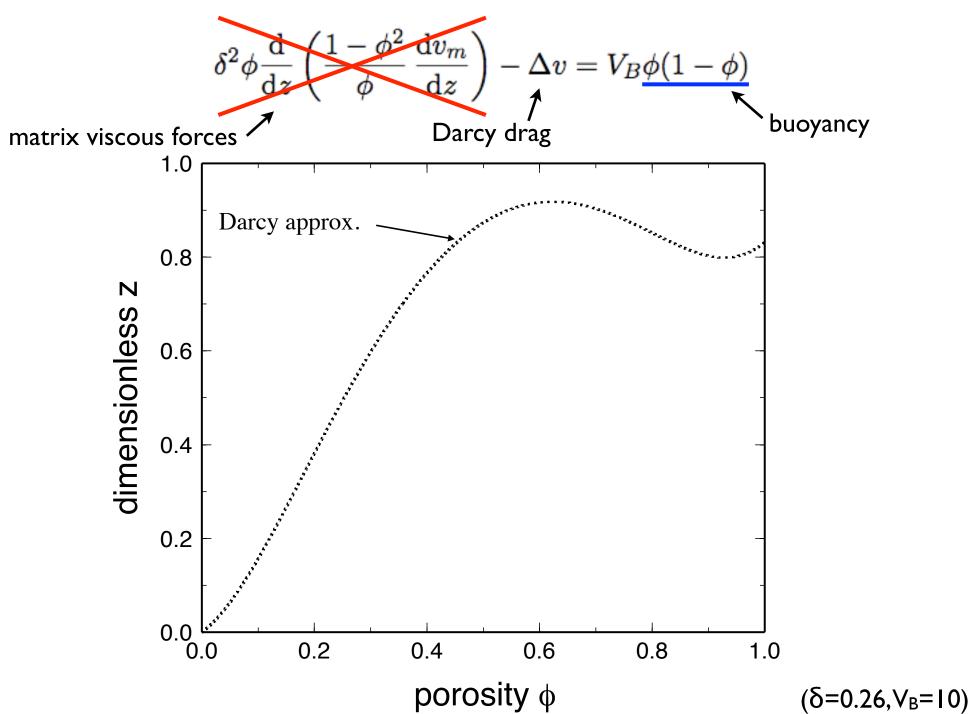
$$\delta^2 = \frac{4\mu_m}{3cH^2} = \frac{4\mu_m k_0}{3\mu_f H^2} \qquad \begin{array}{c} \text{dimensionless} \\ \text{compaction length } \delta \end{array}$$

$$V_B = rac{\Delta
ho g}{cV} = rac{\Delta
ho g k_0}{\mu_f V}$$
 dimensionless buoyancy velocity V_B

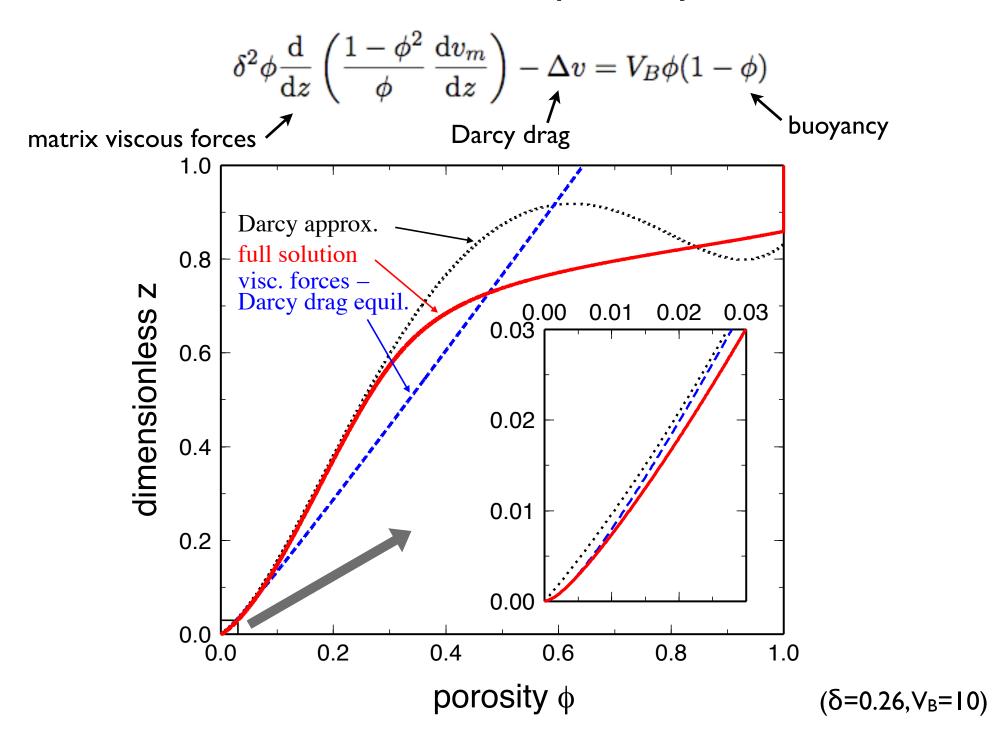
oceanic spreading center:

$$\begin{array}{c} \delta \sim 0.1 \\ V_B \sim 100 \end{array}$$

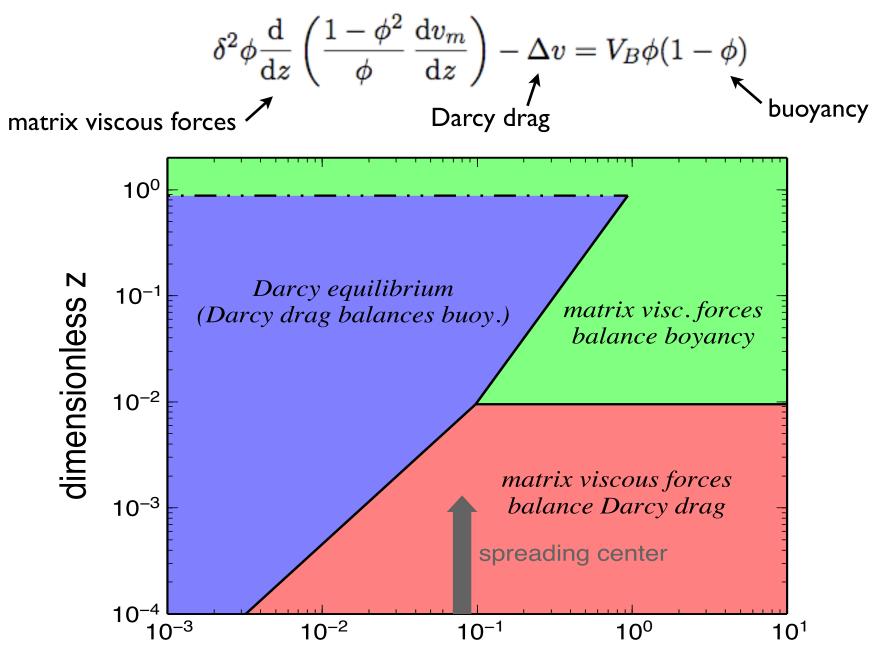
Darcy equilibrium $(\delta=0)$ – porosity



Full solution – porosity



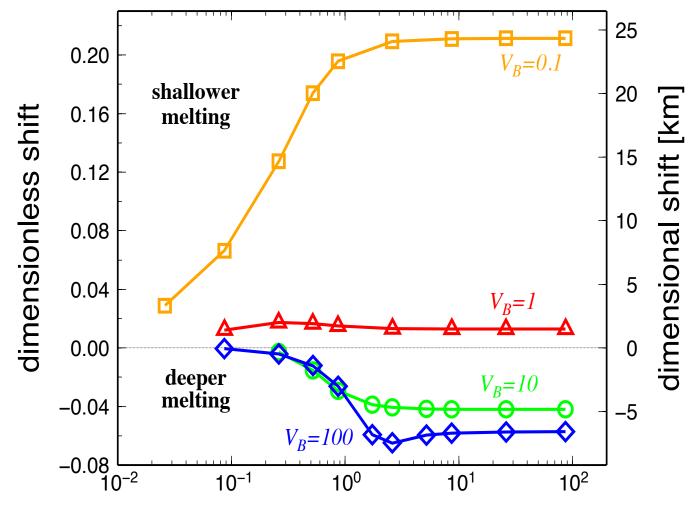
Force balance in the partially molten region



dimensionless compaction length δ

 $(V_B = 60)$

Pressure difference between solid and melt – – Depth of incipient melting



 $V_B < I$ inefficient melt extraction matrix dilates, $P_f > P_m$ need lower average pressure, i.e., shallower depth to melt

V_B > I melt readily extracted matrix compacts, P_f < P_m can melt at higher average pressure, i.e. deeper

dimensionless compaction length δ

Melting begins at different depth than what predicts average pressure.

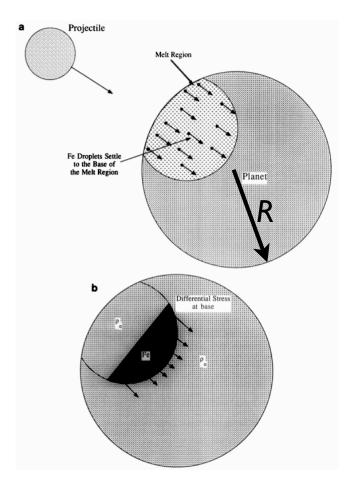
Summary

- many geophysical problems involve multi-phase multicomponent flow and deformation
- analysis and modeling of these complex media is becoming more common in geophysics and planetary physics
- leads to more complicated mathematical models relative to what most geodynamics typically deals with
- excellent opportunity for interaction between fields of geophysics, mathematical analysis, computational science

Metal-silicate differentiation

$$\Delta T_{impact} = rac{4\pi}{3} rac{f_1}{f_2} rac{Gar{
ho}R^2}{C}$$

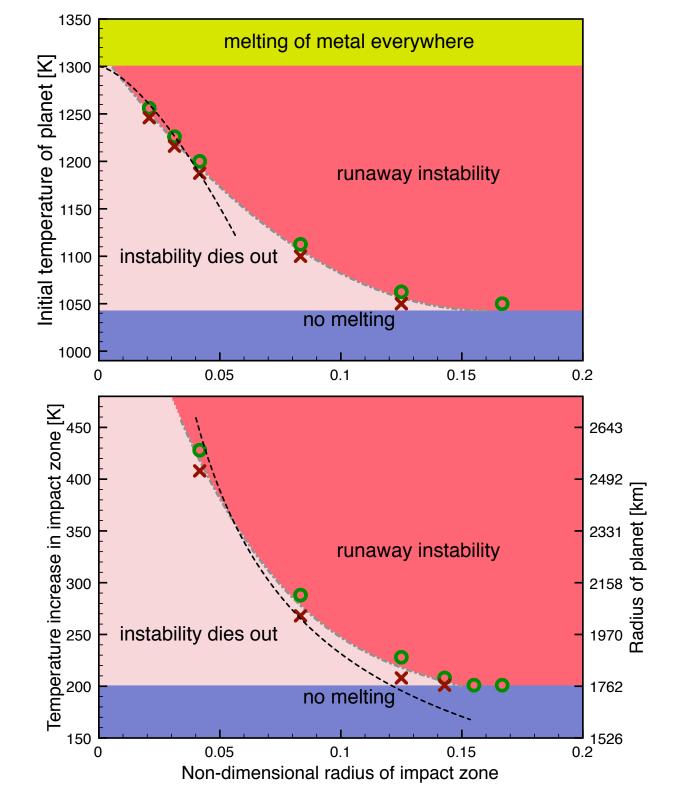
Monteux et al. (2007)



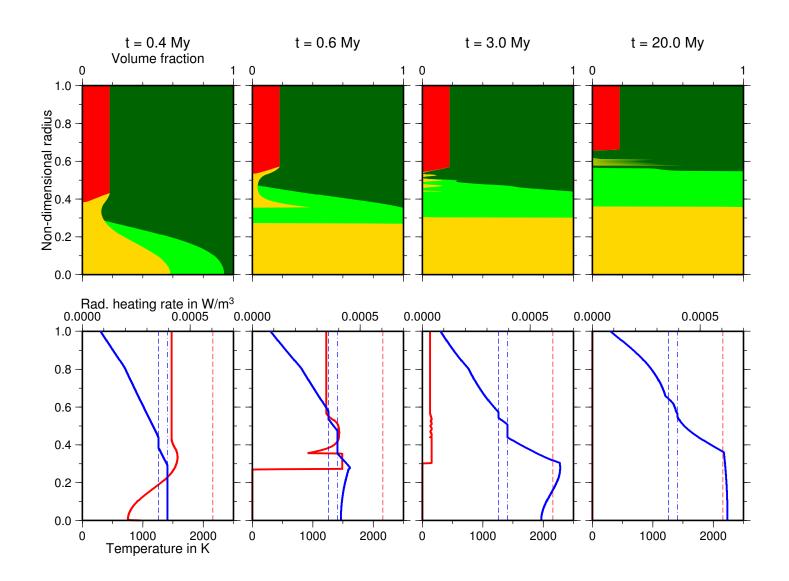
Tonks & Melosh (1992)

- metal is ~2x denser than silicate
- initial undifferentiated state
- impact heating
- metal can melt
- then it can easily sink through the silicates
- gravitational energy is released as heat
- more metal melts
- runaway instability??

regime diagram

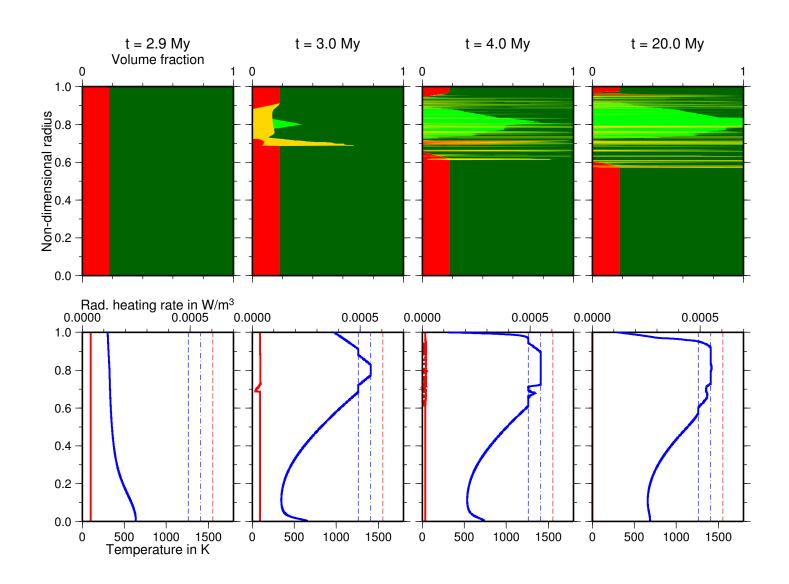


Thermal evolution and differentiation of growing planetesimal

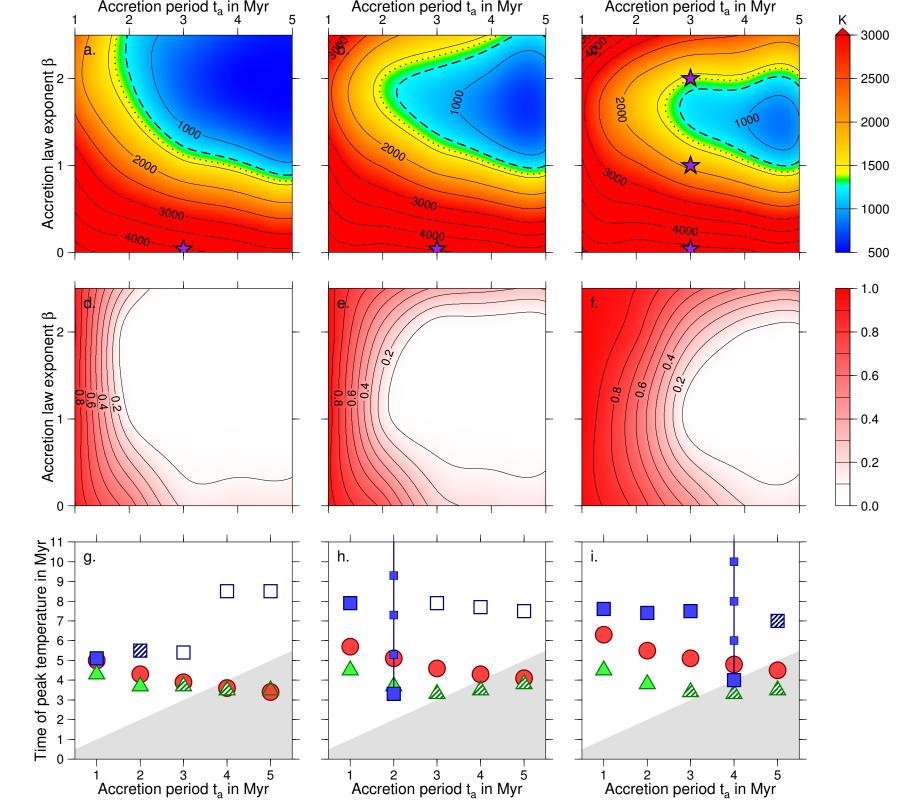


$$R = 500 \text{ km}, t_{acc} = 3 \text{ My}, \beta = 0$$

Thermal evolution and differentiation of growing planetesimal

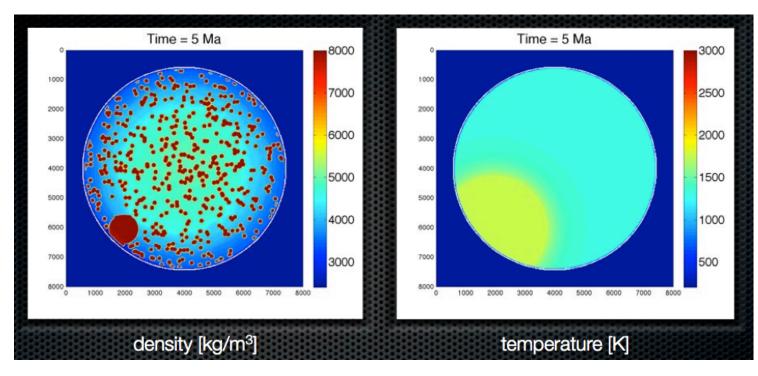


$$R = 1500 \text{ km}, t_{acc} = 3 \text{ My}, \beta = 2$$



0.0 0.5 1.0 Monteux et al. (2009)

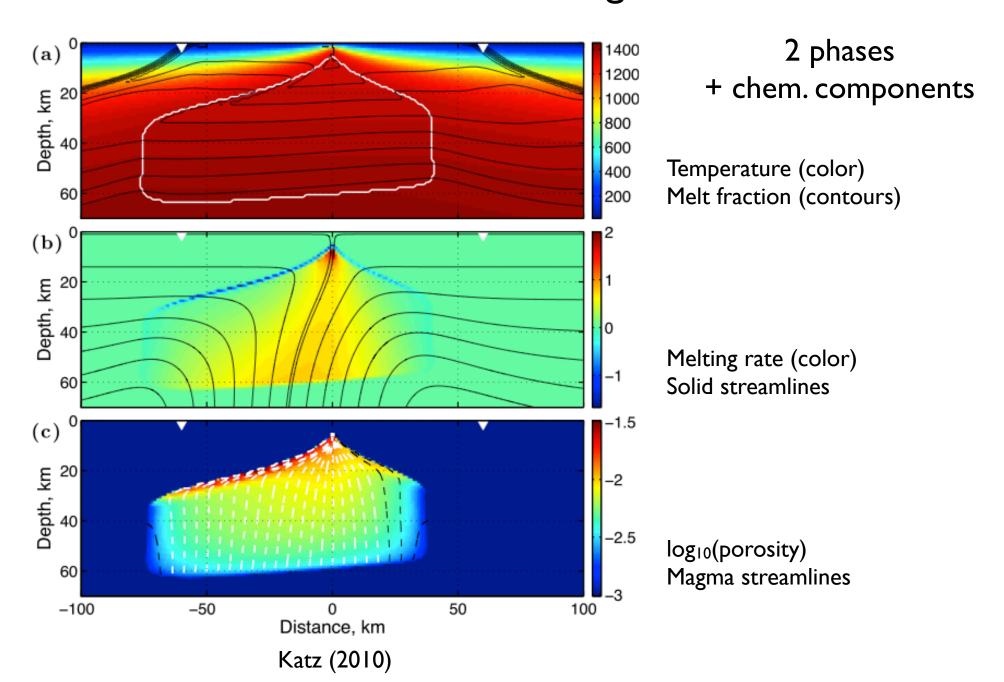
Core formation Hot topic in geophysics



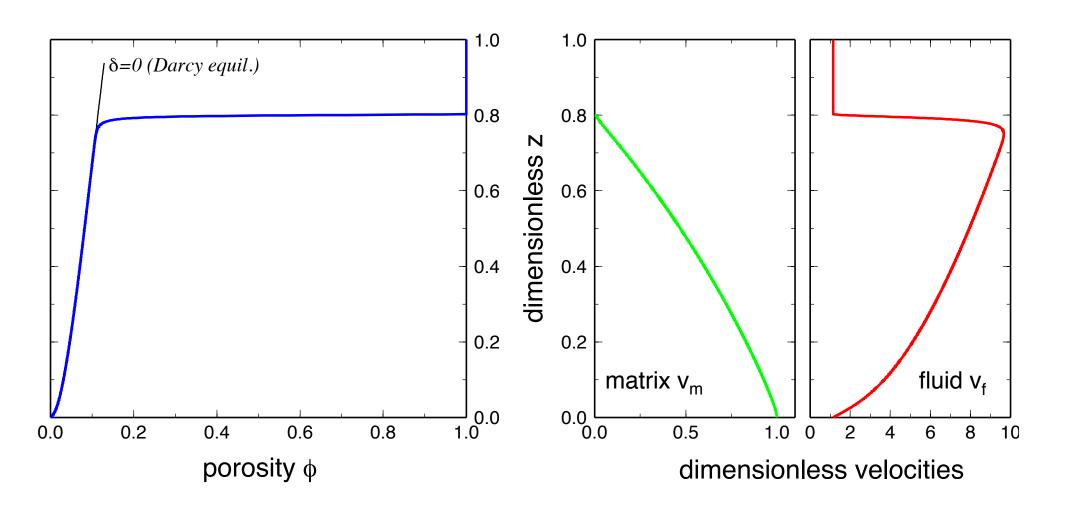
Golabek et al. (2010)

these are not two-phase models

Melt generation, focusing and extraction below mid-ocean ridge



Porosity and velocities

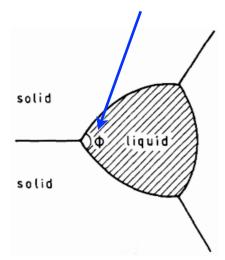


$$(\delta = 0.26, V_B = 100)$$

Physics of two-phase flow

I. Interconnectivity

dihedral angle ... crude assessment of interconnectivity

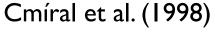


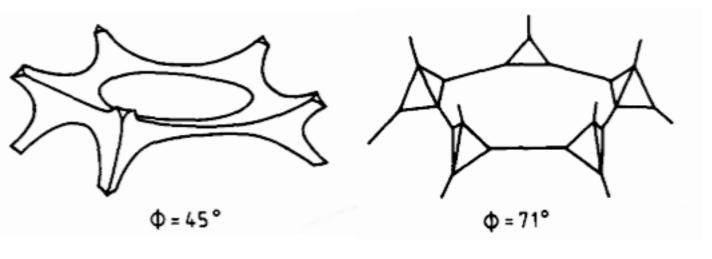
depends on the ratio of solid-solid and solid-liquid interfacial energies

< 60° interconnected network

> 60° isolated pockets of liquid







after Schmeling (1985)

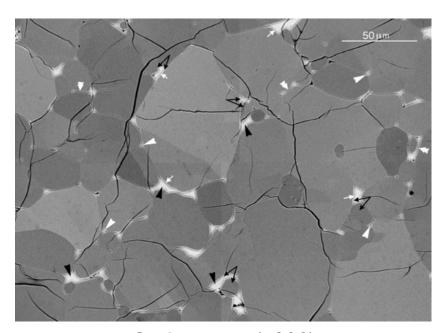
Physics of two-phase flow

I. Interconnectivity

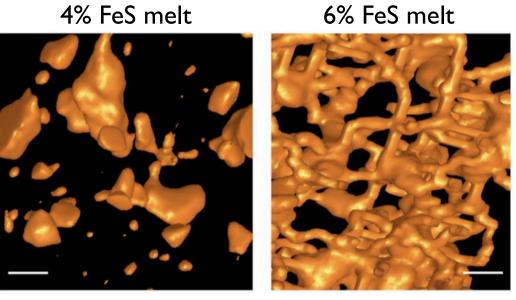
partial melting in the upper mantle basaltic magma and olivine matrix

metal-silicate differentiation molten iron alloy and silicate matrix

- dihedral angle 20°– 50°
- interconnected at low melt fraction
- dihedral angle probably >60°
- interconnectivity threshold ~ 5% of metal



Cmíral et al. (1998)



Roberts et al. (2007)

Physics of two-phase flow

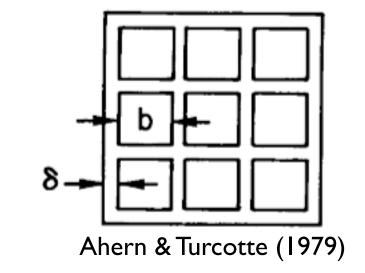
2. Permeability and Darcy's law

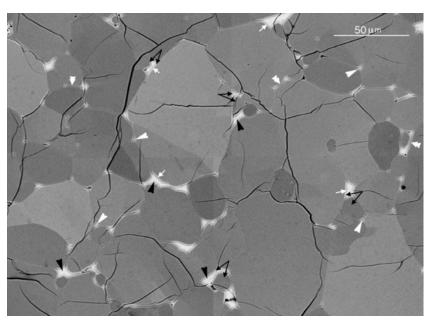
$$\mathbf{v}_D = -\frac{k}{\mu} \mathbf{\nabla} P$$
 Darcy velocity fluid viscosity

- geometric representation of interconnected fluid network
- solve Poiseuille flow
- get permeability k

$$k(\phi) = \frac{b^2 \phi^n}{a} = k_0 \phi^n$$

- φ porosity
- *n* typically 2 or 3
- *a* ~ 100–1000 "tortuosity"





Cmíral et al. (1998)

Non-equilibrium thermodynamics

relation for pressure difference

 $\frac{\mathrm{d} \alpha}{\mathrm{d} \phi}$ sum of principal interface curvatures

$$\Delta P + \sigma \frac{\mathrm{d}\alpha}{\mathrm{d}\phi} = -\frac{K_0 \mu_m}{\phi} \, \nabla \cdot \mathbf{v}_m$$

deviation of pressure difference from the static Laplace's condition

compaction/dilation of the matrix

kinetic relation for melting rate

 \propto

$$\Delta\Gamma = \chi \left(\Delta\varepsilon - T\Delta s - P_f \frac{\Delta\rho}{\rho_f \rho_m} - \frac{\sigma}{\rho_m} \frac{\mathrm{d}\alpha}{\mathrm{d}\phi} \right)$$

melting rate

departure from equilibrium

Equilibrium melting temperature

$$T = T_0 + \gamma \overline{P} - \frac{\sigma}{\Delta s} \frac{\overline{\rho}}{\rho_f \rho_m} \frac{d\alpha}{d\phi} + \gamma K_0 \mu_m \frac{1 - \phi}{\phi} \nabla \cdot \mathbf{v}_m$$

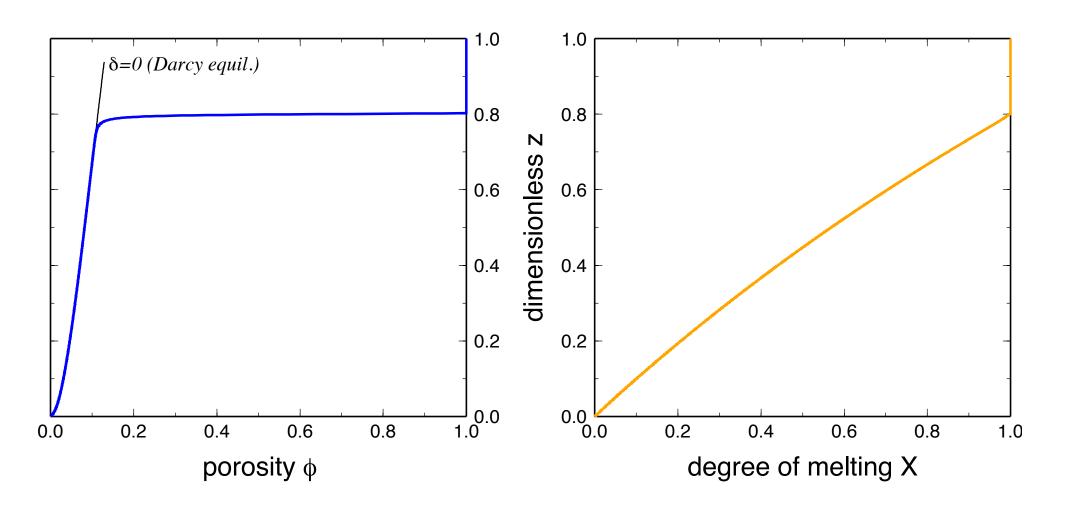
the "classical" Clapeyron slope is modified by surface tension and matrix compaction/dilation

Parameters – model of partial melting

Table 6.1: Table of parameters applicable to dry melting below mid ocean spreading centers.

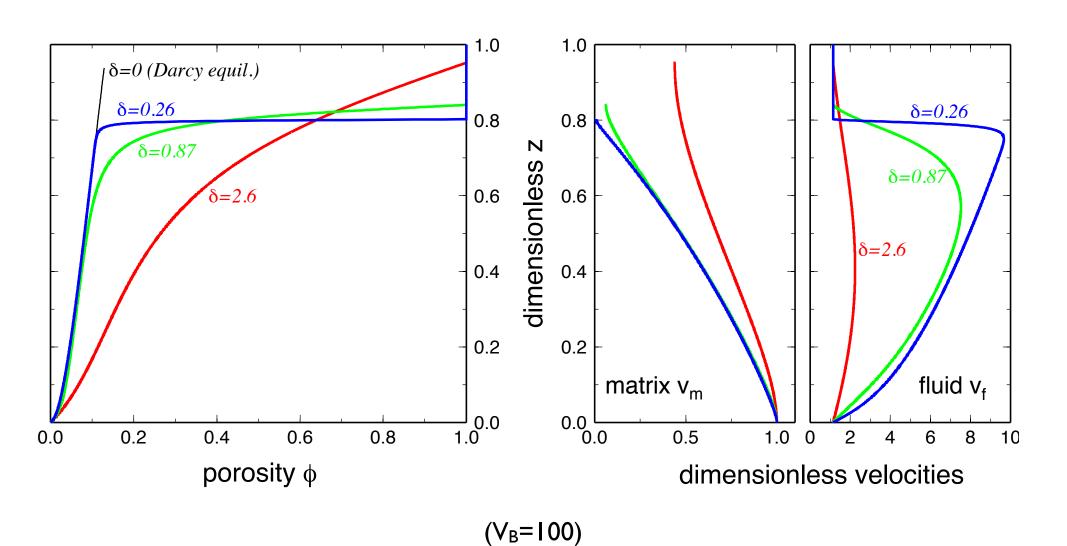
$_{ m symbol}$	description	definition	possible ranges	preferred value	units
μ_f	fluid shear viscosity			10	Pas
μ_m	matrix shear viscosity		$10^{18} 10^{19}$	10^{18}	Pas
k_0	constant in permeability relationship		$10^{-10} - 10^{-9}$	5×10^{-10}	m^2
c	Darcy interaction coefficient	μ_f/k_0	$10^{10} - 10^{11}$	2×10^{10}	$\mathrm{Pas}\mathrm{m}^{-2}$
$ ho_f$	fluid density			2800	${ m kg}{ m m}^{-3}$
$ ho_m$	matrix density			3200	${ m kg}{ m m}^{-3}$
g	gravitational acceleration			9.8	${ m m~s^{-2}}$
Δs	entropy of fusion	$s_m - s_f$	-(250-400)	-340	$ m JK^{-1}kg^{-1}$
C	heat capacity		1000-1300	1200	$ m JK^{-1}kg^{-1}$
T_0	initial temperature of upwelling		1573 - 1673	1673	K
V	initial velocity of upwelling		4-10	10	$ m cmyr^{-1}$
H	length scale	$ ho_f T_0 \Delta s^2/(\Delta ho g C)$	60 - 150	115	km
k_T'	thermal conductivity			3.7	${ m W}{ m m}^{-1}{ m K}^{-1}$
k_T	dimensionless thermal conductivity	$\rho_f k_T' T_0 / (\rho_m \Delta \rho g V H^2)$		0.03	-
γ'	Clapeyron slope	$\Delta \rho / (\rho_f \rho_m \Delta s)$	100-133	130	${ m KGPa^{-1}}$
γ	dimensionless Clapeyron slope	$\gamma' \rho_m g H/T_0 = -\Delta s/C$		0.28	-
δ'	compaction length	$\sqrt{4\mu_m/(3c)}$	8-26	8	km
δ	dimensionless compaction length	δ'/H	0.07 – 0.23	0.07	-
V_B	buoyancy velocity scale	$\Delta ho g/(cV)$	60-1000	60	-
R	density ratio	$ ho_f/ ho_m$		0.875	_

Porosity and degree of melting

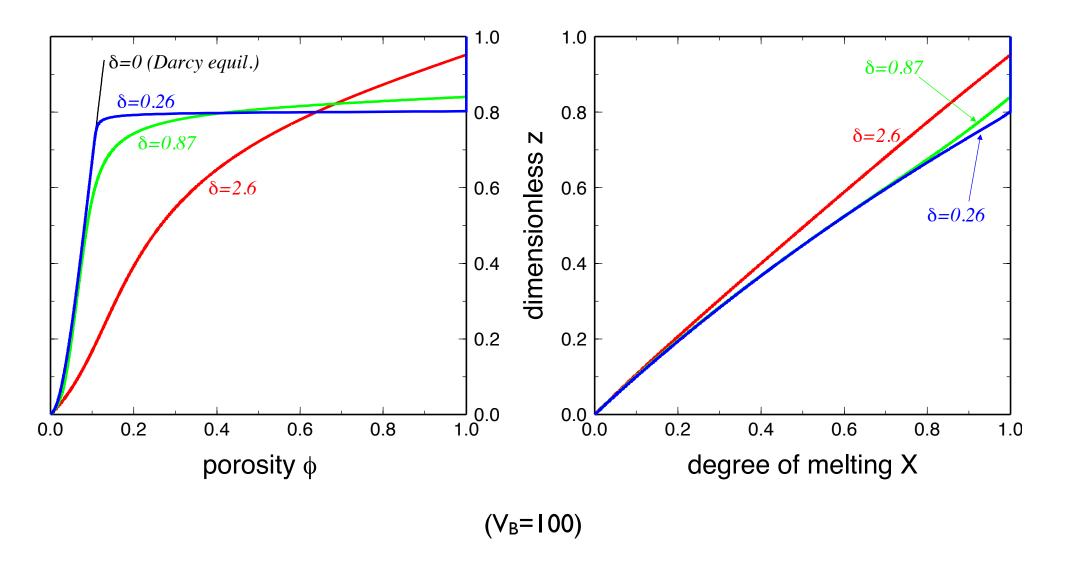


$$(\delta = 0.26, V_B = 100)$$

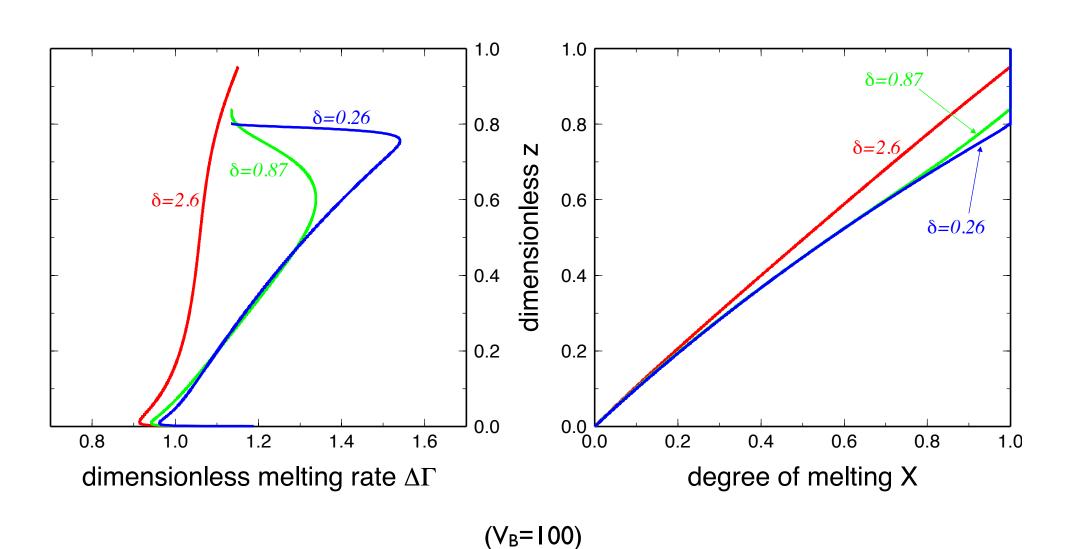
Porosity and velocities



Porosity and degree of melting



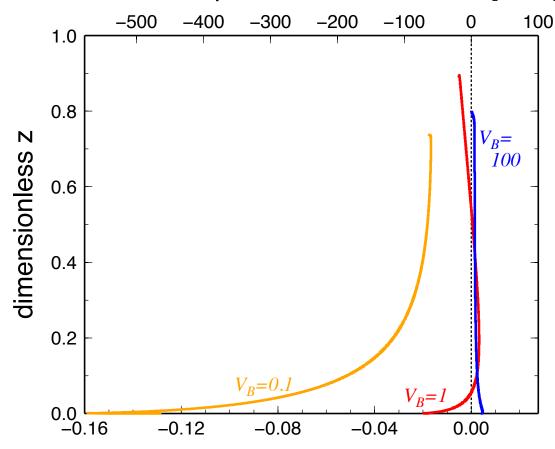
Melting rate and degree of melting



Full solution – pressure difference

$$\Delta P + \sigma \frac{\mathrm{d}\sigma}{\mathrm{d}\phi} = -\frac{K_0 \mu_m}{\phi} \, \nabla \cdot \mathbf{v}_m \qquad \xrightarrow{\sigma = 0, \text{ I-D}} \qquad \Delta P = P_m - P_f = -\frac{K_0 \mu_m}{\phi} \frac{\mathrm{d}v_m}{\mathrm{d}z}$$

dimensional pressure difference ΔP [MPa]



plotted for $\delta = 0.26$

dimensionless pressure difference ΔP

Differentiation – dimensionless equations

divergence-free average velocity

$$\nabla \cdot \overline{\mathbf{v}} = 0$$
 where $\overline{\mathbf{v}} = \phi \mathbf{v}_f + (1 - \phi) \mathbf{v}_m = \mathbf{v}_m - \phi \Delta \mathbf{v}$

mometum equation for the mixture

$$-\nabla \Pi + \nabla \cdot (\mu^* \underline{\tau}_m) + \phi \hat{\mathbf{g}} = 0$$

segregation velocity

$$\phi \Delta \mathbf{v} = \delta^2 \phi^2 \left[\nabla \left(\Pi + \frac{1 - \phi}{\phi} \nabla \cdot (\phi \Delta \mathbf{v}) \right) - \hat{\mathbf{g}} \right]$$

evolution of porosity

$$\frac{\partial \phi}{\partial t} + \overline{\mathbf{v}} \cdot \nabla \phi = \nabla \cdot [(1 - \phi)\phi \Delta \mathbf{v}]$$

$$\nabla \widetilde{\Pi} = \nabla \overline{P} - \rho_m \mathbf{g}$$

$$\mu^* = 1 - \phi$$

$$\delta^2 = \frac{\mu_m}{ca^2}$$

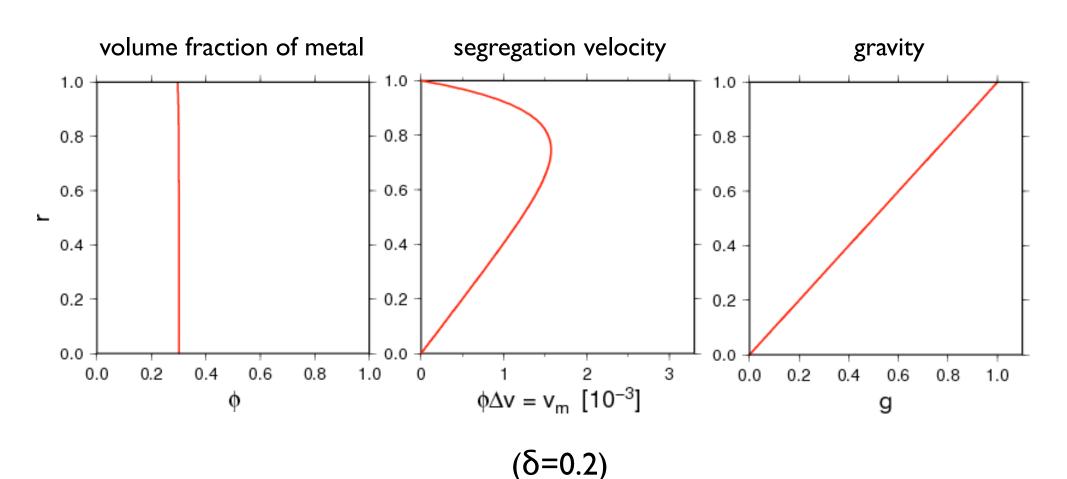
energy equation

$$\frac{\partial T}{\partial t} + \overline{\mathbf{v}} \cdot \nabla T = \frac{\nabla^2 T}{Ra} + \frac{\Delta \mathbf{v}^2}{\delta^2} + \frac{1 - \phi}{\phi} (\nabla \cdot \mathbf{v}_m)^2 + \mu^* \underline{\boldsymbol{\tau}}_m : \nabla \mathbf{v}_m$$

$$Ra = \frac{\overline{\rho C} |\Delta \rho| ga^3}{k_T \mu_m}$$

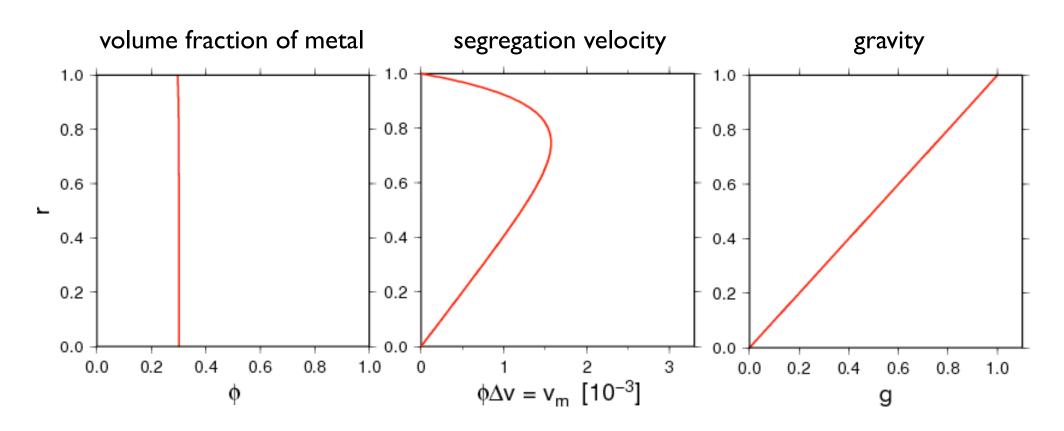
I-D spherically symmetric case

all the metal is liquid only mechanical equations solved



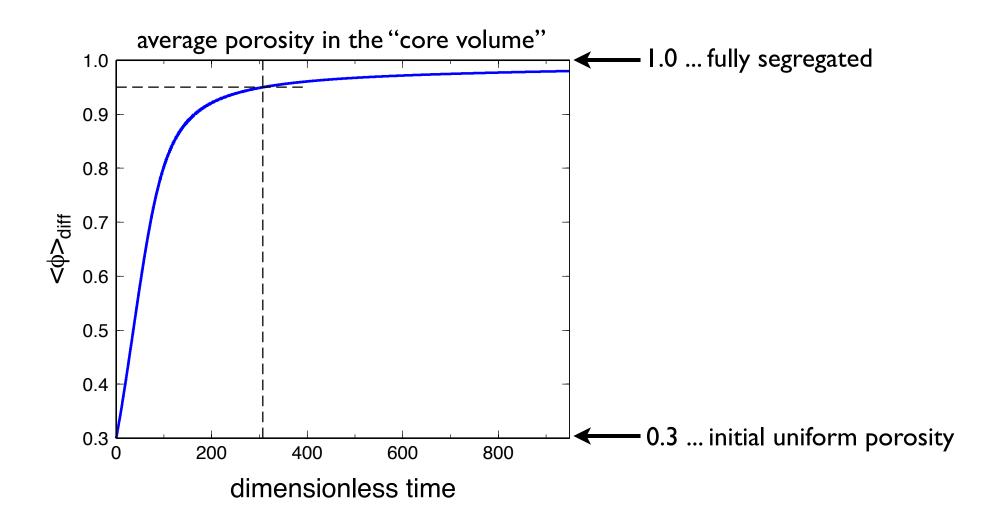
I-D spherically symmetric case

all the metal is liquid only mechanical equations solved



dimensionless compaction length δ =0.2

I-D spherically symmetric case



unit dimensionless time $\tau \sim 300 \text{ yr} \dots$

core segregation time ~ 100 kyr

$$\tau = \frac{\mu_m}{|\Delta \rho| g_0 R}$$

Differentiation – numerical resolution

- solve Navier-Stokes, direct, ∇⁴-type
 solve phase separation, ADI relax., ∇²-type
- solve compressible velocity, direct, ∇^2 -type
- update porosity and temperature, superbee TVD

Parameters – model of differentiation

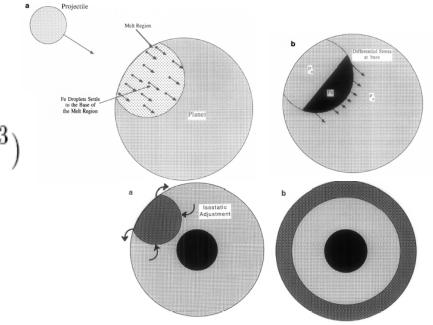
			. •	
silicate density	$ ho_m$		3200	${\rm kgm^{-3}}$
iron density	ρ_f		7000	${\rm kgm^{-3}}$
heat capacity	C		1000	$\rm JK^{-1}kg^{-1}$
thermal conductivity	k_T		3	${ m W}{ m m}^{-1}{ m K}^{-1}$
thermal expansion coeff.	α		210^{-5}	K^{-1}
reference temperature	T_0		1100	K
iron melting temperature	T_{melt}		1300	K
silicate viscosity	μ_m		10^{19}	Pas
solid iron viscosity	μ_m		10^{19}	Pas
liquid iron viscosity	μ_f		1	Pas
permeability coeff. (eq. 1.12)	k_0		10^{-8}	m^2
permeability exp. (eq. 1.12)	n		2	
initial porosity	ϕ_0		0.3	
density difference	$ \Delta ho^0 $	$ ho_m^0- ho_f^0 $	3800	${\rm kgm^{-3}}$
initial average density	$\overline{ ho}_0$	$ ho_f\phi_0+ ho_m(1-\phi_0)$	4340	${\rm kgm^{-3}}$
ref. gravity (sph. body)	g_0	$4\pi G\overline{ ho}_0 a/3$	1.9	$\rm ms^{-2}$
length scale	a		1600	km
velocity scale	V	$ \Delta ho^0 g_0a^2/\mu_m$	60	${ m kmyr^{-1}}$
time scale	au	$\mu_m/(\Delta ho^0 g_0a)$	270	yr
pressure scale	Π_0	$ \Delta ho^0 g_0a$	12	GPa
temperature scale	θ	$ \Delta ho^0 g_0a/(\overline{ ho C})$	2700	K
dimensional compaction length		$\sqrt{\mu_m/c}$	320	km
Rayleigh number	Ra	$\overline{ ho C} \Delta ho^0 g_0 a^3/(k_T \mu_m)$	410^{9}	
compaction length	δ	$\sqrt{\mu_m/(ca^2)}$	0.2	
buoyancy number (mixture)	B	$\overline{ ho lpha} g_0 a / (\overline{ ho C})$	0.06	
buoyancy number (liquid phase)	B_f	$ ho_f^0 lpha_f g_0 a/(\overline{ ho C})$		
sign of density difference	s	$\Delta ho^0/ \Delta ho^0 $	-1	

Impact heating

$$\Delta T_1 = \frac{4\pi f_1}{3f_2} \frac{\bar{\rho}^2 G R^2}{\bar{\rho} C}.$$

Differentiation heating

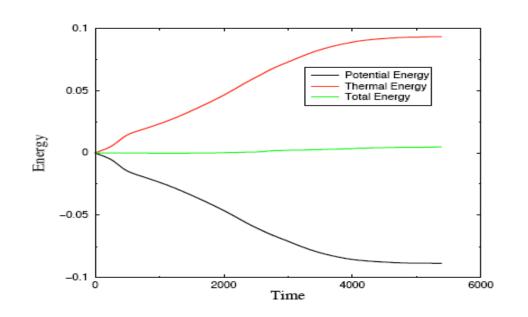
$$\Delta T_2 = \frac{4G\pi R^2}{5\overline{\rho C}} \left(\bar{\rho}^2 - \rho_f^2 \phi^{5/3} - \rho_m^2 (1 - \phi^{5/3}) - \frac{5}{2} (\rho_f - \rho_m) \rho_m \phi (1 - \phi^{2/3}). \right)$$

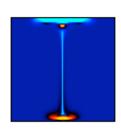


The two times are $\propto R^2$, and amount to 150 K for R=1500 km

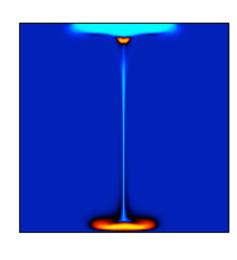
Numerical test

$$\frac{d}{dt} \int_{\tilde{V}} (T - \phi z) \, dV = Q$$





129x129



257x257

513x513

Diapirs...

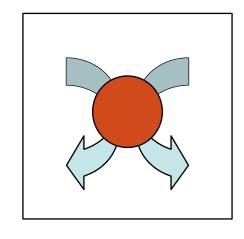
Maximum of iron content and uniform T<T_{melt}

Maximum of iron content and uniform $T > T_{melt}$

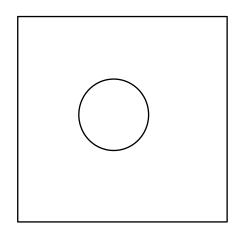
Maximum of T (above T_{melt}) and of iron content,

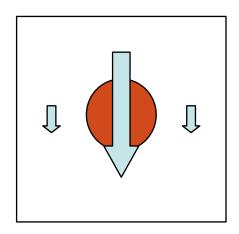
Stokes flow

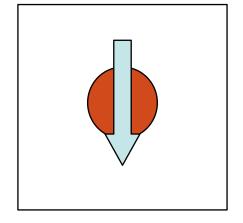




Compress. flow





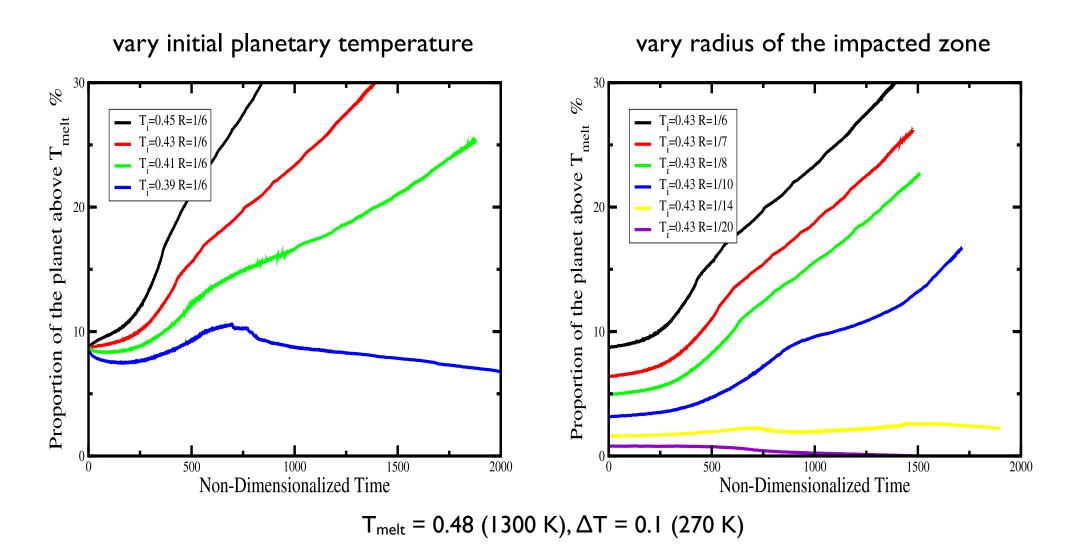


Porosity wave

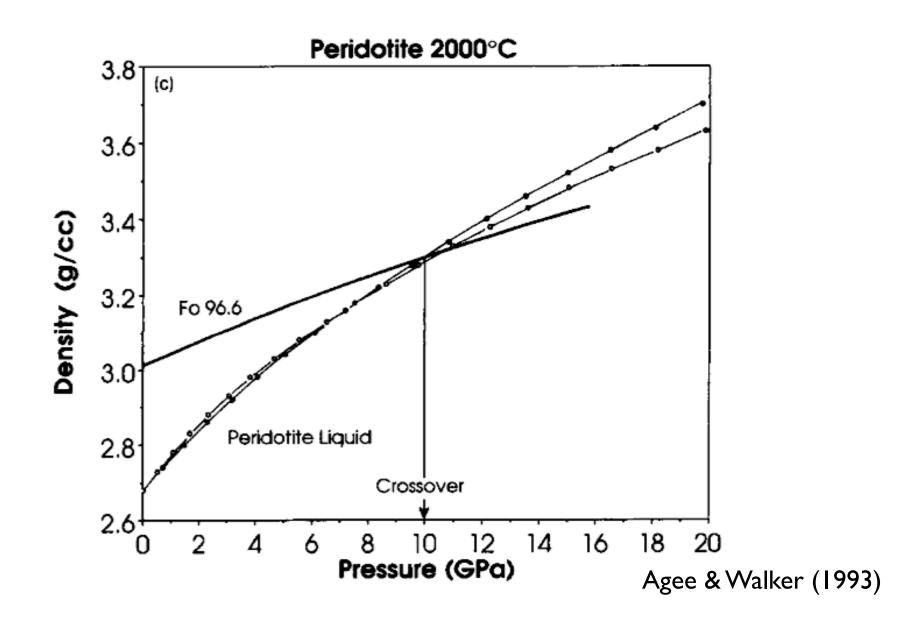
Thermal desaggregation

When does the instability develop?

the planet has to be hot enough the impact has to be large enough



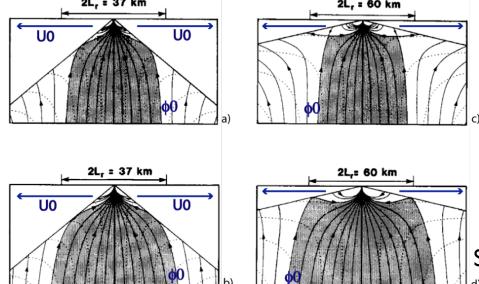
Forcing
Magma-solid density difference



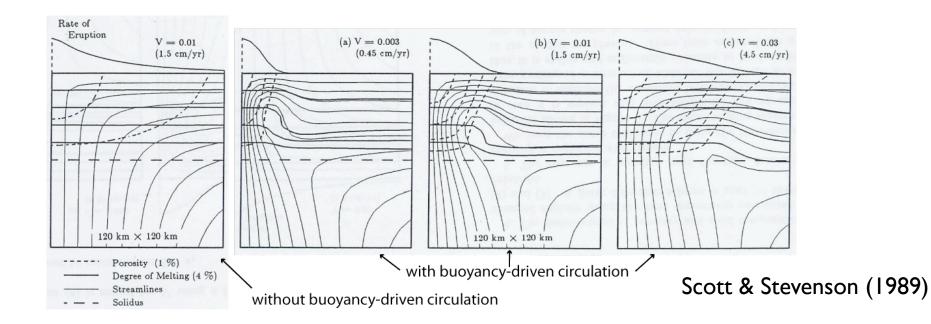
Magma migration in the Earth interior

• McKenzie's model has been widely used, standard for melt migration

spreading centers



Spiegelman & McKenzie (1987)



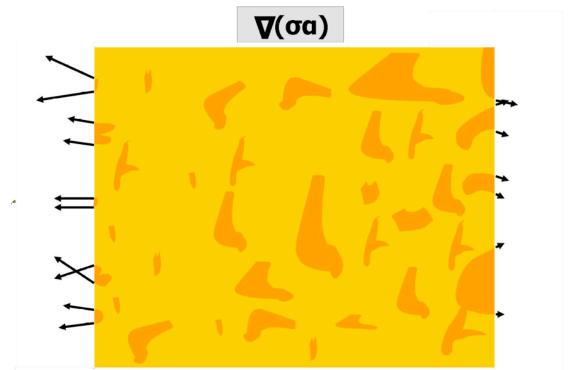
Momentum equations

• inertial terms neglected

force balance for the mixture

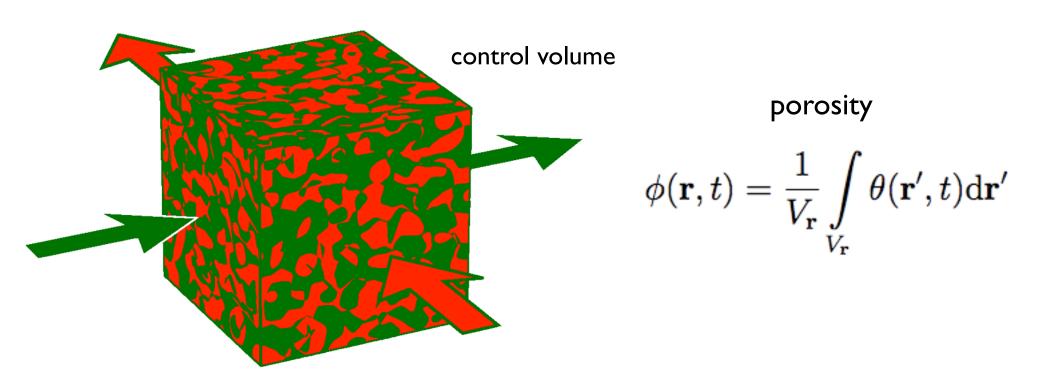
$$-\nabla \overline{P} + \nabla \cdot \underline{\overline{\tau}} + \overline{\rho} \mathbf{g} + \nabla (\sigma \alpha) = 0$$

average force exerted on the mixture by the interfaces



Porosity

- (single-phase) continuum mechanics:
 continuum assumption, "averaging" over microscopic (atomic scale)
 distribution of mass ⇒ density continuous in space
- two-phase continuum mechanics:additional "mesoscopic" scale of pores/grains of each phase⇒ porosity continuous in space



Percolation, porous flow Darcy's Law

Henry Darcy, mid 1800s Construction of the Dijon municipal water system

immobile, non-deforming matrix fluid flow due to hydrostatic pressure

$$\frac{\text{flux of water}}{\text{area}} = K \times \frac{\text{height of water column}}{\text{distance traveled through sand}}$$

$$\mathbf{v}_D = -\frac{k}{\mu} \mathbf{\nabla} P \qquad \text{Darcy's Law}$$
 Darcy velocity fluid viscosity

need interconnected fluid network

