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Abstract. We consider two most studied standard models in the theory of

elasto-plasticity in arbitrary dimension d ≥ 2, namely, the Hencky model and

the Prandtl–Reus model subjected to the von Mises condition. There are many
available results for these models - from the existence and the regularity theory

up to the relatively sharp identification of the plastic strain in the natural

function/measure space setting. In this paper we shall proceed further and
improve some of known estimates in order to identify sharply the plastic strain.

More specifically, we rigorously improve the integrability of the displacement
and the velocity (which was known only under a nonnatural assumption that

the Cauchy stress is bounded), show the BMO estimates for the stress and

finally also the Morrey-like estimates for the plastic strain. In addition, we shall
provide the whole theory up to the boundary. As an immediate consequence

of such improved estimates, we provide a sharper identification of the plastic

strain than that known up to date. In particular, in two dimensional setting,
we show that the plastic strain can be point-wisely characterized in terms of

the stresses everywhere although the stress is possibly discontinuous and thus

the natural duality pairing in the space of measures could be violated.

1. Introduction

This paper focuses on the qualitative estimates for solutions to several models of
linearized (possible nonlinear) elasto–plasticity. To describe the problem in more
details, we shall assume that a body occupies a Lipschitz set O ⊂ Rd and we a priori
assume that considered deformations are small. Therefore, the initial, current and
preferred (natural) configurations coincide and we can approximate the strain tensor
by the linearized strain tensor εεε(u), which is defined as

(1.1) εεε(u) :=
1

2
(∇u + (∇u)T ) ,

where u : (0, T ) × O → Rd is the displacement and T > 0 is the length of the
time interest (in this model one should prefer the notion “the loading parameter”
to “time”). We also assume that the density is constant and that the inertial
effects can be neglected. Then the balance of linear momentum for the quasi-static
deformation takes the form

(1.2) −divσσσ = f in [0, T ]×O,
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where σσσ : (0, T ) × O → Rd×dsym is the Cauchy stress and f : (0, T ) × O → Rd
denotes the density of given external body forces. To complete the problem (1.1)–
(1.2) it remains to prescribe the boundary and initial conditions, which we shall
do later, and also to characterize the relationship between σσσ and εεε(u). In the case
of linearized elasto–plasticity, we assume that the linearized strain εεε(u) can be
decomposed into the elastic part eel and the plastic part ep, i.e.,

(1.3) εεε(u) = eel + ep

and that the elastic response of the material is given by the Helmholtz potential
ψ∗ : Rd×dsym → R, which is supposed to be a convex function vanishing at zero and
exploding at infinity and the elastic strain is related to the stress through

(1.4) σσσ =
∂ψ∗(eel)

∂eel
⇔ eel =

∂ψ(σσσ)

∂σσσ
,

where ψ is the conjugate function to ψ∗ defined as

ψ(σσσ) := sup
eel

(σσσ · eel − ψ∗(eel)) .

Concerning the plastic strain, we consider that it is relevant to incompressible
behaviour and therefore it is reasonable to assume that

(1.5) tr ep = 0 .

Further, we need to specify under which conditions it may appear. Indeed, there
are many possible settings (yield conditions) used in praxis, but we choose the
so–called von Mieses conditions saying that

|σσσD| < κ =⇒ ėp = 0,

which in other words means that the response of the material is purely elastic as
far as |σσσD| < κ. Here the symbol u̇ denotes the derivative of the quantity u with
respect to the time variable, or more precisely with to the loading parameter t. On
the other hand, if the plastic behavior takes place, then we require that

κ
ėp

|ėp|
= σσσD .

These two conditions, can be summarized into the more compact compact Kuhn–
Tucker form

ėp = λσσσD with λ ≥ 0 , |σσσD| − κ ≤ 0 and λ (|σσσD| − κ) = 0 ,(1.6)

with λ given as λ = |ėp|/κ = |ėp|/|σσσD|. This model with (1.4) given as σσσ = AAAeel is
usually referred as the the Prandtl-Reuss model of elasto-plasticity (see [14, 15]),
and for theoretical justification of the model for general form of ψ and also other
possible yield conditions1, we refer the interested reader to [6]. The second model of
linearized elasto–plasticity is the Hencky model (see [12]) that is formally obtained
from (1.6) by replacing ėp by ep, i.e.,

ep = λσσσD with λ ≥ 0 , |σσσD| − κ ≤ 0 and λ (|σσσD| − κ) = 0 .(1.7)

At this point we can clearly specify the main problem in both above models.
While the existence of the stress and the displacement fulfilling the weak formula-
tion (see below) is known under the certain reasonable hypothesis on the data, see

1There are other activation criteria that may be obtained by considering anisotropic elastic

response and that are connected with names such as Rankine, Saint-Venant, Tresca, etc.
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[17, 18], many fundamental questions about the qualitative character of the solu-
tion remain open for several decades. The first delicate question is how to interpret
(1.6), (1.7) respectively, since σσσD is only (Lebesgue) measurable and ep or ėp are
the vector-valued Radon measures. Due to the celebrated works [1, 2, 3, 4], we
know that λ appearing in (1.6), (1.7) respectively, is a nonnegative Radon measure
and that instead of (1.6), (1.7), we have that

ėp = λσσσp in (0, T )×O, or ep = λσσσp in O ,(1.8)

where σσσp is λ measurable and for any compact K ⊂ O

(1.9) lim
r→0

∫
K

|σσσrD − σσσp|dλ = 0, with σσσrD(x) :=
1

|Br(x)|

∫
Br(x)

σσσrD(y) dy,

where in case of the Prandtl–Reuss model, (1.9) holds for almost all time t ∈ (0, T ).
The first result of the paper is about the characterization of the set, where σσσD 6= σσσp.
In particular, we shall show that in dimension d = 2, we can simply set σσσp := σσσD
everywhere in O, since σσσD is λ-measurable. In addition, we shall show that the
same property holds also in higher dimension depending on a set, where u or u̇ do
not explode too quickly (see the precise statement in Theorem 2.1).

Second result, we shall show in the paper, is that the singular measure λ and
consequently also ep and ėp satisfy certain Morrey condition and consequently,
these measures are absolutely continues with respect to ε-Hausdorff measure for
sufficiently small ε > 0. In particular, they cannot concentrate at a point.

Next, it is know due to [10] that u ∈ Ld
′+ε
loc (O) or u̇ ∈ L∞(0, T ;Ld

′+ε
loc (O)), but

the proofs work only under the additional assumption that σσσ ∈ L∞loc, which is not the
case here. Nevertheless, and it is the next key result of the paper, this claim remains
true even without this additional (and probably incorrect) assumption. Moreover,
we shall get these estimates up to the boundary of O. Furthermore, as the key tool
for this observation, we shall show that σσσ ∈ BMO(O), or σσσ ∈ L∞(0, T ;BMO(O)),
which seems to be also a new result. Furthermore, we also provide the uniform up
to the initial time t = 0 fractional time derivative estimates for the solution.

The final novelty consists in the fact the we prove all estimate for an approxima-
tive problem, the Perčina-Mises model, and show that all the regularity estimates
(with respect to time and also to space) remains independent of the order of the
approximation and the dimension, which was also not known in many cases.

2. Weak formulation of the problem and the main result

We introduce the classical formulation of the Prandtl–Reuss and the Hencky
model completed by the boundary, and if needed, also initial data. We focus here
only on the most physically relevant boundary conditions, i.e., the prescribed dis-
placement, or the traction, or the normal displacement and the tangential traction,
but all results can be adapted to a more general setting. For given open bounded
Lipschitz set O ⊂ Rd we consider that its boundary can be decomposed onto three
smooth relatively open disjoint parts of the boundary: the Dirichlet part ∂OD, the
Neumann part ∂ON and the mixed part ∂OM such that ∂OD ∪ ∂ON ∪ ∂OM =
∂O. The Prandtl–Reuss model of elasto-plasticity consists in finding a quadruple
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(σσσ,u, eel, ep) : [0, T ]×O → Rd×dsym × Rd × Rd×dsym × Rd×dsym such that

(2.1)

−divσσσ = f , εεε(u) = eel + ep, eel =
∂ψ(σσσ)

∂σσσ
in [0, T ]×O ,

ėp = |ėp|
σσσD
κ
, |σσσD| ≤ κ and |ėp|(|σσσD| − κ) = 0 in [0, T ]×O ,

u = u0 on [0, T ]× ∂OD ,
u · n = u0 · n, (σσσn)τ = (fn)τ on [0, T ]× ∂OM ,

σσσn = fn on [0, T ]× ∂ON ,
σσσ(0) = σσσ0, u(0) = u0(0) in O .

where T > 0 is the given length of the time2 interval, the given threshold κ > 0
is a von Mieses condition, f : [0, T ] × O → Rd are the given volume forces, fn :
[0, T ]× ∂O → Rd are the given traction forces, the initial stress is σσσ0 : O → Rd×dsym

and the prescribed displacement on the boundary [0, T ] × ∂OD ∪ ∂OM and the
initial displacement is represented by u0 : [0, T ] × O → Rd. Here the symbol n
denotes the outer normal vector on ∂O and for any vector u ∈ Rd and any given
x ∈ ∂O we denote (u(x))τ := u(x)− (u(x) ·n(x))n(x), i.e., the projection of u to
the tangent plane at the point x.

The second model, we have in mind, is the Hencky model, which can be formally
formulated as: to find a quadruple (σσσ,u, eel, ep) : O → Rd×dsym × Rd × Rd×dsym × Rd×dsym

such that

(2.2)

−divσσσ = f , εεε(u) = eel + ep, eel =
∂ψ(σσσ)

∂σσσ
in O ,

ep = |ep|
σσσD
κ
, |σσσD| ≤ κ and |ep|(|σσσD| − κ) = 0 in O ,

u = u0 on ∂OD ,
u · n = u0 · n, (σσσn)τ = (fn)τ on ∂OM ,

σσσn = fn on ∂ON .

In general, we are not able to solve the above models in the classical sense, so we
introduce a notion of a weak (variational solution). For this purpose, we define the
set of admissible stresses. Before doing so let us define the subspace of the Sobolev
space W 1,2(O;Rd), which will be used in what follows

V := {v ∈W 1,2(O;Rd); v = 0 on ∂OD, v · n = 0 on ∂OM}.

Then we define the set of admissible stresses as

F(t) :=
{
σσσ ∈ L2(Ω;Rd×dsym); |σσσD| ≤ κ, and for all v ∈ V∫
O
σσσ · εεε(v) dx =

∫
O
f(t) · v dx+

∫
∂ON,M

fn(t) · v dS

}
,

where we denoted ∂ON,M := ∂ON ∪ ∂ON .
Naturally, we also have to restrict on the reasonable class of possible Helmholtz

potentials. We shall assume that ψ : Rd×dsym → R is a smooth nonnegative function

fulfilling in addition ψ(0) = 0, ∂ψ(σσσ)
∂σσσ |σσσ=0 = 0. Moreover, there exist C1, C2 > 0

2In fact, we should not called it time interval, since t corresponds to the loading parameter.



A REVISION OF STANDARD RESULTS IN ELASTO-PLASTICITY THEORY 5

such that for all σσσ, σ̃σσ ∈ Rd×dsym

(2.3) C1|σ̃σσ|2 ≤
∂2ψ(σσσ)

∂σσσ∂σσσ
· (σ̃σσ ⊗ σ̃σσ) ≤ C2|σ̃σσ|2.

In case of the Prandtl–Reuss model, we will need the further restriction and we will
assume that there exists a constant fourth order tensor AAA ∈ Rd×dsym×Rd×dsym such that

for all σσσ ∈ Rd×dsym

(2.4) AAA ≡ ∂2ψ(σσσ)

∂σσσ∂σσσ
.

Then we shall define the weak solution to the Prandtl–Reuss model (2.1) as follows.

Definition 2.1 (Prandtl–Reuss). Let O ⊂ Rd be a Lipschitz domain. Assume
that f ∈ L2(0, T ;L2(O;Rd)), fn ∈ L2(0, T ;L2(∂O;Rd)), σσσ0 ∈ L2(O;Rd×dsym) and

u0 ∈ W 1,2(0, T ;W 1,2(O;Rd)). Further, let the potential ψ satisfy (2.3)–(2.4). We
say that σσσ ∈ W 1,2(0, T ;L2(O;Rd×dsym)) is a weak solution to (2.1) if σσσ(0) = σσσ0 and
for almost all t ∈ (0, T ) there holds σσσ(t) ∈ F(t) and, in addition, we require that
for almost all t ∈ (0, T ) and all σ̃σσ ∈ F(t) there holds

(2.5)

∫
O
AAA · (σ̇σσ(t)⊗ (σσσ(t)− σ̃σσ)) dx ≤

∫
O
εεε(u̇0) · (σσσ(t)− σ̃σσ) dx.

In a very similar way, we can also introduce the notion of a weak solution to the
Hencky model (2.2), where we shall replace F(t) by F in a natural way.

Definition 2.2 (Hencky). Let O ⊂ Rd be a Lipschitz domain. Assume that f ∈
L2(O;Rd), fn ∈ L2(∂O;Rd) and u0 ∈ W 1,2(O;Rd). Further, let the potential ψ
satisfy (2.3). We say that σσσ ∈ L2(O;Rd×dsym) is a weak solution to (2.2) if σσσ ∈ F
and for all σ̃σσ ∈ F there holds

(2.6)

∫
O

∂ψ(σσσ)

∂σσσ
· (σσσ − σ̃σσ) dx ≤

∫
O
εεε(u0) · (σσσ − σ̃σσ) dx.

Since our approach is constructive, we frequently use the penalization of the von
Mises condition (1.6) or (1.7) (see also [13]), Hohenemser-Prager model, then one
arrives at the Perčina-Mises model. Thus, introducing a new class of admissible
stresses as

Fel(t) :=
{
σσσ ∈ L2(Ω;Rd×dsym); and for all v ∈ V∫
O
σσσ · εεε(v) dx =

∫
O
f · v dx+

∫
∂ON,M

fn · v dS

}
,

we define the approximative problems as follows.

Definition 2.3 (Prandtl–Reuss–Perčina). Let O ⊂ Rd be a Lipschitz domain and
µ > 0. Assume that f ∈ L2(0, T ;L2(O;Rd)), fn ∈ L2(0, T ;L2(∂O;Rd)), σσσ0 ∈
L2(O;Rd×dsym) and u0 ∈W 1,2(0, T ;W 1,2(O;Rd)). Further, let the potential ψ satisfy

(2.3)–(2.4). We say that σσσ ∈W 1,2(0, T ;L2(O;Rd×dsym)) is a weak solution to Prandtl–
Reuss-Perčina model if σσσ(0) = σσσ0 and for almost all t ∈ (0, T ) there holds σσσ(t) ∈
Fel(t) and, in addition, we require that for almost all t ∈ (0, T ) and all σ̃σσ ∈ Fel(t)
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there holds∫
O
AAA · (σ̇σσ(t)⊗ (σσσ(t)− σ̃σσ)) dx+ µ−1

∫
O

(|σσσD(t)| − κ)+σσσD(t)

|σσσD(t)|
· (σσσ(t)− σ̃σσ) dx

=

∫
O
εεε(u̇0) · (σσσ(t)− σ̃σσ) dx.

(2.7)

Similarly for the approximation of the Hencky model, we have the following
approximation.

Definition 2.4 (Hencky–Perčina). Let O ⊂ Rd be a Lipschitz domain and µ > 0.
Assume that f ∈ L2(O;Rd), fn ∈ L2(∂O;Rd) and u0 ∈ W 1,2(O;Rd). Further, let
the potential ψ satisfy (2.3). We say that σσσ ∈ L2(O;Rd×dsym) is a weak solution to
Hencky–Perčina model if σσσ ∈ Fel and for all σ̃σσ ∈ Fel there holds∫

O

∂ψ(σσσ)

∂σσσ
· (σσσ − σ̃σσ) dx+ µ−1

∫
O

(|σσσD| − κ)+σσσD
|σσσD|

· (σσσ − σ̃σσ) dx

=

∫
O
εεε(u0) · (σσσ − σ̃σσ) dx.

(2.8)

The existence of weak solution to Prandtl–Reuss or Hencky model in the sense
of Definitions 2.1–2.2 is very standard. However, to be able to talk also about
the displacement, one needs to assume certain compatibility condition on data.
Therefore, we shall require the existence of the so-called safety load condition, i.e.,
the existence of σσσs ∈ W 1,2(0, T ;L2(O;Rd×dsym)) fulfilling for some δ > 0 and all
t ∈ [0, T ]

(2.9) σσσs(t) ∈ F(t), ‖σσσsD(t)‖∞ ≤ κ− δ.

Similarly, in case of the Hencky model, we assume that there is σσσs ∈ L2(O;Rd×dsym)
fulfilling

(2.10) σσσs ∈ F , ‖σσσsD‖∞ ≤ κ− δ.

Finally, we state the main results of the paper. The first one is for the Prandtl–
Reuss model.

Theorem 2.1 (Prandtl–Reuss). Let all assumptions of Definition 2.3 be satisfied.
Then for all µ > 0 there exists a unique weak solution σσσµ to (2.7). Moreover, there

exists uµ such that uµ − u0 ∈W 1,2(0, T ;W 1,2
0 (O;Rd)) and

(2.11) AAAσ̇σσµ + µ−1(|σσσµD| − κ)+
σσσµD
|σσσµD|

= εεε(u̇µ) a.e. in (0, T )×O.

In addition if there exists σσσs ∈ C1([0, T ]; C2(O)) satisfying (2.9), then there is a

constant ε > 0 independent of µ such that for any compact Õ ⊂ O

sup
t∈(0,T )

(
‖σ̇σσµ(t)‖22 + µ−1‖(|σσσµD(t)| − 1)+‖1 + ‖div u̇µ(t)‖22 + ‖εεε(u̇µ(t))‖1 + ‖u̇µ(t)‖d′

)
+ sup

0<h<T

1

h

∫ T−h

0

‖σ̇σσµ(t+ h)− σ̇σσµ(t)‖22 dt+ sup
t∈(0,T )

∫
Õ
|∇σσσµ(t, x)|2 dxdt

+

∫ T

0

∫
Õ
|u̇µ(t, x)|d

′+ε dx dt ≤ C(Õ),

(2.12)
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where the constant C(Õ) depends only on σσσs, AAA, O and Õ. Moreover, there exists
a subsequence that we do not relabel such that

(2.13)

σσσµ ⇀∗ σσσ in W 1,∞(0, T ;L2(O,Rd×dsym)),

σσσµ ⇀σσσ in N
3
2 ,2(0, T ;L2(O,Rd×dsym)),

µ−1(|σσσµD| − 1)+
σσσµD
|σσσµD|

⇀∗ ėp in L∞(0, T ;M(O;Rd×dsym)),

µ−1(|σσσµD| − 1)+ ⇀∗ λ in L∞(0, T ;M(O)),

εεε(uµ) ⇀∗ εεε(u) in W 1,∞(0, T ;M(O;Rd×dsym)),

uµ ⇀∗ u in W 1,∞(0, T ;Ld
′
(O;Rd)),

where σσσ is a weak solution in sense of Definition 2.1, (1.8) and (1.9) hold and

(2.14) AAAσ̇σσ + ėp = εεε(u̇) in (0, T )×O.

In addition, there exists ε > 0 such that

(2.15) σσσ ∈ L∞(0, T ;BMO(O;Rd×dsym)), u̇ ∈ L∞(0, T ;Ld
′+ε(O;Rd)).

Moreover, there exists positive constants C and δ such that for almost all t ∈ (0, T ),
there holds

suppλ(t) ⊂ {x ∈ O ∪ ∂OD; M |σσσD(t)|(x) = 1},

ėp(t) =
1

2
((u̇− u̇0)⊗ n + n⊗ (u̇− u̇0)) dS on ∂OD,

ėp(t) = λ(t)σσσD(t) in O \K(t),

λ(t)(BR) ≤ CRδ for all balls BR ⊂ O,

(2.16)

where

K(t) :=

{
y ∈ O : lim inf

ε→0
sup

R∈(0,ε)

ε

∫
BR(y)

R1−d−ε/2|u̇(t, x)|1+ε dx ≥ 1

}
.

In particular, if u̇(t) ∈ Lq(O;Rd) for some q > d then

(2.17) ėp(t) = λ(t)σσσD(t) in O.

Consequently, due to (2.15), the identity (2.17) always holds for d = 2.

Please notice here that we used the notations N
3
2 ,2 for the Nikoloskii space, M

for the space of Radon measures, M is the Hardy–Littlewood maximal function
and BMO for functions with bounded oscillation. For the sake of completeness we
state also the theorem for the Hencky model.

Theorem 2.2 (Hencky). Let all assumptions of Definition 2.4 be satisfied. Then
for all µ > 0 the re exists a unique weak solution σσσµ to (2.8). Moreover, there exists

uµ such that uµ − u0 ∈W 1,2
0 (O;Rd)) and

(2.18)
∂ψ(σσσµ)

∂σσσµ
+ µ−1(|σσσµD| − κ)+

σσσµD
|σσσµD|

= εεε(uµ).
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In addition if there exists σσσs ∈ C2(O)) satisfying (2.10), then there is a constant

ε > 0 independent of µ such that for any compact Õ ⊂ O
‖σσσµ‖22 + µ−1‖(|σσσµD| − 1)+‖1 + ‖ divuµ‖22 + ‖εεε(uµ)‖1 + ‖uµ(t)‖d′

+

∫
Õ
|∇σσσµ(x)|2 dx+

∫
Õ
|uµ(x)|d

′+ε dx ≤ C(Õ),
(2.19)

where the constant C(Õ) depends only on σσσs, AAA, O and Õ. Moreover, there exists
a subsequence that we do not relabel such that

(2.20)

σσσµ ⇀σσσ in L2(O,Rd×dsym),

µ−1(|σσσµD| − 1)+
σσσµD
|σσσµD|

⇀∗ ep in M(O;Rd×dsym),

µ−1(|σσσµD| − 1)+ ⇀∗ λ in M(O),

εεε(uµ) ⇀∗ εεε(u) in M(O;Rd×dsym),

uµ ⇀ u in Ld
′
(O;Rd).

where σσσ is a weak solution in sense of Definition 2.2, (1.8) and (1.9) hold and

(2.21)
∂ψ(σσσ)

∂σσσ
+ ep = εεε(u) in O.

In addition, there exists ε > 0 such that

(2.22) σσσ ∈ BMO(O;Rd×dsym), u ∈ Ld
′+ε(O;Rd).

Moreover, there exists positive constants C and δ such that

suppλ ⊂ {x ∈ O : M |σσσD|(x) = 1},

ep =
1

2
((u− u0)⊗ n + n⊗ (u− u0)) dS on ∂OD,

ep = λσσσD in O \K,

λ(BR) ≤ CRδ for all balls BR ⊂ O,

(2.23)

where

K :=

{
y ∈ O : lim inf

ε→0
sup

R∈(0,ε)

ε

∫
BR(y)

R1−d−ε/2|u(x)|1+ε dx ≥ 1

}
.

In particular, if u ∈ Lq(O;Rd) for some q > d then

(2.24) ep = λσσσD in O.
Consequently, due to (2.22), the identity (2.24) always holds for d = 2.

To end this part of the paper, we want to emphasize the essential novelties
stated in Theorems 2.1–2.2. While the existence part and the limiting part is
rather standard, see [17, 18], there are several quite new results. The first one are
the BMO estimates for the stress (2.15) and (2.22). Since their proof is somehow
independent of the model, we shall summarize these estimates in Lemma 3.1 in
the following section. Further, based on the BMO estimates we can improve the
integrability of the displacement/velocity stated in (2.15) and (2.22). Notice that
the same improvement was already done in [11, 10] but under the hypothesis that
the Cauchy stress is bounded, which is not necessarily true for von Mieses condition.
Having such improved estimates, we can then show the Morrey condition for the
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plastic strain, see (2.16)3 and (2.23)3, which is another essentially new information.
Consequently, based on the Morrey condition and W 1,2 estimates for the Cauchy
stress, one can identify the plastic strain point-wisely in terms of the Cauchy stress
up to the set K, which in case d = 2 or in case u or u̇ ∈ Lq with q > d leads
to the point-wise identification of the plastic strain by the values of the Cauchy
stress everywhere in O. The last novelty of the paper consists in the uniformity (µ
independence) of the estimates (2.12) and (2.19). In particular, the µ-independent

W 1,2
loc estimates were not known for d > 4 for the Perčina type approximation,

and the fractional time regularity was known only for the limit problem but the
estimates for the µ-approximation were still depending on µ and in fact exploding
as µ → 0+, see [9]. Furthermore, the method for the time regularity presented
here, is on one hand based on the method developed in [8], but on the other hand
is improved such that it leads to the global estimates over (0, T ) and not only to
local.

In the rest of the paper, we will prove only Theorem 2.1 since the result for the
Hencky model can be proven in a very similar way provided the uniform convexity
of the potential ψ holds. We start the prove with the standard energy estimates,
based on the safety load condition, in Subsection 3.1. The improved regularity
estimates independent of µ are provided in Subsection 3.2–3.4. Next, we let µ→ 0
in Subsection 3.5 to obtain the existence of solution to the original problem. Then
in Subsection 3.6 we shall prove (2.15), which will be the information for proving
the Morrey condition in Subsection 3.7 and finally also in the sharp identification
of the limit in Subsection 3.9. Furthermore, in Subsection 3.8, we first mimic the
method developed in [1, 2] to identify the plastic strain via regularization but also
show that the plastic strain does not take place on the Neumann and the mixed part
of the boundary, i.e., we have that the tensor-valued measures ep or ėp respectively,
are not supported on ∂OM ∪ ∂ON .

3. Proof of Theorem 2.1

As mentioned already in the introduction, we focus only on the Prandtl–Reuss
model here and we shall use the Perčina approximation. We would like to notice
here that a very similar procedure was developed in [18] with a slightly different
approximation - the Norton-Hoff approximation. Also to simplify the presentation,
we shall consider in what follows that κ ≡ 1.

3.1. Approximation and standard a priori uniform estimates. Thus, we
shall assume that for any µ > 0 there exists a weak solution to Prandtl–Reuss-
Perčina model according to Definition 2.3. The existence of such a σ can be shown
e.g. by the Rothe approximation and we refer the interested reader to [9] or [16] for
details. Moreover, one can easily find u ∈W 1,2(0, T ;W 1,2(O;Rd)) such that for all
t ∈ (0, t) u−u0 ∈ V and u(0) = u0(0). The relation (2.7) then can be point-wisely
rewritten as

(3.1) AAAσ̇σσ + µ−1(|σσσD| − 1)+
σσσD
|σσσD|

= εεε(u̇) in (0, T )×O.

The next step is to derive the uniform (µ independent estimates) for (u,σσσ). We
proceed here formally, since the estimates are known, see e.g. [18, 16, 9]. Taking
the scalar product of (3.1) with σσσ −σσσs, recall here that σσσs satisfies the safety load
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condition (2.9), we deduce after integration over O that∫
O
AAA(σ̇σσ − σ̇σσs) · (σσσ − σσσs) + µ−1(|σσσD| − 1)+

σσσD · (σσσD − σσσsD)

|σσσD|
dx

=

∫
O
εεε(u̇− u̇0) · (σσσ − σσσs) dx+

∫
O

(εεε(u̇0)−AAA · σσσs) · (σσσ − σσσs) dx.

(3.2)

Since σσσ(t) and σσσs(t) belong to Fel(t) and u(t) − u0(t) belong to V, we see that
the first integral on the right hand side vanishes. Second, using the fact that σσσs

satisfies the safety load condition, we observe

σσσD · (σσσD − σσσsD) = |σσσD|2 − σσσD · σσσsD ≥ |σσσD|(|σσσD| − |σσσsD|) ≥ |σσσD|(|σσσD| − 1 + δ).

Finally, using the fact that AAA is symmetric, which follows from the definition of AAA
(see (2.4)), and the fact that it is elliptic, see (2.3), we see that (3.2) leads to

d

dt

∫
O
AAA(σσσ − σσσs) · (σσσ − σσσs) dx+ 2

∫
O
µ−1

(
(|σσσD| − 1)2

+ + δ(|σσσD| − 1)+

)
dx

≤ C
(
‖εεε(u̇0)‖22 + ‖σσσs‖22 +

∫
O
AAA(σσσ − σσσs) · (σσσ − σσσs) dx

)
and consequently, by the Gronwall lemma, we deduce

sup
t∈(0,T )

‖σσσ(t)‖22 +

∫ T

0

∫
O
µ−1

(
(|σσσD| − 1)2

+ + δ(|σσσD| − 1)+

)
dxdt

≤ C
∫ T

0

‖εεε(u̇0)‖22 dt+ C sup
t∈(0,T )

‖σσσs(t)‖22 + C‖σσσ(0)‖22 ≤ C,
(3.3)

where the last inequality follows from the assumptions on data (namely on σσσs).
The next step is to test (3.1) by σ̇σσ − σ̇σσs. Doing so, we get∫

O
AAAσ̇σσ · σ̇σσ + µ−1(|σσσD| − 1)+

σσσD · σ̇σσD
|σσσD|

dx =

∫
O
εεε(u̇− u̇0) · (σ̇σσ − σ̇σσs) dx

+

∫
O

(εεε(u̇0) · (σ̇σσ − σ̇σσs) +AAAσ̇σσ · σ̇σσs + µ−1(|σσσD| − 1)+
σσσD · σ̇σσsD
|σσσD|

dx.

(3.4)

Once again, the first term on the right hand side vanishes. For the first term on
the left hand side, we use the assumption (2.3), while the second term, we shall
rewrite as

µ−1(|σσσD| − 1)+
σσσD · σ̇σσD
|σσσD|

=
1

2

∂

∂t
µ−1(|σσσD| − 1)2

+.

Finally, using the Young and the Hölder inequality, the identity (3.4) then leads to

d

dt

∫
O
µ−1(|σσσD| − 1)2

+ dx+ 2C1‖σ̇σσ‖22 ≤ C1‖σ̇σσ‖22 + C(‖εεε(u̇0)‖22 + ‖σ̇σσs‖22)

+ 2‖σ̇σσsD‖∞
∫
O
µ−1(|σσσD| − 1)+ dx.
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Thus, absorbing the first term on the right hand side by the corresponding term on
the left hand side and integrating with respect to time, we deduce

sup
t∈(0,T )

∫
O
µ−1(|σσσD| − 1)2

+ dx+

∫ T

0

‖σ̇σσ‖22 dt ≤ C
∫ T

0

‖εεε(u̇0)‖22 + ‖σ̇σσs‖22 dt

+ C‖σ̇σσsD‖L∞((0,T )×O)

∫ T

0

∫
O
µ−1(|σσσD| − 1)+ dx dt

+

∫
O
µ−1(|σσσD(0)| − 1)2

+ dx

≤ C,

(3.5)

where the last inequality (with C being independent of µ) follows from the as-
sumptions on u0, σσσ0, σσσs, from the uniform estimate (3.3) and from the fact that
‖σσσD(0)‖∞ ≤ 1 according to the assumptions. Moreover, going back to (3.1) and
using (3.3) and (3.5), we see that

(3.6)

∫ T

0

‖εεε(u̇)‖1 dt ≤ C
∫ T

0

∫
O
|σ̇σσ|+ µ−1(|σσσD| − 1)+ dxdt ≤ C.

Next, we shall improve the time regularity. To do so, we apply the time derivative
to (3.1) and take the scalar product with σ̇σσ − σ̇σσs to obtain3∫

O
AAA(σ̈σσ − σ̈σσs) · (σ̇σσ − σ̇σσs) + µ−1

∂(|σσσD| − 1)+
σσσD
|σσσD|

∂t
· (σ̇σσD − σ̇σσs) dx

=

∫
O
εεε(ü− ü0) · (σ̇σσ − σ̇σσs) dx+

∫
O

(εεε(ü0)−AAAσ̈σσs) · (σ̇σσ − σ̇σσs) dx.

(3.7)

The first term on the right hand side vanishes and for the part of the second term
on the left hand side we have the estimate
(3.8)

µ−1
∂(|σσσD| − 1)+

σσσD
|σσσD|

∂t
· σ̇σσD =

µ−1χ|σσσD|>1

|σσσD|
(
|σ̇σσD|2(|σσσD| − 1) + |∂t|σσσD||2

)
≥ 0.

Consequently, using the Hölder inequality and the above estimate, we see that (3.7)
implies

1

2

d

dt

∫
O
AAA(σ̇σσ − σ̇σσs) · (σ̇σσ − σ̇σσs)− 2µ−1 (|σσσD| − 1)+σσσD

|σσσD|
· σ̇σσsD dx

≤
∫
O

(εεε(ü0)−AAAσ̈σσs) · (σ̇σσ − σ̇σσs)− µ−1 (|σσσD| − 1)+σσσD
|σσσD|

· σ̈σσsD dx

≤ C(‖εεε(ü0)‖2 + ‖σ̈σσs‖2)(1 + ‖σ̇σσ − σ̇σσs‖22) + ‖µ−1(|σσσD| − 1)+‖1‖σ̈σσsD‖∞.

(3.9)

Next, multiplying the identity (3.2) by a constant K1 ≥ 1, that we shall specify
later, applying the time derivative and adding the result to (3.9), and then adding
the term K2

d
dt‖σσσ − σσσ

s‖22 with K2 ≥ 1 to both sides of the resulting inequality, we
find

d

dt
QK(t) ≤WK(t)

(
‖σ̇σσ(t)− σ̇σσs(t)‖22 + ‖σσσ(t)− σσσs(t)‖22

+ ‖µ−1(|σσσD(t)| − 1)+‖1
)

+WK(t),
(3.10)

3Although σ̈σσ need not to exist in general, one can make the proof rigorous by performing
similar uniform estimates for the Galerkin approximation, use the ODE uniqueness and finally

pass to the limiting problem, which admits the unique solution.
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where

QK(t) :=
1

2

∫
O
AAA(σ̇σσ(t)− σ̇σσs(t)) ·

(
σ̇σσ(t)− σ̇σσs(t) + 2K1(σσσ(t)− σσσs(t))

)
dx

+

∫
O
µ−1(|σσσD(t)| − 1)+

σσσD(t)

|σσσD(t)|
· (K1(σσσD(t)− σσσsD(t))− σ̇σσsD(t)) dx

+K2

∫
O
|σσσ(t)− σσσs(t)|2 dx,

WK(t) := CK1K2 (1 + ‖εεε(ü0(t))‖2 + ‖σ̈σσs(t)‖2 + ‖εεε(u̇0(t))‖2 + ‖σ̇σσs(t)‖2
+‖σ̈σσsD(t)‖∞) ,

where K1 ≥ 0 is arbitrary constant. Finally, using (2.3) and (2.9), we can observe
that

QK(t) ≥ C1

2
‖σ̇σσ(t)− σ̇σσs(t)‖22 −K1C2‖σ̇σσ(t)− σ̇σσs(t)‖2‖σσσ(t)− σσσs(t)‖2

+ ‖µ−1(|σσσD(t)| − 1)+‖1(K1δ − ‖σ̇σσsD(t)‖∞) +K2‖σσσ(t)− σσσs(t)‖22
+K1‖µ−1(|σσσD(t)| − 1)2

+‖1.

Therefore, setting

K1 :=
1 + supt∈(0,T ) ‖σ̇σσ

s
D(t)‖∞

δ
,

K2 := 1 +
K2

1C
2
2

C1
,

we obtain

QK(t) ≥ C1

4
‖σ̇σσ(t)− σ̇σσs(t)‖22 + ‖µ−1(|σσσD(t)| − 1)+)‖1 + ‖σσσ(t)− σσσs(t)‖22

K1‖µ−1(|σσσD(t)| − 1)2
+‖1

and inserting this estimate into (3.10), we are led to the following inequality

d

dt
QK(t) ≤WK(t)QK(t) +WK(t),(3.11)

which with the help of the Gronwall lemma and the fact that WK ∈ L1(0, T ) (see
the assumptions on the data) imply that

sup
t∈(0,T )

QK(t) ≤ C(1 +QK(0)).

Since σσσD(0) ≡ 0, we also see that

QK(0) ≤ C(1 + ‖σ̇σσ(0)‖22).

However, since σ̇σσ(0) satisfies (3.1), where the second term vanishes, and also σσσ ∈ F ,
we see that σ̇σσ(0) solves the purely elastic problem, and it is rather standard to
deduce the estimate

QK(t) ≤ C(1 + ‖σ̇σσ(0)‖22) ≤ CC(1 + ‖σ̇σσs(0)‖22 + ‖σσσs(0)‖22).

Therefore, using the assumptions on data we finally find that

(3.12) sup
t∈(0,T )

(
‖σ̇σσ(t)‖22 + µ−1‖(|σσσD(t)| − 1)+‖1 + µ−1‖(|σσσD(t)| − 1)+‖22

)
≤ C
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and using the identity (3.1) and also the embedding theorem we also get4

(3.13)

sup
t∈(0,T )

(
‖div u̇‖22 + ‖εεε(u̇(t))‖1 + ‖u̇(t)‖d′ + µ(‖εεε(u̇(t))‖22 + ‖u̇(t)‖22d

d−2
)
)
≤ C,

which is the first part of the uniform estimate (2.12).

3.2. Uniform interior W 1,2 estimates. In this subsection, we shall derive the
uniform interior estimates on ∇σσσµ. Already here, we present a certain novelty,
since for the Perčina approximation such uniform estimates are known only for
d ≤ 4. To shorten the notation we will not use the superscript µ to denote the
solution of the µ-th approximation. Nevertheless, we will trace the dependence of
all estimates on µ. In particular, the constant C, which may change line to line
will be always independent of µ and in case there is some dependence, it will be
clearly denoted. Thus, let ξ ∈ D(O) be arbitrary nonnegative function satisfying
|ξ| ≤ 1. Next, we apply the operator ∇ to equation (3.1), take the scalar product
with ∇σσσξ2m for some m ∈ N and integrate the result over O. Note here that such
a procedure is only formal, however can be easily justified by using the difference
quotient method. Hence, we get the identity
(3.14)∫
O
AAA∇σ̇σσ · ∇σσσξ2m + µ−1∇

(
(|σσσD| − 1)+σσσD

|σσσD|

)
· ∇σσσξ2m dx =

∫
O
∇εεε(u̇) · ∇σσσξ2m dx.

Using the symmetry of AAA and the computation very similar to (3.8) we see that
(3.14) leads to

1

2

d

dt

∫
O
AAA∇σσσ · ∇σσσξ2m dx+ µ−1

∫
|σσσ|>1

|∇|σσσD||2 + |∇σσσD|2(|σσσD| − 1)ξ2m

|σσσD|
dx

=

∫
O
∇εεε(u̇) · ∇σσσξ2m dx.

(3.15)

Next, we focus on the estimate of the term appearing on the right hand side
of (3.15). Abbreviating Dk := ∂

∂xk
and using the integration by parts and the

fact that σσσ(t) ∈ F , we find∫
O
∇εεε(u̇) · ∇σσσξ2m dx =

∫
O

d∑
i,j,k=1

DkDju̇iDkσσσijξ
2m dx

=

∫
O

d∑
i,j,k=1

2Djεεεik(u̇)Dkσσσijξ
2m −Diju̇kDkσσσijξ

2m dx

= −2

∫
O
εεε(u̇) · ∇fξ2m +

d∑
i,j,k=1

εεεik(u̇)DkσσσijDjξ
2m dx

+

∫
O

div u̇div fξ2m + div f u̇ · ∇ξ2m −∇f · (u̇⊗∇ξ2m) dx

−
∫
O

d∑
i,j,k=1

u̇kDkσσσijDijξ
2m dx

=: I1 + I2 + I3.

4In case that d = 2, we replace the fraction 2d/(d− 2) by arbitrary q ∈ (1,∞).
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First, with the help of (3.13), the second term can be easily estimate by the Hölder
inequality as

I2 ≤ C(ξ,m)‖f(t)‖1,d.
For the first term, i.e. for the term I1, we use the Hölder inequality and the
estimate (3.13), to handle the first integral in I1, and the identity (3.2) and the
estimate (3.12) to handle the second integral in I1 as follows

I1 ≤ C(ξ,m)‖∇f(t)‖∞ − 2

∫
O

d∑
i,j,k=1

εεεik(u̇)DkσσσijDjξ
2m dx

= C(ξ,m)‖∇f(t)‖∞

− 2

∫
O

d∑
i,j,k=1

(
(AAAσ̇σσ)ik + µ−1 (|σσσD| − 1)+

|σσσD|
(σσσD)ik

)
DkσσσijDjξ

2m dx

≤ C(ξ,m)(‖∇f(t)‖∞ + ‖∇σσσ(t)ξm‖22)

+ C(m, ξ)

∫
O
µ−1(|σσσD| − 1)+)|∇σσσ|ξm dx.

Finally, using the identity

(3.16) Dkσσσij = Dk(σσσD)ij + δij(fk −
d∑
`=1

D`(σσσD)k`),

we see that

I1 ≤ C(ξ,m)(‖∇f(t)‖∞ + ‖∇σσσ(t)ξm‖22)

+ C(m, ξ)

∫
O
µ−1(|σσσD| − 1)+)(|f |+ |∇σσσD|)ξm dx

≤ C(ξ,m)(‖f(t)‖1,∞ + ‖∇σσσ(t)ξm‖22)

+

∫
O
C(m, ξ)µ−1(|σσσD| − 1)+)|σσσD|+

µ−1(|σσσD| − 1)+|∇σσσD|2

2|σσσD|
ξm dx

≤ C(ξ,m)(1 + ‖f(t)‖1,∞ + ‖∇σσσ(t)ξm‖22) +
1

2

∫
O

µ−1(|σσσD| − 1)+|∇σσσD|2

|σσσD|
ξm dx,

where for the last estimate we used the a priori bound (3.12). Note here that the
last term on the right hand side will be absorbed by the second term on the left
hand side of (3.15). Finally, for the remaining term I3 we use the identity (3.16)
and integration by parts to find (using also the estimates (3.12)–(3.13))

I3 = −
∫
O

d∑
i,j,k=1

u̇kDk(σσσD)ijDijξ
2m + u̇ · f4ξ2m −

d∑
k,`=1

u̇kD`(σσσD)k`)4ξ2m dx

≤ C(ξ,m)‖f(t)‖d +

∫
O

div u̇σσσD · ∇2ξ2m − εεε(u̇) · σσσD4ξ2m dx

+

∫
O

d∑
i,j,k=1

u̇k(σσσD)ijDijDkξ
2m −

d∑
k,`=1

u̇k(σσσD)k`D`4ξ2m dx

≤ C(ξ,m)‖f(t)‖d + C(ξ,m)

∫
O

(|εεε(u̇)|+ |u̇|)|σσσD|dx.
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Consequently, using (3.1), we see that

|εεε(u̇)||σσσD| ≤ C|σ̇σσ||σσσ|+ µ−1(|σσσD| − 1)2
+ + µ−1(|σσσD| − 1)+

and by using (3.12)–(3.13) and the Hölder inequality and the embedding theorem,
we may continue

I3 ≤ C(ξ,m)(‖f(t)‖d + 1) + C(ξ,m)

∫
O
|u̇|+ |u̇|(|σσσD| − 1)+ dx

≤ C(ξ,m)(‖f(t)‖d + 1) + C(ξ,m)‖εεε(u̇)‖2‖(|σσσD| − 1)+‖2
≤ C(ξ,m)(‖f(t)‖d + 1).

Finally, using all estimates for I1, I2 and I3, the ellipticity condition (2.3) and
absorbing the term arising in I1 by the left hand side, we find (noticing also that
f = divσσσs, which follows from (2.9) and the definition of F(t))

d

dt

∫
O
AAA∇σσσ(t) · ∇σσσ(t)ξ2m dx+ µ−1

∫
|σσσ|>1

|∇|σσσD||2 + |∇σσσD|2(|σσσD| − 1)ξ2m

|σσσD|
dx

≤ C(ξ,m)

(
1 + ‖σσσs(t)‖2,∞ +

∫
O
AAA∇σσσ(t) · ∇σσσ(t)ξ2m dx

)
and the Gronwall lemma and the assumptions on data directly lead to the estimate

sup
t∈(0,T )

∫
B

|∇σσσ(t)|2 + |∇divu(t)|2 dx+ µ−1

∫ T

0

∫
B

|∇σσσD|2(|σσσD| − 1)+

|σσσD|
dxdt

≤ C(B),

(3.17)

for arbitrary open B ⊂ B ⊂ O. Thus W 1,2
loc estimate in (2.12) is proven.

3.3. Uniform Ld
′+ε estimates for u̇. Finally we present a proof of the uniform,

i.e., µ “independent”, local in O estimates in any dimension d ≥ 2. In addition, we
would like to emphasize that contrary to [11] or [10] these estimates do not rely on
the L∞ control of σσσ. These estimates, will be further extended to the whole O for
the limit solution in next subsections. We again do not use here the superscript µ
for denoting the solution of the µ-th approximation, but we shall clearly describe
any dependence on µ in all estimates presented below.

Hence, following the above mentioned paper, we fix x0 ∈ O and denote R∗ ≤ 1
the largest number such that B2R∗(x0) ⊂ O. Then for every R ≤ R∗ we can find
τ ∈ D(O) such that τ ≡ 1 in BR(x0), τ ≡ 0 outside B2R(x0) and |∇τ | ≤ R−1.
Then it directly follows from the embedding theorem that(∫

O
|u̇τ |d

′
dx

) 1
d′

≤ C
∫
O
|εεε(u̇τ)|dx ≤ C

∫
O
|u̇||∇τ |+ |εεε(u̇)|τ dx

Hence, dividing the resulting inequality by Rd−1 and using the properties of τ we
find that

(3.18)

(∫
BR(x0)

|u̇|d′

Rd
dx

) 1
d′

≤ C
∫
B2R(x0)

|u̇|
Rd

dx+

∫
O

|εεε(u̇)|τ
Rd−1

dx.
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Next, we focus on the last term on the right hand side. Using the identity (3.1),
we see that

|εεε(u̇)| ≤ C|σ̇σσ|+ µ−1(|σσσD| − 1)+ ≤ C|σ̇σσ|+ µ−1(|σσσD| − 1)+
σσσD
|σσσD|

· σσσD
1 + (|σσσD| − 2)+

≤ C|σ̇σσ|+ εεε(u̇) · σσσD
1 + (|σσσD| − 2)+

.

Consequently, we find that∫
O

|εεε(u̇)|τ
Rd−1

dx ≤ CR
∫
O

|σ̇σσ|τ
Rd

dx+

∫
O

εεε(u̇) · σσσDτ
Rd−1(1 + (|σσσD| − 2)+)

dx

= CR

∫
O

|σ̇σσ|τ
Rd

dx−
∫
O

u̇ · divσσσDτ + σσσD · (u̇⊗∇τ)

Rd−1(1 + (|σσσD| − 2)+)
dx

+

∫
O

σσσD · (u̇⊗∇(|σσσD| − 2)+)τ

Rd−1(1 + (|σσσD| − 2)+)2
dx

≤ CR
∫
O

|σ̇σσ|τ
Rd

+
|u̇||∇σσσD|((|σσσD| − 1)+)

1
2 τ

Rd|σσσD|
1
2

dx+ C

∫
B2R(x0)

|u̇|
Rd

dx

− 1

d

∫
O

du̇ · fτ − u̇ · ∇ trσσστ

Rd−1(1 + (|σσσD| − 2)+)
dx

≤ CR
∫
O

|σ̇σσ|τ + |u̇||f |τ
Rd

+
|u̇||∇σσσD|((|σσσD| − 1)+)

1
2 τ

Rd|σσσD|
1
2

dx+ C

∫
B2R(x0)

|u̇|
Rd

dx

+
1

d

∫
O

u̇ · ∇(trσσσ − trσσσ)τ

Rd−1
− u̇ · ∇ trσσστ(|σσσD| − 2)+τ

Rd−1(1 + (|σσσD| − 2)+)
dx

≤ CR
∫
O

(|σ̇σσ|+ |u̇||f |+ |div u̇|| trσσσ − trσσσ|)τ
Rd

+
|u̇||∇σσσD|((|σσσD| − 1)+)

1
2

Rd|σσσD|
1
2

dx

+ C

∫
B2R(x0)

|u̇|
Rd

+
|u̇|| trσσσ − trσσσ|

Rd
dx,

where we denoted

trσσσ :=
1

|B2R(x0)|

∫
B2R(x0)

trσσσ.

Next, we estimate the terms with trσσσ. First, using the Young and the Hölder
inequalities, we find that for arbitrary q ∈ (2, 2d

d−2 ) that∫
B2R(x0)

|div u̇|| trσσσ − trσσσ|
Rd

dx ≤ C(q)

∫
B2R(x0)

|div u̇|q′ + | trσσσ − trσσσ|q

Rd
dx

≤ C(q)

∫
B2R(x0)

|div u̇|q′ + |σσσ|q

Rd
dx.

Finally, we focus on the estimate of the last term with trσσσ. For this purpose
we use the Bogovskii operator, see [7, Theorem 10.11], and we can find v ∈
W 1,1

0 (B2R(x0);Rd) such that

div v = sgn (trσσσ − trσσσ)|u̇| − sgn (trσσσ − trσσσ)|u̇|,∫
B2R(x0)

Rp|v|p + |∇v|p dx ≤ C(p)

∫
B2R(x0)

|u̇|p dx,
(3.19)
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for all (p ∈ (1,∞). Hence, we observe with the help of (3.16) that

∫
B2R(x0)

|u̇|| trσσσ − trσσσ|
Rd

dx =

∫
B2R(x0)

div v(trσσσ − trσσσ)

Rd
dx

= −
∫
B2R(x0)

v · ∇ trσσσ

Rd
dx = −d

∫
B2R(x0)

v · (f − divσσσD)

Rd
dx

= −d
∫
B2R(x0)

v · divσσσs

Rd
− v · divσσσD(|σσσD| − 2)+

Rd(1 + (|σσσD| − 2)+)
− v · divσσσD
Rd(1 + (|σσσD| − 2)+)

dx

= d

∫
B2R(x0)

∇v · σσσs

Rd
− ∇v · σσσD
Rd(1 + (|σσσD| − 2)+)

dx

+ d

∫
B2R(x0)

v · divσσσD(|σσσD| − 2)+

Rd(1 + (|σσσD| − 2)+)
+
σσσD · (v ⊗∇(|σσσD| − 2)+)

Rd(1 + (|σσσD| − 2)+)2
dx

≤ C
∫
B2R(x0)

|∇v|(|σσσs|+ 1)

Rd
dx+ C

∫
B2R(x0)

|v||∇σσσD|(|σσσD| − 1)
1
2
+

Rd|σσσD|
1
2

dx.

Consequently, using (3.19) and the assumption on σσσs, we get for all p, q ∈ (1,∞)

∫
B2R(x0)

|u̇|| trσσσ − trσσσ|
Rd

dx ≤ C

(∫
B2R(x0)

|u̇|p

Rd
dx

) 1
p

+ CR

(∫
B2R(x0)

(µ|u̇|2)
q
2

Rd

) 1
q

∫
B2R(x0)

(
µ−1|∇σσσD|2(|σσσD| − 1)+

|σσσD|

) q′
2

R−d dx

 1
q′

.

Hence, going back to (3.18) and substituting all terms and using the Young inequal-
ity, we have that for arbitrary p ∈ (1, d′) and arbitrary q ∈ (2, 2d

d−2 ) and arbitrary
δ > 0 that

(∫
BR(x0)

|u̇|d′

Rd
dx

) 1
d′

≤ C(p)

(∫
B2R(x0)

|u̇|p

Rd
dx

) 1
p

+ C(q)

∫
B2R(x0)

|div u̇|q′ + |σσσ|q + |σ̇σσ|+ |u̇||f |
Rd−1

dx

+ C(q)

∫
B2R(x0)

δ1−q(µ|u̇|2)
q
2 + δ

(
µ−1|∇σσσD|2(|σσσD|−1)+

|σσσD|

) q′
2

Rd−1
dx .

(3.20)

In order to estimate last two terms, we find ψ1,2 ∈W 1,1
0 (O) solving

4ψ1 = |div u̇|q
′
+ |σσσ|q + |σ̇σσ|+ |u̇||f | in O,

4ψ2 = δ1−q(µ|u̇|2)
q
2 + δ

(
µ−1|∇σσσD|2(|σσσD| − 1)+

|σσσD|

) q′
2

. in O
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Then, we find a nonnegative ξ being equal to one in B2R(x0) and vanishing outside
B3R(x0) fulfilling |∇ξ| ≤ CR−1 and deduce by integration by parts that

C

∫
B3R(x0)

|∇ψ1|+ |∇ψ2|
Rd

dx ≥
∫
B2R(x0)

|div u̇|q′ + |σσσ|q + |σ̇σσ|+ |u̇||f |
Rd−1

dx

+

∫
B2R(x0)

δ1−q(µ|u̇|2)
q
2 + δ

(
µ−1|∇σσσD|2(|σσσD|−1)+

|σσσD|

) q′
2

Rd−1
dx .

Using this estimate in (3.20), we obtain(∫
BR(x0)

|u̇|d′

Rd
dx

) 1
d′

≤ C(p)

(∫
B2R(x0)

|u̇|p

Rd
dx

) 1
p

+ C(q)

∫
B3R(x0)

|∇ψ1|+ |∇ψ2|
Rd

dx.

Therefore, using the Gehring lemma, we see that there exists d
d−2 > p0 > d′

depending only on d and C(p) such that for all r ∈ [d′, p0] we have∫
Õ
|u̇|r dx ≤ C(Õ)

(∫
O
|u̇|d

′
dx

) r
d′

+ C(q, Ô)

∫
Ô
|∇ψ1|r + |∇ψ2|r dx(3.21)

for all open Õ and Ô fulfilling Õ ⊂ Õ ⊂ Ô ⊂ Ô ⊂ O. Consequently, using the
theory for the Laplace equation we can estimate the last two terms as (recall that
r > d′)∫

Ô
|∇ψ1|r + |∇ψ2|r dx ≤ C(Ô)

(∫
O
|4ψ1|

dr
d+r + |4ψ2|

dr
d+r dx

) d+r
d

≤ C(Ô,f)‖ div u̇‖rq
′

q′dr
d+r

+ ‖σσσ‖rqqdr
d+r

+ ‖σ̇σσ‖rdr
d+r

+ ‖u̇‖rdr
d+r

+ C(Ô)δr(1−q) ‖√µu̇‖qrqdr
d+r

+ C(Ô)δr

∥∥∥∥∥
√
µ−1|∇σσσD|

√
(|σσσD| − 1)+√

|σσσD|

∥∥∥∥∥
q′r

q′dr
d+r

.

To bound the term on the right hand side, for given r we fix q such that

q′ =
2(d+ r)

dr
⇐⇒ q =

2(d+ r)

2d+ 2r − dr

and recalling that r ∈ (d′, d/(d− 2)), the above estimate leads to∫
Ô
|∇ψ1|r + |∇ψ2|r dx ≤ C(Ô)

(∫
O
|4ψ1|

dr
d+r + |4ψ2|

dr
d+r dx

) d+r
d

≤ C(Ô,f)‖ div u̇‖
2(d+r)
d

2 + ‖σσσ‖
2r(d+r)

2d+2r−dr

W 1,2(Ô)
+ ‖σ̇σσ‖rd′ + ‖u̇‖rd′

+ C(Ô)δr(1−q) ‖√µu̇‖
2r(d+r)

2d+2r−dr
2dr

2d+2r−dr
+ C(Ô)δr

(∫
O

µ−1|∇σσσD|2(|σσσD| − 1)+

|σσσD|
dx

) d+r
d
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Finally, using this estimate in (3.21) and combining it with the a priori bounds
(3.12), (3.13) and (3.17), we see that for almost al time t ∈ (0, T ) there holds

‖u̇(t)‖
dr
d+r

Lr(Õ)
≤ C(Õ) + C(Ô)δ−

dr
d+r

dr
2d+2r−dr ‖√µu̇(t)‖

2dr
2d+2r−dr

2dr
2d+2r−dr

+ C(Ô)δ
dr
d+r

∫
O

µ−1|∇σσσD(t)|2(|σσσD(t)| − 1)+

|σσσD(t)|
dx .

(3.22)

Further, since r ∈ (d′, d/(d− 2)) we have that

1 ≤ 2dr

2d+ 2r − dr
≤ 2d

d− 2

and we can use the interpolation inequality

‖√µu̇(t)‖ 2dr
2d+2r−dr

≤ ‖√µu̇(t)‖α1 (‖√µu̇(t)‖2 + ‖√µεεε(u̇(t))‖2)
1−α

with α ∈ (0, 1) given as

(3.23)
2d+ 2r − dr

2dr
= α+

(1− α)(d− 2)

2d
=⇒ 2d+ 4r − 2dr

r(d+ 2)
= α.

Thus, going back to (3.22) and using (3.13), we see that

‖u̇(t)‖
dr
d+r

Lr(Õ)
≤ C(Õ) + C(Ô)δ−

dr
d+r

dr
2d+2r−dr µ

drα
2d+2r−dr

+ C(Ô)δ
dr
d+r

∫
O

µ−1|∇σσσD(t)|2(|σσσD(t)| − 1)+

|σσσD(t)|
dx.

(3.24)

Thus, fixing now δ in such a way that

δ−
dr
d+r

dr
2d+2r−dr µ

drα
2d+2r−dr = 1 =⇒ δ

dr
d+r = µα

and integrating (3.24) over any time interval I and using (3.17) we deduce that for
all r ∈ (d′,min(p0, d/(d− 2)) there exists α(r) > 0 such that∫

I

‖u̇(t)‖
dr
d+r

Lr(Õ)
dt ≤ C(p0, Õ)(|I|+ µα(r)),(3.25)

which leads to the uniform improvement of the spatial integrability of the velocity
field stated in (2.12). Moreover, it is evident that once letting µ → 0 we can even
deduce L∞(0, T ;Lrloc(O)) bound for the limiting velocity field u̇, which is however
not valid up to the boundary ∂O, which will be improved later.

3.4. Time regularity. This subsection is devoted to improvement of the time reg-
ularity for σ̇σσµ, which will be uniform with respect to the approximative parameter
µ. We again omit writing superscript µ in this subsection.

For arbitrary w, we denote its times shift as ∆τ
tw(t, x) := w(t+τ, x)−w(t, x) and

with the help of this notation, we take the scalar product of (3.1) with −∆τ
t (σ̇σσ−σ̇σσs)

and integrate the result over O to get

−
∫
O
AAAσ̇σσ ·∆τ

t (σ̇σσ − σ̇σσs) + µ−1(|σσσD| − 1)+
σσσD
|σσσD|

·∆τ
t (σ̇σσ − σ̇σσs) dx

=

∫
O
εεε(u̇0 − u̇) ·∆τ

t (σ̇σσ − σ̇σσs)− εεε(u̇0) ·∆τ
t (σ̇σσ − σ̇σσs) dx.
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The first term on the right hand side vanishes similarly as before and after moving
the corresponding terms onto the right hand side and applying the Hölder inequality
and (2.3), we deduce that

−
∫
O
AAAσ̇σσ ·∆τ

t σ̇σσ + µ−1(|σσσD| − 1)+
σσσD
|σσσD|

·∆τ
t σ̇σσ dx

≤
∫
O
εεε(u̇0) ·∆τ

t (σ̇σσs − σ̇σσ) dx

+ C2‖σ̇σσ‖2‖∆τ
t σ̇σσ

s‖2 + µ−1‖|(σσσD| − 1)+‖1‖∆τ
t σ̇σσ

s‖∞.

(3.26)

Using the algebraic identity (note that AAA is symmetric)

−AAAσ̇σσ ·∆τ
t σ̇σσ =

1

2
AAA∆τ

t σ̇σσ ·∆τ
t σ̇σσ −

1

2
∆s
t (AAAσ̇σσ · σ̇σσ) ,

we further observe with the help of (2.3) and the a piori estimate (3.12) that (we
also use the fact that O is bounded)

∫
O
C1|∆τ

t σ̇σσ|2 − 2µ−1(|σσσD| − 1)+
σσσD
|σσσD|

·∆τ
t σ̇σσ dx

≤
∫
O

2εεε(u̇0) ·∆τ
t (σ̇σσs − σ̇σσ) + ∆τ

t (AAAσ̇σσ · σ̇σσ) dx+ C‖∆τ
t σ̇σσ

s‖∞.
(3.27)

Finally, we integrate the resulting inequality with respect to τ over the interval
(0, h) and with respect to t over the interval (t1, t2) with 0 ≤ t1 < t2 ≤ T −h to get

C1

∫ t2

t1

∫ h

0

∫
O
C1|∆τ

t σ̇σσ|2 dτ dt

−
∫ t2

t1

∫
O

2µ−1(|σσσD| − 1)+
σσσD
|σσσD|

·

(∫ h

0

∆τ
t σ̇σσ dτ

)
dxdt

≤
∫ t2

t1

∫ h

0

∫
O

2εεε(u̇0) ·∆τ
t (σ̇σσs − σ̇σσ) + ∆τ

t (AAAσ̇σσ · σ̇σσ) dx+ C‖∆τ
t σ̇σσ

s‖∞ dτ dt.

(3.28)

Next, we focus on the estimate on the right hand side. First, we have

∫ t2

t1

∫ h

0

‖∆τ
t σ̇σσ

s‖∞ dτ dt =

∫ h

0

τ

(∫ t2

t1

‖∆τ
t σ̇σσ

s‖∞
τ

dt

)
dτ

≤
∫ h

0

τ

∫ T

0

‖σ̈σσs‖∞ dtdτ ≤ ch2,

(3.29)
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where for the last estimate we used the assumption on σσσs. Second, using the
substitution theorem and the Hölder inequality, we obatin∫ t2

t1

∫ h

0

∫
O

2εεε(u̇0) ·∆τ
t (σ̇σσs − σ̇σσ) dxdτ dt

=

∫ h

0

∫ t2

t1

∫
O

2εεε(u̇0) · (σ̇σσs(t+ τ)− σ̇σσ(t+ τ)) dxdtdτ

−
∫ h

0

∫ t2

t1

∫
O

2εεε(u̇0) · (σ̇σσs(t)− σ̇σσ(t)) dxdtdτ

=

∫ h

0

∫ t2+τ

t1+τ

∫
O

2εεε(u̇0(t− τ)) · (σ̇σσs(t)− σ̇σσ(t)) dxdtdτ

−
∫ h

0

∫ t2

t1

∫
O

2εεε(u̇0(t)) · (σ̇σσs(t)− σ̇σσ(t)) dxdtdτ

=

∫ h

0

∫ t2

t1+τ

∫
O

2εεε(u̇0(t− τ)− u̇0(t)) · (σ̇σσs(t)− σ̇σσ(t)) dxdtdτ

+

∫ h

0

∫ t2+τ

t2

∫
O

2εεε(u̇0(t− τ)) · (σ̇σσs(t)− σ̇σσ(t)) dxdtdτ

−
∫ h

0

∫ t1+τ

t1

∫
O

2εεε(u̇0(t)) · (σ̇σσs(t)− σ̇σσ(t)) dx dtdτ

≤ C
∫ h

0

τ‖σ̇σσs − σ̇σσ‖L∞(0,T ;L2)

∫ T

0

‖εεε(ü0)‖2 dtdτ

+ C

∫ h

0

ττ‖σ̇σσs − σ̇σσ‖L∞(0,T ;L2)‖εεε(u̇0)‖L∞(0,T ;L2) dτ

≤ Ch2,

(3.30)

where we used the assumptions on u0 and σσσs and the a priori estimate (3.12).
Finally, the remaining term on the right hand side of (3.28) is estimated as follows∫ t2

t1

∫ h

0

∫
O

∆τ
t (AAAσ̇σσ · σ̇σσ) dxdτ dt

=

∫ h

0

∫ t2

t1

∫
O

(AAAσ̇σσ · σ̇σσ) (t+ τ)− (AAAσ̇σσ · σ̇σσ) (t) dxdtdτ

=

∫ h

0

∫ t2+τ

t2

∫
O

(AAAσ̇σσ · σ̇σσ) dxdtdτ −
∫ h

0

∫ t1+τ

t1

∫
O

(AAAσ̇σσ · σ̇σσ) dxdtdτ

≤ Ch2‖σ̇σσ‖L∞(0,T ;L2) ≤ Ch2,

(3.31)

where the estimate (3.12) is used again. Substituting (3.29)–(3.30) into (3.28), we
conclude

C1

∫ t2

t1

∫ h

0

∫
O
C1|∆τ

t σ̇σσ|2 dτ dt

−
∫ t2

t1

∫
O

2µ−1(|σσσD| − 1)+
σσσD
|σσσD|

·

(∫ h

0

∆τ
t σ̇σσ dτ

)
dxdt ≤ Ch2.

(3.32)
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Thus, it remains to evaluate the second term on the left hand side. Using the
convexity of (|σσσD| − 1)2

+, we continue as follows∫ t2

t1

∫
O

2µ−1(|σσσD| − 1)+
σσσD
|σσσD|

·

(∫ h

0

∆τ
t σ̇σσ dτ

)
dxdt

=

∫ t2

t1

∫
O

2µ−1(|σσσD| − 1)+
σσσD
|σσσD|

· (σσσD(t+ h)− σσσD(t)− hσ̇σσD(t)) dxdt

=

∫ t2

t1

∫
O

2µ−1(|σσσD| − 1)+
σσσD
|σσσD|

· (σσσD(t+ h)− σσσD(t)− hσ̇σσD(t)) dxdt

≤
∫ t2

t1

∫
O
µ−1(|σσσD(t+ h)| − 1)2

+ − (|σσσD(t)| − 1)2
+ − hµ−1 d

dt
(|σσσD(t)| − 1)2

+ dt

≤
∫ h

0

∫
O
µ−1(|σσσD(t2 + t)| − 1)2

+ − (|σσσD(t2)| − 1)2
+ dx dt

−
∫ h

0

∫
O
µ−1(|σσσD(t1 + t)| − 1)2

+ − (|σσσD(t1)| − 1)2
+ dxdt.

Consequently, the relation (3.32) reduces to

C1

∫ t2

t1

∫ h

0

‖∆τ
t σ̇σσ‖22 dτ dt ≤ Ch2

+

∫ h

0

∫
O
µ−1(|σσσD(t2 + t)| − 1)2

+ − (|σσσD(t2)| − 1)2
+ dxdt

−
∫ h

0

∫
O
µ−1(|σσσD(t1 + t)| − 1)2

+ − (|σσσD(t1)| − 1)2
+ dx dt.

(3.33)

Going now back to (3.4), we see that

d

dt

∫
O
µ−1(|σσσD| − 1)2

+ dx = −
∫
O
AAAσ̇σσ · σ̇σσ dx

+

∫
O

(εεε(u̇0) · (σ̇σσ − σ̇σσs) +AAAσ̇σσ · σ̇σσs + µ−1(|σσσD| − 1)+
σσσD · σ̇σσsD
|σσσD|

dx

and integrating this inequality over (τ, τ + t) we get

∣∣∣∣∫
O
µ−1(|σσσD(t+ τ)| − 1)2

+ − µ−1(|σσσD(τ)| − 1)2
+ dx

∣∣∣∣ ≤ C2

∫ t+τ

τ

‖σ̇σσ‖22

+ C

∫ t+τ

τ

‖εεε(u̇0)‖2‖σ̇σσ − σ̇σσs‖2 + ‖σ̇σσ‖2‖σ̇σσs‖2 + ‖µ−1(|σσσD| − 1)+‖1‖σ̇σσsD‖∞

≤ Ct,

(3.34)

where we used the assumptions on data and (3.12). Consequently, using this in-
equality in (3.33) we obtain the final inequality

1

h2

∫ t2

t1

∫ h

0

‖∆τ
t σ̇σσ‖22 dτ dt ≤ C.(3.35)
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Recalling the equivalence of norms in the Nikolskii spaces, see [8], we have that
(3.35) implies that

h−1

∫ T−h

0

‖∆h
t σ̇σσ‖22 d dt ≤ C,(3.36)

which is the last remaining part of the uniform estimate (2.12).

3.5. Limit µ→ 0+. In this subsection we let µ→ 0+ and show the the limit object
solves the original problem, i.e., the the Prandtl–Reuss model. This part is rather
standard, compare e.g. with [9, 17] but we shall need several identities stated in
this part also in further subsections in order to identify the plastic strain and also
for the improved integrability result for the velocity up to the boundary ∂O.

Recalling the a priori estimates (3.12)–(3.13), we can find subsequences labeled
by µ such that if letting µ→ 0+ we have

σσσµ ⇀∗ σσσ weakly∗ in W 1,∞(0, T ;L2(O,Rd×dsym)),(3.37)

µ−1(|σσσµD| − 1)+
σσσµD
|σσσµD|

⇀∗ ėp weakly∗ in L∞(0, T ;M(O;Rd×dsym)),(3.38)

µ−1(|σσσµD| − 1)+ ⇀∗ λ weakly∗ in L∞(0, T ;M(O)),(3.39)

εεε(uµ) ⇀∗ εεε(u) weakly∗ in W 1,∞(0, T ;M(O;Rd×dsym)),(3.40)

divuµ ⇀∗ divu weakly∗ in W 1,∞(0, T ;L2(O)),(3.41)

uµ ⇀∗ u weakly∗ in W 1,∞(0, T ;Ld
′
(O;Rd)).(3.42)

Moreover, recalling (3.17) and (3.25) we also get that for some ε > 0

σσσµ ⇀∗ σσσ weakly∗ in L∞(0, T ;W 1,2
loc (O;Rd×dsym)),(3.43)

divuµ ⇀∗ divu weakly∗ in L∞(0, T ;W 1,2
loc (O)),(3.44)

uµ ⇀ u weakly in L1(0, T ;Ld
′+ε
loc (O;Rd)),(3.45)

σσσµ ⇀∗ σσσ weakly in N
3
2 ,2(0, T ;L2(O;Rd×dsym)).(3.46)

In addition, using the weak lower semicontinuity, we also have that |ėp| is absolutely
continuous with respect to λ and

|ėp(t)| ≤ λ(t)(3.47)

in the sense of measures for almost all t ∈ (0, T ). Having these convergence results,
it is not difficult to let µ→ 0+ in (3.1) and show that (2.14) holds (in fact it holds
for almost all t ∈ (0, T ) in the sense of measures).

Moreover, it follows from (3.39) and from the fact that σσσµ(t) ∈ Fel(t) that for
almost all t ∈ (0, T ) we have σσσ(t) ∈ F(t). Next, multiplying (3.1) by σσσµ − σσσ and
integrating the result over O × (0, t) we can deduce with the help of the fact that
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|σσσD| ≤ 1 almost everywhere that

C1

2
‖σσσµ(t)− σσσ(t)‖22 +

∫ t

0

‖µ−1(|σσσµD| − 1)+(|σσσµD(τ)| − |σσσD(τ)|)‖1

≤ 1

2

∫
O
AAA(σσσµ(t)− σσσ(t)) · (σσσµ(t)− σσσ(t)) dx

+

∫ t

0

∫
O
µ−1 (|σσσµD(τ)| − 1)+

|σσσµD(τ)|
σσσµD(τ) · (σσσµD(τ)− σσσD(τ)) dxdτ

=

∫ t

0

∫
O
AAA(σ̇σσµ(τ)− σ̇σσ(τ)) · (σσσµ(τ)− σσσ(τ)) dxdτ

+

∫ t

0

∫
O
µ−1 (|σσσµD(τ)| − 1)+

|σσσµD(τ)|
σσσµD(τ) · (σσσµD(τ)− σσσD(τ)) dxdτ

= −
∫ t

0

∫
O
AAAσ̇σσ(τ) · (σσσµ(τ)− σσσ(τ))− εεε(u̇µ(τ)) · (σσσµ(τ)− σσσ(τ)) dx dτ

= −
∫ t

0

∫
O
AAAσ̇σσ(τ) · (σσσµ(τ)− σσσ(τ))− εεε(u̇0(τ)) · (σσσµ(τ)− σσσ(τ)) dx dτ,

where for the last inequality we used the fact that u̇µ − u̇0 ∈ V. Consequently,
using (3.37), we see that the right hand side vanishes as µ→ 0+ and consequently,
we also get that

σσσµ → σσσ strongly in C([0, T ];L2(O,Rd×dsym)),(3.48)

µ−1(|σσσµD| − 1)2
+ → 0 strongly in L1(0, T ;L1(O)).(3.49)

Next, repeating the very similar procedure as above, we can also obtain the identity∫
O
µ−1 (|σσσµD(t)| − 1)+

|σσσµD(t)|
σσσµD(t) · (σσσµD(t)− σσσD(t)) dx

=

∫
O
AAAσ̇σσµ(t) · (σσσµ(t)− σσσ(t))− εεε(u̇0(t)) · (σσσµ(t)− σσσ(t)) dx.

Consequently, having the uniform convergence (3.48) and also (3.37) we see that
for all time t ∈ [0, T ]
(3.50)

lim
µ→0+

sup
t∈(0,T )

‖µ−1(|σσσµD(t)| − 1)2
+‖1

≤ lim
µ→0+

sup
t∈(0,T )

‖µ−1(|σσσµD(t)| − 1)+(|σσσµD(t)| − |σσσD(t)|)‖1

≤ lim
µ→0+

sup
t∈(0,T )

∫
O
µ−1 (|σσσµD(t)| − 1)+

|σσσµD(t)|
σσσµD(t) · (σσσµD(t)− σσσD(t)) dx

= lim
µ→0+

sup
t∈(0,T )

∫
O
AAAσ̇σσµ(t) · (σσσµ(t)− σσσ(t))− εεε(u̇0(t)) · (σσσµ(t)− σσσ(t)) dx = 0 .

In addition, for arbitrary t ∈ (0, T ) we denote

Kε(t) := {x ∈ O; M |σσσD(t)| ≤ 1− ε},

where M denotes the non-centred maximal function. Due to the properties of the
maximal function, we see that this set is closed (hence λ(t) measurable) and from
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(3.39) and (3.50) we have

(3.51)

λ(t)(Kε(t)) = lim
µ→0+

∫
Kε(t)

µ−1(|σσσµD(t)| − 1)+ dx

≤ ε−1 lim
µ→0+

∫
O
µ−1(|σσσµD(t)| − 1)+(|σσσµD(t)| − |σσσD(t)|) dx = 0.

Consequently, we see that λ(t) is supported on the set, whereM |σσσD(t)| = 1. Finally,
using all above convergence results and testing (3.1) by σσσµ − σσσs, it is standard
to show (2.5). This finishes the first part of the convergence results stated in
Theorem 2.1.

3.6. BMO estimates and improved integrability results. This section con-
tains two key novelties of the paper. Since the BMO property for the Cauchy stress
is somehow independent of the structure of equation and is more related to the
function spaces properties, we formulate it as a separate lemma. On purpose, we
state it for a domain Ω to emphasize its independence of the Prandtl–Reuss model.

Lemma 3.1 (BMO estimates). Let Ω ⊂ Rd be an open set. Assume that σσσ ∈
L2(Ω;Rd×d) be such that divσσσ ∈ Ld(Ω;Rd) and σσσD ∈ L∞(Ω;Rd×d). The for any
ball BR(x0) ⊂ Ω there holds

(3.52)

∫
BR(x0)

|σσσ − σσσBR(x0)|2 dx ≤ C(d)Rd(‖σσσD‖2∞ + ‖divσσσ‖2d),

where the constant C(d) depends only on the dimension d and σσσBR(x0) denotes the
mean value of σσσ over BR(x0). In addition if Ω is Lipschitz, then there exists R0 > 0
such that for all R ∈ (0, R0) and all x0 ∈ Ω there holds

(3.53)

∫
Ω∩BR(x0)

|σσσ − σσσΩ∩BR(x0)|2 dx ≤ C(d,Ω)Rd(‖σσσD‖2∞ + ‖ divσσσ‖2d).

Furthermore, σσσ can be extended onto the whole Rd by some σ̃σσ such that for all R > 0
and all x0 ∈ Rd there holds

(3.54)

∫
BR(x0)

|σ̃σσ − σ̃σσBR(x0)|2 dx ≤ C(d,Ω)Rd(‖σσσD‖2L∞(Ω) + ‖ divσσσ‖2Ld(Ω)).

Moreover, if σσσ is symmetric then the extension σ̃σσ is symmetric as well.

It is also worth mentioning that we can replace the assumption σσσD ∈ L∞ by
σσσD ∈ BMO. Since such a generalization is trivial, it is left to the reader.

Proof of Lemma 3.1. We start the proof with (3.52). To simplify the notation, we
consider only the ball BR(0) =: BR. Using the properties of the Bogovskii operator,
we know that for any u ∈ L2(BR) fulfilling∫

BR

udx = 0,

there exists BBB ∈W 1,2
0 (BR;Rd) satisfying

(3.55) divBBB = u in BR, ‖∇BBB‖2 ≤ C(d)‖u‖2.
Since σσσD is bounded, we see that to prove (3.52), it is enough to show that

(3.56)

∫
BR

| trσσσ − trσσσBR |2 dx ≤ C(d)Rd(‖σσσD‖2∞ + ‖ divσσσ‖2d).
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Hence, setting u := trσσσ−trσσσBR in (3.55) and using the density of smooth functions
(to justify the following formal integration by parts) we get∫

BR

| trσσσ − trσσσBR |2 dx =

∫
BR

(trσσσ − trσσσBR) divBBBdx = −
∫
BR

∇ trσσσ ·BBBdx

= −d
∫
BR

(divσσσ − divσσσD) ·BBBdx = −d
∫
BR

divσσσ ·BBBdx− d
∫
BR

σσσD · ∇BBBdx

≤ C(d)(‖ divσσσ‖d‖BBB‖2R
d−2
2 + ‖σσσD‖∞‖∇BBB‖2R

d
2 )

≤ C(d)R
d
2 (‖ divσσσ‖d + ‖σσσD‖∞)‖∇BBB‖2

≤ C(d)R
d
2 (‖ divσσσ‖d + ‖σσσD‖∞)

(∫
BR

| trσσσ − trσσσBR |2 dx

) 1
2

,

where we used the Poincaré inequality and (3.55). Consequently, from the above
inequality the estimate (3.56) and consequently also (3.52) directly follow.

Next, in order to prove (3.53), we use the fact that Ω is Lipschitz. Therefore we
can find R0 > 0 such that for all x0 ∈ ∂Ω and all R ∈ (0, R0) we have

(3.57) Rd ≤ C(Ω, d)|Ω ∩BR(x0)|.

In addition, it also follows from the properties of the Bogovskii operator that for any
u ∈ L2(Ω∩BR(x0)) fulfilling

∫
Ω∩BR(x0)

u = 0 there exists BBB ∈W 1,2
0 (Ω∩BR(x0);Rd)

such that

(3.58) divBBB = u in Ω ∩BR, ‖∇BBB‖2 ≤ C(d,Ω)‖u‖2.

Consequently, using (3.57) and (3.58), we can use exactly the same procedure as
above and we deduce that for all x0 ∈ ∂Ω and all R ∈ (0, R) we have

(3.59)

∫
Ω∩BR

| trσσσ − trσσσΩ∩BR |2 dx ≤ C(d,Ω)Rd(‖σσσD‖2∞ + ‖ divσσσ‖2d)

and additionally we also see that (3.53) holds for all x0 ∈ ∂Ω. Finally, let us consider
arbitrary x0 ∈ Ω and R ∈ (0, R0). If BR(x0) ⊂ Ω, we already have the estimate
(3.52). Hence, let us assume that BR(x0)∩ ∂Ω 6= ∅. Then there exist x̃0 ∈ ∂Ω such
that BR(x0) ⊂ B2R(x̃0). Thus using the triangle inequality, we deduce that∫

BR(x0)∩Ω

|σσσ − σσσBR(x0)∩Ω|2 dx

≤ 2

∫
BR(x0)∩Ω

|σσσ − σσσB2R(x̃0)∩Ω|2 dx+ 2|BR(x0) ∩ Ω||σσσB2R(x̃0) − σσσBR(x0)∩Ω|2

≤ 2

∫
B2R(x̃0)∩Ω

|σσσ − σσσB2R(x̃0)∩Ω|2 dx

+ 2|BR(x0) ∩ Ω|

∣∣∣∣∣ 1

|BR(x0) ∩ Ω|

∫
BR(x0)∩Ω

(σσσ − σσσB2R(x̃0)) dx

∣∣∣∣∣
2

≤ 2

∫
B2R(x̃0)∩Ω

|σσσ − σσσB2R(x̃0)∩Ω|2 dx+ 2

∫
BR(x0)∩Ω

|σσσ − σσσB2R(x̃0))|2 dx

≤ 4

∫
B2R(x̃0)∩Ω

|σσσ − σσσB2R(x̃0)∩Ω|2 dx ≤ C(d,Ω)Rd(‖σσσD‖2L∞(Ω) + ‖ divσσσ‖2Ld(Ω)),
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where for the last inequality we used (3.53) with x̃0 ∈ ∂Ω. Consequently, we see
that (3.53) holds for all x0 ∈ Ω. �

Since |σσσD| ≤ 1 and divσσσ = divσσσs, we can use the assumption on data and
Lemma 3.1 to get the first part of (2.15), i.e., the fact that σσσ ∈ L∞(0, T ;BMO(O)).
Next, we will show also the second part of (2.15), i.e., the uniform improvement
of the integrability of u̇ and consequently also on some deeper characterization of
a possibly singular part of the measure λ. First, we can recall the estimate (3.25)

and by using the weak lower semicontinuity we get that for all Õ ⊂⊂ O and any
interval I ⊂ (0, T ) we have

∫
I

∫
Õ
|u̇|d

′+ε dx dt ≤ C(Õ)|I|.

Consequently we see that u̇ ∈ L∞(0, T ;Ld
′+ε
loc (Ω;Rd)). Our goal is to get this

information up to the boundary ∂O in case O is Lipschitz. We shall proceed almost
exactly in the same manner as before, however, we focus here only on the limiting
behaviour of u. The starting point is to estimate the weak∗ limit of εεε(u̇µ) up to
∂O. To do that, let us consider arbitrary smooth nonnegative τ ∈ C∞(O × [0, T ]).
It follows from (3.1) that

|εεε(u̇µ)| ≤ C2|σ̇σσµ|+ µ−1(|σσσµD| − 1)+ ≤ C2|σ̇σσµ|+ µ−1(|σσσµD| − 1)+
σσσµD
|σσσµD|

· σσσµ

≤ C2|σ̇σσµ|+ C2|σ̇σσµ||σσσµ|+ εεε(u̇µ) · σσσµ

= C2|σ̇σσµ|+ C2|σ̇σσµ||σσσµ|+ εεε(u̇µ) · σσσ + εεε(u̇µ) · (σσσµ − σσσ)

= C2|σ̇σσµ|(1 + |σσσµ|) + εεε(u̇µ) · σσσ + (AAAσ̇σσµ + µ−1 (|σσσµD| − 1)+

|σσσµD|
σσσµD) · (σσσµ − σσσ).

Thus, multiplying the resulting inequality by τ (which is smooth), integrating over
(0, T )×O, using (3.46), (3.48) and (3.50) and nonnegativity of τ we get that

(3.60)

lim
µ→0+

∫ T

0

∫
O
|εεε(u̇µ)|τ dxdt

≤ lim
µ→0+

∫ T

0

∫
O
εεε(u̇µ) · σσστ dx dt+ C2

∫ T

0

∫
O
|σ̇σσ|(1 + |σσσ|)τ dxdt.

Next, using the safety load condition (2.9), we also get

εεε(u̇µ) · σσσ = εεε(u̇µ) · (σσσ − σσσs) + εεε(u̇µ) · σσσs

= εεε(u̇µ − u̇0) · (σσσ − σσσs) + εεε(u̇0) · (σσσ − σσσs) + εεε(u̇µ) · σσσsD +
1

d
trσσσs div u̇µ

≤ εεε(u̇µ − u̇0) · (σσσ − σσσs) + εεε(u̇0) · (σσσ − σσσs) + (1− δ)|εεε(u̇µ)|+ 1

d
trσσσs div u̇µ
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Hence, inserting this into (3.60) and using (3.41), and using integration by parts,
we finally obtain

(3.61)

δ lim
µ→0+

∫ T

0

∫
O
|εεε(u̇µ)|τ dx dt

≤
∫ T

0

∫
O
C2|σ̇σσ|(1 + |σσσ|)τ +

1

d
trσσσs div u̇τ + εεε(u̇0) · (σσσ − σσσs)τ dx dt

+ lim
µ→0+

∫ T

0

∫
O
εεε(u̇µ − u̇0) · (σσσ − σσσs)τ dxdt

=

∫ T

0

∫
O
C2|σ̇σσ|(1 + |σσσ|)τ +

1

d
trσσσs div u̇τ + εεε(u̇0) · (σσσ − σσσs)τ dx dt

− lim
µ→0+

∫ T

0

∫
O

((u̇µ − u̇0)⊗∇τ) · (σσσ − σσσs) dxdt

=

∫ T

0

∫
O
C2|σ̇σσ|(1 + |σσσ|)τ +

1

d
trσσσs div u̇τ + εεε(u̇0) · (σσσ − σσσs)τ dx dt

−
∫ T

0

∫
O

((u̇− u̇0)⊗∇τ) · (σσσ − σσσs) dxdt,

where for the last equality we used the fact that σσσ ∈ L∞(0, T ;Lp(Ω;Rd×d)) for any
p < ∞ (which follows from the BMO property) and the weak convergence result
(3.42). Moreover, using the assumptions on u0 and σσσs, and the fact that |σσσD| ≤ 1,
we observe

(3.62)

δ lim
µ→0+

∫ T

0

∫
O
|εεε(u̇µ)|τ dxdt

≤ C
∫ T

0

∫
O

(|σ̇σσ|+ | trσσσ|)(1 + | trσσσ|)τ + (|u̇|+ 1)|∇τ |dxdt

− 1

d

∫ T

0

∫
O

(trσσσ − trσσσs)(u̇− u̇0) · ∇τ dxdt.

Having this estimate, we now focus on the limiting inequality for u̇. Defining

u̇µh(t) := 1
h

∫ h
0
u̇µ(t+s) ds, we know from (3.40) and (3.42) that for all t ∈ [0, T −h]

(3.63) u̇µh(t)→ u̇h(t) strongly in L1(O;Rd).

Consequently, using the embedding theorem5, the assumptions on u0, we have that
for all ξ ∈ C1(O) and all t ∈ [0, T − h]

‖u̇µh(t)ξ‖d′ ≤ ‖(u̇µh − (u̇0)h(t))ξ‖d′ + C‖ξ‖d′
≤ C(‖ξ‖d′ + ‖εεε((u̇µh(t)− (u̇0)h(t))ξ)‖1)

≤ C(‖ξ‖d′ + ‖∇ξ‖1 + ‖|u̇µh(t)||∇ξ‖1 + ‖|εεε(u̇µh(t))|ξ‖1)

≤ C(‖ξ‖d′ + ‖∇ξ‖1 + ‖|u̇µh(t)||∇ξ|‖1) +
C

h

∫ t+h

t

∫
O
|εεε(u̇µ(s))||ξ|dxds.

5In case that we do not prescribe Dirichlet data for u, we have to chose ξ such that it has zero
trace on a part of the boundary.
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Thus, setting τ := χ[t,t+h]ξ in (3.62), letting µ→ 0+, using (3.63) and weak lower
semicontiuity, we observe

‖u̇h(t)ξ‖d′ ≤ C(‖ξ‖d′ + ‖∇ξ‖1 + ‖|u̇h(t)||∇ξ|‖1)

+
C

h

∫ t+h

t

∫
O

(|σ̇σσ|+ | trσσσ|)(1 + | trσσσ|)ξ + (|u̇|+ 1)|∇ξ|dx ds

+
C

h

∫ t+h

t

∣∣∣∣∫
O

(trσσσ − trσσσs)(u̇− u̇0) · ∇ξ dx

∣∣∣∣ ds.

Finally, we restrict ourselves only on the Lebesgue points t ∈ (0, T ) for all related
quantities, we can let h→ 0+ in the above inequality to get

‖u̇(t)ξ‖d′ ≤ C(‖ξ‖d′ + ‖∇ξ‖1 + ‖|u̇(t)||∇ξ|‖1)

+ C

∫
O

(|σ̇σσ|+ | trσσσ|)(1 + | trσσσ|)ξ dx

+ C

∣∣∣∣∫
O

(trσσσ − trσσσs)(u̇− u̇0) · ∇ξ dx

∣∣∣∣ ,
(3.64)

which is the starting point for further investigation. First, we use the Bogovskii
operator and find BBB such that for almost all time t ∈ (0, T )

divBBB = (|σ̇σσ|+ | trσσσ|)(1 + | trσσσ|)− (|σ̇σσ|+ | trσσσ|)(1 + | trσσσ|)O in O.

Consequently, using (3.37) and the fact that σσσ ∈ BMO, we have that for all
p ∈ [1, 2)

(3.65) BBB ∈ L∞(0, T ;W 1,p
0 (Ω;Rd×d×d)).

For further purposes we can also find v fulfilling

(3.66) v ∈ L∞(0, T ;W 1,p
0 (Ω;Rd))

and solving

div v = div(u̇− u̇0)− div(u̇− u̇0)O in O.
Then, we can rewrite (3.64) with the help of integration by parts as

‖u̇(t)ξ‖d′ ≤ C(‖ξ‖d′ + ‖∇ξ‖1 + ‖(|u̇(t)|+ |BBB(t)|)|∇ξ|‖1)

+ C

∣∣∣∣∫
O

(trσσσ(t)− trσσσs(t))(u̇(t)− u̇0(t)) · ∇ξ dx

∣∣∣∣ ,(3.67)

We start with the interior estimates. Hence for arbitrary x0 ∈ O and R > 0 such
that B2R(x0) ⊂ Ω. We find smooth nonnegative ξ such that ξ = 1 in BR(x0) and
x = 0 in Rd \B2R(x0) satisfying |∇ξ| ≤ CR−1. Then, using the assumption on σσσs,
u0 and (3.65), the estimate (3.67) implies that for almost all t ∈ (0, T )∫

BR(x0)

|u̇(t)|d′

Rd
dx ≤ C + C

(∫
B2R(x0)

|u̇(t)|+ |BBB(t)|
Rd

dx

)d′

+ C

∣∣∣∣∣
∫
B2R(x0)

| trσσσ(t)− trσσσ(t)B2R(x0)|| ˙u(t)|
Rd

dx

∣∣∣∣∣
d′

+ C

∣∣∣∣∣
∫
B2R(x0)

trσσσ(t)B2R(x0)(u̇(t)− u̇0(t)) · ∇ξ
Rd−1

dx

∣∣∣∣∣
d′

.

(3.68)
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Next, using the Hölder inequality and the BMO estimate for σσσ we get that that for
any q ∈ (1, d′)∣∣∣∣∣

∫
B2R(x0)

| trσσσ(t)− trσσσ(t)B2R(x0)||u̇(t)|
Rd

dx

∣∣∣∣∣
d′

≤ C

∣∣∣∣∣
∫
B2R(x0)

|u̇(t)|q

Rd
dx

∣∣∣∣∣
d′
q

.(3.69)

For the last term in (3.68), we use integration by parts and the definition of v to
get (using again the BMO estimate for σσσ)

∣∣∣∣∣
∫
B2R(x0)

trσσσ(t)B2R(x0)(u̇(t)− u̇0(t)) · ∇ξ
Rd−1

dx

∣∣∣∣∣
d′

=

∣∣∣∣∣
∫
B2R(x0)

trσσσ(t)B2R(x0) div(u̇(t)− u̇0(t))ξ

Rd−1
dx

∣∣∣∣∣
d′

≤ C

∣∣∣∣∣
∫
B2R(x0)

|trσσσ(t)B2R(x0)|
Rd−1

dx

∣∣∣∣∣
d′

+

∣∣∣∣∣
∫
B2R(x0)

trσσσ(t)B2R(x0) div v(t)ξ

Rd−1
dx

∣∣∣∣∣
d′

≤ C +

∣∣∣∣∣
∫
B2R(x0)

trσσσ(t)B2R(x0)v(t) · ∇ξ
Rd−1

dx

∣∣∣∣∣
d′

≤ C + C

(∫
B2R(x0)

|σσσ(t)|
Rd

dx

)d′ (∫
B2R(x0)

|v(t)|
Rd

dx

)d′

≤ C + C

∫
B2R(x0)

|σσσ(t)|zd′

Rd
dx+ C

∫
B2R(x0)

|v(t)|z′d′

Rd
dx,

(3.70)

where we chose z large enough so that

z′d′ <
2d

d− 2
.

Substituting (3.69)–(3.70) into (3.68), we finally deduce

∫
BR(x0)

|u̇(t)|d′

Rd
dx ≤ C + C

(∫
B2R(x0)

|u̇(t)|q

Rd
dx

) d′
q

+ C

∫
B2R(x0)

|g(t)|
Rd

dx,

(3.71)

where
g(t) := |σσσ(t)|zd

′
+ |v(t)|z

′d′ + |BBB(t)|d
′
.

Note that due to the BMO estimates for σσσ, the properties (3.65)–(3.66) and the
embedding theorem, we know that any ε > 0 find z > 1 such that6

g ∈ L∞(0, T ;L
2d−ε
d−2 (O)).

Thus, we have everything prepared for the reverse Hölder inequality in the interior
of O. To get it up to the boundary, let us now consider x0 ∈ ∂O such that
B2R(x0) ∩ ∂ON = ∅. In this case we can proceed exactly as before, replacing only
the mean values accordingly (using the Lipchitz continuity of O and the global

6In case d = 2 we get any Lp space. Similarly, in case of the Hencky model, we do not deal
with the time derivative estimates and we can get any Lp estimates.
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BMO estimates for σσσ). Notice here that the integration by parts in (3.70) still can
be used since (u̇− u̇0) · n = 0 on ∂O \ ∂ON in the sense of traces.

Thus in what follows, we focus on the case when x0 ∈ ∂ON and R > 0 be such
that B2R(x0) ∩ ∂O ⊂ ∂ON . In this case we can use the same procedure as above
replacing the mean values accordingly except the integration by parts used in (3.70)
since we do not control (u̇− u̇0) ·n on ∂ON . Hence, instead of (3.71) we arrive at

∫
BR(x0)

|u̇(t)|d′

Rd
dx ≤ C(1 + |trσσσ(t)O∩B2R(x0)|)

(∫
B2R(x0)

|u̇(t)|q

Rd
dx

) d′
q

+ C

∫
B2R(x0)

1 + |g(t)|
Rd

dx.

(3.72)

Next, the key difference from the interior estimates is that we need to provide a
sufficiently good estimate for the mean value of trσσσ(t). Without loss of generality
(since O is Lipschitz), assume that x0 = 0 and that

V := {x ∈ Rd; x = (x′, xd), x
′ ∈ (−kR, kR)d−1, a(x′) < xd < a(x′) + kR}

⊃ O ∩B2R(x0),

where k is some constat depending on ∂O and a is a Lipschitz function and if
a(x′) = xd then x ∈ ∂O. Next, since for any x ∈ ∂ON we have in the sense of
traces

trσσσ(t) = trσσσ(t)n · n = d(σσσ(t)− σσσD(t))n · n = d(σσσs(t)− σσσD(t)) · (n⊗ n),

where we used the fact that (σσσ − σσσs)n = 0 on ∂ON . Consequently since |σσσD| ≤ 1
and σσσs is smooth we have that

trσσσ ∈ L∞(0, T ;L∞(∂ON )).

Therefore, for arbitrary x ∈ V , we have (for a.a. t, which we do not write here)

trσσσ(x)− trσσσ(x′, a(x′)) =

∫ xd

a(x′)

∂ trσσσ(x′, s)

∂s
ds

= d

∫ xd

a(x′)

d∑
i=1

σσσdj(x′, s)− σσσdjD(x′, s)

∂xj
ds

= d

∫ xd

a(x′)

d∑
i=1

(σσσs)dj(x′, s)− σσσdjD(x′, s)

∂xj
ds

= d((σσσs)dj(x)− σσσdjD(x))− d((σσσs)dj(x′, a(x′))− σσσdjD(x′, a(x′))

+ d

∫ xd

a(x′)

d−1∑
i=1

(σσσs)dj(x′, s)− σσσdjD(x′, s)

∂x′j
ds.

Thus, using the bound for trσσσ on ∂ON and the assumptions on σσσs we have∣∣∣∣∫
V

trσσσ(x) dx

∣∣∣∣ ≤ C|V |
+ d

∣∣∣∣∣
∫

(−kR,kR)d−1

∫ a(x′)+kR

a(x′)

∫ xd

a(x′)

d−1∑
i=1

(σσσs)dj(x′, s)− σσσdjD(x′, s)

∂x′j
dsdxd dx′

∣∣∣∣∣ .
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Next, using integration by parts, we deduce∣∣∣∣∣
∫

(−kR,kR)d−1

∫ a(x′)+kR

a(x′)

∫ xd

a(x′)

d−1∑
i=1

(σσσs)dj(x′, s)− σσσdjD(x′, s)

∂x′j
dsdxd dx′

∣∣∣∣∣
=

∣∣∣∣∣
∫

(−kR,kR)d−1

∫ a(x′)+kR

a(x′)

(xd − a(x′)− kR)

d−1∑
i=1

(σσσs)dj(x)− σσσdjD(x)

∂x′j
dxd dx′

∣∣∣∣∣
=

∣∣∣∣∣
∫
V

(xd − a(x′)− kR)

d−1∑
i=1

(σσσs)dj(x)− σσσdjD(x)

∂xj
dx

∣∣∣∣∣
≤

∣∣∣∣∣
∫
∂V

d−1∑
i=1

(xd − a(x′)− kR)((σσσs)dj(x)− σσσdjD(x))nj dS

∣∣∣∣∣
+

∣∣∣∣∣
∫
V

d−1∑
i=1

a(x′)

∂x′j
((σσσs)dj(x)− σσσdjD(x)) dx

∣∣∣∣∣
≤ C|V |+ CR|∂V | ≤ C|V |.

Thus, combining the estimates together, we have that

(3.73) |trσσσV | ≤ C.

Hence, since the mean value is bounded, we can use it in (3.72) and continue
as before. The rest of the proof, i.e., the proper estimates for any x0 can be
deduced from the above estimates and the triangle inequality. This finishes the
proof of (2.15).

3.7. Morrey condition for ėp and λ. We again start we the point wise estimate
for the approximation. Using the fact that σσσs satisfies the safety load condition,
we have

δµ−1(|σσσµD| − 1)+ ≤ µ−1(|σσσµD| − 1)+
σσσµD
|σσσµD|

· (σσσµ − σσσs)

= AAAσ̇σσµ · (σσσµ − σσσs) + εεε(u̇µ − u̇0) · (σσσµ − σσσs) + εεε(u̇0) · (σσσµ − σσσs).

Multiplying this inequality by arbitrary nonnegative τ ∈ C1(Ω), integrating the
result over O, using integration by parts and letting µ→ 0+, (we omit details here,
since the very similar step was carefully justified in the previous section) we get
that for almost all t ∈ (0, T )
(3.74)

δ〈λ(t), τ〉 ≤
∫
O
C(1 + |σ̇σσ(t)|+ |σσσ(t)|)(1 + |σσσ(t)|)τ − (σσσ(t)− σσσs(t)) · (∇τ ⊗ u̇(t)) dx.

Since σσσ ∈ L∞(0, T ;BMO(O;Rd×dsym)) and u̇ ∈ L∞(0, T ;Ld
′+ε(O;Rd)) for some

ε > 0, we can find δ > 0 such that after using the Hölder inequality we have

(3.75) ess sup
t∈(0,T )

〈λ(t), τ〉 ≤ C‖τ‖1,d−δ.

Consequently, any Borel Õ having zero (d− δ)-Sobolev capacity satisfies for almost
all t ∈ (0, T )

(3.76) λ(t)(Õ) = 0,
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In addition, taking for arbitrary x0 ∈ O and arbitrary R > 0 the function τ = 1 in
BR(x0) and 0 outside the ball B2R(x0) satisfying ∇τ | ≤ CR−1, we get that there
exists α > 0 such that for all balls we have

ess sup
t∈(0,T )

λ(t)(BR(x0) ∩ O) ≤ CRα,

which is the last part of the claim stated in (2.16).
Hence, we also see that λ is absolutely continuous with respect to α-dimensional

Hausdorff measure. In addition, repeating step by step the procedure from the
previous subsection, we can get for arbitrary δ > 0 the estimate

λ(t)(BR(x0) ∩ O) ≤ C
∫
B2R(x0)

(1 + |σ̇σσ(t)|+ |σσσ(t)|+ div u̇(t)|)(1 + |σσσ(t)|) dx

C(δ)Rd−1

(∫
B2R(x0)

|u̇(t)|1+δ

Rd

) 1
1+δ

.

(3.77)

Consequently, we see that decomposing λ as

λ := λd + λs = λd + λd−1 + λc,

where λd is the regular part of λ, i.e., continuous with respect to the Lebesgue
measure, λd−1 is continuous with respect to the (d− 1)-Hausdorff measure and λc

is the Cantor part, we immediately have that the Cantor part is supported only on
the set where M |u̇| =∞.

3.8. Identification of ėp. This part will finish the proof of Theorem 2.1. First, we
will recall here the standard procedure of identification of ėp (compare with (1.8)
and (1.9) and also with e.g. [4]) and further we will show that in two dimensional
setting, we have a sharper result. Namely, we shall show that

ėp(t) = λσσσp(t),

where

σσσp(t) = σσσD(t) λd - almost everywhere

and for almost all t ∈ (0, T )

lim
ε→0+

∫
O
|σσσp(t)− σσσεD(t)|dλs = 0,

where σσσεD(t) is a proper mollification of σσσD. Further, we show that if d = 2, we can
simply set σσσp(t) := σσσD(t) everywhere in O.

To start with this plan, we first notice that for arbitrary σ̃σσ ∈ L1(0, T ; C(O;Rd×dsym))
fulfilling ‖σ̃σσD(t)‖∞ ≤ 1, and almost all t ∈ (0, T ) we have

0 ≤ µ−1(|σσσµD(t)| − 1)+
σσσµD(t)

|σσσµD(t)|
· (σσσµD(t)− σ̃σσD(t))

= µ−1(|σσσµD(t)| − 1)2
+ + µ−1(|σσσµD(t)| − 1)+ − µ−1(|σσσµD(t)| − 1)+

σσσµD(t)

|σσσµD(t)|
· σ̃σσD

Hence, using the convergence results (3.38)–(3.39) and (3.50), we deduce that for
arbitrary nonnegative τ ∈ L1(0, T ; C(O)) we have

(3.78) 0 ≤
∫ T

0

〈λ(t), τ(t)〉 − 〈ėp(t), σ̃σσD(t)τ(t)〉dt.
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Consequently, since τ and σ̃σσ are arbitrary, we also have for almost all t ∈ (0, T )

(3.79) |ėp(t)| ≤ λ(t) in sense of measures on O.

In addition, for almost all all time t ∈ (0, T ) and arbitrary τ ∈ C1(O) we have that
(note that the limits below now denote the weak∗ limits in L∞(0, T ))
(3.80)
〈λ(t), τ〉 − 〈ėp(t),σσσsD(t)τ〉

= lim
µ→0

∫
O
µ−1(|σσσµD(t)| − 1)+τ − µ−1(|σσσµD(t)| − 1)+

σσσµD(t)

|σσσµD(t)|
· σσσsD(t)τ dx

= lim
µ→0

∫
O
−µ−1(|σσσµD(t)| − 1)2

+τ + µ−1(|σσσµD(t)| − 1)+
σσσµD(t)

|σσσµD(t)|
· (σσσµD(t)− σσσsD(t)τ dx

= lim
µ→0

∫
O
µ−1(|σσσµD(t)| − 1)+

σσσµD(t)

|σσσµD(t)|
· (σσσµD(t)− σσσD(t))τ dx

+ lim
µ→0

∫
O
µ−1(|σσσµD(t)| − 1)+

σσσµD(t)

|σσσµD(t)|
· (σσσD(t)− σσσsD(t))τ dx

To evaluate limits on the right hand side we use (3.1). First, since |σσσD| ≤ 1, we
have that ∣∣∣∣∫

O
µ−1(|σσσµD(t)| − 1)+

σσσµD(t)

|σσσµD(t)|
· (σσσµD(t)− σσσD(t))τ dx

∣∣∣∣
≤ ‖τ‖∞

∫
O

∣∣∣∣µ−1(|σσσµD(t)| − 1)+
σσσµD(t)

|σσσµD(t)|
· (σσσµD(t)− σσσD(t))

∣∣∣∣ dx

= ‖τ‖∞
∫
O
µ−1(|σσσµD(t)| − 1)+

σσσµD(t)

|σσσµD(t)|
· (σσσµD(t)− σσσD(t)) dx

= ‖τ‖∞
∫
O

(−AAAσ̇σσµ(t) + εεε(u̇0(t))) · (σσσµ(t)− σσσ(t)) dx,

where the last equality follows from the integration by parts and the fact that
divσσσµ = divσσσ. Thus, employing (3.12) and (3.48), we see that

lim
µ→0

sup
t∈(0,T )

∣∣∣∣∫
O
µ−1(|σσσµD(t)| − 1)+

σσσµD(t)

|σσσµD(t)|
· (σσσµD(t)− σσσD(t))τ dx

∣∣∣∣ = 0.

Similarly, for the second term in (3.80) we have∫
O
µ−1(|σσσµD(t)| − 1)+

σσσµD(t)

|σσσµD(t)|
· (σσσD(t)− σσσsD(t))τ dx

=

∫
O

(−AAAσ̇σσµ(t) + εεε(u̇µ(t)− u̇0(t)) + εεε(u̇0(t))) · (σσσ(t)− σσσs(t))τ dx

=

∫
O

(−AAAσ̇σσµ(t) + εεε(u̇0(t))) · (σσσ(t)− σσσs(t))τ dx

−
∫
O

((u̇µ(t)− u̇0(t))⊗∇τ) · (σσσ(t)− σσσs(t)) dx

µ→0+→
∫
O

(−AAAσ̇σσ(t) + εεε(u̇0(t))) · (σσσ(t)− σσσs(t))τ dx

−
∫
O

((u̇(t)− u̇0(t))⊗∇τ) · (σσσ(t)− σσσs(t)) dx ,
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where for the identification of the last weak limit we used (3.37) and (3.42). Thus,
the relation (3.80) reduces for almost all t ∈ (0, T ) to

(3.81)

〈λ(t), τ〉 − 〈ėp(t),σσσsD(t)τ〉 =

∫
O

(−AAAσ̇σσ(t) + εεε(u̇0(t))) · (σσσ(t)− σσσs(t))τ dx

−
∫
O

((u̇(t)− u̇0(t))⊗∇τ) · (σσσ(t)− σσσs(t)) dx .

Finally, for arbitrary σ̃σσ ∈ C([0, T ] × O;Rd×d) with div σ̃σσ ∈ L1(0, T ;Ld(O;Rd))
fulfilling σ̃σσn = 0 on ∂ON and (σ̃σσn)τ = 0 on ∂OM we get by using (3.38) and the
identity (3.1) the following identification of weak limits (for almost all t ∈ (0, T ))

(3.82)

〈ėp(t), σ̃σσD(t)τ〉 = lim
µ→0

∫
O
µ−1(|σσσD(t)| − 1)+

σσσµD(t)

|σσσµD(t)|
· σ̃σσ(t)τ dx

= lim
µ→0

∫
O

(−AAAσ̇σσµ(t) + εεε(u̇0(t)) + εεε(u̇µ(t)− u̇0(t))) · σ̃σσ(t)τ dx

=

∫
O

(−AAAσ̇σσ(t) + εεε(u̇0(t))) · σ̃σσ(t)τ dx

− lim
µ→0

∫
O

(u̇µ(t)− u̇0(t)) · div(σ̃σσ(t)τ) dx

=

∫
O

(−AAAσ̇σσ(t) + εεε(u̇0(t))) · σ̃σσ(t)τ dx

−
∫
O

(u̇(t)− u̇0(t))τ · div σ̃σσ(t) dx−
∫
O

((u̇(t)− u̇0(t))⊗∇τ) · σ̃σσ(t) dx .

Based on the above identity, we finally identify ėp. We extend σσσ by σσσs outside
O and for any ε > 0 define a continuous function (w.r.t x)

σσσε(t, x) :=
1

|Bε(x)|

∫
Bε(x)

σσσ(t, y) dy

and also similarly

σσσε,s(t, x) :=
1

|Bε(x)|

∫
Bε(x)

σσσs(t, y) dy.

Due to this definition and the estimate (2.15), we have

σσσε → σσσ strongly in Lp((0, T )×O;Rd×d) for all p ∈ [1,∞),(3.83)

σσσε,s → σσσs strongly in C([0, T ]×O;Rd×d).(3.84)

Next, assume that τ is compactly supported. Therefore, there exists ε0 > 0
such that for all ε ∈ (0, ε0) and for all x belonging to the support of τ we have
Bε(x) ⊂ O. Consequently, we have

div(σσσε − σσσε,s) = 0 in supp τ

Therefore, setting σ̃σσ := σσσε − σσσε,s (notice that although σ̃σσ does not have zero trace
on ∂O such choice is possible since τ has compact support) in (3.82) we obtain

〈ėp(t), (σσσεD(t)− σσσε,sD (t))τ〉 =

∫
O

(−AAAσ̇σσ(t) + εεε(u̇0(t))) · (σσσε(t)− σσσε,s(t))τ dx

−
∫
O

((u̇(t)− u̇0(t))⊗∇τ) · (σσσε(t)− σσσε,s(t)) dx .
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Thus, letting ε → 0 and comparing the result with (3.81), we obtain that for all
ϕ ∈ L∞(0, T )

(3.85)

∫ T

0

〈λ, τ〉ϕdt =

∫ T

0

(〈λ, τ〉 − 〈ėp,σσσ
s
Dτ〉+ 〈ėp,σσσ

s
Dτ〉)ϕdt

= lim
ε→0

∫ T

0

〈ėp, (σσσ
ε
D − σσσ

ε,s
D )τ〉ϕ+ 〈ėp,σσσ

s
Dτ〉ϕdt

= lim
ε→0

∫ T

0

〈ėp,σσσ
ε
Dτ〉ϕdt,

where for the second equality we used (3.84). Since |σσσD| ≤ 1 almost everywhere,
we see that |σσσεD| ≤ 1 everywhere and thus it follows from (3.78) and (3.85) that for
almost all time t ∈ (0, T )

(3.86) λ(t) = |ėp(t)| in M(O).

Thus, denoting σσσp the Radon–Nykodým derivative of ėp we have that

ėp(t) = λ(t)σσσp(t), |σσσp(t)| = 1 λ(t) almost everywhere in O.

Consequently, using the facts that |σσσεD| ≤ 1 and |σσσp| ≤ 1 λ-everywhere and (3.85)
with ϕ ≡ 1 we deduce that

(3.87)

∫ T

0

∫
O
|σσσεD − σσσp|2τ dλ dt =

∫ T

0

∫
O

(|σσσεD|2 + |σσσp|2)τ − 2σσσεD · σσσpτ dλ dt

≤ 2

∫ T

0

∫
O

(1− σσσεD · σσσp)τ dλ dt

= 2

∫ T

0

〈λ, τ〉 − 2〈ėp,σσσ
ε
Dτ〉dt

ε→0→ 0,

which is the desired interior characterization of σσσp.
Similarly, we shall proceed in a neighborhood of the Dirichlet boundary ∂OD.

Hence let τ be compactly supported in a sufficiently small neighborhood of ∂OD
and let n denoted the outward unit vector at some fixed point. Then, we set in
(3.82)

σ̃σσ(x) := σσσε(x− αεn)− σσσε,s(x− αεn),

where α is sufficiently large (depending on the Lipschtz constant of ∂O. Due to
this definition, we still have that div σ̃σσ = 0 in the support of τ . Thus, we can repeat
the whole procedure again to get for almost all time t ∈ (0, T )

ėp(t) = λσσσp in O ∪ ∂OD,

and for arbitrary τ supported in a small neighborhood of ∂OD

lim
ε→0+

∫
O
|σσσεD(x− αεn)− σσσp|2τ(x) dλ(t, x) = 0.

Very similarly, we proceed also in a neighborhood of the Neumann boundary ∂ON ,
where instead of shifting outside, we shift the stress inside. Indeed, since σσσn = σσσsn
on ∂ON and div(σσσ−σσσs) = 0 in O, extending σσσ by σσσs outside O, we obtain that in
the sense of distribution we have in a neighborhood of ∂ON that div(σσσ − σσσs) = 0.
Consequently, setting

σ̃σσ(x) := σσσε(x+ αεn)− σσσε,s(x+ αεn),
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we have div σ̃σσ = 0 in O and eve more σ̃σσ = 0 on ∂ON . Therefore, repeating step by
step the above we have for almost all time t ∈ (0, T )

ėp(t) = λ(t)σσσp(t) in O ∪ ∂OD ∪ ∂ON ,

and for arbitrary τ supported in a small neighborhood of ∂ON

lim
ε→0+

∫
O
|σσσεD(x+ αεn)− σσσD(x)|2τ(x) dλ(t, x) = 0.

In particular, due to the definition, we also have that∫
∂ON
|σσσsD − σσσp|2τ dλ = lim

ε→0+

∫
∂ON
|σσσε,sD (x+ αεn)− σσσp|2τ(x) dλ(t, x)

= lim
ε→0+

∫
∂ON
|σσσεD(x+ αεn)− σσσp|2τ(x) dλ(t, x) = 0.

But since |σσσsD| < 1 and |σσσp| = 1 almost λ everywhere on ∂O, we see that necessarily
λ(∂ON ) = 0.

Finally, close to ∂OM we do not mollify by using mean values but we rather
mollify by using the convolution kernel and set (this means we shift the deviatoric
part inside and the trace part outside)

σ̃σσ(x) := (σσσεD − σσσ
ε,s
D )(x+ αεn) +

1

d
III(trσσσε − trσσσε,s)(x− αεn).

First, it is evident that (σ̃σσn)τ = 0 on ∂OM . Next, we also evaluate its divergence.
Hence, for arbitrary τ vanishing in a neighborhood of ∂OM , we have∫

O
(u̇− u̇0)τ · div σ̃σσ dx

=

∫
O

(u̇(x)− u̇0(x))τ(x) · div

(∫
O

(σσσD(y)− σσσsD(y))ηε(x+ αεn− y) dy

)
dx

+

∫
O

(u̇(x)− u̇0(x))τ(x) · ∇
(∫
O

1

d
(trσσσ(y)− trσσσs(y))ηε(x− αεn− y) dy

)
dx

=

∫
O

(u̇(x)− u̇0(x))τ(x) · div

(∫
O

(σσσ(y)− σσσs(y))ηε(x+ αεn− y) dy

)
dx

+

∫
O

(u̇(x)− u̇0(x))τ(x)·

· ∇
(∫
O

1

d
(trσσσ(y)− trσσσs(y))(ηε(x− αεn− y)− ηε(x+ αεn− y)) dy

)
dx

=

∫
O

∫
O

((u̇(x)− u̇0(x))τ(x)⊗∇xηε(x+ αεn− y)) · (σσσ(y)− σσσs(y)) dy dx

− 1

d

∫
O

∫
O

div((u̇(x)− u̇0(x))τ(x))(trσσσ(y)− trσσσs(y))

(ηε(x− αεn− y)− ηε(x+ αεn− y)) dy dx

= −
∫
O

∫
O

((u̇(x)− u̇0(x))τ(x)⊗∇yηε(x+ αεn− y)) · (σσσ(y)− σσσs(y)) dy dx

− 1

d

∫
O

div((u̇(x)− u̇0(x))τ(x))

tr(σσσε(x− αεn)− σσσε(x+ αεn)− σσσε,s(x− αεn) + σσσε,s(x+ αεn)) dx.
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Therefore,

lim
ε→0+

∫
O

(u̇− u̇0)τ · div σ̃σσ dx

= − lim
ε→0+

∫
O

∫
O

((u̇(x)− u̇0(x))τ(x)⊗∇yηε(x+ αεn− y))·

· (σσσ(y)− σσσs(y)) dy dx

= − lim
ε→0+

∫
O

∫
∂OM

((u̇(x)− u̇0(x))τ(x)·

· (σσσ(y)− σσσs(y))nηε(x+ αεn− y)) dS(y) dx

= − lim
ε→0+

∫
∂OM

((u̇− u̇0)τ)ε(y − αεn)·

· (σσσ(y)− σσσs(y))n dS(y)

= − lim
ε→0+

∫
∂OM

((u̇− u̇0)τ)ε(y − αεn) · n((σσσ(y)− σσσs(y)) · n⊗ n)) dS(y) = 0.

Hence we get λ(∂OM ) = 0. Note that close to boundaries of ∂OD, ∂ON and ∂OM
we have to do it more carefully and we refer to [5] for more details, where very
similar problem with the symmetric gradient is treated.

3.9. Identification of plastic strain. First, let us recall that λ = 0 on ∂ON ∪
∂OM an consequently ėp = 0 on this set. For the rest of the boundary, we can use
(3.82) to directly deduce (letting τ → χ∂OD ) that

ėp =
1

2
((u̇− u̇0)⊗ n + n⊗ (u̇− u̇0)) dS

and consequently, we also have that

λ =
|u̇− u̇0|√

2
dS.

Finally, we investigate the behaviour of ėp in O. Notice that since we know that
for almost all time t ∈ (0, T )

σσσεD → σσσp strongly in L1((0, T )×O;Rd×d dλ)

then due to the Luzin theorem, we also know that σσσD = σσσp almost everywhere (in
the sense of Lebesgue measure) in O. We know refine this result and show that
the exceptional set where it is not equal has the Hausdorff dimension less or equal
to (d − 2). Moreover, we identify such a set also as a set where the displacment
blows-up, which in addition will lead in dimension two that we can set everywhere

(3.88) σσσp = σσσD.

We now proceed slightly formally, and shall work on almost every time level
t ∈ (0, T ). Let us define the reduced maximal function Mδ

pf for any δ > 0 and
p ≤ d as

(3.89) Mδ
pf(x) := sup

r∈(0,δ)

r−p
∫
Br(x)

|f(y)|dy.
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Then we have for arbitrary p ∈ (d− 2, d) the estimate

|σσσε(x)− σσσ(x)| =

∣∣∣∣∣
∫ ε

0

d

dr

1

|Br(x)|

∫
Br(x)

σσσ(y) dy dr

∣∣∣∣∣
=

∣∣∣∣∣
∫ ε

0

1

r|Br(x)|

∫
Br(x)

∇σσσ(y)(x− y) dy dr

∣∣∣∣∣
≤ C(d)

∫ ε

0

r−d
∫
Br(x)

|∇σσσ(y)|dy dr

≤ C(d)

∫ ε

0

r
p−d
2

(∫
Br(x)

|∇σσσ(y)|2

rp
dy

) 1
2

dr

≤ 2C(d)

p− d+ 2

(
Mε
p |∇σσσ|2(x)

) 1
2 ε

p−(d−2)
2

(3.90)

Let us take arbitrary closed O0 ⊂⊂ O and define 2δ0 := dist (∂O, ∂O0). Then,
for arbitrary δ ≤ δ0 we set

Oδσσσ(t) := {x ∈ O0 : Mδ
d−2+δ|∇σσσ(t)|2(x) > δ−1}.

Further, we know that for any δ ∈ (0, δ0) the set Oδσσσ is open, and consequently
O0 \ Oδ is closed and so λ-measurable. Hence combining (3.87) and (3.90) we
easily deduce that for all x ∈ O0 \ Oδσσσ
(3.91) σσσD(x) = σσσp(x).

Notice that from this relation follows that the set where (3.91) does not hold has
the Hausdorff dimension at most (d− 2).

Next, we identify σσσp also on the set, where we control displacement in a sufficient
manner. Let us define for arbitrary ε > 0 the set

Oεv(t) :=
{
x ∈ O0; Mε

d−1− ε2
|u̇(t)|1+ε > ε−1

}
.

We shall show that for any ε > 0

(3.92) lim
δ→0+

λ(Oδσσσ \ Oεv) = 0,

from which one can deduce the validity of (3.91) λ-almost everywhere in O0\Oεv(t).
Indeed, first using the definition of Oδσσσ we can for any x ∈ Oδσσσ \Oεv find Rx such

that
Oδσσσ \ Oεv ⊂

⋃
x∈Oδσσσ\Oεv

BRx(x),

where Rx ∈ (0, δ] and ∫
BRx (x)

|∇σσσ|2 ≥ δ−1Rd−2+δ
x .

Hence, the Vitali covering theorem, we can find a countable union of balls {BRi(xi)}∞i=1 ⊂
Rd with {xi}∞i=1 ⊂ Oδσσσ \ Oεv such that

Oδσσσ \ Oεv ⊂
∞⋃
i=1

BRi(xi), BRi/4(xi) ∩BRj/4(xj) = ∅, Ri ∈ (0, δ],∫
BRi (xi)

|∇σσσ|2 ≥ Rd−2+δ
i δ−1.
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Immediately, we observe that

(3.93)

∞∑
i=1

Rd−2+δ
i ≤ Cδ

∫
O0

|∇σσσ|2 ≤ C(O0)δ.

Then, using the estimate (3.77) we find that (denoting for simplicity Bi := BRi(xi))

(3.94)

λ(Oδσσσ \ Oεv) ≤
∞∑
i=1

λ(BR1
(xi))

≤ C
∞∑
i=1

∫
2Bi

(1 + |σ̇σσ(t)|+ |σσσ(t)|+ |div u̇(t)|)(1 + |σσσ(t)|) dx

+ C(ε)

∞∑
i=1

Rd−1
i

(∫
2Bi

|u̇(t)|1+ε

Rd
dx

) 1
1+ε

≤ C
∫
⋃∞
i=1 2Bi

(1 + |σ̇σσ(t)|+ |σσσ(t)|+ |div u̇(t)|)(1 + |σσσ(t)|) dx

+ C(ε)

∞∑
i=1

R
d−1−

1+ ε
2

1+ε

i

(∫
2Bi

|u̇(t)|1+ε

Rd−1− ε2
dx

) 1
1+ε

,

where for the second inequality we used the properties of the Vitali covering. Next,
due to (3.37), (3.41) and (3.43), we can estimate the first term on the right hand
side of (3.94) as∫

⋃∞
i=1 2Bi

(1 + |σ̇σσ(t)|+ |σσσ(t)|+ |div u̇(t)|)(1 + |σσσ(t)|) dx ≤ C

∣∣∣∣∣
∞⋃
i=1

2Bi

∣∣∣∣∣ δ→0→ 0,

where the last convergence result follows from (3.93). Next, for the remaining term
on the right hand side of (3.94), we use the fact that for all i ∈ N we have that
xi /∈ Oεv. Consequently, for all δ ≤ ε/2(1 + ε), we deduce with the help of the
definition of Oεv(t) that

C(ε)

∞∑
i=1

R
d−1−

1+ ε
2

1+ε

i

(∫
2Bi

|u̇(t)|1+ε

Rd−1− ε2
dx

) 1
1+ε

≤ C(ε)

∞∑
i=1

R
d−2+

ε
2

1+ε

i

(
M δ
d−1− ε2

|u̇(t)|1+ε
) 1

1+ε

≤ C(ε)
∞∑
i=1

Rd−2+δ
i

δ→0→ 0,

where the last convergence result follows from (3.93). Hence, we deduce from (3.94)
that

(3.95) λ(Oδσσσ \ Oεv)→ 0 as δ → 0.

Since, we already know that σσσp = σσσD in O0 \ Oδσσσ for all δ > 0 then it follows
from (3.95) that the same relation holds λ-everywhere in O0 \ Oεv for all ε > 0.
Consequently, we can identify the possible set, where the desired inequality is not
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true as follows

{(t, y) : σσσp(t, y) 6= σσσp(t, y)} ⊂{
(t, y) : lim inf

δ→0
sup

R∈(0,δ)

δ

∫
BR(y)

R2−d−δ|∇σσσ(t, x)|2 dx ≥ 1

and lim inf
ε→0

sup
R∈(0,ε)

ε

∫
BR(y)

R1−d−ε/2|u̇(t, x)|1+ε dx ≥ 1

}
.

(3.96)

Finally, it is not difficult to observe by using the Hölder inequality that in case,
when u̇(t) ∈ Lq(O) for some q > d then the identity (3.88) holds λ(t)-everywhere
in O, which completes the proof of Theorem 2.1.
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