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ABSTRACT. We consider two most studied standard models in the theory of
elasto-plasticity in arbitrary dimension d > 2, namely, the Hencky model and
the Prandtl-Reus model subjected to the von Mises condition. There are many
available results for these models - from the existence and the regularity theory
up to the relatively sharp identification of the plastic strain in the natural
function/measure space setting. In this paper we shall proceed further and
improve some of known estimates in order to identify sharply the plastic strain.
More specifically, we rigorously improve the integrability of the displacement
and the velocity (which was known only under a nonnatural assumption that
the Cauchy stress is bounded), show the BMO estimates for the stress and
finally also the Morrey-like estimates for the plastic strain. In addition, we shall
provide the whole theory up to the boundary. As an immediate consequence
of such improved estimates, we provide a sharper identification of the plastic
strain than that known up to date. In particular, in two dimensional setting,
we show that the plastic strain can be point-wisely characterized in terms of
the stresses everywhere although the stress is possibly discontinuous and thus
the natural duality pairing in the space of measures could be violated.

1. INTRODUCTION

This paper focuses on the qualitative estimates for solutions to several models of
linearized (possible nonlinear) elasto—plasticity. To describe the problem in more
details, we shall assume that a body occupies a Lipschitz set O € R¢ and we a priori
assume that considered deformations are small. Therefore, the initial, current and
preferred (natural) configurations coincide and we can approximate the strain tensor
by the linearized strain tensor &(w), which is defined as

(1.1) g(u) :== %(Vu + (Vu)T),

where u : (0,7) x O — R? is the displacement and 7' > 0 is the length of the
time interest (in this model one should prefer the notion “the loading parameter”
to “time”). We also assume that the density is constant and that the inertial
effects can be neglected. Then the balance of linear momentum for the quasi-static
deformation takes the form

(1.2) —dive=f in[0,7]x O,
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where o : (0,T) x O — RIX4 is the Cauchy stress and f : (0,7) x O — R?
denotes the density of given external body forces. To complete the problem (1.1)-
(1.2) it remains to prescribe the boundary and initial conditions, which we shall
do later, and also to characterize the relationship between o and €(u). In the case
of linearized elasto—plasticity, we assume that the linearized strain e(u) can be

decomposed into the elastic part e and the plastic part ep, i.e.,
(1.3) e(u) = eq + €p

and that the elastic response of the material is given by the Helmholtz potential
¥* : RIX4 4 R which is supposed to be a convex function vanishing at zero and

sym
exploding at infinity and the elastic strain is related to the stress through
o*(eq) (o)
1.4 o= — = ol = s
(1.4) deg Cel oo

where v is the conjugate function to 1* defined as

Y(o) :=sup (0 - eq — YP*(eq)) .

€el

Concerning the plastic strain, we consider that it is relevant to incompressible
behaviour and therefore it is reasonable to assume that

(1.5) tre, =0.

Further, we need to specify under which conditions it may appear. Indeed, there
are many possible settings (yield conditions) used in praxis, but we choose the
so—called von Mieses conditions saying that

|0'D|<H - ép:O,

which in other words means that the response of the material is purely elastic as
far as |op| < k. Here the symbol @ denotes the derivative of the quantity u with
respect to the time variable, or more precisely with to the loading parameter ¢. On
the other hand, if the plastic behavior takes place, then we require that

?71) =0p.

|ép]
These two conditions, can be summarized into the more compact compact Kuhn—
Tucker form

(1.6) ép=Xp with A>0, |op|—xk<0 and A(lop|—«k)=0,

with A given as A = |é,|/k = |ép|/|lop|. This model with (1.4) given as 0 = Ae is
usually referred as the the Prandtl-Reuss model of elasto-plasticity (see [14, 15]),
and for theoretical justification of the model for general form of ¢ and also other
possible yield conditions®, we refer the interested reader to [6]. The second model of
linearized elasto—plasticity is the Hencky model (see [12]) that is formally obtained
from (1.6) by replacing é, by ey, i.e.,

(1.7) ep=XMp with A>0, |op|—-xk<0 and AX(lop|—k)=0.
At this point we can clearly specify the main problem in both above models.

While the existence of the stress and the displacement fulfilling the weak formula-
tion (see below) is known under the certain reasonable hypothesis on the data, see

LThere are other activation criteria that may be obtained by considering anisotropic elastic
response and that are connected with names such as Rankine, Saint-Venant, Tresca, etc.
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[17, 18], many fundamental questions about the qualitative character of the solu-
tion remain open for several decades. The first delicate question is how to interpret
(1.6), (1.7) respectively, since o p is only (Lebesgue) measurable and e, or é, are
the vector-valued Radon measures. Due to the celebrated works [1, 2, 3, 4], we
know that A appearing in (1.6), (1.7) respectively, is a nonnegative Radon measure
and that instead of (1.6), (1.7), we have that

(1.8) é, =X, in (0,7)x O, or e,=Ms,in0,

where 0, is A measurable and for any compact K C O

1

lim/ o —o,|d\ =0, with oh(x) (= —— o’ (y)dy,
50 K| D P| D( ) |BT(I) B () D( )

(1.9)
where in case of the Prandtl-Reuss model, (1.9) holds for almost all time ¢ € (0,T).
The first result of the paper is about the characterization of the set, where op # op.
In particular, we shall show that in dimension d = 2, we can simply set o, := op
everywhere in O, since op is A-measurable. In addition, we shall show that the
same property holds also in higher dimension depending on a set, where u or u do
not explode too quickly (see the precise statement in Theorem 2.1).

Second result, we shall show in the paper, is that the singular measure A and
consequently also e, and e, satisfy certain Morrey condition and consequently,
these measures are absolutely continues with respect to e-Hausdorff measure for
sufficiently small € > 0. In particular, they cannot concentrate at a point.

Next, it is know due to [10] that u € le(;js((’)) or uw e L>(0,T; le;js((’))), but
the proofs work only under the additional assumption that ¢ € L | which is not the

loc?
case here. Nevertheless, and it is the next key result of the paper, this claim remains
true even without this additional (and probably incorrect) assumption. Moreover,
we shall get these estimates up to the boundary of O. Furthermore, as the key tool
for this observation, we shall show that & € BMO(O), or ¢ € L>=(0,T; BMO(0)),
which seems to be also a new result. Furthermore, we also provide the uniform up
to the initial time ¢ = 0 fractional time derivative estimates for the solution.

The final novelty consists in the fact the we prove all estimate for an approxima-
tive problem, the Perc¢ina-Mises model, and show that all the regularity estimates
(with respect to time and also to space) remains independent of the order of the
approximation and the dimension, which was also not known in many cases.

2. WEAK FORMULATION OF THE PROBLEM AND THE MAIN RESULT

We introduce the classical formulation of the Prandtl-Reuss and the Hencky
model completed by the boundary, and if needed, also initial data. We focus here
only on the most physically relevant boundary conditions, i.e., the prescribed dis-
placement, or the traction, or the normal displacement and the tangential traction,
but all results can be adapted to a more general setting. For given open bounded
Lipschitz set O C R? we consider that its boundary can be decomposed onto three
smooth relatively open disjoint parts of the boundary: the Dirichlet part 0Op, the
Neumann part 0Oy and the mixed part dO0,; such that 00p UIdON U0y =
00. The Prandtl-Reuss model of elasto-plasticity consists in finding a quadruple
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(0,u,eq,€p) : [0,T] x O — RIX¥d x RY x RIX4 x RIX such that

sym sym sym

—dive = f, e(u)=eq+ep, eelza?giff) in [0,7] x O,

éo = lep|2, Jon| <& and [&](lop| = k) =0 i [0,7] x O,

(2.1) U =1ug on [0,7] x 80p ,
u-n=ug-n, (on);=F)r on [0,T] x 00,
on=7f, on [0,T] x 00y ,

0(0) =09, u(0)=1wug(0) in 0.

where T > 0 is the given length of the time? interval, the given threshold x > 0
is a von Mieses condition, f : [0,7] x O — R? are the given volume forces, f,, :
[0,T] x O — RY are the given traction forces, the initial stress is o¢ : O — ngxn‘i
and the prescribed displacement on the boundary [0,7] x 00p U 80y and the
initial displacement is represented by wg : [0,T] x O — R?. Here the symbol n
denotes the outer normal vector on dO and for any vector u € R? and any given
x € 00 we denote (u(z)), = u(xz) — (u(z) - n(x))n(z), i.e., the projection of u to
the tangent plane at the point z.

The second model, we have in mind, is the Hencky model, which can be formally
formulated as: to find a quadruple (o, u, eq, ep) : O — Rﬁ;,;ﬁ x R? x Rffyx,ﬁ X ngxn‘fb
such that

—dive=f, e(u)=eq+ep eq= 8127((70) in O,
ev = les|>2, |op| <k and leyl(lop| — ) =0 O,
2.2
(22) u = ug on 00p,
u-n=uy-n, (on)r=(f,)r on 00,
on=Ff, on 00y .

In general, we are not able to solve the above models in the classical sense, so we
introduce a notion of a weak (variational solution). For this purpose, we define the
set of admissible stresses. Before doing so let us define the subspace of the Sobolev
space W12(O;R9), which will be used in what follows

V:={ve W1’2((’);Rd); v=0o0n 00p, v-n=0o0n 00y}

Then we define the set of admissible stresses as

F(t):={o € L2 (4 RL%); |lop| <k, and for all v € V

sym

/Oa-s(v)dx:/of(t)-vdx—i—/{r‘)ON,an(t)mdS},

where we denoted dOn pr := 00N U OO0y
Naturally, we also have to restrict on the reasonable class of possible Helmholtz

potentials. We shall assume that ¢ : R9¢ — R is a smooth nonnegative function

fulfilling in addition ¢(0) = 0, 24@)|__, — 0. Morcover, there exist Cy,Cy > 0

21n fact, we should not called it time interval, since t corresponds to the loading parameter.
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such that for all 0,6 € RZx?
L 07 o _
(2.3) cel < 299 50 48) < Colo .

0o 0o

In case of the Prandtl-Reuss model, we will need the further restriction and we will
assume that there exists a constant fourth order tensor A € R4X4 x R4Xd gych that

sym sym
dxd
for all o € Rsym

_ 9*Y(o)
(2.4) A=

Then we shall define the weak solution to the Prandtl-Reuss model (2.1) as follows.

Definition 2.1 (Prandtl-Reuss). Let O C R? be a Lipschitz domain. Assume
that f € L?(0,T; L*(O;R%), f, € L*(0,T; L*(80;R?)), o9 € L*(O;R%<T) and
ug € WH2(0,T; WH2(O;RY)). Further, let the potential ¢ satisfy (2.3)—(2.4). We
say that o € W12(0,T; L?(O; REX)) is a weak solution to (2.1) if a(0) = oo and

for almost all t € (0,T) there holds a(t) € F(t) and, in addition, we require that
for almost all t € (0,T) and all 6 € F(t) there holds

(2.5) /O A (6(t)® (o(t) —&))dz < /O e(itg) - (o(t) — &) da.

In a very similar way, we can also introduce the notion of a weak solution to the
Hencky model (2.2), where we shall replace F(t) by F in a natural way.

Definition 2.2 (Hencky). Let O C R? be a Lipschitz domain. Assume that f €
L*(O;RY), f,, € L*(00;R?) and ug € WH2(O;R?). Further, let the potential )
satisfy (2.3). We say that o € L*(O;R%X%) is a weak solution to (2.2) if o € F
and for all @ € F there holds ‘

0 - ~
(2.6) / YO) (&) da < / e(uo) - (0 — &) da.
o 0o o
Since our approach is constructive, we frequently use the penalization of the von
Mises condition (1.6) or (1.7) (see also [13]), Hohenemser-Prager model, then one
arrives at the Perc¢ina-Mises model. Thus, introducing a new class of admissible
stresses as

Fa(t) == {o € L*(RY); and for all v € V

sym

/Oa-e('u)dx:/Of~vda:+/aONan~vdS},

we define the approximative problems as follows.

Definition 2.3 (Prandtl-Reuss—Peré¢ina). Let O C R? be a Lipschitz domain and
p > 0. Assume that f € L*(0,T;L*(O;R%)), f,, € L*(0,T; L*(00;R%)), oy €
L2(O;REX4) and ug € WH2(0, T; WH2(O;RY)). Further, let the potential ¢ satisfy

(2.3)(2.4). We say thata € W"2(0,T; L?(O; REX1)) is a weak solution to Prandtl-

Reuss-Percina model if 0(0) = oo and for almost all t € (0,T) there holds a(t) €
Fea(t) and, in addition, we require that for almost all t € (0,T) and all & € Fe(t)
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there holds
/ A-(6(t) @ (o(t) — &) da + " / (op®)| = r)+op(t)
(27) ¢

o lop@] @ —a)ds

— [ etiw) - (o(t) - &) d,
O

Similarly for the approximation of the Hencky model, we have the following
approximation.

Definition 2.4 (Hencky-Percina). Let O C R? be a Lipschitz domain and p > 0.
Assume that f € L*(O;R?), £, € L2(00;R?) and ug € WH2(O;RY). Further, let
the potential ¢ satisfy (2.3). We say that o € L*(O; R4 is a weak solution to

Hencky—Percéina model if ¢ € Fo; and for all 6 € F,; there holds

/ dv(o) .(a—&)der,u*l/ lopl =Ko (5 4y
o @]

do lop|

(2.8)
:/5(u0)~(af&)dx.
(@]

The existence of weak solution to Prandtl-Reuss or Hencky model in the sense
of Definitions 2.1-2.2 is very standard. However, to be able to talk also about
the displacement, one needs to assume certain compatibility condition on data.
Therefore, we shall require the existence of the so-called safety load condition, i.e.,
the existence of o° € W'2(0,T; L?(O; R%x)) fulfilling for some § > 0 and all
te0,T]

(2.9) o (t) € F(t), o5 ()] < K — 6.

Similarly, in case of the Hencky model, we assume that there is 6° € L?(0; ngxn%)
fulfilling

(2.10) o’ e F, |ohlleo < k-0

Finally, we state the main results of the paper. The first one is for the Prandtl-
Reuss model.

Theorem 2.1 (Prandtl-Reuss). Let all assumptions of Definition 2.3 be satisfied.
Then for all u > 0 there exists a unique weak solution a* to (2.7). Moreover, there
exists ut such that u —ug € WH2(0,T; Wy *(O;RY)) and

m

+U—E =e(u") a.e. in (0,T) x O.
lo'p |

In addition if there exists a* € CL([0,T);C?*(0)) satisfying (2.9), then there is a

constant € > 0 independent of v such that for any compact O C O
(2.12)

up (" @13 + 1~ I (oB O] = D lls + [ diva (£)]]3 + lle(i ()1 + la (B )

(2.11) A" + (o] — k)

1 [T—h
+ sup 7/ Hd“(t—i—h)—d“(t)”%dt—&— sup /|VJ“(t,x)|2dxdt
o<h<T P Jo te(0,1) J &

T
+/ / [t (t, 2)| Y+ dzdt < C(O),
0 (@]
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where the constant C’(@) depends only on 0%, A, O and O. Moreover, there ezists
a subsequence that we do not relabel such that

o' —~*o in WhH*°(0,T; L? (O, RX 1)),

sym

o' —~a in N22(0,T; L*(O,R%4)),

sym

— GH * - oo
(2.13) p (ol — 1)+UT[D)| =" &y in L¥(0, Ty M(O:RE)),
bl — s =T A in L(0,T; M(O)),
e(ur) =" e(u) in W0, T; M(O;RIXY),

sym
ut —*u in Wh(0,T; LY (O; RY)),

where ¢ is a weak solution in sense of Definition 2.1, (1.8) and (1.9) hold and

(2.14) Ac +¢é, =¢(u) in (0,T) x O.

In addition, there exists € > 0 such that

(2.15) o € L®(0,T; BMO(O;RE4)), e L=(0,T; LY+ (O; RY)).

Moreover, there exists positive constants C and ¢ such that for almost allt € (0,T),
there holds

supp A(t) C {IEOU@OD, Mlop(t)|(x) = 1},

(
ép(
(

)
(2.16) t)= (<“ i) @+ n @ (i — 1)) dS on dOp,
éy(t) = () p(t) in O\ K(t),
A(t)(Br) < CR® for all balls Bg C O,
where

K(t):=<qy € O: liminf sup 5/ RY©A=/ 2yt )" edx > 1 p .
€20 Re(0,e) JBr()

In particular, if u(t) € LY(O;RY) for some q > d then
(2.17) ép(t) = A(t)op(t) in O.
Consequently, due to (2.15), the identity (2.17) always holds for d = 2.

Please notice here that we used the notations N 22 for the Nikoloskii space, M
for the space of Radon measures, M is the Hardy-Littlewood maximal function
and BM O for functions with bounded oscillation. For the sake of completeness we
state also the theorem for the Hencky model.

Theorem 2.2 (Hencky). Let all assumptions of Definition 2.4 be satisfied. Then
for all u > 0 the re exists a unique weak solution a# to (2.8). Moreover, there exists
ut such that u* — ug € Wy *(O;RY)) and

(2.18) 812(””)
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In addition if there exists 0° € C2(O)) satisfying (2.10), then there is a constant

e > 0 independent of p such that for any compact O C O

o 13 + 1 (0] — 1 1+ I div w13 + ()1 + (8
(2.19) , p ~
+ [IVor@Pde+ [ jut@) e de < C(O),

O O

where the constant C(@) depends only on o®, A, O and O. Moreover, there exists
a subsequence that we do not relabel such that

o' —~o in L*(O, Rg;,ﬁ),
—1(| bt oh . : 7. dxd
p(lopl = 1)+@ —"ep in M(O;RGLD),
(220) il -1y =T A in M(O),
e(ut) =" e(u) in M(O;RET),
ut —u in Ld/(O;Rd).
where o is a weak solution in sense of Definition 2.2, (1.8) and (1.9) hold and
(2.21) azgf:) te,=e(w)  inO.
In addition, there exists € > 0 such that
(2.22) 0 € BMO(O;REY),  we LY+(O;RY).

Moreover, there exists positive constants C' and § such that
suppA C {z € O : Mlop|(z) = 1},
1
e, = 5((ufuo)®n+n®(ufuo)) dS on 90p,
e, =Xop in O\ K,
AMBg) < CR® for all balls B C O,

(2.23)

where

K:={ye€O: liminf sup 6/ R/ 2y (z) e dx > 1 .
€70 Re(0,e) JBr(y)

In particular, if uw € LI(O;R?) for some q > d then
(2.24) e, =Xop in O.
Consequently, due to (2.22), the identity (2.24) always holds for d = 2.

To end this part of the paper, we want to emphasize the essential novelties
stated in Theorems 2.1-2.2. While the existence part and the limiting part is
rather standard, see [17, 18], there are several quite new results. The first one are
the BMO estimates for the stress (2.15) and (2.22). Since their proof is somehow
independent of the model, we shall summarize these estimates in Lemma 3.1 in
the following section. Further, based on the BMO estimates we can improve the
integrability of the displacement /velocity stated in (2.15) and (2.22). Notice that
the same improvement was already done in [11, 10] but under the hypothesis that
the Cauchy stress is bounded, which is not necessarily true for von Mieses condition.
Having such improved estimates, we can then show the Morrey condition for the
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plastic strain, see (2.16)3 and (2.23)3, which is another essentially new information.
Consequently, based on the Morrey condition and W12 estimates for the Cauchy
stress, one can identify the plastic strain point-wisely in terms of the Cauchy stress
up to the set K, which in case d = 2 or in case u or «w € L9 with ¢ > d leads
to the point-wise identification of the plastic strain by the values of the Cauchy
stress everywhere in O. The last novelty of the paper consists in the uniformity (u
independence) of the estimates (2.12) and (2.19). In particular, the pu-independent
Wllof estimates were not known for d > 4 for the Percina type approximation,
and the fractional time regularity was known only for the limit problem but the
estimates for the p-approximation were still depending on p and in fact exploding
as u — 04, see [9]. Furthermore, the method for the time regularity presented
here, is on one hand based on the method developed in [8], but on the other hand
is improved such that it leads to the global estimates over (0,7) and not only to
local.

In the rest of the paper, we will prove only Theorem 2.1 since the result for the
Hencky model can be proven in a very similar way provided the uniform convexity
of the potential 1) holds. We start the prove with the standard energy estimates,
based on the safety load condition, in Subsection 3.1. The improved regularity
estimates independent of y are provided in Subsection 3.2-3.4. Next, we let 4 — 0
in Subsection 3.5 to obtain the existence of solution to the original problem. Then
in Subsection 3.6 we shall prove (2.15), which will be the information for proving
the Morrey condition in Subsection 3.7 and finally also in the sharp identification
of the limit in Subsection 3.9. Furthermore, in Subsection 3.8, we first mimic the
method developed in [1, 2] to identify the plastic strain via regularization but also
show that the plastic strain does not take place on the Neumann and the mixed part
of the boundary, i.e., we have that the tensor-valued measures e, or &, respectively,
are not supported on 90, U dOy.

3. PROOF OF THEOREM 2.1

As mentioned already in the introduction, we focus only on the Prandtl-Reuss
model here and we shall use the Perc¢ina approximation. We would like to notice
here that a very similar procedure was developed in [18] with a slightly different
approximation - the Norton-Hoff approximation. Also to simplify the presentation,
we shall consider in what follows that k = 1.

3.1. Approximation and standard a priori uniform estimates. Thus, we
shall assume that for any p > 0 there exists a weak solution to Prandtl-Reuss-
Per¢ina model according to Definition 2.3. The existence of such a o can be shown
e.g. by the Rothe approximation and we refer the interested reader to [9] or [16] for
details. Moreover, one can easily find u € W12(0,T; W12(0;R%)) such that for all
t€(0,t) u—wug €V and u(0) = ug(0). The relation (2.7) then can be point-wisely
rewritten as

(3.1) AG + i~ (jop| — 1)+% —e(w) i (0,T) % O.

op
The next step is to derive the uniform (p independent estimates) for (u,o0). We
proceed here formally, since the estimates are known, see e.g. [18, 16, 9]. Taking
the scalar product of (3.1) with & — a®, recall here that o satisfies the safety load
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condition (2.9), we deduce after integration over O that

/ AG ) (0~ )+ i (jop| — 1), T2 72— D)
© lop|

:/s(u—uo)-(a—as)dx+/(s(uo)—A-as)~(a—as)dx.
o o

dz
(3.2)

Since o(t) and o°(t) belong to F¢(t) and w(t) — uo(t) belong to V, we see that
the first integral on the right hand side vanishes. Second, using the fact that o*
satisfies the safety load condition, we observe

op-(6p—0}) =lopl*—op- -0} > |opl(lop|—|opl) > lop|(lop| —1+6).

Finally, using the fact that A is symmetric, which follows from the definition of A
(see (2.4)), and the fact that it is elliptic, see (2.3), we see that (3.2) leads to

%/(QA(U_US)-(G_US)dx+2,/o ((|0‘D|—1) —|—(5(|0'D|_1) )d
< 0 (letan)l3 + 1071 + [ Alo—o)- (0~ ") as)

and consequently, by the Gronwall lemma, we deduce

sup |lo(t H2 / / \UD|—1) +0(lop| — 1)+ )dmdt
te(0,T)

(3.3)
< C/ le(uo)|l5dt +C sup [lo*(#)]|5 + Clla(0)[f5 < C,
0 te(0,T)

where the last inequality follows from the assumptions on data (namely on o).
The next step is to test (3.1) by 6 — 6°. Doing so, we get

O'D'd'D
o]
. . s . s _ op -0
+/(e(uo)~(afaé)+Aa'a +u Yop| — 1)L 2L qz.
o

lopl

Once again, the first term on the right hand side vanishes. For the first term on
the left hand side, we use the assumption (2.3), while the second term, we shall
rewrite as

/Ad‘-é‘+u_1(|a‘p|—1)+ dx:/e(u—uo)~(d—ds)dx
O O

(3.4)

_ UD‘d'D 1 8 _
p M ol = 1) = = g ol = D

Finally, using the Young and the Holder inequality, the identity (3.4) then leads to

d [ _ . . . "
%/Ou Ylopl = 1)3 dz +2C1 |63 < Cillg 3 + C(lle (o) |3 + llo°[13)

1206 1o /O w (o] = 1) de.
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Thus, absorbing the first term on the right hand side by the corresponding term on
the left hand side and integrating with respect to time, we deduce

T T
sup / i (lop| - 12 de + / |6)2dt < © / leito) | + 6°3 dt

te(0,T)
(3.5) +CHUDHL°°((OT)><(’)/ / Yop|—1)4 dzdt
+ [ i o) - 12 o
<c,

where the last inequality (with C' being independent of p) follows from the as-
sumptions on wug, 69, 6°, from the uniform estimate (3.3) and from the fact that
lep(0)|lec < 1 according to the assumptions. Moreover, going back to (3.1) and

using (3.3) and (3.5), we see that

T T
(3.6) / lle ()|, dt < c/ / 6|+ p~Ylop| — 1)4 dzdt < C.
0 0 O

Next, we shall improve the time regularity. To do so, we apply the time derivative
to (3.1) and take the scalar product with ¢ —&° to obtain3

op|—1) 22
/AJ ) (6 — 6% 4 p-) (] Dat)ﬂml'(d’j_ds)dx

—/E(u i) - (6 — )dx+/(( o) —AG®) - (6 —6°) da.
O O

The first term on the right hand side vanishes and for the part of the second term
on the left hand side we have the estimate
(3.8)

(3.7)

(|0D‘ - 1)+\0D\ . u71X\gD\>1
0p = ———
ot ‘0'D|
Consequently, using the Hélder inequality and the above estimate, we see that (3.7)
implies

~1(op|—1)s0p
2dt/Aa 6°)- (6 —06°) —2u~! |0D|+ 6% dx

(3.9) < /O(E(,uo) —AG*)- (6 —6°) —p " (|‘7D||;Dl|)+UD L% de

i (6oP (ol — 1) + |2 Jobl?) =0

< C(lle(ito) |2 + 16°(12) (1 + llo = °[13) + [l (jon| = D+ [1116D |-

Next, multiplying the identity (3.2) by a constant K7 > 1, that we shall specify
later, applying the time derivative and adding the result to (3.9), and then adding
the term K»<|jo — || with K> > 1 to both sides of the resulting inequality, we
find

(3.10) %QK“) < Wk () (|6(t) = 6° B3+ [o(t) — a* (B3

e op @] = 1)+ llh) + Wk (t),

3Although 6 need not to exist in general, one can make the proof rigorous by performing
similar uniform estimates for the Galerkin approximation, use the ODE uniqueness and finally
pass to the limiting problem, which admits the unique solution.
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where

Qk(t) == /C)A(d(t) —6°(t)) - (o(t) —a°(t) + 2K1(a(t) — (1)) d

1
2
— op(t
+ [ o) - 12220
o op
+ Kz/ lo(t) —a®(t)|* du,
o
Wi (t) := CK1 K3 (1 + [le(ieo(t))[l2 + [16° () ll2 + lle (o ())l]2 + (167 ()l
16D (B)lloo)
where K; > 0 is arbitrary constant. Finally, using (2.3) and (2.9), we can observe
that
Qi (t) = o) = 6" (B)lI3 — KiCallo(t) = 6" (1)l|2]lo () — o (]2
e op @] = D+l (K1d = 65 (1)|0) + Kallo(t) — ()3
+Kilp Hlon@®)] = D
Therefore, setting
1+ su 5 (1) oo
Ky = Pie(o,1) oD (@)l ’
)
KC3

Ky :=1
2 + Cl )

we obtain

Qx(t) > %Ild(t) =" O3+ lu™ (lep(®)] = 1))l + o (t) — o ®)II3

Kl (lop®)] = D3 1y

and inserting this estimate into (3.10), we are led to the following inequality

(3.11) %QK(t) < Wi ()Qx(t) + Wi(t),

which with the help of the Gronwall lemma and the fact that Wy € L1(0,T) (see
the assumptions on the data) imply that

sup Qr(t) < C(1+ Qk(0)).

te(0,7)
Since o p(0) = 0, we also see that
Qx(0) < C(1+ [ (0)II3).

However, since ¢(0) satisfies (3.1), where the second term vanishes, and also o € F,
we see that 6(0) solves the purely elastic problem, and it is rather standard to
deduce the estimate

Qr(t) <C+6(0)]5) < CC(1+[l6°(0)3 + lo°(0)]3)-
Therefore, using the assumptions on data we finally find that

(3.12) Sup (le@®l5 + 1~ (oo O] = D+l + p (o ()] = 1)4]3) < C
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and using the identity (3.1) and also the embedding theorem we also get*
(3.13)

sup (H div )3 + [le(@(t) [l + [a(®)lla + ullle(@®)]3 + IIu(t)HizfdQ)) <C,
te(0,7) g

which is the first part of the uniform estimate (2.12).

3.2. Uniform interior W2 estimates. In this subsection, we shall derive the
uniform interior estimates on Vo#. Already here, we present a certain novelty,
since for the Perc¢ina approximation such uniform estimates are known only for
d < 4. To shorten the notation we will not use the superscript p to denote the
solution of the u-th approximation. Nevertheless, we will trace the dependence of
all estimates on p. In particular, the constant C, which may change line to line
will be always independent of p and in case there is some dependence, it will be
clearly denoted. Thus, let £ € D(O) be arbitrary nonnegative function satisfying
|€] < 1. Next, we apply the operator V to equation (3.1), take the scalar product
with Va&?™ for some m € N and integrate the result over O. Note here that such
a procedure is only formal, however can be easily justified by using the difference
quotient method. Hence, we get the identity

(3.14)
/ AV - Voe2™ + -1y <(|‘7D —1)4op
o lopl

Using the symmetry of A and the computation very similar to (3.8) we see that
(3.14) leads to

1d 2 2 -1 2m
L4 [ avo Vogmao syt [ TonltrVeollonl - ne
2dt Jo lo|>1 lopl

_ / Ve(i) - Voe2™ da.
(@]

Next, we focus on the estimate of the term appearing on the right hand side

of (3.15). Abbreviating D, := -2~ and using the integration by parts and the

ox
fact that a(t) € F, we find '

) Vot dx = / Ve(it) - Vo&*™ du.
(@]

(3.15)

d
/Vs(d)-Vqumdx:/ Z Dy Djt; Do 5*™ dx
o o

i\j,k=1

d
/ Z 2Dj€ik(’l.1,)Dk0'ij§2m — Dij'ikakO'ijﬁzm dx
O .5
1,5,k=1

d
_ _2/ e() - V" + S en(it) Doy D€M™ du
o i,5,k=1
+ / divadiv f€2™ 4+ div fa - VE*™ - Vf - (@ VE™) dx
O
d
— / Z ’llkaO'ijDij£2m d$
O

i,5,k=1
= Il —|— 12 —|— 13.

4In case that d = 2, we replace the fraction 2d/(d — 2) by arbitrary ¢ € (1, 00).
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First, with the help of (3.13), the second term can be easily estimate by the Holder
inequality as
Iy < CEm)|f@)ll1,a-

For the first term, i.e. for the term I;, we use the Holder inequality and the
estimate (3.13), to handle the first integral in I;, and the identity (3.2) and the
estimate (3.12) to handle the second integral in I; as follows

B < Clem)|VFOll =2 | S euli)Dioy Dy da

i,5,k=1

=C(¢§ m)”Vf(t)Hoo
- 2/ Z ( (AG )ik, + 1~ <0D|)(0D)ik) DyoijD;E*™ da

i,7,k=1 |0’ |

< O, m)(IVF (D)oo + Vo HE™2)
+Cm.8) [ (o] - 1)1 Vole™ da.
(@]
Finally, using the identity
(3.16) Dy = Di(0p)ij + 6i; (£, — Y _ D0 p)re),
we see that
L < CEm)(IVE®)]o + [Vo(B)E 2)
+C(m, €) / (o n) — D )(F| + [Vop)em de
O
< c(e,m) (| £(t) (HE™2)
/ Clm, u(jop| —1)4)lop| +

p " (lop|l = 1)1|Vopl|?
2|op|

EMde

—1 B 2
sc<f,m><1+||f<t>||1,oo+||Va<t>fmu§>+§ [ el e enheng,

lop|

where for the last estimate we used the a priori bound (3.12). Note here that the
last term on the right hand side will be absorbed by the second term on the left
hand side of (3.15). Finally, for the remaining term I3 we use the identity (3.16)
and integration by parts to find (using also the estimates (3.12)—(3.13))

d d
Iy = —/ Y wkDi(0p)i D™ 4 v FAEL™ — Y i De(0p)re) AT da
o

i,5,k=1 k=1

Cl&,m)|£)a+ / diviop - V22" — e(i) - o p A dr

d

/ Z (o p)ijDi DE&™ — Z (0 p) ke D AE™ da

i, k=1 k,0=1

C(&m)llf(t)lld+C(€7m)/0(|6( @)| +[@])lop|dz.
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Consequently, using (3.1), we see that
le(@)llop| < Cléllo| +p~(lop| = 13+ Hlop| — 1)+
and by using (3.12)—(3.13) and the Hélder inequality and the embedding theorem,
we may continue
I3 <CE,m)(IF@)]la +1) + C(&,m) /@ || + |u|(lop| — 1)+ dz
< CEm)([F®)lla + 1) + CEm)le(w)2l(lon] — 1)+l
< CEm)(I1F@)lla +1).

Finally, using all estimates for I, I and I3, the ellipticity condition (2.3) and
absorbing the term arising in I; by the left hand side, we find (noticing also that
f = dive?®, which follows from (2.9) and the definition of F(t))

2 2 _1\e2m
%/ AVU(t)-Va(t)§2mdx+u—1/ |Vlep||* +[Vop|*(lop| — 1)§
o

dx
lo|>1 lopl

< C(&m) <1 + [|o®(t)]l2,00 + /OAVa(t) Vo (t)&*™ d:v)

and the Gronwall lemma and the assumptions on data directly lead to the estimate

(3.17)
T 2 _
sup /\Va(t)|2+|Vdivu(t)\2dx+u’1/ /'V”D| lonl =D+ 4, 4t
te(0,T) /B o JB lopl
< C(B),

for arbitrary open B C B C O. Thus Wﬁ)g estimate in (2.12) is proven.

3.3. Uniform L *¢ estimates for . Finally we present a proof of the uniform,
i.e., p “independent” local in O estimates in any dimension d > 2. In addition, we
would like to emphasize that contrary to [11] or [10] these estimates do not rely on
the L control of a. These estimates, will be further extended to the whole O for
the limit solution in next subsections. We again do not use here the superscript
for denoting the solution of the p-th approximation, but we shall clearly describe
any dependence on p in all estimates presented below.

Hence, following the above mentioned paper, we fix g € O and denote R* < 1
the largest number such that Bag«(z9) C O. Then for every R < R* we can find
7 € D(O) such that 7 = 1 in Bgr(x), 7 = 0 outside Bag(7p) and |[V7| < R™L
Then it directly follows from the embedding theorem that

(/ far|? dx)d gc/ |s(ur)|dx§0/ (| |V7| + |e(@)|r de
(@) (@) O

Hence, dividing the resulting inequality by R4~ and using the properties of 7 we
find that
1

" @] le(@)|
(3.18) dz <C —dx + dz.
B

rlao) 17 Bon(zo) B¢ o R1
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Next, we focus on the last term on the right hand side. Using the identity (3.1),
we see that
0D oD

()| < Clo|+p Yop|— 1) <Clo|+u (lop| —1 :
le ()] lo| +p " (lop] — 1)+ lo| +p" " (lop| )+|0'D| T+ (o] =2

oD
1+ (lop| —2)+
Consequently, we find that

< Clo|+e(w)

le(@)|T / lo|T / e(u)-opT
dr < —d d
/o prr SO0 R R (ol -2
lo| 7 /u-divaDT+aD-(ﬂ®V7)
ZCR/ ——dx — dzx
o R4 o RN (1+(lopl—2)4)

o (a®V(lop| —2))r
- /o RI(L+ (op] —2)5)2

o7 |allVoo|((jop] —1)+)*

T ||
<CR dz + C — dz
o R Rd‘aDﬁ Bar(z0) R
1 du-fr—a-Viror q
— = T
d Jo RY1+ (lop| —2)4)
. . . 1 .
con [ Brtlflr | [WSeo ool Nty o f iy,
o R Rd‘UD‘E Bar(zo) R
1/ u-V(tro —tro)r - Vtror(lop| —2)+7 de
dJo Ri-1 RIZH1+ (lop| —2)+)
< CR/ (lo| + Iﬁ\|f|+|di‘;ﬂ||tr0*%\)7 n IuHVUD\(ﬂUDI: 1),)% e
o R Rd|a'D|§
|a]  |u||tro — tro|
+C — 4+ ———dux,
Bar(zo0) R R
where we denoted
_ 1
tro : = —— tro.

|B2R('TO)| BQR(ZEo)
Next, we estimate the terms with tro. First, using the Young and the Holder

inequalities, we find that for arbitrary ¢ € (2, dQ_dQ) that

/ \divu||tr;—ﬁ| deC(q)/ |divu|q’+|2ra—ﬁ\q "
Bzr (o) R Bzr (o) R

. . q, q
< C’(q)/ | div | d+ lo| e
Bzr(zo) R

Finally, we focus on the estimate of the last term with tre. For this purpose
we use the Bogovskii operator, see [7, Theorem 10.11], and we can find v €
Wy (Bar(xo); RY) such that

diveo = sgn (tre — tro)|u| — sgn (tro — tro)|ul,

(3.19) .
/ RPJol? + Vol dz < (J(p)/ P dz,
Bar(zo) Bar(zo)
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for all (p € (1,00). Hence, we observe with the help of (3.16) that

/ |'it|\trad—ﬁ| dz:/ divv(trad—m) e
Bar(zo) R Bar(zo) R

:_/ U~thradm:_d/ v-(f—;iivap)dx
Bar(zo) R Bar(zo) R

——d/ v-dive® w-divep(lop|—2)+ v-divep e
Ban(z) 10 Ri(1+(lop|—=2)4) R+ (lop|—2)4)
Vv -o?® Vv-op
= d/ — dx
Bar (o) Rd Rd(l + (|UD| - 2)+)

dx

+d/ v-divop(lop|—2)+  op-(v®V(op|—2)4)
Bor(z) R+ (lop|=2)+) = RUL+(Jop|—2)4)?

s 1
|V’v|(\0d|+ )dx+C’ |
Bar(x0) R Bar(zo) Rilopl>

1
[v[|[Vopl(lop] — 1)}

<C dx.

Consequently, using (3.19) and the assumption on a°, we get for all p,q € (1, 00)

1
i tro —tro 1P !
/ [t ~trel 4, < ¢ / [ e
Bar(zo) R Bar(zo) R

g\ @ _ i
+CR / ()% / (u |Vop (o] - 1>+) " Rlde
Bapr (o) R Bapr (o) o]

Hence, going back to (3.18) and substituting all terms and using the Young inequal-

1
PU

ity, we have that for arbitrary p € (1,d’) and arbitrary ¢ € (2, d%dQ) and arbitrary
0 > 0 that
/ & 1
|| [l "
——dx < C(p) —dx
(/BR(fro) Rd BZR(:EO) Rd
|diva|? +|o|? + |o] + |al| f]
3.20 +C(q) / - dz
( ) Bagr(zo) R
q/
_ . q -1\wv 2 — 2
. C(q)/ S (pluf?)# + 6 (u Vel (ool 1)+) N
Bar (o) Rt

In order to estimate last two terms, we find 41 o € Wy (O) solving

Ay = |dival? + o] + |6] + ||| f]| in O,

pVepl*(lopl — 1)\ 0 O
lopl '

B = 8ol + 5
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Then, we find a nonnegative £ being equal to one in Bag(xg) and vanishing outside
Bsr (o) fulfilling V€| < CR™! and deduce by integration by parts that

C de>/ | div | +\o|q+|a\+|u‘|f|
Bsr(xo) R - Ban(wo) Rd-1
. q —1 2 _ %
S (ula)?)s + 6 (H Vel (oo| 1>+)
" d—1 dx .
Bar(z0) R

Using this estimate in (3.20), we obtain

J e’ 0)" < o) / bl o)
Br(zo) Re B Bar(zo0) R

Vv Vv
Bsr(zo) R

Therefore, using the Gehring lemma, we see that there exists ﬁ > po > d
depending only on d and C(p) such that for all r € [d’, pg] we have

(3.21) /@\urdxgc@) (/o |u|d/dx>d +C(q, )/ IV |" + [Vipe|" da

for all open O and o fulfilling O C o cOc 5 C O. Consequently, using the
theory for the Laplace equation we can estimate the last two terms as (recall that
r>d)

d+r
d

/|V¢1‘ +|V¢2|de<0( )(/ |A¢1|d+r A¢2|(mdx)

< C(O, f)ll divall’,, + ol gt + 110117 + 1l
d+r +r d+r

q
ptVopl|y/(lop| — 1)
Vel

To bound the term on the right hand side, for given r we fix ¢ such that

, 2(d+r) g 2(d+r)
7= dr q_2d+2r—dr

+C(0)5 7 ||/ . +C(O )5"

q'dr
dtr

and recalling that r € (d’,d/(d — 2)), the above estimate leads to

d+r
d

/ [V |" 4+ [Vipo|" dz < C(O </ | Ay |75 + | Ao 77 dx)

2r(d+r)

<00, pldival, " + o] wizoy T ol + [l

d+r
_2r(d4r) R —1 2 _ d
+C(O )57‘(1 q) ”\/»uuz(ﬂzzdrr ar +C(O)5T (/ p|Vapl*(lop| — 1)+ da:)
(@]

lopl
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Finally, using this estimate in (3.21) and combining it with the a priori bounds
(3.12), (3.13) and (3.17), we see that for almost al time ¢ € (0,7") there holds

[a(t)|| 77 s < C(O) + C(O)§~ T zarer=r ||\ /(1) "2, ™

L7(0) = Zdter—dr
(3:22) oot | p Vop(0)2(on(®)] ~ Vs
o o ()]
Further, since r € (d’,d/(d — 2)) we have that
2dr 2d

1< <
T 2d+2r—dr — d—-2

and we can use the interpolation inequality

VAR s < |VEa(lF (Il + [|vEe(@b)ll)

2dt2r—dr

with a € (0,1) given as
2d +2r — dr (I1-a)(d-2) 2d + 4r — 2dr

3.23 el NS Sl AC ) el U
(3:23) Sdr ot 2d - rdv2)

Thus, going back to (3.22) and using (3.13), we see that

[a(t)]|

dra

dr ~ A T L7
atr < C(O) + C(O)(S—ﬁ 2d+gr—dru2d+2r—d7‘

LT (0) —
/ Voot - 1)
o lon(t)] '

(3.24)

+ C(0)5tr

Thus, fixing now ¢ in such a way that

__dr dr dro dr o
KRR 2dfer—dr  2dtr—dr =] = Jatr = I

and integrating (3.24) over any time interval I and using (3.17) we deduce that for
all r € (d',min(pg,d/(d — 2)) there exists a(r) > 0 such that

(3.25) [ 18177, d < Con, O)111+ ),
I

which leads to the uniform improvement of the spatial integrability of the velocity
field stated in (2.12). Moreover, it is evident that once letting p — 0 we can even
deduce L>(0,T; L}, .(O)) bound for the limiting velocity field &, which is however

not valid up to the boundary 00, which will be improved later.

3.4. Time regularity. This subsection is devoted to improvement of the time reg-
ularity for 6*, which will be uniform with respect to the approximative parameter
1. We again omit writing superscript p in this subsection.

For arbitrary w, we denote its times shift as ATw(t, x) := w(t+7,2) —w(t, x) and
with the help of this notation, we take the scalar product of (3.1) with —A7] (¢ —o*)
and integrate the result over O to get

o
lop|
- /06(1'1,0 — @) - AT(6 — 0%) —e(i) - AT (6 — 6%) dr.

R R e e e LT
O
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The first term on the right hand side vanishes similarly as before and after moving
the corresponding terms onto the right hand side and applying the Holder inequality
and (2.3), we deduce that

—/ A6 AT6 + u (o] = 1)4 22 . AT da
o lopl

(3.26) g/s(uo)~AZ(dS—d)d$
@]

+Calo 2| A7 |2 + 17 [[(@p] = D41 [AT 0% ]|

Using the algebraic identity (note that A is symmetric)
O U LR
—Ag - Ao = EAAta -Alo — §At (Ao -g),

we further observe with the help of (2.3) and the a piori estimate (3.12) that (we
also use the fact that O is bounded)

[ culatof -2 op| — 1)4 22 - AT ds
1) lop|

(3.27)
< / 2e(itg) - AT (6% — &) + AT (A - &) da + C|ATG*|oc.
O

Finally, we integrate the resulting inequality with respect to 7 over the interval
(0, h) and with respect to t over the interval (¢1,t) with 0 < ¢; < to <T —h to get

tQ h
Cl/ / /Cl\A;deTdt
tl 0 (@)
ta B op h )
(3.28) f/ /Q,u Yop| —1) — - / Ajegdr | dedt
t1 JO lop| 0

to h
g/ / /25(u0)~A[(a'S—d)+A[ (A6 - &) da + C|ATG* | dr dt.
t1 0 (@)

Next, we focus on the estimate on the right hand side. First, we have

to h . h to AT ‘s
/ / ||AIG'S||OOdet:/ T </ H O ||oo dt) dr
t, JO 0 t T

1
(3.29) wor
g/ T/ 65|00 dt dT < ch?,
0 0
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where for the last estimate we used the assumption on o®. Second, using the
substitution theorem and the Hoélder inequality, we obatin

to h
/ / / 2% (itg) - A] (0% — &) dwdr dt
t1 0 O

/Oh/:/ok(uo)-(ds(tJrT)[r(t+T))dxdth

_ /Oh /: /O 2e(11g) - (6°(t) — &(t)) dzdtdr

_/Oh /tt2+T/(926(u0(t7))~(ds(t)d(t))dxdth

1+7

/Oh/:/OQE(uo(t))~(ds(t)d(t))dxdth

ho ot
(3.30) _ /0 /t /O 2e (o (t — 7) — 1o(t)) - (6°(t) — o(t)) de dtdr

1+7

h  ptatT

+/o /t /026(“0(“7))'(0‘ (t) — &(t) de dt dr
h ptitT

7// /26(110(75))'(ds(t)*d(t))dxdth
0 Jiy @)
h T

<C [ r16* bl [ lelladedr

h
+ C/ TT”d’S — o.-HLOO(O,T;LZ)||€(u())HLOO(O,T;L2) dr
0
< O,

where we used the assumptions on ug and o® and the a priori estimate (3.12).
Finally, the remaining term on the right hand side of (3.28) is estimated as follows

t2 h
/ / / A7 (A6 -6) dzdrdt
t1 0 (@]

_ /Oh/:/o(Aa.d)(HT)—(Aa-z;)(t)dxdth

h t2+7’ h t1+7'
= / / /(A{;-(;) dxdtdr—/ / /(Ad-d) dzdtdr
0 to O 0 t1 o

< Ch*||6 || Lo (0,1;12) < Ch?,

(3.31)

where the estimate (3.12) is used again. Substituting (3.29)—(3.30) into (3.28), we

conclude
to h
C’l/ / /C’l|AtTé'|2det
t1 0 (@]

tz h
—/ /zu—1(|aD|—1)+”—D- / AT dr | dedt < Ch2.
t, JO lop| 0

(3.32)
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Thus, it remains to evaluate the second term on the left hand side. Using the
convexity of (|op| — 1), we continue as follows

/:/zm (ool - 1) 22 (/ Nm> o
:/tl /Ozu Yop| - )+% (@n(t+h) —ap(t) — hep(t)) dzdt
/tz/ 2,LL71(|0'D|71)+07§'(UD(tJrh)fa'D(t)fhd-D(t)) A dt
</:2/ u‘1(|ap(t+h)|—1)1—<|aD(t)|—1>1_hu—1%(\0[)(t)|_1)2+dt
[ i ot 40 <12~ (oot - 13 aza

— [ [ ot + 01 =113 = (on(e)] = 113 drat.

Consequently, the relation (3.32) reduces to

o /tz /h|A{d||§det§Ch2
(3.33) / / Yop(ts + 1) — 12 — (lop(tz)] — 1)? dadt
h
— [ [ ot + 01 =12 = (lon(e)] =112 drat.

Going now back to (3.4), we see that

d
)y “eop|—1)3 /Aa 6dz

0'D~d'SD

dx
lopl

+/<s<uo>-<d—d8>+Ac'r-dS+m1<|aD| 1),
O

and integrating this inequality over (7,7 + t) we get

(3.34)
t+7
‘/ Yop(t+1)| - 1) —p (lop(r)| - 1)% dz| < Cz/ o3

+ C/ le(@o)ll2ll6 —&* |2 + G ll2llo°[l2 + I~ (lop] = 1)+l lloD [l
T
< Ct,

where we used the assumptions on data and (3.12). Consequently, using this in-
equality in (3.33) we obtain the final inequality

1 to h
(3.35) 7/ / |ATG|2 drdt < C.
h’ t1 0
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Recalling the equivalence of norms in the Nikolskii spaces, see [8], we have that
(3.35) implies that

T—h
(3.36) h—l/ |Arg|2ddt < C,
0

which is the last remaining part of the uniform estimate (2.12).

3.5. Limit p — 04. In this subsection we let ¢ — 04 and show the the limit object
solves the original problem, i.e., the the Prandtl-Reuss model. This part is rather
standard, compare e.g. with [9, 17] but we shall need several identities stated in
this part also in further subsections in order to identify the plastic strain and also
for the improved integrability result for the velocity up to the boundary 00O.

Recalling the a priori estimates (3.12)—(3.13), we can find subsequences labeled
by p such that if letting u — 04 we have

(3.37) o' —~*a weakly® in Wh>(0,T; L?(O,REX1)),
H J—

(338) Ml — 1>+Z—L;| ~te,  weakly® in L(0,T; M(O; RE:)),

(3.39) p e = 1)y = A weakly* in L>(0,T; M(0O)),

(3.40) e(u") =" e(u)  weakly* in W">(0, T; M(O; RE<1)),

(3.41) divu” —=* dive  weakly™ in Wh>°(0,T; L*(0)),

(3.42) ut =" u weakly™® in W1°°(0, T; Ld/((’);Rd)).

Moreover, recalling (3.17) and (3.25) we also get that for some € > 0

(3.43) o~ o weakly™ in L>°(0,7; W,;2(O; REX?)),

(3.44) divut —~* divu weakly* in L (0,T; W,52(0)),

(3.45) ut —u weakly in L'(0, T; L{ ¥2(O; RY)),

(3.46) ot ~* g weakly in N22(0, T; L*(O; RED)).

In addition, using the weak lower semicontinuity, we also have that |é,| is absolutely
continuous with respect to A and

(3.47) len(t)] < A(F)

in the sense of measures for almost all ¢ € (0,T"). Having these convergence results,
it is not difficult to let © — 04 in (3.1) and show that (2.14) holds (in fact it holds
for almost all ¢ € (0,T) in the sense of measures).

Moreover, it follows from (3.39) and from the fact that o#(t) € F(t) that for
almost all t € (0,T) we have o(t) € F(t). Next, multiplying (3.1) by 6* — ¢ and
integrating the result over O x (0,t) we can deduce with the help of the fact that
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lop| <1 almost everywhere that

—— [ [ 0)-t0"(r) = o(r) — (it (7)) - (0" () ~ o() do
//Aa (r) — o(7)) — elite(r)) - (*(7) — o(r)) da dr,

where for the last inequality we used the fact that ©" — 1y € V. Consequently,

using (3.37), we see that the right hand side vanishes as ¢ — 04 and consequently,
we also get that

(3.48) o' —o strongly in C([0, T]; L*(O,R%X4)),

sym
(3.49) p (et - 13 =0 strongly in L'(0,T; L'(0)).
Next, repeating the very similar procedure as above, we can also obtain the identity

—1(‘0-“( )I_l) i o
L W%(t)-(%(t)—an(t))dw

/ AGH (L) - (0 () — a(t)) — elig(t)) - (6" (t) — a(t)) da.

Consequently, having the uniform convergence (3.48) and also (3.37) we see that
for all time ¢ € [0, 7
(3.50)

lim sup |[[p” (et (1) — 1%L
Jm s i (oh0)] - 12

< lim sup [u” (ol ()] = D1 (o) = lop®))]h
h=0+ 4 (0,1)

(oI =Dy !
<t 2 ) WaD(ﬂ @50 - on(t)ds

= lim sup / At (t () —a(t)) —e(ao(t)) - (6*(t) —o(t))dz =0.

h=0+ 4 (0,1)
In addition, for arbitrary ¢t € (0,7) we denote
K.(t) = {z € O; Mlon(t) <1-¢},

where M denotes the non-centred maximal function. Due to the properties of the
maximal function, we see that this set is closed (hence A(¢) measurable) and from
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(3.39) and (3.50) we have

MO = tim [ w(lols(0)] ~ 1), do
(3.51) PR

<e ' lim [ pTH (ol ()] - Di(loh(t)] — lop(t)]) dz = 0.
=04 Jo

Consequently, we see that A(t) is supported on the set, where M|o p(¢)| = 1. Finally,
using all above convergence results and testing (3.1) by o* — ¢°, it is standard
to show (2.5). This finishes the first part of the convergence results stated in
Theorem 2.1.

3.6. BMO estimates and improved integrability results. This section con-
tains two key novelties of the paper. Since the BMO property for the Cauchy stress
is somehow independent of the structure of equation and is more related to the
function spaces properties, we formulate it as a separate lemma. On purpose, we
state it for a domain 2 to emphasize its independence of the Prandtl-Reuss model.

Lemma 3.1 (BMO estimates). Let Q C R? be an open set. Assume that o €
L2(;RY4) be such that dive € LY RY) and op € L=(Q;R*9). The for any
ball Br(zo) C 2 there holds

(3.52) /B ” |0 =T (o) * dz < C(R(lop|% + Il divel),
R(Zo

where the constant C(d) depends only on the dimension d and @p,(s,) denotes the
mean value of & over Br(xo). In addition if Q is Lipschitz, then there exists Ry > 0
such that for all R € (0, Ro) and all xo € Q there holds

(3.53) / 0 = Fanpa(en* do < C(d. QR (ol + || divell?).
SZQBR(EQ)

Furthermore,  can be extended onto the whole R? by some & such that for all R > 0
and all o € R? there holds

(3.54) /B o) |6 — 0B (ag)|° Az < C(daQ)Rd(||0DH2Loo(Q) + 1l diVUH%d(Q))-
R(Zo

Moreover, if o is symmetric then the extension o is symmetric as well.

It is also worth mentioning that we can replace the assumption op € L by
op € BMO. Since such a generalization is trivial, it is left to the reader.

Proof of Lemma 3.1. We start the proof with (3.52). To simplify the notation, we
consider only the ball Br(0) =: Br. Using the properties of the Bogovskii operator,
we know that for any u € L?(Bg) fulfilling

/ udx =0,
Br

there exists B € Wy'*(Bg;R?) satisfying
(3.55) divB=wuin Bg,  [|[VB|2 < C(d)|ullz.

Since o p is bounded, we see that to prove (3.52), it is enough to show that

(3.56) / tro — o, 2de < C(d)RY(lon|2 + | dive]2).
Br
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Hence, setting u := tro —tro g, in (3.55) and using the density of smooth functions
(to justify the following formal integration by parts) we get

/ |tra—ﬁBR|2dx:/ (tro —trop,)divBdr = — Vire -Bdz
Br

Br Br

—d/ (diva—divoD)-de:—d/ divo-de—d/ op - VBdx
Br Br

Br
. a—2 d
< C(d)(|divelal[Bll27> +[lop|lo VB2 R?)
d .
< C(d)R?([[divella + [loplle) VB2

1
2

|tro traBdex) ,

IN

O(@)RE (| divela + lopll) ( /

Br

where we used the Poincaré inequality and (3.55). Consequently, from the above
inequality the estimate (3.56) and consequently also (3.52) directly follow.

Next, in order to prove (3.53), we use the fact that € is Lipschitz. Therefore we
can find Ry > 0 such that for all zy € 9Q and all R € (0, Ry) we have

(3.57) R < C(9,d)|2N Br(zo)).

In addition, it also follows from the properties of the Bogovskii operator that for any
u € L*(QNBg(xo)) fulfilling anBR(%) u = 0 there exists B € Wy ?(QNBg(x0); RY)
such that

(3.58) divB=wuin QN Br,  ||VB|2 < C(d,Q)|lull.

Consequently, using (3.57) and (3.58), we can use exactly the same procedure as
above and we deduce that for all zy € 99 and all R € (0, R) we have

(3.59) / ltro — Toons, | de < C(d, Q)RY(|lop|% + | divel2)
QNBRr

and additionally we also see that (3.53) holds for all g € 9. Finally, let us consider
arbitrary zo € Q and R € (0, Ry). If Br(zg) C , we already have the estimate
(3.52). Hence, let us assume that Br(xo) NONQ # . Then there exist &y € IN such
that Bgr(zo) C Bar(Zo). Thus using the triangle inequality, we deduce that

/ |0‘*EBR(IO)QQ|2C1I
BR(JL’())QQ

< 2/ |0' - EBzR(flo)mQF dz + 2‘BR(xO) N QHEBQR@O) - EJ'B’R(GJO)I’WQ|2
Br(zo)N$

< 2/ |0‘ —532R(jo)mg|2d.%‘
Bar(0)N$2

2
1

< 2/ o —aBQR(iO)deﬁz/ 10— Ty o) da
Bar(0)N$2 Br(zo)NQ2

+ 2|Bgr(zo) N Q| (U_EBzR(io))dx

IA

4/ |0 =B, @onal” dz < C(d, QR (o b7~ (o) + || divell7iq,),
Bar(Z0)NQ2
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where for the last inequality we used (3.53) with o € 9Q. Consequently, we see
that (3.53) holds for all zo € Q. O

Since |op| < 1 and dive = dive®, we can use the assumption on data and
Lemma 3.1 to get the first part of (2.15), i.e., the fact that ¢ € L>(0,T; BMO(O)).
Next, we will show also the second part of (2.15), i.e., the uniform improvement
of the integrability of @4 and consequently also on some deeper characterization of
a possibly singular part of the measure A. First, we can recall the estimate (3.25)
and by using the weak lower semicontinuity we get that for all © cC O and any
interval I C (0,7 we have

// |t dzdt < C(O)|1].
1J0O

Consequently we see that @ € L>(0,T; Lf;jE(Q;Rd)). Our goal is to get this
information up to the boundary 9O in case O is Lipschitz. We shall proceed almost
exactly in the same manner as before, however, we focus here only on the limiting
behaviour of w. The starting point is to estimate the weak* limit of e(4") up to
00. To do that, let us consider arbitrary smooth nonnegative 7 € C>(O x [0,T7).

It follows from (3.1) that

) u _ » _ ol
le(@)] < Cole”| + p " (lo'h| — 14 < Calé” |+ p~ " (lo%] —1)+ﬁ ot
< Cale"| + Calo||o*| + (@) - o
= Cs|o"| + Csl6"||o"| + e(u”) - o +e(ut) - (6" — o)
(ol = 1)+

= Colo”|(1 + |o*|) + (@) -0+ (Ad" + A
D

alh) - (" — o).

Thus, multiplying the resulting inequality by 7 (which is smooth), integrating over
(0,T) x O, using (3.46), (3.48) and (3.50) and nonnegativity of 7 we get that

T
lim/ /\6(u“)|7dxdt
=04 Jo o

T T
< lim / /e(u“)-ardxdt+C’2/ /\d|(1+\a|)7-dxdt.
w04 Jo Jo 0o Jo

Next, using the safety load condition (2.9), we also get

(3.60)

e(w") -o=¢e(") (6 —o°)+e(@")- o°
=eg(u! —ug) - (0 —0°) +e(iy) - (6 —0°) +e(0") o + étras div u*

<e(w — 1) (6 —0°)+e(ig) - (6 —a°)+ (1 —9)le(w")| + étras div
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Hence, inserting this into (3.60) and using (3.41), and using integration by parts,
we finally obtain

T
5 lim / / le (i) | da it
r=0+ Jo Jo

T

1

< / / Cale|(1 + |o|)T + gtras divar +e(tg) - (6 —o®)Tdedt
o Jo

T
+ lim/ /s(u“—ao)~(a—as)7dmdt
(@]

u—=04 Jo

T
(3.61) = / / Cslo|(1 + |o|)T + étras divar +&(t) - (0 —o®)rdadt
0

- lim/ / F—a) @VT) (0 —0°)dedt

n—=04

T
1
= / / Cale|(1 + |o|)T + gtras divar +e(tg) - (0 —o®)Tdxdt
o Jo

_/OT/O((u—uO)Q@VT)-(a—as)da:dt,

where for the last equality we used the fact that ¢ € L>(0,T; LP(£2; R4*?)) for any
p < oo (which follows from the BMO property) and the weak convergence result
(3.42). Moreover, using the assumptions on ug and ¢®, and the fact that |op| < 1,
we observe

T
] lim/ /|€(1’L”)|dedt
n=0+ Jo Jo

T
(3.62) gc/o /O(|d|+|tra|)(1+|tra\)r+(|u|+1)|V7|dxdt

1T
—f/ /(tro—tros)(u—uo)-Vdedt.
dJo Jo

Having this estimate, we now focus on the limiting inequality for @. Defining
uh(t) = %foh u" (t+s) ds, we know from (3.40) and (3.42) that for all ¢ € [0,T — h]
(3.63) Wl (t) — wy(t) strongly in L*(O;RY).

Consequently, using the embedding theorem?®, the assumptions on ug, we have that
for all £ € C1(O) and all t € [0,T — h]

[, (D)€ llar < (@, = (to)n(8))€llar + CIEllar
< Cll€llar + lle((ay () = (o)n(£)E)]1)
< C(l€llar + V€l A+ lllah, DN VEL + Nlle (s, (0))IE]1)

t+h
< C(€llar + IIVENL + 4k (6 IVEl) / /|eu“ )/I€] dads.

5In case that we do not prescribe Dirichlet data for u, we have to chose £ such that it has zero
trace on a part of the boundary.
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Thus, setting 7 := x[44)§ in (3.62), letting u — 04, using (3.63) and weak lower
semicontiuity, we observe

[an(®)Ellar < CllElar + [1VENL + [[an@IVE]]L)

C t+h - .
Jrﬁ/t /O(|U|+|tr0'|)(1+|tr0’|)§+(|u|+1)|vg‘dxds

C t+h
+ﬁ/t

Finally, we restrict ourselves only on the Lebesgue points t € (0,7 for all related
quantities, we can let h — 04 in the above inequality to get

a(t)éllar < CUI€llar + [[VEI1 + [l[w@)|[VE]]]1)
+ C/ (lo| + |tro])(1 + |tro|)édx
o

/(traftras)(ufu()fodx ds.
o

(3.64)

+C

/ (tro —tro®)(u — 4p) - VEdz|,
o

which is the starting point for further investigation. First, we use the Bogovskii
operator and find B such that for almost all time ¢t € (0,7)

divB = (|| + |tra)(1 + | tra]) — (| + | tra])(1 + |tra])p in O.

Consequently, using (3.37) and the fact that & € BMO, we have that for all
pe(L2)

(3.65) B € L>=(0,T; WyP (; R¥¥dxdy),
For further purposes we can also find v fulfilling
(3.66) v e L0, T; Wy P (9 RY)

and solving
dive = div(w — %) — div(d — 1), in O.
Then, we can rewrite (3.64) with the help of integration by parts as
l(®)éllar < CUIENar + [IVENL + (12 (®)] + [BENIVE]])

/o (tra(t) — tra® (1)) (w(t) — io(t)) - VEda

We start with the interior estimates. Hence for arbitrary zg € O and R > 0 such
that Bag(zg) C 2. We find smooth nonnegative & such that € = 1 in Bg(xo) and
=0 in R%\ Byg(xo) satisfying |V¢| < CR™!. Then, using the assumption on ¢*,
ug and (3.65), the estimate (3.67) implies that for almost all ¢ € (0,7

d
. d/ .
/ \U(tz\ dr < C+C / [u(t)] +d\B(t)| de
Br(zo) I Bar(zo) R

(3.67) o

)

/

J— . d/
tro(t) —tro(t u(t
(3.68) Lo / |tro(t) (jng(xo)ll (t)] &
Bar(xo) R
. 7
tro(t wlt) —up(t)) -V
LC / (1) By (o) ( d(i)l o(t)) de
Bar(z0) R




30 M. BULICEK AND J. FREHSE

Next, using the Holder inequality and the BMO estimate for o we get that that for

any q € (1,d")
Y q
/ \U(tg\ de
Bar(zo) R

For the last term in (3.68), we use integration by parts and the definition of v to
get (using again the BMO estimate for o)

(3.70)
/ tro(t) g, , (o) (W) — Uo(t)) - VE
Bar (o)

4/

q

d
(3.69) dz| <C

/ [tra(t) — tro(t) g, (zo)llw(t)]
Bar(zo) R

d

dx

[ Ty ) 0
Bar (o)

/ |tr0(t)Bgn(zg)| da
Rd*l
Bar(z0)

/ tro(t) g, , () v(t) - VE
Bagr(zo)

d —_— d

N / tro(t) g, (z) divVo()€
Bzr(zo)

<C dz

Rdfl

d’

<C+ dz

Rd-1

d d
o (1)] ) ( / o (1)] )
<C+C / dx dz
( BQR(SE()) Rd BQR("L’O) Rd

t zd' t 2'd
O o [ i)l
Bar (o) R Bar(zo) R

<C+C dx,

where we chose z large enough so that
2d
"d < ——.
S
Substituting (3.69)—(3.70) into (3.68), we finally deduce

(3.71)

a4’

(1) a(t) .\ " t
/ [e®) Z' dr<C+C / |“(3| dz| +cC |g(d) dz,
Br(zo) R Bar(zo) R Bar(zo) R

where

9(t) = o) + @) + B
Note that due to the BMO estimates for o, the properties (3.65)-(3.66) and the
embedding theorem, we know that any ¢ > 0 find z > 1 such that®

g € L=(0,T; L= (0)).
Thus, we have everything prepared for the reverse Holder inequality in the interior
of O. To get it up to the boundary, let us now consider o € 0O such that

Bar(zo) NOON = 0. In this case we can proceed exactly as before, replacing only
the mean values accordingly (using the Lipchitz continuity of O and the global

6In case d = 2 we get any LP space. Similarly, in case of the Hencky model, we do not deal
with the time derivative estimates and we can get any LP estimates.
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BMO estimates for o). Notice here that the integration by parts in (3.70) still can
be used since (40 — 1g) - =0 on O \ IOy in the sense of traces.

Thus in what follows, we focus on the case when xy € 9Oy and R > 0 be such
that Bag(zg) N 0O C dOy. In this case we can use the same procedure as above
replacing the mean values accordingly except the integration by parts used in (3.70)
since we do not control (4t — ) - m on 0. Hence, instead of (3.71) we arrive at

4/

Jau(t)|* — [u(t)| !
BOF 42 < 00 + [5o@onp, (o)) / dz
(3.72) /B’R(x(;) R4 ONBagr(xo) Bon(z0) Rd

1+ g(t)]
Bar(zo) Re

+C dz.

Next, the key difference from the interior estimates is that we need to provide a
sufficiently good estimate for the mean value of tro(t). Without loss of generality
(since O is Lipschitz), assume that 2o = 0 and that

Vi={reRY z = (2 24),2" € (~kR,kR)*!, a(z') < x4 < a(z’) + kR}
>0nN BQR(.T()),

where k is some constat depending on dO and a is a Lipschitz function and if
a(z’) = x4 then x € 00O. Next, since for any x € 0N we have in the sense of
traces

tro(t) =tro(t)n-n=d(o(t) —op(t))n-n=d(e’(t) —op(t)) - (n@n),

where we used the fact that (6 —a*)n = 0 on dOy. Consequently since |op| < 1
and o° is smooth we have that

tro € L>(0,T; L>°(00N)).
Therefore, for arbitrary x € V, we have (for a.a. ¢, which we do not write here)

i Qtro(,s)

— / ! =
tro(z) —tro(z’, a(z")) /(T/) 95 ds
—o%
iy («! s) O'D(SU s) ds

/)zl

VU (! s)deD(x s)
—d/ oy ds

ij

=d((0*)Y(2) — 0P () — d((6")¥ (2, a(a")) — 6B (', ala’))
d—1 < &
o (a‘s)d](.’L’/7S)—0'DJ(:L‘/,S) s
+d/a(z/>; o ds.

Thus, using the bound for tre on 0Oy and the assumptions on o° we have

/V tro(z)dz

a(@)+kR pza A=1  _sydj( ./ o djo
/ / / Z(a ) (I’S)/ 7o) dsdzgda’
(~kR,kR)4-1 Ja(a') a(z') 4 o’y

) i=1

<C|V|

+d
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Next, using integration by parts, we deduce

a(z’)+kR pxa d=1 / _s\dj 7 o dj
/ / / Z(U ) ($7S)/ OID(‘/E78> dexddx/
(—kRER)A-1 Ja(ar) ae) 55 ox’;

a(z')+kR d— 1 dj

- / / (xq —a(z") — kR) Z ) 7pl )dxddxl

(=kR,kR)I=1 Ja(a!) i=1 J

d— 1 dj 4

_ /(xd_a ) UD( >dx

v z:l Lj
< / z (24— a(@’) — kR)((6")¥ () — 0% (2))m; dS

ov 4

0t i) g
v /V > Gy (@) o) ar

< C|V| + CRJaV| < C|V].

Thus, combining the estimates together, we have that
(3.73) [troy| < C.

Hence, since the mean value is bounded, we can use it in (3.72) and continue
as before. The rest of the proof, i.e., the proper estimates for any xg can be
deduced from the above estimates and the triangle inequality. This finishes the
proof of (2.15).

3.7. Morrey condition for e, and A\. We again start we the point wise estimate
for the approximation. Using the fact that o® satisfies the safety load condition,
we have

spt(lof| — 1) < (ol — 1)+

|
=Ac" - (6" —0°) +e(w" — 1) - (6" —0°) +e(tp) - (6" —0°).

Multiplying this inequality by arbitrary nonnegative 7 € C(f), integrating the
result over @, using integration by parts and letting 1 — 0, (we omit details here,
since the very similar step was carefully justified in the previous section) we get
that for almost all ¢ € (0,7T)

(3.74)

S(A(t), ) < /00(1 +le@)| + o@D +le@))7 = (a(t) —o° (1)) - (VT @ u(t)) da.

Since o € L®(0,T; BMO(O;R¥4)) and 4 € L>®(0,T; LY +¢(O;R%)) for some

sym
e > 0, we can find § > 0 such that after using the Hélder inequality we have
(3.75) esssup (A(t), 7) < C||7|l1,d-s-
te(0,T)

Consequently, any Borel O having zero (d — §)-Sobolev capacity satisfies for almost
all t € (0,7)

(3.76) A1)(0) =
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In addition, taking for arbitrary zo € O and arbitrary R > 0 the function 7 = 1 in
Br(zo) and 0 outside the ball Bag(xg) satisfying V7| < CR™!, we get that there
exists a > 0 such that for all balls we have

esssup A(t)(Br(zo) N O) < CR%,

te(0,T)
which is the last part of the claim stated in (2.16).

Hence, we also see that X is absolutely continuous with respect to a-dimensional

Hausdorff measure. In addition, repeating step by step the procedure from the
previous subsection, we can get for arbitrary > 0 the estimate

A(t)(Br(zg) NO) < C o ()1 +lo@®)] +lo@®)] +diva(?)|)(1 + |o(?)]) dz
(3.77) o ;

B alt)|1+o\ T+
C(6)R4? ( / (B){d> :
Bar(zo)

Consequently, we see that decomposing \ as
A= AT A% = AT 4 AT 4 e

where A% is the regular part of )\, i.e., continuous with respect to the Lebesgue
measure, A%~ is continuous with respect to the (d — 1)-Hausdorff measure and \°
is the Cantor part, we immediately have that the Cantor part is supported only on
the set where M|4| = oo.

3.8. Identification of é,. This part will finish the proof of Theorem 2.1. First, we
will recall here the standard procedure of identification of é, (compare with (1.8)
and (1.9) and also with e.g. [4]) and further we will show that in two dimensional
setting, we have a sharper result. Namely, we shall show that

ép(t) = Aayp(t),
where
o,(t) =0p(t) A - almost everywhere
and for almost all ¢t € (0,7)
lim L 0,(t) — 0% (1) dA® = 0,
0

e—04
where 05,(t) is a proper mollification of o p. Further, we show that if d = 2, we can
simply set o,(t) := o p(t) everywhere in O.
To start with this plan, we first notice that for arbitrary ¢ € L'(0, T; C(O; Rg;n‘f))
fulfilling ||6p(t)]|e < 1, and almost all ¢ € (0,7") we have

B0 s
FADTRC R
oh ()

=1 ob 0] =13 + 17 (b0 = Vs = 1 (ol (O] = DR o5 -9

0< = (ol ()] — 1)+

Hence, using the convergence results (3.38)(3.39) and (3.50), we deduce that for
arbitrary nonnegative 7 € L*(0,T;C(O)) we have

(3.78) 0< /0 (A@®), T(t)) — (ep(t),ap(t)T(t)) dt.
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Consequently, since 7 and & are arbitrary, we also have for almost all ¢t € (0,7
(3.79) lép(t)] < A(t) in sense of measures on O.

In addition, for almost all all time ¢ € (0,7) and arbitrary 7 € C'(O) we have that

(note that the limits below now denote the weak* limits in L>°(0,7))
(3.80)

(A#),7) = (€p(t), o p(t)T)

ol (t

. /t —1 1 ) S

= tim [ o)) = 1) = (0] = )4 2R ob (s

i [~ (ol (O]~ D2+ (ol(0] — s T2 (@ (1) — o () da
tim | 7 0)
. —1 i alt(t) 12

=t [ 17 (0] = 02 2R @it~ ap(o)r ds

. e t) s
i e 1(|0D(t)|_1)+m'(aD(t)_aD(t))de

To evaluate limits on the right hand side we use (3.1). First, since |op| < 1, we
have that

’/ o] - 1)1 220 (o ) (1)) da

o )

o)
<l [ i o0 - 102 2R - @hio) - ap(o)) ao
=l [ (0] = 14 2R (@it — () do

= HTlloo/o (—Ac”(t) +e(uo(t))) - (6% (t) —a(t)) dz,

where the last equality follows from the integration by parts and the fact that
dive* = dive. Thus, employing (3.12) and (3.48), we see that

lim sup
1=04e(0,T)

[ o011 22 o)~ ap(o)r ds] 0.

Similarly, for the second term in (3.80) we have

[ on - 1 f’g(” (plt) - o ()T da

o ()]

= /O(*Ad“(t) +e(uh(t) —ao(t) +e(uo(t))) - (a(t) —o°(t))Tdx

= /O (—A6"(t) +&(uo(1))) - (a(t) —o°(t))7 du

_/O(

((@(t) = ao(t)) @ V1) - (0(t) —0°(t)) dz
= / (—Ad(t) +e(io(t)))  (a(t) —o®(t))rdz
(@)
(

_ /O (@(t) — i1o(t)) ® V7) - (o(t) — 0° (1)) da,
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where for the identification of the last weak limit we used (3.37) and (3.42). Thus,
the relation (3.80) reduces for almost all ¢ € (0,T) to

(A(),7) — (ép(t),0p(t)T) = / (—Ad(t) +&(to(t))) - (o(t) —o°(t))7 da
(3.81) ©

_ /O (@(t) — ito(t)) @ V) - (0(t) — 0°(t)) dz.

Finally, for arbitrary ¢ € C([0,T] x O;R¥*%) with dive € L(0,T;L%(O;RY))
fulfilling 6m = 0 on 9Oy and (6n), = 0 on 00y, we get by using (3.38) and the
identity (3.1) the following identification of weak limits (for almost all ¢ € (0,T))

(ep(0).3p(0)7) = fim [ 4 on (0]~ 1)1 220

co(t)rda

= lim | (AG" (1) + (i (1) + (@ (1) — (1) - S (1) da

= [ (~As(t) +elin(®) - 5(0)7 ds

(3.82) ©

—lim [ (@(t) — o (t) - div(5(t)7) da
=0 Jo

- /O(—Aa'(t) +e(io(t))) - 6(t)r da
—/(u(t)—uo(t))r-div&(t) dx—/((u(t)—uo(t))®V7)~&(t)dx.
(@)

(@]

Based on the above identity, we finally identify &,. We extend o by ¢° outside
O and for any € > 0 define a continuous function (w.r.t z)

1
|Be ()] J . (2)

o°(t,x) == o(t,y)dy

and also similarly

1
R (00— *(t,y) dy.
() | Be () Bg(x)o (t,9) dy

Due to this definition and the estimate (2.15), we have
(3.83) o —>o strongly in LP((0,T) x O; R*?) for all p € [1,00),
(3.84) o°° = o° strongly in C([0,T] x O; R¥*%),

Next, assume that 7 is compactly supported. Therefore, there exists € > 0
such that for all ¢ € (0,g9) and for all x belonging to the support of 7 we have
B.(z) C O. Consequently, we have

div(e® —0%°) =0 in suppT

Therefore, setting 6 := 6 — ¢=° (notice that although & does not have zero trace
on 90O such choice is possible since 7 has compact support) in (3.82) we obtain

(ép(t), (ap(t) —ap’ (1)) = /(9(_A"7(t) +e(tg(t))) - (6°(t) —o=*(t))rdx
_ /O (a(t) — it0(t)) ® V) - (0°(£) — 0°°(¢)) dz .
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Thus, letting ¢ — 0 and comparing the result with (3.81), we obtain that for all
¢ € L>(0,T)

T T
/ A r)pdt = / () — (epr0T) + (Ep, ) dt
0 0

T
(3.85) = lim (€p, (6D — 03 )T)p + (ep, 0T dt
e—0 0
T
= ahi% ) (ép,apT)pdt,

where for the second equality we used (3.84). Since |op| < 1 almost everywhere,
we see that |03 | < 1 everywhere and thus it follows from (3.78) and (3.85) that for
almost all time ¢ € (0,7")

(3.86) At) = |ép(t)]  in M(O).
Thus, denoting o, the Radon-Nykodym derivative of e, we have that
ép(t) = A(t)o,(t), lop(t) =1 A(t) almost everywhere in O.

Consequently, using the facts that |0%,| < 1 and |o,| < 1 A-everywhere and (3.85)
with ¢ = 1 we deduce that

T T
/ /|05D—ap|27-d)\dt:/ /(\05,3|2+|ap|2)7'—205p~ap7'd/\dt
0 (@) 0 (@)
T
(3.87) 32/ /(1—a%~0'p)7'd)\dt
0 O
T

_ 2/ (A7) — 2(ey, 057 dt =0,
0

which is the desired interior characterization of o).

Similarly, we shall proceed in a neighborhood of the Dirichlet boundary dOp.
Hence let 7 be compactly supported in a sufficiently small neighborhood of 0O0p
and let n denoted the outward unit vector at some fixed point. Then, we set in
(3.82)

o(z) :=0°(x — aen) —o%°(x — asn),
where « is sufficiently large (depending on the Lipschtz constant of dO. Due to
this definition, we still have that dive = 0 in the support of 7. Thus, we can repeat
the whole procedure again to get for almost all time ¢ € (0,7)

ép(t) = Ao, in OUOOD,

and for arbitrary 7 supported in a small neighborhood of dO0p

lim / 0% (2 — aen) — o, () dA(t, ) = 0.
=04 /o

Very similarly, we proceed also in a neighborhood of the Neumann boundary 00Oy,
where instead of shifting outside, we shift the stress inside. Indeed, since on = o°n
on 00y and div(e —o®) = 0 in O, extending o by o outside O, we obtain that in
the sense of distribution we have in a neighborhood of 0Oy that div(e —o°) = 0.
Consequently, setting

0(z) :=0°(x + aen) —o°°(z + aen),
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we have dive = 0 in O and eve more & = 0 on dOy. Therefore, repeating step by
step the above we have for almost all time ¢ € (0,7)

ép(t) = A(t)o,(t) in OUOO0p U0y,

and for arbitrary 7 supported in a small neighborhood of 0Oy

lim / |05 (x + aen) — ap(z)*r(x) d\(t,z) = 0.

e=04+ Joo

In particular, due to the definition, we also have that

/ 0% — o, PrdA = lim 055 (2 + aen) — o, P (x) dA(t, @)
(90]\] E*}O+ 80]\]
= lim |05 (z + aen) — a,|*7(z) dA(t, z) = 0.
€*>O+ BON

But since |6%,| < 1 and |o,,| = 1 almost A everywhere on 0O, we see that necessarily
A(00nN) = 0.

Finally, close to d0); we do not mollify by using mean values but we rather
mollify by using the convolution kernel and set (this means we shift the deviatoric
part inside and the trace part outside)

&(2) i= (05 — 055°) (@ + aen) + %I(tras ~ tro®*)(z — aen).

First, it is evident that (6m), = 0 on 00,;. Next, we also evaluate its divergence.
Hence, for arbitrary 7 vanishing in a neighborhood of 00, we have

/O(u —tg)r - divé da
= [ (ito) ~ ioar(o) - ( [ (@p(0) ~ob )l +aen— )y ) da
+ [t o)) ¥ [ Ferol) - w0 @ato - aen — ) ay) do
= [ @)~ anfe)r(a) -aiv [ (@) - "t + azn )y )
+ [ (o)~ (@) (o)

V([ 4ot - o w)nlo — aen — ) ~ e + azn — ) dy) da

—/ /«m> 0(2))7(z) ® Vo (z + aen — y)) - (0(y) — 0°(4)) dy da

— 3 | [ vt — @) @) ot - ot w)
(Ne(z — aen —y) — n-(z + cen — y)) dy dz
// ) —to(2))7(2) @ Vyne(z + aen —y)) - (6(y) —o*(y)) dy dz

-3 [ dvltite) (e r(a)

tr(o®(z — agn) — o (x + aen) — 6%°(x — aen) + 6% (z + aen)) dz.
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Therefore,

lim (u ug)7 - dive dz

e—04

__ hm// ) — 1o (2))7(x) ® Vyn. (@ + asn — y))-

e—04
) dy dx
- _sg%IJr/ /80M 0( ))T(x)
(a(y) —o®(y))nn. (v + aen —y)) dS(y) dz
= — lim ((4 — 4o)7)*(y — aen)-

84)04, 801\/[

(o(y) —o°(y))ndS(y)

= — lim (@ = 0)7)*(y — aen) -n((o(y) —0°(y)) - n®n))dS(y) =

Hence we get A(0O,r) = 0. Note that close to boundaries of d0p, 00y and 0O,
we have to do it more carefully and we refer to [5] for more details, where very
similar problem with the symmetric gradient is treated.

3.9. Identification of plastic strain. First, let us recall that A = 0 on 0Oy U
00 an consequently é, = 0 on this set. For the rest of the boundary, we can use
(3.82) to directly deduce (letting 7 — x90,,) that

%((u—uo)®n+n®(u—uo)) ds

and consequently, we also have that

€p =

% — 1o
V2

Finally, we investigate the behaviour of &, in O. Notice that since we know that
for almost all time t € (0,7

A= ds.

op — 0o, strongly in L'((0,T) x O; R4 d)\)

then due to the Luzin theorem, we also know that ¢ p = o, almost everywhere (in
the sense of Lebesgue measure) in O. We know refine this result and show that
the exceptional set where it is not equal has the Hausdorff dimension less or equal
to (d — 2). Moreover, we identify such a set also as a set where the displacment
blows-up, which in addition will lead in dimension two that we can set everywhere

(3.88) op,=0p.

We now proceed slightly formally, and shall work on almost every time level
€ (0,7T). Let us define the reduced maximal function Mz‘f f for any § > 0 and
p<das

(3.89) MPf(z) = sup r? / F()]dy.
re(0,) B, (z)
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Then we have for arbitrary p € (d — 2,d) the estimate

0% (z) —a(2)| =

/E 4_1 o(y)dydr
o dr|B.(z)] B, (z)

€ 1
= —_— Vo (y)(x —y)dydr
|, 5@ gy T

(3.90) < Cld) /O = /B IVowldyar

d 2 %
<c(d) [ = Vo) dy | dr
P
0 B, (x) r

2C(d)
T p—d+2
Let us take arbitrary closed Oy CC O and define 2§, := dist (00, 90y). Then,
for arbitrary d < §p we set
O3 (t) :={x € Og: MJ_5,5|Va(t)]*(z) > 5 '}.

Further, we know that for any & € (0,8) the set O is open, and consequently
Op \ 07 is closed and so A-measurable. Hence combining (3.87) and (3.90) we
easily deduce that for all x € Oy \ 02

(3.91) op(z) =op(x).
Notice that from this relation follows that the set where (3.91) does not hold has
the Hausdorff dimension at most (d — 2).

Next, we identify o, also on the set, where we control displacement in a sufficient
manner. Let us define for arbitrary € > 0 the set

O% (1) = {x € Og; Mj_ . [a(t)[+* > g—l} :

p—(d—2)
2

(ME|Vol2(x))? e

We shall show that for any € > 0
(3.92) lim A0\ 0%) =0,
6—>0+

from which one can deduce the validity of (3.91) A-almost everywhere in Og\ O% (%).
Indeed, first using the definition of O} we can for any x € O3 \ OF find R, such
that
0o\N0; ¢ | Br(2),
z€O0\ O,
where R, € (0, ] and

/ ‘V0_|2 2 571Ri72+5.
Bry (x)

Hence, the Vitali covering theorem, we can find a countable union of balls { Bg, (z;)}52, C
RY with {z;}52, C O3\ OF such that

Og\@i C UBRi(CCi), BRi/4(.’L'i)ﬂBRj/4({L‘j) ZQ), RZ‘ S (0,(5],

i=1

/ Vol > R} #7051,
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Immediately, we observe that

o0

(3.93) Y R <o / Vo |? < C(Oy)s.
i=1 Oo
Then, using the estimate (3.77) we find that (denoting for simplicity B; := Bg, (x;))

MOS\ 05) <> A(Bg, (2:))
i=1

< C;/Q&.(l + o)+ |o(t)] + | diva(t))(1 + |o(t)]) dx

(3.94) + C(g)iR?q (/ m(jlz)l;“d)()us
=1 2B;
<C . 23(1+|d(t)|+|a(t)|+\divu(t)\)(1+|a(t)|)dx

o 145 (1) [1+e e
d—1-72 |a(t)] i
ro@ R ([ B )
i=1 i

where for the second inequality we used the properties of the Vitali covering. Next,
due to (3.37), (3.41) and (3.43), we can estimate the first term on the right hand
side of (3.94) as

G 28,| 3" 0,

/ (I+e@)]+ o)+ [diva(t))(1 +|o(t)])dx < C
21 2Bi i=1

where the last convergence result follows from (3.93). Next, for the remaining term
on the right hand side of (3.94), we use the fact that for all i € N we have that
x; ¢ OF. Consequently, for all § < £/2(1 + ¢), we deduce with the help of the
definition of O (t) that

1

g5 |11(t)|1+5 Tte
o) S R < / de>
; 2B, Rd_1_§
1

o0 £
_ 2 €
<C@E) Y RTTTE (M glat) )T

i=1

< C() Y R0,
1=1

where the last convergence result follows from (3.93). Hence, we deduce from (3.94)
that

(3.95) MOS\NOZ) -0 asd—0.

Since, we already know that o, = ap in Op \ O for all § > 0 then it follows
from (3.95) that the same relation holds A-everywhere in Op \ Of for all € > 0.
Consequently, we can identify the possible set, where the desired inequality is not
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true as follows

{ty) : ap(t,y) #op(t,y)} C

(t,y): liminf sup 6/ R 49\Va(t,z)? dx > 1
Br(y)

(3.96) =0 Re(0,6)

and liminf sup 5/ R/ 2 (t, )| Tedx > 1
€20 Re(0,e) JBr(y)

Finally, it is not difficult to observe by using the Hdlder inequality that in case,
when 4(t) € L1(O) for some ¢ > d then the identity (3.88) holds A(¢)-everywhere
in O, which completes the proof of Theorem 2.1.
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