
Nečas Center for Mathematical Modeling

Preconditioning of linear least squares

by RIF for implicity held normal

equations

J. Scott, M. T̊uma

Preprint no. 2016-09

http://ncmm.karlin.mff.cuni.cz/



PRECONDITIONING OF LINEAR LEAST SQUARES BY RIF FOR IMPLICITLY

HELD NORMAL EQUATIONS

JENNIFER SCOTT∗ AND MIROSLAV TŮMA†

Abstract. The efficient solution of the normal equations corresponding to a large sparse linear least squares problem

can be extremely challenging. Robust incomplete factorization (RIF) preconditioners represent one approach that has the

important feature of computing an incomplete LLT factorization of the normal equations matrix without having to form

the normal matrix itself. The right-looking implementation of Benzi and Tůma has been used in a number of studies but

experience has shown that it can be computationally slow and its memory requirements are not known a priori. Here

a new left-looking variant is presented that employs a symbolic preprocessing step to replace the potentially expensive

searching through entries of the normal matrix. This involves a directed acyclic graph (dag) that is computed on-the-fly.

An inexpensive but effective pruning algorithm is proposed to limit the number of edges in the dag. Problems arising from

practical applications are used to compare the performance of the right-looking approach with a left-looking implementation

that computes the normal matrix explicitly and our new implicit dag-based left-looking variant.

Key words. sparse matrices, sparse linear systems, indefinite symmetric systems, iterative solvers, preconditioning,

incomplete factorizations.

AMS subject classifications. Primary, 65F08, 65F20, 65F50; Secondary, 15A06, 15A23

1. Introduction. Linear least squares problems arise in a wide variety of practical applications. Let

us consider the algebraic problem of linear least squares (LS) in the following form

min
x
‖b−Ax‖2, (1.1)

where A ∈ R
m×n (m ≥ n) is a large sparse matrix with full column rank and b ∈ R

m is given. Solving

(1.1) is mathematically equivalent to solving the n× n normal equations

Cx = AT b, C = ATA, (1.2)

where, since A has full column rank, the normal matrix C is symmetric positive definite. To solve very

large LS problems, an iterative method may be the method of choice because they can require much

less storage and fewer operations than their direct counterparts. However, iterative methods do not offer

the same level of reliability and their successful application often needs a good preconditioner to achieve

acceptable convergence rates (or, indeed, to obtain convergence at all).

In recent years, a number of techniques for preconditioning LS problems have been proposed. In

particular, significant attention has been devoted to the development of algorithms based on incomplete

orthogonal factorizations of A [30, 37, 39, 40]. Most recently, there is the Multilevel Incomplete QR (MIQR)

factorization of Li and Saad [33]. An alternative is the LU-based strategy that was first introduced as a

direct method in 1961 in [32]; see its further development as the Peters-Wilkinson method [38] (and later

in [11, 14]).

While these approaches are very useful in some circumstances, here we focus on a third and most

traditional approach that is based on the normal equations and an incomplete factorization of the

symmetric positive definite matrix C. A direct variant of this approach dates back to 1924 [4]. One

problem connected to the normal equations is that they may not be very sparse, for example, if A contains

some dense (or close to dense) rows. A possible way to overcome this is to treat the dense rows separately.

An alternative approach is to avoid explicitly forming C (that is, to work only with A and AT ) and to

compute its factorization implicitly. Working with C implicitly is also important for very large problems

∗ Scientific Computing Department, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX, UK.

Correspondence to: jennifer.scott@stfc.ac.uk Supported by EPSRC grants EP/I013067/1 and EP/M025179/1.
† Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University and Institute of

Computer Science, Academy of Sciences of the Czech Republic, Pod vodárenskou věž́ı 2, 182 07 Prague 8, Czech Republic,

(mirektuma@karlin.mff.cuni.cz) Supported by the project 13-06684S of the Grant Agency of the Czech Republic and by

the ERC project MORE LL1202 financed by the MŠMT of the Czech Republic.

1



for which computing C may be too costly (in terms of both time and memory). Moreover, forming the

normal equations may lead to severe loss of information in highly ill-conditioned cases. The recent limited

memory incomplete Cholesky factorization code HSL MI35 of Scott and Tůma [29] is designed for the

normal equations. It offers an option to input either the matrix C or A. In the latter case, a single

column of C is computed at each stage of the incomplete factorization process, thus avoiding the need to

store C explicitly but not the work needed to form the product ATA [10]. Recent results by Gould and

Scott [26, 27] illustrate that HSL MI35 can perform well on a range of problems but that constructing the

incomplete factorization can be unacceptably slow when A has dense rows.

An implicit factorization scheme that uses a (Schur complement-based) approach is the robust

incomplete factorization (known as the RIF algorithm) of Benzi and Tůma [9]. RIF is based on C-

orthogonalization and works entirely with A and AT and can be derived as the “dual” of the SAINV

(stabilized approximate inverse) preconditioner [9]. The preconditioner is guaranteed to be positive

definite and, in exact arithmetic, the incomplete factorization process is breakdown free. A right-looking

implementation of RIF for LS problems is available as part of the SPARSLAB software collection of Benzi

and Tůma (see http://www.karlin.mff.cuni.cz/~mirektuma) and has been used in a number of studies

on least squares preconditioners (including [2, 35]). Important weaknesses of this code are that it can be

computationally slow (see the results of [26]) and the amount of memory needed is not known a priori

(although for the experiments in [9] the total storage is estimated to be approximately 25% more than

the storage needed for the final incomplete factor but this itself is not known and will depend on the

dropping strategy). The aim of this paper is to present a new potentially more computationally efficient

left-looking RIF algorithm that avoids the need to compute any entries of C. A key contribution is to

propose and implement the use of a symbolic step to replace the searching through C that is needed in

previous implementations. Symbolic preprocessing is a standard tool in sparse direct methods for linear

systems (see, for example, the early symbolic decomposition for symmetric and positive definite matrices

in [20], symbolic evaluations in LU decomposition [24] and the overview of the theory of nonsymmetric

elimination trees given in [19]). The proposed symbolic step involves a search using a directed acyclic

graph that we construct on-the-fly. When used for RIF applied to LS problems, it has the potentially

attractive property of offering the possibility of replacing the update step in the left-looking algorithm by

a parallelizable sparse saxpy operation, although the design and development of parallel implementations

lies beyond the scope of the current paper.

The rest of the paper is organised as follows. Section 2 recalls the RIF algorithm and then introduces

our new left-looking RIF algorithm that employs symbolic preprocessing. The use of RIF for solving LS

problems is described in Section 3. Numerical experiments in Section 4 demonstrate the efficiency and

robustness of the new approach using a range of problems from real-world linear systems and least squares

applications. Finally, Section 5 presents some concluding remarks.

Notation: we end this section by introducing the notation that is employed in the rest of the paper. We

let the number of nonzero entries of a matrix A be nnz(A) and we let these entries be ai,j . Furthermore,

we denote the jth column of A by aj and ej denotes the jth unit basis vector. For any column aj , we

define its structure (sparsity pattern) to be the set Struct(aj) = {i | ai,j 6= 0}. Section notation is used to

denote part of the matrix so that Ak ≡ A1:k,1:k is the leading submatrix of order k and A1:k,j is the first

k entries of column j.

For a symmetric positive definite matrix C, we define the C-inner product to be

〈x, y〉C = yTCx, ∀ x, y ∈ R
n, (1.3)

and associated C-norm

‖x‖C =
√
xTCx.

In the least squares case,

〈x, y〉C = (yTAT )(Ax), ∀ x, y ∈ R
n.

2



We also recall some standard notation related to sparse matrices and their graphs, see, e.g., [23]. We

define G(A) = (V,E) to be the directed graph of the (nonsymmetric) matrix A ∈ R
n×n with nonzero

diagonal entries as follows: the vertex set is V = {1, . . . , n} and for 1 ≤ i 6= j ≤ n there is an edge

(i, j) ∈ E from i to j if and only if ai,j 6= 0. There is a directed path from vertex i ∈ V to vertex k ∈ V if

there exists a sequence of vertices i = i0, i1, i2, ..., ik−1, ik = k belonging to V such that each edge (ij−1, ij)

is in E. This path is denoted by i ⇒ k and k is said to be reachable from i. The set of vertices that are

reachable from i is denoted by Reach(i).

We let L = {li,j} and Z = {zi,j} denote a lower and upper triangular matrix, respectively. A nonzero

off-diagonal entry li,j must have i > j, so any edge in the directed graph of L must satisfy i > j. Thus

the directed graph of a triangular matrix has no loops and belongs to the class of directed acyclic graphs

(dags). We denote the directed acyclic graph of L by dag(L).

In the following, we assume some basic knowledge of the concept of the elimination tree and its role

in sparse factorization that is well described, for example, in the survey paper [34].

2. Robust incomplete factorization and symbolic decomposition. We start by considering

general sparse symmetric and positive definite matrices, that are not necessarily normal matrices.

2.1. Left- and right-looking approaches. Consider the factorization of a general sparse symmetric

and positive definite matrix C into the product of two triangular factors of the form

C = LLT . (2.1)

This factorization is unique but there are a number of approaches to computing it. For example, one

can consider different computational variants of the Cholesky decomposition or the Gram-Schmidt process

with the C-inner product. While the former is well-known, our focus is on the latter and, in particular, the

RIF algorithm [8, 9]. Given n linear independent vectors, the Gram-Schmidt process builds a C-orthogonal

set of vectors z1, z2, ..., zn. This can be written as

ZTCZ = I, I = LTZ. (2.2)

where Z = [z1, z2, ..., zn] is upper triangular with positive diagonal entries. In exact arithmetic, LT is the

transposed Cholesky factor of C and Z is its inverse. The left-looking Gram-Schmidt process is outlined

as Algorithm 2.1; the right-looking process in outlined in Algorithm 2.2. Three computational options are

included that correspond to the classical, modified and mixed variants (denoted by CGS, MGS and AINV,

respectively); for details, see [31]. The relationship between L and Z can be found, for example, in the

1952 seminal paper on the conjugate gradient method by Hestenes and Stiefel [28].

3



Algorithm 2.1. Left-looking Gram-Schmidt process (classical CGS, modified MGS and mixed AINV

variants).

Input: Symmetric positive definite matrix C ∈ Rn×n.

Output: Factors Z and L satisfying (2.2).

1. for k = 1 : n do

2. Set z
(0)
k = ek

3. for j = 1 : k − 1 do

4. if MGS

5. Set lk,j = 〈z(j−1)
k , zj〉C

6. else if CGS

7. Set lk,j = 〈z(0)k , zj〉C
8. else if AINV

9. Set lk,j = 〈z(j−1)
k , ej〉C

10. end if

11. Set z
(j)
k = z

(j−1)
k − lk,jzj

12. end do

13. Set lk,k = ‖z(k−1)
k ‖C

14. Set zk = z
(k−1)
k /lk,k

15. end do

Algorithm 2.2. Right-looking Gram-Schmidt process (classical CGS, modified MGS and mixed

AINV variants).

Input: Symmetric positive definite matrix C ∈ Rn×n.

Output: Factors Z and L satisfying (2.2).

1. for k = 1 : n do

2. Set z
(0)
k = ek

3. end do

4. for k = 1 : n do

5. Set lk,k = ‖z(k−1)
k ‖C

6. Set zk = z
(k−1)
k /lk,k

7. for j = k + 1 : n do

8. if MGS

9. Set lk,j = 〈z(k−1)
j , zk〉C

10. else if CGS

11. Set lk,j = 〈z(0)j , zk〉C
12. else if AINV

13. Set lk,j = 〈z(k−1)
j , ek〉C/lk,k

14. end if

15. Set z
(j)
j = z

(j−1)
j − lk,jzk

16. end do

17. end do

4



For large sparse matrices, we need to consider incomplete (approximate) factorizations. Here and

elsewhere, we let L̃ = {l̃i,j} and Z̃ = {z̃i,j} denote incomplete factors such that

Z̃TCZ̃ ≈ I, I ≈ L̃T Z̃. (2.3)

These incomplete factors may be used as preconditioners for the conjugate gradient (CG) method.

Two different types of preconditioner can be obtained by carrying out the C-orthogonalization process

incompletely. The first approach drops small entries from the computed vectors as the C-orthogonalization

proceeds, that is, after line 11 of Algorithm 2.1 entries that are smaller in absolute value than some chosen

drop tolerance are discarded. Alternatively, a relative drop tolerance can be used. Whatever dropping

strategy is used, the result is an incomplete inverse factorization of the form

C−1 ≈ Z̃Z̃T .

This is a factored sparse approximate inverse and is known as the stabilized approximate inverse (SAINV)

preconditioner. The diagonal entries are positive and so the preconditioner is guaranteed to be positive

definite.

The second approach (the RIF preconditioner) is obtained by saving the multipliers l̃i,j and discarding

the computed sparsified column z̃i of Z̃ as soon as it has been used to form the corresponding parts of the

incomplete factor L̃ of C, that is, after line 14 of Algorithm 2.1. This gives an algorithm for computing

an incomplete Cholesky factorization

C ≈ L̃L̃T .

Again, the preconditioner is guaranteed to be positive definite. Benzi and Tůma [9] report that, for LS

problems, the RIF preconditioner is generally more effective at reducing the number of CG iterations than

the SAINV preconditioner and thus it is the one we consider.

2.2. Implementing left- and right-looking approaches. We now consider the basic data

structures and techniques used to implement the left- and right-looking approaches. The left-looking

algorithm (Algorithm 2.1) computes the (sparse) columns of Z one-by-one. This requires knowledge of

which indices j give nonzero C-inner products lk,j ; this is discussed in Sections 2.3 and 2.4 below. The

columnwise computation allows an approximation Z̃ to be computed by limiting the number of nonzeros

that are retained in each column or by discarding entries with respect to a drop tolerance. To compute

the lk,j , C is accessed by columns. Note that the AINV variant requires a single column at a time. The

actual computation of lk,j is straightforward and is based on standard sparse matrix-vector products and

sparse dot products. These multipliers form the RIF factor stored by rows.

For the right-looking algorithm (Algorithm 2.2), determining the nonzero lk,j in the loop starting at

line 7 is straightforward. Even in the most involved MGS variant, it reduces to a sparse product of the

vector zk with the matrix C. The result is then compared with the matrix whose columns comprise the

vectors z
(k−1)
j for j = k + 1 to n. For efficiency, this matrix needs to be held as a sparse matrix. The

amount of fill-in is typically modest and the sparse rank-one updates can often be fast. But a data structure

that allows fast dynamic operations is needed. The Benzi and Tůma right-looking implementation [8, 9]

employs the data structure described in [36, 41] (and which is used in the early sparse direct solvers MA28

[17] and Y12M [41]). While developments in sparse matrix technologies (see, for example, [18, 24]), as well

as the advent of block methods, means that such dynamic schemes have long been superseded in sparse

direct solver software, the same is not true for incomplete factorization algorithms. This is at least partly

because their significantly smaller memory demands keep right-looking schemes viable. At the start of the

computation, three arrays are allocated. The compressed row indices, column indices and matrix values in

individual columns are held as sections within in these arrays with some additional space. This is gradually

filled and, at each step j of the factorization, for each array the memory used is recorded to be the first

unused entry in the array plus the size of the j computed columns of the lower triangular factor. At some

step, the size an array may be found to be insufficient. In this case, it is reallocated to be larger and the

5



data in the old array that is still required (which may have become fragmented) is copied to the front of

the new array and the memory pointer reset; this is reflected by a sharp drop in the reported memory.

This reallocation process may need to be repeated several times as the memory required is not known a

priori. Note there are no drops in the memory usage as the factorization proceeds if the originally array is

sufficiently large but because of fragmentation, using such a large array will result in more memory being

used than is necessary.

2.3. Existing strategies for exploiting sparsity. The practical success of solvers based on

factorizing large sparse matrices crucially depends on exploiting sparsity. Over the last forty or more

years, many sophisticated techniques have been developed for sparse direct solvers. For incomplete

factorizations, far less has been done. This is at least partially because of the relative simplicity of

many incomplete factorization schemes. However, the RIF approach is not straightforward to implement

and the computational schemes in the original papers [5, 6, 8] do not discuss the exploitation of sparsity

in depth.

To take advantage of sparsity in the left-looking approach, we first observe that the inner products at

line 5, 7 and 9 of Algorithm 2.1 involve matrix-vector products and, if C is sparse, most of these inner

products are zero and so the corresponding update operation at line 11 of Algorithm 2.1 can be skipped.

The most crucial step from the point of view of exploiting sparsity is thus the determination of which

inner products are nonzero. Once known, it is straightforward to use sparsity in the other steps of the

algorithm.

In an early left-looking implementation of Algorithm 2.1, determining the nonzero inner products was

interleaved with the actual numerical updates and was based on an efficient search of columns of C. For

least squares problems, C may not be available explicitly and, in this case, such searching is unacceptably

slow. Consequently, a right-looking approach was used by Benzi and Tůma [9] but, as already observed,

this has the major disadvantage of not being memory-limited. Thus we want to develop a left-looking

limited memory approach that is able to exploit sparsity when C is stored implicitly.

There are two basic graph-based strategies to determine the nonzero inner products in Algorithm 2.1

(with no dropping). The most straightforward (which we will call Strategy I) is based on the sparsity

pattern of Z, which is known theoretically. The following result was shown in [7, 12] (and is a consequence

of [22]).

Lemma 2.1. Assume there is no cancellation in the factorization process. Then zk,j 6= 0 if and only

if j is an ancestor of k in the elimination tree of C. Consequently, for each k, the sparsity pattern

of column zk can be found using the elimination tree. Once the pattern is known, which inner products

should be evaluated can be determined; that is, the required inner products are flagged by a search through

a submatrix of C that is determined by the symbolic structure of zk. A bound on the complexity of the

corresponding symbolic procedure for the mixed Gram-Schmidt method (AINV), for example, is given by

the following straightforward result.

Lemma 2.2. For Strategy I and a given k ≥ 2, the complexity to determine all indices j, j < k of

the AINV nonzero inner products at line 9 of Algorithm 2.1 is bounded by O(nnz(
∑

{j|j∈anc(k)} C1:k−1,j),

where j ∈ anc(k) denotes j is an ancestor of k in the elimination tree of C. However, Strategy I has a

serious flaw: it typically results in many more inner products being evaluated than is necessary, even in

exact arithmetic. This is illustrated by Bridson and Tang [13]. The reason for this over determination is

that the structure of zk is just the final structure of z
(k−1)
k and this is generally a superset of the patterns

that are considered in the minor steps of the algorithm. Therefore, many of the inner products determined

using Strategy I will still be zero.

A significant enhancement can be achieved by using the relation between L and Z given in [28] and

which has been considered in [13]; we will refer to it here as Strategy II. It is based on the fact that the

inner products used to update column z
(j−1)
k are the entries of the kth row of L. Assuming no dropping,

we can formulate this observation in terms of the elimination tree and its row subtrees [34], which can be

cheaply computed on-the-fly.

Lemma 2.3. The inner product 〈z(j−1)
k , zj〉C ≡ 〈z(j−1)

k , ej〉C is nonzero if and only if j belongs to the

6



kth row subtree Tr(k) of the elimination tree of L. Based on this characterization, we have the following

complexity result for the AINV Gram-Schmidt process (but note that, in the case of exact arithmetic, the

MGS, CGS and AINV variants are equivalent).

Lemma 2.4. Suppose there is no cancellation in the factorization process. Then for a given k ≥ 2, the

complexity to determine all indices j < k of the AINV nonzero inner products at line 9 of Algorithm 2.1

is bounded by O(nnz(
∑

{j|j∈Tr(k)}
C1:k−1,j).

2.4. Exploiting sparsity for implicit C and incomplete factorizations. If dropping is used

(incomplete factorization), the row subtrees are no longer useful and we need an alternative approach.

Consider the following approximate bordering scheme for a symmetric positive definite matrix Ck−1 that

is extended symmetrically by appending one row and column ck:

(

Ck−1 ck
cTk γk

)

≈
(

L̃k−1

l̃Tk λ̃k

)(

L̃T
k−1 l̃k

λ̃k

)

. (2.4)

The off diagonal entries l̃k of the new column of L̃T satisfy l̃k = L̃−1
k−1ck. To obtain the sparsity pattern of

l̃k, recall the following lemma of Gilbert [22] that holds for any triangular matrix (and thus in particular

for the incomplete factor L̃k−1).

Lemma 2.5. The sparsity structure of l̃k is equal to the subset of vertices of the directed acyclic graph

of L̃k−1 that is reachable by directed paths from the nonzeros of ck (that is, Reachk−1(Struct(ck))).

Employing this result in Algorithm 2.1, the sparsity pattern of row k of L̃ determines the nonzero

inner products that should be evaluated by the Gram-Schmidt process and used to obtain the numerical

values of the entries in the row. There are two main problems connected with this but, as we now show,

they can both be overcome. First, we do not have the directed acyclic graph dag(L̃) readily available

since Algorithm 2.1 computes L̃ by rows but the efficient computation of the pattern of L̃ needs access by

columns. To deal with this, dag(L̃) is computed on-the-fly. Note that in the case of a complete factorization

this is unnecessary since the elimination tree is available and no other graph structure is needed. Second,

dag(L̃) may have more edges than are needed to generate the row structure. The graph with the smallest

number of entries needed to generate the row structure is the transitive reduction [1] and for a dag it

is unique. In general, finding the transitive reduction is expensive; instead, a cheap preprocessing called

pruning is used. Pruning aims to remove edges that are both cheap to find and are redundant in preserving

the set of paths in dag(L̃). We note that a similar mechanism for pruning based on structural symmetry

in LU factorizations was proposed by Eisenstat and Liu [21].

The first simple pruning approach that we consider is based on the following lemma.

Lemma 2.6. Let L̃ be a lower triangular matrix with graph dag(L̃). Assume that for some i < j < k,

l̃k,i 6= 0 and l̃k,j 6= 0, l̃j,i 6= 0. Then the set of paths in dag(L̃) stays the same if l̃k,i is set to 0.

Proof. Because of the edges (k, j) and (j, i), we have the path k ⇒ i and so the edge (k, i) can be

pruned. Figure 2.1 gives a illustration of Lemma 2.6. Its assumptions imply the edge (i, k) can be pruned

from the dag.

i
j k

Fig. 2.1. Simple illustration of Lemma 2.6. The edge (i, k) can be pruned.

Algorithm 2.3 applies the test in Lemma 2.6 successively to vertices of dag(L̃) to get the pruned dagp(L̃).

The algorithm is illustrated using the example given in Figure 2.2.

7



Algorithm 2.3. Simple pruning algorithm.

Input: Lower triangular matrix L̃ ∈ Rn×n.

Output: Pruned graph dagp(L̃) with vertex set V and edge set E.

1. Set V = {1}, E = ∅
2. Set PREV (1 : n) = i

3. for k = 2 : n

4. Set V = V ∪ {k}
5. Obtain the sparsity structure Jk = {j1, . . . , jp} of L̃k,1:k−1 with 1 ≤ j1 < . . . < jp ≤ k − 1

6. Set E′ = {(k, j1)} ∪ . . . ∪ {(k, jp)}
7. for i = 1 : p

8. if PREV (ji) = i or (k, PREV (ji)) 6∈ E′ then

9. Set E = E ∪ {(k, ji)}
10. PREV (ji) = k

11. end if

12. end for

13. end for































∗
∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗





























































∗
∗
∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗

∗ ∗
∗ ∗ ∗

∗ ∗ ∗































Fig. 2.2. The structure of L̃ is on the left and the matrix corresponding to the pruned graph dagp(L̃) is on the right.

It is easy to see that the complexity of Algorithm 2.3 is linear, that is, its iteration count is of the order

O(nnz(L̃)). However, in some cases it is not able to prune dag(L̃) sufficiently. Consider a lower bidiagonal

matrix that has additional nonzero entries at positions (i, j) such that i = 2 ∗ l, j = 1, . . . , (i − 4)/2 for

l = 2, . . . , pn/2q. This sparsity pattern with n = 9 is depicted in Figure 2.3. The number of edges in the

corresponding dag is of the order n2. For this example, Algorithm 2.3 does not prune any edges. This

suggests we need a more powerful approach to pruning. For each index ji ∈ Jk, the simple approach used

by Algorithm 2.3 applies a test based on just one nonzero (line 8). It seems reasonable to do more searches,

provided the number of tests is limited. A straightforward approach is presented in the Algorithm 2.4.

8

































∗
∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗

∗ ∗ ∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗































Fig. 2.3. The structure of a matrix L̃ that Algorithm 2.3 is unable to prune.

Algorithm 2.4. More powerful pruning algorithm.

Input: Lower triangular matrix L̃ ∈ Rn×n.

Output: Pruned graph dagp(L̃) with vertex set V and edge set E.

1. Set V = {1}, E = ∅
3. for k = 2 : n

4. Set V = V ∪ {k}
5. Obtain the sparsity structure Jk = {j1, . . . , jp} of L̃k,1:k−1 with 1 ≤ j1 < . . . < jp ≤ k − 1

7. for i = 1 : p

8. Set found = false

15. for kk such that {(kk, ji)} ∈ E in the increasing order

16. if (k, kk) ∈ E then

17. Set found =true

18. end if

19. end for

20. if found = false

21. Set E = E ∪ {(k, ji)}
23. end if

24. end for

25. end for

It is straightforward to see that after applying Algorithm 2.4 to the lower triangular matrix given

Figure 2.3, dagp(L̃) has O(n) nonzero entries but that it is still not transitively reduced since the worst

case complexity of this reduction based on the appropriate reachability sets is in general O(n2). The

following result describes the complexity of Algorithm 2.4.

Lemma 2.7. Assume that the number of nonzero entries in each column of L̃ or in each row of L̃ is

bounded by lsize. Then the number of comparisons in Algorithm 2.4 is bounded by O(n.lsize2).

Proof. The comparisons in the algorithm imply that for each nonzero entry l̃i,j, all other row indices

ik such that lik,j 6= 0 and j < ik < i should be tested. If each column of L̃ has at most lsize entries then

nnz(L̃) ≤ n.lsize and for each entry at most lsize comparisons are performed. If each row of L̃ has at

most lsize entries then for each of its n rows we need to compare only entries in those rows that correspond

to its nonzero entries. The maximum number of such rows is lsize and the result follows.

Note that the above bound is asymptotically the same as the number of operations needed by the

exact Cholesky factorization with the same upper bound for the number of entries in its columns. Our

case of the incomplete factorization based on inner products and different data structures is not exactly

comparable but it is clear that the complexity of pruning specified in Lemma 2.7 is affordable. Further

9



additional dropping in L̃ based on the magnitudes of the computed inner products can be applied, typically

for each k once the structure of column l̃Tk has been computed.

3. Implicit left-looking RIF for LS problems. While the previous section looked at exploiting

sparsity in the left-looking RIF algorithm for general symmetric positive matrices, here we focus on its

application to the solution of LS problems. In Algorithm 3.1, we present an outline of our implicit left-

looking RIF algorithm for LS problems that avoids computing the normal matrix C = ATA explicitly.

Algorithm 3.1 includes scaling and the optional use of a nonzero shift α so that the RIF factorization of

S(C + αI)S is computed where the diagonal matrix S is an n× n column scaling matrix.

Algorithm 3.1. Left-looking RIF algorithm for LS with C = ATA held implicitly.

Input: A ∈ Rm×n with full column rank, a shift α ≥ 0, and drop tolerance τ > 0.

Output: Incomplete RIF factor L̃ (stored by rows).

1. Compute a column scaling S and scale: A← AS

2. Set L̃1,: = (1 + α)
√

aT1 a1
3. Set z1 = e1
4. for k = 2 : n do

5. Set z
(0)
k = ek

6. Let ck = ATA1:k−1,k

7. Compute the sparsity structure Jk of L̃−1
k−1ck as Reachk−1(Struct(ck)).

8. Prune Jk using Algorithm 2.3 or 2.4 to get Jk = {j1 < . . . < jp} with p ≤ k − 1; set j0 = 0

9. for s = 1 : p do

10. j = js
11. if MGS

12. Set vj = zj and uk = z
(js−1)
k

13. else if CGS

14. Set vj = ej and uk = z
(0)
k

15. else if AINV

16. Set vj = ej and uk = z
(js−1)
k

17. end if

18. Compute pj = Avj, qk = Auk and, if α > 0, βk = vTj S
2uk

19. if pTj qk + αβk > τ do

20. Set l̃k,j = pTj qk + αβk

21. Set z
(j)
k = z

(js−1)
k − l̃k,jzj

22. Discard all components of z
(j)
k less than τ in absolute value

23. end if

24. end do

25. Set l̃k,k =

√

(Az
(jp)
k )T (Az

(jp)
k )

26. Set zk = z
(jp)
k /l̃k,k

27. end do

10



Observe that since the algorithm treats C = ATA implicitly, the shift is performed within the main

loop and the scaling is applied to the shifted entries. In some applications in optimization, such as the

Levenberg-Marquardt method for solving nonlinear least squares, a non-zero shift is used (see, e.g., [16]).

However, if α = 0, the algorithm to compute the RIF factorization can be significantly accelerated, as we

state in the following proposition.

Proposition 3.1. If the shift α is equal to zero then the computed vj do not need to be stored. Instead,

if vj = zj (MGS variant,) the matrix-vector products pj = Avj can be precomputed and stored (that is,

once zk is computed at line 23, Azk may be computed and stored). Note that the case vj = ej (CGS and

AINV variants) trivially uses a column of A, that is, pj = aj.

4. Numerical experiments.

4.1. Test environment. Most of the test problems used in our experiments are taken from the

University of Florida Sparse Matrix Collection [15]. The exceptions are a Laplacian test example, problem

IPROB (which is part of the CUTEst linear programme set [25]), and problem PIGS large1 from a pig

breeding application (see [3] for details). In our experiments on symmetric positive definite linear systems

Cx = b, the right-hand side vector b is computed so that the exact solution is x = 1, and the stopping

criteria used for preconditioned conjugate gradients (PCG) is

‖Cx− b‖2 ≤ 10−6‖b‖2. (4.1)

We define the density ratio of the computed incomplete factor L̃ to be

ρ = nnz(L̃)/nnz(C).

For the least squares tests, we use preconditioned conjugate gradients for the normal equations

(CGNE). We employ the following stopping rules that are taken from [26]:

C1: Stop if ‖r‖2 < δ1
C2: Stop if

‖AT r‖2
‖r‖2

<
‖AT r0‖2
‖r0‖2

∗ δ2,

where r = Ax− b is the residual, r0 is the initial residual and δ1 and δ2 are convergence tolerances that we

set to 10−8 and 10−6, respectively. In all our experiments, we take the initial solution guess to be x0 = 0

and in this case C2 reduces to

‖AT r‖2
‖r‖2

<
‖AT b‖2
‖b‖2

∗ δ2.

We define the density ratio of the computed incomplete factor L̃ to be

ρ = nnz(L̃)/nnz(A).

All the reported experiments use with the MGS variant of the left- and right-looking RIF algorithms.

The experiments were performed on an Intel(R) Core(TM) i5-4590 CPU running at 3.30 GHz with 12 GB

of internal memory. The codes were written in Fortran and the Visual Fortran Intel(R) 64 XE compiler

(version 14.0.3.202) was used.

4.2. The case for pruning. Our first experiment, which we report on in Figure 4.1, demonstrates

the need for pruning. Results are given for two examples: a two dimensional Laplacian matrix of dimension

25, 00 and problem Pothen/bodyy4 (n = 17, 546, nnz(C) = 121, 550). In each case, we repeatedly increase

the density ratio ρ by decreasing the drop tolerance τ used in the incomplete factorization (30 different

tolerances are used for the Laplacian and 11 for Pothen/bodyy4). We see that Algorithm 2.3 is highly

effective in limiting the growth in the number of edges in dagp(L̃) but that some further reductions are

possible using the more sophisticated Algorithm 2.4, particularly as the number of entries in L̃ increases.

Note that we get exactly the same preconditioner (that is, the same non zero entries) with pruning as

without pruning.

11



0 5 10 15 20 25 30
0

2

4

6

8

10

12

14
x 10

4
si

ze
 o

f t
he

 p
re

co
nd

iti
on

er
 d

ag

decreasing drop tolerance

 

 
 full dag
 pruned dag: Alg. 2.3
 pruned dag: Alg. 2.4

1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3
x 10

4

si
ze

 o
f t

he
 p

re
co

nd
iti

on
er

 d
ag

decreasing drop tolerance

 

 
 full dag
 pruned dag: Alg. 2.3
 pruned dag: Alg. 2.4

Fig. 4.1. Effect of the two pruning approaches (Algorithms 2.3 and 2.4) on the two dimensional Laplacian matrix (left)

and on matrix Pothen/bodyy4 (right). We depict here the dependence of the number of edges in the auxiliary dag on the

drop tolerance.

4.3. Memory management for left- and right-looking approaches. Our second experiment is

designed to demonstrate the principal differences in the memory management of the left- and right-looking

approaches. Figure 4.2 depicts the reported memory for three preconditioners of different densities for

problem Nasa/nasa1824 (n = 1, 824, nnz(C) = 39, 208). The density ratios are ρ = 1.2, 1.6 and 2.8,

respectively. The PCG iteration counts are 26, 18 and 8, respectively. For the right-looking code, the

reported memory is as described in Section 2.2. For the left-looking code, it is the size of the approximate

inverse factor Z̃ plus that of the preconditioner L̃. We can see that as the density increases, the influence

of the memory to store Z̃ becomes more significant. But, in general, in our experience this occurs when

the preconditioner is too large to be practical.

Similar results for problems Nasa/nassarb and GHS psdef/hood are given in Figures 4.3 and 4.4,

respectively. For Nasa/nassarb, ρ increases from approximately 5 to nearly 50 and the PCG iteration

count decreases from 194 to 43. For GHS psdef/hood, the densities are 0.5 and 1.5 and the corresponding

PCG iteration counts are 224 and 51. GHS psdef/hood illustrates large but not atypical differences between

the right- and left-looking memory demands.

4.4. Least-squares problems. We now explore some differences between the left- and right-looking

approaches when used for solving the normal equations (1.2). Our first example is a small square matrix

IPROB of order n = 3001. For this example, ATA is dense, with nnz(ATA) ≈ 9 × 106. The RIF

preconditioner is of size nnz(L̃) ≈ 2.5× 106 and nnz(Z̃) ≈ 8.6× 104; three CGNE iterations are required

for convergence. The plot on the left in Figure 4.5 shows that both the left- and right-looking algorithms

have similar memory requirements if the size of A is not taken into account. However, in the plot on

the right we include the size of ATA for the left-looking approach and of A and AT for the right-looking

approach (A must be held by both rows and columns) and we now see that the explicit computation of

the normal matrix ATA can result in an unacceptable overhead for the left-looking algorithm.

In many applications, m is significantly larger than n and consequently nnz(ATA) can be smaller

than nnz(A) + nnz(AT ). For problem LPnetlib/lp osa 30 (m = 104, 374, n = 4, 350 and nnz(A) =

604, 488), Figure 4.6 shows the RIF memory requirements for a sparse preconditioner (here the density

ratio ρ is approximately 0.5). The corresponding comparison for an increased density ratio of 0.8 is given

in Figure 4.7. Note the sudden drops in the memory for the right-looking approach indicates memory

reallocations are now needed; on each reallocation the size of the array used is doubled. We also observe

that for this example the factors fill in significantly towards the end of the factorization resulting in a

12



0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

12

14

16
x 10

4
m

em
or

y

factorization step

 

 
 right−looking
 left−looking

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

3
x 10

5

m
em

or
y

factorization step

 

 
 right−looking
 left−looking

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7
x 10

5

m
em

or
y

factorization step

 

 
 right−looking
 left−looking

Fig. 4.2. Memory comparison for the left- and right-looking RIF approaches for Nasa/nasa1824 for three different

density ratios.

sudden increase in the memory for the left-looking RIF where the memory is dominated by L̃ (for the

right-looking approach the total memory dominates that of L̃ so the increase from the fill in is not seen).

In Figure 4.8, we plot memory usage for problem Yoshiyasu/mesh deform (m = 234, 023, n = 9393 and

nnz(A) = 853, 829); the density ratio is approximately 4. Again, for this example with m ≫ n, the

left-looking approach is considerably more memory efficient than the right-looking one.

4.5. Explicit versus implicit left-looking approaches. We next consider the differences between

the left-looking algorithm that explicitly forms the normal matrix C = ATA and the new implicit dag-based

variant that avoids forming C. Note that both result in preconditioners of a similar quality and lead to

essentially the same CGNE iteration counts. In some practical applications it may not be possible to form

C, in which case the only computational possibility with limited memory is the dag-based approach. But

this is also the method of choice if nnz(ATA)≫ nz(A), as is illustrated in Table 4.1 by our reported results

for problems IPROB and Bydder/mri2. Note that for these examples, pruning (using Algorithm 2.4) leads

to a significant reduction in the number of edges in the dag. However, if C can be formed and stored and

is sufficiently sparse, the explicit algorithm can be much faster than the implicit one. This happens, in

particular, if L̃ is not very sparse. This is demonstrated by problems PIGS large1 and LPnetlib/lp ken 18.

But note that the experiments for LPnetlib/lp osa30 show that even with relatively sparseATA the implicit

13



0 1 2 3 4 5 6

x 10
4

0

1

2

3

4

5

6

7

8

9

10
x 10

6
m

em
or

y

factorization step

 

 
 right−looking
 left−looking

0 1 2 3 4 5 6

x 10
4

0

2

4

6

8

10

12

14

16

18
x 10

6

m
em

or
y

factorization step

 

 
 right−looking
 left−looking

0 1 2 3 4 5 6

x 10
4

0

1

2

3

4

5

6

7
x 10

7

m
em

or
y

factorization step

 

 
 right−looking
 left−looking

Fig. 4.3. Memory comparison for the left- and right-looking RIF approaches for problem Nasa/nasasrb for three

different density ratios.

algorithm is asymptotically better. If L̃ is made denser by using a larger drop tolerance then the situation

is more complicated. While the cost of the implicit algorithm increases because of the dag searches, the

explicit version suffers from the dense L̃ as well since it is involved in the searches for nonzero dot products.

The final three problems in Table 4.1 are known to be challenging (see [26]) and for these relaxed stopping

tolerances δ1 = 10−5 and δ2 = 10−3 are used together with a shift α = 0.1 ∗ ‖(ATA)‖F .
While the results for example LPnetlib/lp osa30 in Table 4.1 illustrate that the implicit algorithm can

be faster than the explicit one, this is dependent on the preconditioner size. This can be seen in Figure 4.9

(left-hand plot). As the density ratio ρ increases, the time for the implicit approach also increases and

eventually it is slower than using the explicitly computed C. For problem Kemelmacher/Kemelmacher

the findings are different (right-hand plot in Figure 4.9). We see here that as ρ increases, the explicitly

computed C does not prevent the computational time from steadily increasing. Thus, summarizing our

experience, we conclude that both the explicit and implicit algorithms can be useful and even when C

is available, deciding which approach will be the computationally most efficient is not a clear choice.

Construction of the preconditioner using the auxiliary dag can be considered as a way to a parallel

implementation since the implicit algorithm enables the classical generalized Gram-Schmidt algorithm

to be used to compute the factor Z̃. This offers the potential to significantly enhance the exploitation of

14



0 0.5 1 1.5 2 2.5

x 10
5

0

5

10

15
x 10

6
m

em
or

y

factorization step

 

 
 right−looking
 left−looking

0 0.5 1 1.5 2 2.5

x 10
5

0

1

2

3

4

5

6
x 10

7

m
em

or
y

factorization step

 

 
 right−looking
 left−looking

Fig. 4.4. Memory comparison for the left- and right-looking RIF approaches for GHS psdef/hood for two different

density ratios.

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3
x 10

6

m
em

or
y

factorization step

 

 
 right−looking
 left−looking

0 500 1000 1500 2000 2500 3000
0

2

4

6

8

10

12
x 10

6
m

em
or

y

factorization step

 

 
 right−looking
 left−looking

Fig. 4.5. Memory comparison for the left- and right-looking RIF approaches for problem IPROB for which the normal

equations ATA are dense. The plot on the left does not take into account the memory for input matrix A. The plot on the

right adds to the explicit left-looking approach the size of ATA and adds nnz(A) + nnz(AT ) to the right-looking approach.

parallelism, but a more detailed discussion lies outside the scope of the current study.

5. Concluding remarks. In this paper, we have proposed a new left-looking variant of the RIF

approach for computing an incomplete LLT factorization of a sparse positive-definite matrix and, in

particular, the normal equations matrix C = ATA. The practical success of solvers for the solution of

large sparse problems crucially depends on the efficient and effective exploitation of sparsity. In the case

of direct methods, the importance of sparsity is well understood and, over many years, sophisticated

techniques have been developed to take advantage of sparsity throughout the factorization. Much less

has been done for incomplete factorizations. While this may partly be because of the relative simplicity

of many such algorithms, this is definitely not the case for sophisticated schemes such as RIF that need

complicated data structures and combine techniques from Gaussian elimination and orthogonalization. For

the left-looking RIF algorithm, we have introduced a global symbolic preprocessing step that constructs a

15



0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.5

1

1.5

2

2.5

3
x 10

5
m

em
or

y

factorization step

 

 
 right−looking
 left−looking

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

6

m
em

or
y

factorization step

 

 
 right−looking
 left−looking

Fig. 4.6. Memory comparison for the left- and right-looking RIF approaches applied to the normal equations for problem

LPnetlib/lp osa 30 with ρ = 0.5. The plot on the left does not take into account the input matrix A. The plot on the right

adds to the explicit left-looking approach the size of ATA and adds to the right-looking approach the sizes of A and AT .

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

1

2

3

4

5

6

7

8
x 10

5

m
em

or
y

factorization step

 

 
 right−looking
 left−looking

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6

m
em

or
y

factorization step

 

 
 right−looking
 left−looking

Fig. 4.7. Memory comparison for the left- and right-looking RIF approaches applied to the normal equations for problem

LPnetlib/lp osa 30 with ρ = 0.8. The plot on the left does not take into account the input matrix A. The plot on the right

adds to the explicit left-looking approach the size of ATA and adds to the right-looking approach the sizes of A and AT .

directed acyclic graph dag(L̃) that determines the sparsity pattern of the preconditioner factor L̃, without

the need to explicitly construct the matrix C. An efficient pruning algorithm has been proposed to limit

the number of edges in dag(L̃). Numerical experiments have shown this pruning algorithm to be highly

effective.

A fundamental difference between the left- and right-looking RIF approaches is their memory

management. For the latter, the memory required is not known a priori and so it can be necessary

to increase the memory available during the factorization and this reallocation may have to be done more

than once. Our results have illustrated that, for linear systems, which approach is most memory efficient

is not only problem dependent but also depends on the density of the computed L̃ (that is, on the choice

of the dropping parameter). For least squares problems, we additionally need to take into account the

number of entries in A and AT or, in the case of the explicit left-looking algorithm, the number of entries

16



0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5
m

em
or

y

factorization step

 

 
 right−looking
 left−looking

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

2

2.5
x 10

6

m
em

or
y

factorization step

 

 
 right−looking
 left−looking

Fig. 4.8. Memory comparison for the left- and right-looking RIF approaches applied to the normal equations for problem

Yoshiyasu/mesh deform with ρ = 4. The plot on the left does not take into account the input matrix A. The plot on the

right adds to the explicit left-looking approach the size of ATA and adds to the right-looking approach the sizes of A and

AT .

Table 4.1

A comparison of the explicit and implicit left-looking RIF approaches when used to precondition CGNE. Time is the

time (in seconds) to compute the preconditioner; Iters is the number of CGNE iterations; size p denotes the number of edges

in the dag, and before and after indicate before and after pruning. ∗ denotes stopping tolerances δ1 = 10−5 and δ2 = 10−3

are used together with a shift α = 0.1 ∗ ‖(ATA)‖F .

Explicit Implicit

Identifier nnz(A) nnz(ATA) Time size p Time size p Iters

before after

Pereyra/landmark 1151232 120,234 0.22 25,858 2.62 25,867 7,836 50

PIGS large1 75,018 128,798 0.08 48,307 0.42 48,307 39,395 94

LPnetlib/lp ken 18 358,171 609,271 3.02 399,026 1.46 410,372 297,614 103

LPnetlib/lp osa30 604,488 436,738 11.5 220,537 14.8 220,537 104,601 155

JGD Groebner/f855 mat9∗ 171,214 4,485,478 33.3 2,220,736 6.03 2,234,595 19,990 799

JGD Groebner/c8 mat11∗ 2,462,970 16,899,062 277. 7,896,493 146. 8,137,794 46,427 961

Bydder/mri2∗ 569,160 31,335,808 569. 7,415,074 129. 10,318,767 164,171 671

in C. We have found that the performances of the different variants can be vary significantly but for a

given problem, without some prior knowledge of the problem and its characteristics, it is not obvious which

approach will be most efficient. Clearly, if a series of similar problems must be solved and it is possible to

construct and store C, it may be worthwhile to try both the explicit and implicit approaches and select

the most efficient. If it is not possible to explicitly compute C, then the new implicit variant offers a viable

alternative.

While this study was carried out with prototype codes, in the future we plan to develop library-quality

implementations that will be made available as part of the HSL software library [29]. We anticipate that

these implementations will include options for ordering and scaling of the problem, which can potentially

significantly enhance the performance.

REFERENCES

[1] A. V. Aho, M. R Garey, and J. D. Ullman. The transitive reduction of a directed graph. SIAM J. on Computing,

1:131–137, 1972.

17



2.195 2.2 2.205 2.21 2.215 2.22 2.225 2.23

x 10
5

0

20

40

60

80

100

120

140

160

180

200
tim

e 
to

 c
om

pu
te

 p
re

co
nd

iti
on

er
 (

in
 s

ec
on

ds
)

preconditioner size

 

 
 implicit left−looking RIF
 explicit left−looking RIF

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0

50

100

150

200

250

300

tim
e 

to
 c

om
pu

te
 p

re
co

nd
iti

on
er

 (
in

 s
ec

on
ds

)

preconditioner size

 

 
 implicit left−looking RIF
 explicit left−looking RIF

Fig. 4.9. Dependence of the time to compute the explicit and implicit left-looking RIF on the size of the preconditioner

L̃ for problems LPnetlib/lp osa30 (left) and Kemelmacher/Kemelmacher (right).

[2] M. Arioli and I. S. Duff. Preconditioning linear least-sqaures problems by identifying a basis matrix. SIAM J. on

Scientific Computing, 37:S544–S561, 2015.

[3] M. Arioli and I. S. Duff. Preconditioning of linear least-squares problems by identifying a basic matrix. SIAM J. on

Scientific Computing, 37, 2015.

[4] C. Benoit. Note sur une méthode de résolution des équations normales provenant de l’application de la méthode des

moindres carrés a un systeme d’équations linéaires en nombre inférieur a celui des inconnues. application de la

méthode a la résolution d’un systeme défini d’équations linéaires. Bulletin Géodésique, 2:5–77, 1924.

[5] M. Benzi, J. K. Cullum, and M. Tůma. Robust approximate inverse preconditioning for the conjugate gradient method.

SIAM J. on Scientific Computing, 22(4):1318–1332, 2000.

[6] M. Benzi, C. D. Meyer, and M. Tůma. A sparse approximate inverse preconditioner for the conjugate gradient method.

SIAM J. on Scientific Computing, 17(5):1135–1149, 1996.

[7] M. Benzi and M. Tůma. Orderings for factorized sparse approximate inverse preconditioners. SIAM J. on Scientific

Computing, 21(5):1851–1868, 2000.

[8] M. Benzi and M. Tůma. A robust incomplete factorization preconditioner for positive definite matrices. Numerical

Linear Algebra with Applications, 10(5-6):385–400, 2003.

[9] M. Benzi and M. Tůma. A robust preconditioner with low memory requirements for large sparse least squares problems.

SIAM J. on Scientific Computing, 25(2):499–512, 2003.

[10] Å. Björck. Numerical methods for Least Squares Problems. SIAM, Philadelphia, 1996.

[11] A. Björck and J. Y. Yuan. Preconditioners for least squares problems by LU factorization. Electronic Transactions on

Numerical Analysis, 8:26–35, 1999.

[12] R. Bridson and W.-P. Tang. Ordering, anisotropy, and factored sparse approximate inverses. SIAM J. on Scientific

Computing, 21(3):867–882, 1999.

[13] R. Bridson and W.-P. Tang. Refining an approximate inverse. J. of Computational and Applied Mathematics, 123:293–

306, 2000.

[14] R. Bru, J. Maŕın, J. Mas, and M. Tůma. Preconditioned iterative methods for solving linear least squares problems.

SIAM J. on Scientific Computing, 36(4):A2002–A2022, 2014.

[15] T. A. Davis and Y. Hu. The University of Florida sparse matrix collection. ACM Transactions on Mathematical

Software, 38(1):1–28, 2011.

[16] J. E. Dennis, Jr. and Robert B. Schnabel. Numerical methods for unconstrained optimization and nonlinear

equations, volume 16 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM),

Philadelphia, PA, 1996. Corrected reprint of the 1983 original.

[17] I. S. Duff. MA28–a set of Fortran subroutines for sparse unsymmetric linear equations. Harwell Report, UK AERE-

R.8730, Harwell Laboratories, 1980.

[18] I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric linear equations. ACM Transactions

on Mathematical Software, 9(3):302–325, 1983.

[19] S. Eisenstat and J.-W. H. Liu. The theory of elimination trees for sparse unsymmetric matrices. SIAM J. on Matrix

Analysis and Applications, 26(3):686–705, 2005.

18



[20] S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman. The Yale Sparse Matrix Package (YSMP) – I : The

symmetric codes. International J. of Numerical Methods in Engineering, 18:1145–1151, 1982.

[21] S. C. Eisenstat and J.-W. H. Liu. Exploiting structural symmetry in unsymmetric sparse symbolic factorization. SIAM

J. Matrix Anal. Appl., 13(1):202–211, 1992.

[22] J. R. Gilbert. Predicting structure in sparse matrix computations. SIAM J. on Matrix Analysis and Applications,

15:62–79, 1994.

[23] J. R. Gilbert and J. W. H. Liu. Elimination structures for unsymmetric sparse lu factors. SIAM J. on Matrix Analysis

and Applications, 14:334–352, 1993.

[24] J. R. Gilbert and T. Peierls. Sparse partial pivoting in time proportional to arithmetic operations. SIAM J. on Scientific

and Statistical Computing, 9:862–874, 1988.

[25] N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEst: a constrained and unconstrained testing environment with safe

threads for mathematical optimization. Computational Optimization and Applications, 60:545–557, 2015.

[26] N. I. M. Gould and J. A. Scott. The state-of-the-art of preconditioners for sparse linear least squares problems. Technical

Report RAL-P-2015-010, Rutherford Appleton Laboratory, 2015.

[27] N. I. M. Gould and J. A. Scott. The state-of-the-art of preconditioners for sparse linear least squares problems: the

complete results. Technical Report RAL-TR-2015-009, Rutherford Appleton Laboratory, 2015.

[28] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. J. of Research of the National

Bureau of Standards, 49:409–435, 1952.

[29] HSL. A collection of Fortran codes for large-scale scientific computation, 2013. http://www.hsl.rl.ac.uk.

[30] A. Jennings and M. A. Ajiz. Incomplete methods for solving ATAx = b. SIAM J. on Scientific and Statistical

Computing, 5(4):978–987, 1984.

[31] J. Kopal, M. Rozložńık, A. Smoktunowicz, and M. Tůma. Rounding error analysis of orthogonalization with a non-

standard inner product. BIT Numerical Mathematics, 52:1035–1058, 2012.

[32] P. Läuchli. Jordan-Elimination und Ausgleichung nach kleinsten Quadraten. Numerische Mathematik, 3:226–240, 1961.

[33] N. Li and Y. Saad. MIQR: A multilevel incomplete QR preconditioner for large sparse least-squares problems. SIAM

J. on Matrix Analysis and Applications, 28(2), 2006.

[34] J. W. H. Liu. The role of elimination trees in sparse factorizations. SIAM J. on Matrix Analysis and Applications,

11(1):134–172, 1990.

[35] K. Morikuni and K. Hayami. Inner-iteration Krylov subspace methods for least squares problems. SIAM J. on Matrix

Analysis and Applications, 34(1):1–22, 2013.

[36] O. Østerby and Z. Zlatev. Direct methods for sparse matrices, volume 157 of Lecture Notes in Computer Science.

Springer-Verlag, Berlin, 1983.

[37] A. T. Papadopoulus, I. S. Duff, and A. J. Wathen. A class of incomplete orthogonal factorization methods. II:

Implementation and results. BIT Numerical Mathematics, 45(1):159–179, 2005.

[38] G. Peters and J. H. Wilkinson. The least squares problem and pseudo-inverse. The Computer Journal, 131:309–316,

1970.

[39] Y. Saad. Preconditioning techniques for nonsymmetric and indefinite linear systems. J. of Computational and Applied

Mathematics, 24(1-2):89–105, 1988.

[40] X. Wang, K. A. Gallivan, and R. Bramley. CIMGS: an incomplete orthogonal factorization preconditioner. SIAM J.

on Scientific Computing, 18(2):516–536, 1997.

[41] Z. Zlatev. Computational Methods for General Sparse Matrices. Kluwer, Dordrecht, 1991.

19




