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An energy-conserving time-discretisation scheme for

poroelastic media with phase-field fracture

emitting waves and heat

T. Roub́ıček

Mathematical Institute, Charles University, Sokolovská 83, CZ-186 75 Praha 8, Czech Republic

Abstract. The model of brittle cracks in elastic solids at small strains is approximated by the Ambrosio-
Tortorelli functional and then extended into evolution situation to an evolutionary system, involving vis-
coelasticity, inertia, heat transfer, and coupling with Cahn-Hilliard-type diffusion of a fluid due to Fick’s or
Darcy’s laws. Damage resulted from the approximated crack model is considered rate independent. The
fractional-step Crank-Nicolson-type time discretisation is devised to decouple the system in a way so that
the energy is conserved even in the discrete scheme. The numerical stability of such a scheme is shown,
and also convergence towards suitably defined weak solutions. Various generalizations involving plasticity,
healing in damage, or phase transformation are mentioned, too.

AMS Subject classification: 65K15, 65P99, 74F10, 74H15; Secondary: 35Q74, 74J99, 74R20, 76S05, 80A17.

1. Introduction. An efficient approximation of transient problems and wave propagation problems in
mechanics of continua with inertial effects represents a computationally difficult problem which has
deserved a wide attention during many decades. Various explicit or implicit methods have been devised
with various phenomena accented. One important attribute (beside e.g. dispersion or wave length or
causality etc.) to be followed is a possible energy conservation. Among other theoretically important
effects, this prevents an artificial numerical attenuation which often destroys the practical applicability
of numerical schemes.

It was observed in [49] that a combination of the Crank-Nicolson scheme with a fractional-step
strategy for first-order systems allows for an energy-conserving implicit time-discretisation of a rela-
tively wide class of mechanical systems at small strains governed by a separately quadratic free-energy
functionals. Here we want to illustrate it on a quite complicated system coupling the classical force
equilibrium equation with inertia at small strains with crack nucleation/propagation modelled in the
spirit of Ambrosio-Tortorelli’s approximation [1, 2] discussed in Remark 1 below, combined also with a
diffusion driven by the gradient of a chemical potential, and eventually with a heat-transfer equation.

The state variables are the displacement u, the scalar damage z, the concentration c of a diffusant
(typically some liquid, gas, or some solvent and, depending on specific applications, it may be hydrogen,
deuterium, water, etc.), and the (absolute) temperature θ. The particular equations of the system
considered in this paper are the momentum equilibrium, the flow rule for damage, the balance of mass
of the diffusant, and the heat-transfer equation. The basic notation is summarized in Table 1.

u displacements
v velocity
z damage scalar variable
c concentration
θ temperature
ϑ heat content
σ stress
µ chemical potential
C elastic-moduli tensor
D viscous-moduli tensor
M the mobility matrix
K the heat-conductivity matrix
cv heat capacity
̺ mass density
r heat-production rate
s entropy

e(u) = 1

2
(∇u)⊤ + 1

2
∇u small strain tensor

M Biot modulus
β Biot coefficient
κ coefficient for the ratio Fick/Darcy flow
κ capillarity coefficient
a energy released per unit volume by damage
ψ = ϕ+ φ free energy
ϕ, φ chemo-mechanical and thermal energies
u internal energy
cE equilibrium concentration
g bulk force (gravity)
f traction force
hB prescribed boundary heat flux
jB prescribed boundary diffusant flux
ε > 0 a fixed regularization parameter
τ > 0 a time step for discretisation

Table 1. Summary of the basic notation used through this paper.
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More specifically, using the dot-notation (·)
.
for the time derivative, the system of the mentioned four

equations are:

̺
..
u − div σ = g with σ = (ε2+z2)(De(

.
u) + Ce(u)) + βM(βtr e(u)−c)I, (1a)

N
{
.
z≤0}

(
.
z) +

a0z

2ε
+ zCe(u):e(u)− 2a0ε∆z ∋

a

2ε
, (1b)

.
c = div

(
M(z, c, θ)∇µ

)
with µ =

(
M+

κ

c
E

)
c− βMtr e(u)− κ− κ∆c, (1c)

cv(θ)
.
θ − div(K(z, c, θ)∇θ) = r(z, c, θ; e(

.
u),

.
z,∇µ)

with r(z, c, θ;
.
e,
.
z,∇µ) = (ε2+z2)D

.
e:
.
e −

a1
ε

.
z +M(z, c, θ)∇µ·∇µ, (1d)

where NC is the normal cone to the convex set C, i.e. here in (1b) the set of nonpositive functions on
Ω. These equations/inclusions are to hold on a bounded domain Ω ⊂ Rd, d = 2, 3. In (1b), we denoted
by

a = a0 + a1

the overall energy dissipated (up to the factor ε) by damaging a unit volume; note that we have
distinguished a part a0 which is stored (and does not contribute to heat production) and the remaining
part a1 which contributes to heat production. Actually, the additive constant −κ in µ is not important
in (1) itself but it could be relevant when general boundary conditions involving the value of µ were be
considered.

The application of this model in the full generality is expectedly in tectonic earthquakes caused
by ruptures of existing lithospheric faults in poroelastic rocks which emit seismic waves and exhibit-
ing sometimes a so-called “flash heating” during rupture, combined with the possible water diffusion
interacting with the rupture, or possibly even a nucleation of new faults [22, 33, 34, 54]; in particular
then c is the water concentration. A similar model applies to heat and moisture transfer in concrete
undergoing damage or fracture as in [30]. Particular simplified (or modified) models may serve for some
other applications such as martensitic phase transformation in polycrystalline shape-memory alloys or
metal/hydrid phase transformation during diffusion of hydrogen in specific intermetalics, cf. Remark 4
below; in particular then c is the hydrogen concentration.

Not surprisingly, we have to make a lot of various simplifications, some of them dictated by the desired
energy conservation of the discretisation scheme. In particular, we neglect temperature-dependence of
the stored energy (i.e. in particular thermal expansion), healing of damage, or allow for a possible
interpenetration of cracks.

The energy conservation (needed in particular in thermally coupled problems) in the continuous sys-
tem essentially requires the Kelvin-Voigt viscoelastic rheology. The convergence of the discrete schemes
typically needs certain gradient theories, namely the strain gradient (so-called 2nd-grade nonsimple ma-
terials), or alternatively also some phase-field regularization (in addition to the z-variable, as considered
in [51]), or the concentration gradient. Here in (1) we have adopted the last option, which leads to the
Cahn-Hilliard [13] system coupled with damage [8, 23, 24], see also [25, Chap. 7], and with inertia [26],
and coupled with heat transfer [27].

The goal of this article is to illustrate the discretisation strategy devised in [49] for a relatively
simpler situation on a nontrivial system coupling many physical phenomena with many potential appli-
cations. The general model coupling dynamic visco-elasticity with damage and heat and fluid transfer
is presented in Section 2. The time discretisation is devised in Section 3 where also existence of its
energy-conserving solution is shown. Eventually, its numerical stability (certain a-priori estimates) and
convergence towards weak solutions of the continuous system for time-step approaching zero is proved
in Section 4. Recent nontrivial results from the theory of rate-independent processes are exploited for
the damage model which otherwise seems to bring an essential trouble, cf. [37, Example 1.2.7].

Beside the already mentioned difference from this type of models in [51] consisting of not using any
phase-field variable in the present paper, the viscosity here is subjected to damage by the same way as
elastic response and, most importantly, the time discretization used in [51] is improved to be actually
applicable for problems where vibrations and waves are pursued. The energy conservation of the discrete
scheme also requires to avoid a regularization of the discrete heat-transfer equation, which then keeps
the heat sources valued in L1-spaces also in the discrete scheme and complicates the analysis at many
spots. Also the Crank-Nicholson scheme requires many demanding modifications of the usual techniques
used otherwise for backward-Euler schemes.

2. The thermodynamics of the model. Some boundary conditions for the system (1) should be
still prescribed on the boundary Γ = ∂Ω. There are a lot of options. Focusing rather on the bulk model,
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let us choose quite a simple set of conditions:

σν = f,
∂z

∂ν
= 0,

∂c

∂ν
= 0, M(z, c, θ)∇µ·ν = j

B
, K(z, c, θ)∇θ·ν = h

B
(2)

where ∂c
∂ν := ∇c·ν and ∂z

∂ν := ∇z·ν. The index “B” stands for a “boundary” data. We consider in
addition the initial conditions:

u(0) = u0,
.
u(0) = v0, z(0) = z0, c(0) = c0, θ(0) = θ0. (3)

The energetics of the system (1)–(3) can be revealed by testing the particular equations (1a,b,c)
respectively by

.
u,

.
z, and µ. It yields the chemo-mechanical energy balance

T (
.
u(t))

︸ ︷︷ ︸
kinetic energy

at time t

+ E (u(t), z(t), c(t))

︸ ︷︷ ︸
stored energy

at time t

+

∫ t

0

R(z, c, θ;
.
u,
.
z, µ) dt

︸ ︷︷ ︸
energy dissipated

during [0, t]

= T (v0) + E (u0, z0, c0)

︸ ︷︷ ︸
kinetic and stored energy

at time t = 0

+

∫ t

0

〈
F (t), (

.
u, µ)

〉
dt

︸ ︷︷ ︸
work done by chemo-

-mechanical load

, (4)

with the separately (component-wise) quadratic stored energy E , the dissipation rate R, the kinetic
energy T , the power of the chemo-mechanical loading F , and the total heat energy C and the external
heat power H which will be used in (6), defined as

E (u, z, c) :=

∫

Ω

ϕ(e(u), z, c,∇z,∇c) dx

with ϕ(e, z, c,∇z,∇c) =
ε2+z2

2
Ce:e+

1

2
M(βtr e−c)2

+
a0
4ε

(1−z)2+
κ

2c
E

(c−c
E
)2 + εa0|∇z|

2 +
κ

2
|∇c|2, (5a)

R(z, c, θ; v,
.
z, µ) :=

∫

Ω

r(z, c, θ; e(v),
.
z,∇µ) dx with r from (1d), (5b)

T (v) :=

∫

Ω

̺

2
|v|2 dx, (5c)

〈
F (t), (v, µ)

〉
:=

∫

Ω

g(t, ·)·v dx+

∫

Γ

f(t, ·)·v + j
B
(t, ·)µ dS, (5d)

C (θ) :=

∫

Ω

ϑ dx with ϑ = Cv(θ) =

∫ 1

0

cv(sθ) ds, (5e)

H (t) :=

∫

Γ

h
B
(t, x) dS. (5f)

In (5a), ε > 0 is a fixed regularization parameter. However, we will not have any ambitions to investigate
the limit for ε → 0; serious difficulties arise even in particular cases as seen in the literature cited in
Remark 1 below.

The total-energy conservation is then obtained by testing (1d) by 1 and summing it with (4). This
yields

T (
.
u(t))︸ ︷︷ ︸

kinetic energy
at time t

+ E (u(t), z(t), c(t))︸ ︷︷ ︸
stored energy

at time t

+ C (θ(t))︸ ︷︷ ︸
heat energy
at time t

= T (v0) + E (u0, z0, c0) + C (θ0)

︸ ︷︷ ︸
kinetic and stored and heat energy

at time t = 0

+

∫ t

0

H (t) +
〈
F (t), (

.
u, µ)

〉
dt

︸ ︷︷ ︸
work done by thermo-
-chemo-mechanical load

. (6)

The standard thermodynamics behind this model is based on the free energy which separates chemo-
mechanical and thermal variables, namely

ψ(e, z, c,∇z,∇c, θ) = ϕ(e, z, c,∇z,∇c) + φ(θ) (7)

with φ denoting the thermal part of the free energy determined by the heat capacity cv used in (1d) by
φ′′θθ = −cv(θ)/θ. The mentioned “separability” in (7) causes that cv depends only on θ. Adiabatic effects
are suppressed, which simplifies thus the model and its analysis, cf. Remark 7. Note that σ = ψ′

e = ϕ′
e
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while µ = ψ′
c = ϕ′

c − divϕ′
∇c(∇c). The entropy is standardly defined as s = −ψ′

θ = −φ′θ and then the
internal energy is

u = ψ + sθ = ϕ+ φ− θφ′θ = ϕ(e, z, c,∇z,∇c) + ϑ

with the heat energy ϑ = Cv(θ) from (5e).

Remark 1 (Fracture approximation). The motivation of (5a) is in particular seen if the diffusion is
suppressed by puttingM = 0, κ = 0, and κ = 0. Then (5a) results in the Ambrosio-Tortorelli functional

E (u, z) :=

∫

Ω

ε2+z2

2
Ce(u):e(u) +

a0
4ε

(1−z)2+ εa0|∇z|
2 dx (8)

imitating the philosophy that fracture is in fact a bulk damage which is eventually complete but localized
on very small volumes along evolving surfaces where the fracture propagates. In the static case, this
approximation was proposed in [1, 2] in fact for the Mumford-Shah functional [42] and the asymptotic
analysis for ε→ 0 was rigorously executed, inspired by a now classical example in phase transition [41].
Later, the approximate phase-field-type model was extended to the evolutionary case, namely for a rate-
independent cohesive damage, in [19], see also also [11,31,32,37] where also inertial forces are sometimes
considered, although its limit to the real fracture is still an open problem. The complete damage was
combined with diffusion in some other works [24, 25]. For various numerical studies on the base of (8)
see e.g. [3, 9, 12]. The important fact here is that z ≥ 0 is automatically granted during the evolution
if z0 ≥ 0 in (3), so that we do not need the constraint z ≥ 0 to be explicitly imposed, which would
otherwise violate the energy conservation in the scheme in Section 3 below. Avoiding this constraint is
possible because ϕ′

z(e, z,∇z) = 0 for z = 0 so that this contribution to the driving force vanishes when
z ց 0 while the contribution −divϕ′

∇z(∇z) drives z away from negative values.

Remark 2 (Component-wise quadratic ansatz). Standardly, the last term in ϕ from (5a) is rather
κc(ln(c/c

E
) − 1). This modification ensures c > 0 because this terms blows up to ∞ if c ց 0. It yields

the chemical potential µ = ϕ′
c =M(c−βtr e(u)) + κln(c/cE) instead of µ =M(c−βtr e(u)) + κ(c/cE−1)

in (1c). Setting M(c) = cM0, the flux j = −M(c)∇µ is then

j = −cM0∇p− κM0∇c with the pressure p =M(c−βtr e(u)), (9)

showing the Darcy and the Fick contributions, respectively. This standard term κc(ln(c/c
E
)−1) attains

its minimum at c = cE while its second-order derivative is κ/c so that the second-order Taylor’s expansion
of this term around c = c

E
is, up to a constant, κ

2 (c−cE)
2/c

E
. Keeping the (component-wise) quadratic

structure of E , the desired constraint c ≥ 0 can be ensured indirectly by setting M(c) = 0 for c < 0.
Hence the diffusant is “frozen” when its concentration would try to fall below zero, which eventually
prevents such a fall when relying on the absence of sources on the right-hand side of the diffusion
equation (1c) and on the qualification of the initial condition c0 ≥ 0. If we choose M(c) = M0 for c ≥ 0,
the flux M(c)∇µ is then

j = −M0∇p− κM0∇c (10)

with p again from (9). It now reveals how our term κ
2 (c−cE)

2/cE in ϕ from (5a) arises as the Taylor
expansion around equilibrium concentration. It also reveals that, by a suitable choice of M(c), it may
yield the same Fick flux as the mentioned standard choice κc(ln(c/c

E
) − 1) while only the Darcy flux

is modified. Actually, M(c) = M0 for c ≥ 0 together with M(c) = 0 for c < 0 obviously needs M(·)
discontinuous at c = 0, which would bring analytical difficulties. On the other hand, continuous M(·)
with the degeneracy M(c) = 0 for c < 0 well approximate the desired model and are standardly used in
numerical simulations and even are amenable for analysis [15, 43].

Remark 3 (Generalizations: plasticity or Maxwell rheologies). A combination of damage with plasticity
makes a substantial enrichment of the models. A minimal scenario (without extra internal hardening-
type variables) uses another internal variable π with values in the set of symmetric deviatoric-free

matrices Rd×d
dev . Then e in (5a) is to be substituted by e − π and a hardening or a gradient terms like

1
2κ1|π|

2 or 1
2κ2|∇π|

2 are to be added to ϕ. This substitution is to be applied also to the system (1)
which is to be augmented by an additional evolution inclusion governing the evolution of π, namely

σ
Y
Dir(

.
π) + χ

R

.
π + κ1π − κ2∆π ∋ dev σ =: σ −

1

d
tr σ, (11)

where σY ≥ 0 is the yield stress, χR ≥ 0 a relaxation time, and Dir : R
d×d
dev ⇒ R

d×d
dev is the set-

valued subdifferential of the Euclidean norm on the set on R
d×d
dev . Moreover, a convex term σ

Y
|
.
π|

or σY |
.
π| + χR |

.
π|2 is then to be added to the dissipation rate (5b) in order to keep the total-energy

balance. The component-wise quadratic structure of E is kept, so that the discretisation in Section 3
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can easily be modified for this situation, too. For a model neglecting heat and diffusant transfer with
fractional-step discretisation but using the backward Euler instead of the Crank-Nicolson energy we
refer to [29]. If σ

Y
= 0, we obtain the Maxwell (or, in combination with our Kelvin-Voigt, the so-called

Jeffrey) rheology, describing phenomena such as creep or (in geophysical applications, assuming χR in
(11) large) aseismic slip. If χ

R
= 0, we obtain rate-independent plasticity (built into the context of

other rate-dependent phenomena in the whole model, of course) and it should be emphasized that a
combination of two rate-independent processes (here damage and plasticity) leading to a nonconvex
energy would rise an important issue about the concept of solution; our fractional-step scheme than
would yield rather a stress-driven-type solution and holding the energy conservation in the limit would
be troublesome, requiring rather the vanishing-viscosity approach χR → 0 giving rise to a so-called
defect measure, cf. [48] or also [37, Sect. 3.8.3].

Remark 4 (Further generalizations - constraints). Certain applications include unilateral constraints
on state variables involved in E . Here, it would however corrupt the (component-wise) quadratic struc-
ture of E exploited later in Section 3. For this reason, such constraints can (at least approximately)
handled in the dissipation potential. For example, some applications use (up to a constant) the con-
straint |π| ≤ 1 on the plastic strain (called then a transformation strain) in Remark 3. This constraint
can approximately be realized by augmenting the yield stress σ

Y
to σ

Y
+ (|π|−1)+(π:

.
π)+/ε in (11) and

then 1
ε ((|π|−1)+(π:

.
π)+)|

.
π| is to be added into the dissipation rate r in (1d). For small ε > 0, it ensures

that π cannot move too far away from the unit ball in R
d×d
dev while its evolution is again according to

(11) if π is inside this ball or is on (or near) its surface but moves in the tangential direction. Another
example is an approximate realization of the constraint 0 ≤ z ≤ 1, which can be enforced by adding
(−z)+(−

.
z)+/ε + (z−1)+

.
z+/ε to (1b); in fact, the evolution of z should instead be bi-directional, i.e.

the unidirectional constraint
.
z ≤ 0 in (1b) is then to be replaced by Sign

.
z with “Sign” denoting the

a set-valued sudifferential of | · |. Altogether, 1
ε (−z)

+((−
.
z)+)2 + 1

ε (z−1)+(
.
z+)2 + |

.
z| is to be added

into the dissipation rate r in (1d). The example of a componentwise quadratic stored energy used in
such sort of models is ϕ(e, z,∇z) = 1

2C(e−zπ):(e−zπ) + ε|∇z|2. Cf. the models for polycrystalline
shape-memory alloys undergoing martensitic transformation (i.e. a re-orientation of martensite com-
bined with austenite-martensite phase transformation) in [18, 55], possibly also in combination with
plasticity like already used in (11), cf. [4, 53]. Then z has the interpretation of the volume fraction
austenite/martensite while π is the transformation strain of martensite; in fact, this part of energy is
often strongly dependent on temperature. A combination with diffusion of a fluidic ingredient might
be motivated by a metal-hydrid phase transformation where hydrogen causes substantial swelling when
diffuses into the polycrystalline metals, cf. e.g. [50, 51]. The swelling with e.g. 30% volume changes
during such transformation can easily cause rupture accompanied by emitting vibrations.

Remark 5 (Biot’s model [5]). Another motivation of (5a) is a popular model of a saturated flow in
poroelastic media by M.Biot. The adjective “saturated” is to be reflected by c ≥ ζ with ζ denoting
here a porosity. In Biot’s model, this is not considered as a constraint but is only involved in a “soft”
way in the free energy through the so-called Biot term 1

2M(βtr e−c+ζ)2. To keep our (componentwise)
quadratic ansatz which allows for energy-conserving discretisation, the Biot modulus M as well as
the Biot coefficient β are here considered independent of z and c as often used in applications, cf.
e.g. [22, 33]. The porosity ζ in our model is considered fixed (namely 0 for notational simplicity) but
in some applications the evolution of porosity is a vital part of the model, the flow rule being coupled
with the flow rule for damage (1b) also by the dissipative cross-effects, cf. again e.g. [22, 33]. It needs
the constraint ζ ≥ 0 which is to be treated approximately as in Remark 4, however.

Remark 6 (A generalization: healing in damage). Most engineering applications well comply with
the unidirectional damage evolution as considered in (1b) by involving the constraint

.
z ≤ 0, but some

other applications (specifically in geophysics [22, 33, 34]) ultimately need to allow for healing, i.e. a bi-
directional evolution of z, cf. also [37, 52]. It needs the constraint z ≤ 1 which is to be involved and, in
order to keep the componentwise quadratic structure of E , is to be again treated only approximately as
in Remark 4.

3. Time discretisation and its energy-conservation. We consider a bounded (connected) domain
Ω ⊂ Rd with a Lipschitz boundary Γ = ∂Ω. Beside the standard notation for the Lebesgue Lp-spaces
and W k,p for Sobolev spaces whose k-th distributional derivatives are in Lp-spaces, we will use the
abbreviation Hk =W k,2. Moreover, we use the standard notation p′ = p/(p−1), and p∗ for the Sobolev
exponent p∗ = pd/(d−p) for p < d while p∗ < ∞ for p = d and p∗ = ∞ for p > d, and the “trace
exponent” p♯ defined as p♯ = (pd−p)/(d−p) for p < d while p♯ < ∞ for p = d and p♯ = ∞ for p > d.
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Thus, e.g., W 1,p(Ω) ⊂ Lp∗

(Ω) or Lp∗′

(Ω) ⊂ W 1,p(Ω)∗=the dual to W 1,p(Ω). In the vectorial case, we
will write Lp(Ω;Rn) ∼= Lp(Ω)n and W 1,p(Ω;Rn) ∼=W 1,p(Ω)n.

We consider a fixed time interval I = [0, T ] and we denote by Lp(I;X) the standard Bochner space
of Bochner-measurable mappings I → X with X a Banach space. Also, W k,p(I;X) denotes the Banach
space of mappings from Lp(I;X) whose k-th distributional derivative in time is also in Lp(I;X). More-
over, we denote by BV(I;X) the Banach space of the mappings I → X that have bounded variation on
I. By Meas(I;X) we denote the space of X-valued measures on I. Finally, in what follows, C denotes
a positive, possibly large constant.

We first rewrite the 2nd-order equation (1a) as a 1st-order system and also use the heat-transfer
equation (1d) slightly rewritten as follows:

.
u = v, (12a)

̺
.
v − div σ = 0 with σ = (ε2+z2)(De(v)+Ce(u)) + βM(βtr e(u)−c)I, (12b)

N{
.
z≤0}(

.
z) +

a0z

2ε
+ zCe(u):e(u)− 2a0ε∆z ∋

a

2ε
, (12c)

.
c = div

(
M(z, c, θ)∇µ

)
with µ =

(
M+

κ

c
E

)
c− βMtr e(u)− κ− κ∆c, (12d)

.
ϑ− div(K(z, c, θ)∇θ) = r(z, c, θ; e(

.
u),

.
z,∇µ) with ϑ = Cv(θ) and

with r(z, c, θ;
.
e,
.
z,∇µ) = (ε2+z2)D

.
e:
.
e −

a1
ε

.
z +M(z, c, θ)∇µ·∇µ. (12e)

Rather for notational simplicity, we consider a time step τ > 0 which does not vary within particular
time levels and such that T/τ is integer, leading to an equidistant partition of the considered time
interval. Let us emphasize, however, that a varying time-step and non-equidistant partitions can be
easily implemented because we will always consider only first-order time differences and one-step formu-
las. In fact, such a varying time-step can be advantageously used for a certain adaptivity to optimize
computational costs.

The fractional-step discretisation similar to (13b,c) below has been devised already in [11,32,37] but
with vkτ = (ukτ−u

k−1
τ )/τ so that the resulting scheme exhibited a strong artificial attenuation instead of

energy conservation. In [10], a fully implicit formula for (13b,c) with ̺ = 0 has been used, implementing
an iterative alternating minimization algorithm combined with a backtracking strategy to cope with a
global minimization of a nonconvex functional. The global minimization of nonconvex functionals and
related difficulties are completely avoided by our fractional-step scheme, however.

Here we will use the numerical approximation by the fractional-step-type time-discretisation combined
with the Crank-Nicolson formula [14]. The Crank-Nicolson scheme was originally devised for the heat
equation and later used for 2nd-order problems in the form (1a), see e.g. [20, Ch.6, Sect.9]. It is different
if applied to the dynamical equations transformed into the form (12a,b); then it can be understood as
a particular case of the celebrated Hilber-Hughes-Taylor formula [28] and it is sometimes called just a
central-difference scheme or a Simo’s scheme, cf. e.g. [58, Sect. 12.2] or [56, Sect. 1.6], respectively.

This can be achieved by decoupling the time-discretised system suitably, namely “componentwise”.
This allows us to qualify E only “componentwise” and works successfully if the dissipation potentials
R’s are separated, as is indeed the case with our system (1). It is called a fractional-step method
or sometimes also a Lie-Trotter (or sequential) splitting, and there is an extensive literature about it,
cf. [35, 59]. Sometimes, this componentwise-split Crank-Nicolson method is also called the 2nd-order
Yanenko method [16]. Here we apply it even iteratively, leading to a 3-step scheme.

This results in the following system of five equations for the five-tuple (ukτ , v
k
τ , z

k
τ , c

k
τ , θ

k
τ ):

ukτ−u
k−1
τ

τ
= vk−1/2

τ , (13a)

̺
vkτ−v

k−1
τ

τ
− div σ̃k

τ = gkτ with σ̃k
τ = (ε2+(zk−1

τ )2)
(
De(vk−1/2

τ )+

+ Ce(uk−1/2
τ )

)
+ βM(βtr e(uk−1/2

τ )−ck−1/2
τ )I, (13b)

N{
.
z≤0}

(zkτ−zk−1
τ

τ

)
+
a0
2ε
zk−1/2
τ + zk−1/2

τ Ce(ukτ ):e(u
k
τ )− 2a0ε∆z

k−1/2
τ ∋

a

2ε
, (13c)

ckτ−c
k−1
τ

τ
= div

(
M(zk−1

τ , ck−1
τ , θk−1

τ )∇µk−1/2
τ

)

with µk−1/2
τ =

(
M+

κ

c
E

)
ck−1/2
τ − βMtr e(uk−1/2

τ )− κ− κ∆ck−1/2
τ , (13d)
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ϑkτ−ϑ
k−1
τ

τ
− div(K(zkτ , c

k
τ , θ

k−1
τ )∇θkτ ) = r̃kτ with ϑkτ = Cv(θ

k
τ ) and

with r̃kτ = r
(
zk−1
τ , ck−1

τ , θk−1
τ ; e(vk−1/2

τ ),
zkτ−z

k−1
τ

τ
,∇µk−1/2

τ

)
(13e)

with the abbreviation

uk−1/2
τ :=

ukτ+u
k−1
τ

2
, vk−1/2

τ :=
vkτ+v

k−1
τ

2
, zk−1/2

τ :=
zkτ+z

k−1
τ

2
, ck−1/2

τ :=
1

2
(ckτ+c

k−1
τ ). (14)

In (13b), gkτ is an approximation of g at t = kτ , e.g. gkτ := τ−1
∫ kτ

(k−1)τ
g(t) dt. This system is accompanied

with corresponding boundary conditions

σ̃k
τ ν = fk

τ :=
1

τ

∫ kτ

(k−1)τ

f(t) dt,
∂zkτ
∂ν

= 0,
∂ckτ
∂ν

= 0, (15a)

M(zk−1
τ , ck−1

τ , θk−1
τ )∇µk−1/2

τ ·ν = jk
B,τ :=

1

τ

∫ kτ

(k−1)τ

j
B
(t) dt, (15b)

K(zkτ , c
k
τ , θ

k−1
τ )∇θkτ ·ν = hk

B,τ :=
1

τ

∫ kτ

(k−1)τ

hB(t) dt, (15c)

is to be executed recursively for k = 1, 2, ..., T/τ , starting with k = 1 by using

u0τ = u0, v0τ = v0, z0τ = z0, c0τ = c0, θ0τ = θ0. (16)

Note that zkτ is not used in (13b,d) and thus the system (13) is indeed decoupled. First, one is to solve
(13a,b,d) to obtain (ukτ , v

k
τ , c

k
τ ), then (13c) to obtain zkτ , and eventually (13e) to obtain θkτ . This splitting

corresponds to the structure of E which is separately quadratic in (u, c) and in z and of the dissipation

rate R(z, c, θ; ·, ·, ·) which is additively split in terms of these sets of variables; note that µ
k−1/2
τ in (13d)

couples ukτ and ckτ but it is still within the set of the (u, v, c)-variables.
An important attribute is also that all three boundary-value subproblems have potentials. Note that

(13a,b) is “optically” not symmetric but eliminating vkτ by substituting vkτ = 2
τ (u

k
τ−u

k−1
τ ) − vk−1

τ into

(13b) one again obtains a potential problem for the couple (ukτ , c
k
τ ), cf. also [49]. Moreover, in the cases

of (13a,b,d) and (13e), these potentials are quadratic while (13c) has a quadratic potential with the
linear constraint z ≤ zk−1

τ . A peculiarity is the structure of the Cahn-Hilliard equation (1c) with the
boundary condition in (2). More specifically, let us denote by ∆M the linear operator µ 7→ div(M∇µ)
with the boundary condition M∇µ·ν = 0 on Γ formulated weakly as an operator H1

≡(Ω) → H1
≡(Ω)

∗

with H1
≡(Ω) denoting the Sobolev space H1

≡(Ω) modulo functions which are constant (on each connected
component of Ω). Assuming M symmetric, the linear operator ∆M has a convex quadratic potential
RM : µ 7→

∫
Ω

1
2M∇µ·∇µ dx. Its convex conjugate R∗

M
: H1

≡(Ω)
∗ → R is again quadratic and it is a

potential to the inverse ∆−1
M

. We denote still j
B
(t) ∈ H1

≡(Ω)
∗ the linear functional µ 7→

∫
Γ jB(t, ·)µ dS.

This allows for elimination of the chemical potential µ when realizing that it is equal to E ′
c . The evolution

(1c) with the boundary condition (M∇µ)·ν = jB in (2) takes the abstract structure

[R∗
M(z,c,θ)]

′(
.
c) + E

′
c(u, c) = [R∗

M(z,c,θ)]
′jB(t)

where, in particular, µ has been eliminated. This structure can also be identified in our discretization
scheme (13d), namely

[R∗
M(zk−1

τ ,ck−1
τ ,θk−1

τ )
]′
(ckτ−ck−1

τ

τ

)
+ E

′
c(u

k−1/2
τ , ck−1/2

τ ) = [R∗
M(zk−1

τ ,ck−1
τ ,θk−1

τ )
]′jk

B,τ

where jk
B,τ ∈ H1

≡(Ω)
∗ is determined by jk

B,τ from (15b). Realizing the specific form R∗
M

:
.
c 7→∫

Ω
1
2 |M

−1/2∇∆−1
M

.
c|2 dx, cf. also [37, Formula (5.2.67)], the potential governing the system (13a,b,d)

with vkτ and µk
τ eliminated as described above and with the corresponding boundary conditions (15)
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reads as

(u, c) 7→

∫

Ω

2τ̺
∣∣∣u− τvk−1

τ − uk−1
τ

τ2

∣∣∣
2

+
ε2+(zk−1

τ )2

τ
Ce

(u+uk−1
τ

2

)
:e
(u−uk−1

τ

2

)

+
M

τ

(
βtre

(u+uk−1
τ

2

)
−
c+ ck−1

τ

2

)2

+
κ

cEτ

(c+ ck−1
τ

2
− cE

)2

+
κ

τ

∣∣∣∇c+∇ck−1
τ

2

∣∣∣
2

+
ε2+(zk−1

τ )2

2
De

(u−uk−1
τ

τ

)
:e
(u−uk−1

τ

τ

)

+
1

2

∣∣∣M−1/2(zk−1
τ , ck−1

τ , θk−1
τ )∇∆−1

M(zk−1
τ ,ck−1

τ ,θk−1
τ )

c−ck−1
τ

τ

∣∣∣
2

dx

−
1

τ

∫

Γ

fk
τ ·u dS,−

1

τ

〈
jk
B,τ ,∆

−1

M(zk−1
τ ,ck−1

τ ,θk−1
τ )

c
〉

(17a)

where 〈·, ·〉 in the last expression denotes the duality between H1
≡(Ω)

∗ and H1
≡(Ω). The potential

governing (13c) with the corresponding boundary conditions (15) reads as

z 7→

∫

Ω

(a0ε
8

+
1

4
Ce(ukτ ):e(u

k
τ )
)
z2 +

a0ε

2
|∇z|2 + δ{z≤0}(z−z

k−1
τ )

−
(a0
4ε
zk−1
τ +

1

2
zk−1
τ Ce(ukτ ):e(u

k
τ ) +

a

2ε

)
z − a0ε∇z

k−1
τ ·∇z dx, (17b)

with δ{z≤0}(·) the indicator function of the set {z ≤ 0}, and eventually the potentials governing (13e)
with the corresponding boundary conditions (15) can be formally written as

θ 7→

∫

Ω

1

2
K(zkτ , c

k
τ , θ

k−1
τ )∇θ·∇θ +

1

τ
Ĉv(θ) −

(
r̃kτ+

ϑk−1
τ

τ

)
θ dx−

∫

Γ

hk
B,τθ dS (17c)

with Ĉv a primitive function of Ĉv. Alternatively, the potential (17a) can be constructed by a lin-
ear operator (

.
c, j) 7→ µ with µ ∈ H1

≡(Ω) the (unique) weak solution of the boundary-value problem
−div(M∇µ) =

.
c on Ω and M∇µ·ν = j on Γ acting on a linear subspace satisfying

∫
Ω

.
c dx =

∫
Γ j dS in

the sense of distributions.
After an additional spatial discretisation, it leads to linear algebraic systems or a quadratic-

programming problem with box constraints, so the devised scheme is presumably very easy to implement
and allows for relatively fine space/time discretisation. On the other hand, (13e) has its right-hand side
in L1(Ω) which prevents a simple usage of the direct method of the calculus of variations and (17c) is to
be understood indeed only formally on our space-continuous level because the infimum of (17c) is −∞
whenever r̃kτ ∈ L1(Ω) \H1(Ω)∗, cf. e.g. [47, Exercise 3.42].

Let us summarize the assumptions needed for all the results below, although the following two
propositions hold under slightly weaker assumptions too:

C,D ∈ R
d×d×d×d positive definite, ̺ > 0, a0 > 0, κ > 0, (18a)

M,K : R3 → R
d×d uniformly positive definite, bounded, and continuous, (18b)

κ ≥ 0, M ≥ 0, κM > 0, β ∈ R, a1 : R → R bounded and continuous, (18c)

cv : R → R bounded, continuous, and uniformly positive, i.e. inf cv(·) > 0, (18d)

g ∈ L2(I;L2∗′

(Ω;Rd)), f ∈ L2(I;L2♯
′

(Γ;Rd)), (18e)

j
B
∈ L2(I;L2♯

′

(Γ)), h
B
∈ L1(I×Γ), (18f)

u0 ∈ H1(Ω;Rd), v0 ∈ L2(Ω;Rd), c0 ∈ H1(Ω),

z0 ∈ H1(Ω), 0 ≤ z0 ≤ 1, θ0 ∈ L1(Ω), θ0 ≥ 0. (18g)

Let us comment that the qualification of (18d) is simplified in contrast to e.g. [46,47,50,51], because we
do not consider here any adiabatic heat sources or the dependence of cv also on non-thermal variables,
which would then need sophisticated interpolation estimates and a certain growth of cv.

Proposition 1 (Existence of a solution to (13)–(15)). Let (18) hold. For any k = 1, ..., T/τ , the
partly decoupled boundary-value problem (13)–(15) possesses a unique weak (or distributional) solution
ukτ , v

k
τ ∈ H1(Ω;Rd), zkτ , c

k
τ ∈ H1(Ω), and θkτ ∈W 1,p(Ω) with any 1 ≤ p < d′ = d/(d−1). Moreover,

−1 ≤ zkτ (x) ≤ 1 and θkτ (x) ≥ 0 for a.a. x ∈ Ω. (19)
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Let us comment that the negative lower bound on zkτ in (19) is quite unexpected and it would not
occur if the backward Euler method would be used. It indicates that there is a price to be paid for
having energy conservation and thus possible spurious time-oscillations created by the Crank-Nicolson

scheme. Anyhow, the mid-point values z
k−1/2
τ still satisfy the expected constraint, namely z

k−1/2
τ ≥ 0.

Let us also emphasize that, quite naturally and expectedly, the uniqueness of the discrete solution will
not be inherited by the limiting continuous solution where selection of various converging subsequences
for τ → 0 may give different solutions and, on top of it, there might be solutions (1)-(2)-(3) not attainable
by our discrete scheme. Anyhow, the uniqueness of the discrete solution as far as temperature will play
a certain role in the proof of the a-priori estimate (28f) below.

Sketch of the proof of Proposition 1. The conventional weak solution (ukτ , v
k
τ , c

k
τ ) to the boundary-value

problem (13a,b,d)–(15a,b) is by the direct method when realizing that these problems have a single
(quadratic strictly convex convex) potential (17a).

Also the variational inequality arising from the boundary-value problem for the inclusion (13c) with
the boundary condition from (15a) possesses an underlying potential E (ukτ , ·, c

k
τ ) which is strictly convex

and quadratic, and coercive on H1(Ω) with the convex constraint coming from the dissipation, cf.
(17b). We further use the qualification z0 ≥ 0 in (18g) and the unidirectional evolution together with
the maximum principle. Then, from (13c) for k = 1, we obtain both z1τ ≤ z0τ = z0 ≤ 1 and also

z
1/2
τ := 1

2z
1
τ + 1

2z
0
τ ≥ 0, i.e. z1τ ≥ −z0τ ≥ −1. For k = 2, we then obtain similarly z2τ ≤ z1τ ≤ 1 and

z
3/2
τ := 1

2z
2
τ+

1
2z

1
τ ≥ 0, i.e. z2τ ≥ −z1τ ≥ −1. We can then proceed recursively for k = 3, ..., T/τ , obtaining

the bound of zkτ in (19). Note that, in particular, the term (z
k−1/2
τ )2Ce(uτ ):e(uτ ) is integrable. Note

also that for the lower bound on zkτ , we have counted on the fact that the driving force for damage

evolution vanishes when z
k−1/2
τ ց 0.

As for a distributional solution to (13e)–(15c), we use the L1-theory for the heat equation; let us
emphasize that one cannot use the standard theory of weak solutions because r̃kτ ∈ L1(Ω) does not
belong to H1(Ω)∗ in general. If cv is constant, by the classical Stampacchia [57] transposition method,
this linear boundary-value problem has a unique variational solution θ which belongs to W 1,p(Ω) with
any 1 ≤ p < d′. In the general case when cv depends on θ, one can modify it for the semi-linear
equation by using the compact embedding in the term Cv(·) and its growth restriction; here Cv has at
most linear growth due to (18d) but even a slower than d/(d−2)-polynomial growth would suffice, cf.
also [47, Prop. 3.31]. We refer to [6,7] which even allows for measure-valued data, although here on the
discrete level all right-hand sides are even absolutely continuous. The bound of θkτ in (19) follows from
the maximum principle recursively from θ0 ≥ 0 assumed in (18g).

Proposition 2 (Energy conservation). Let (18) hold. For any 1 ≤ l ≤ T/τ , the following discrete
analog of the chemo-mechanical energy balance (4) holds:

T (vlτ ) + E (ulτ , z
l
τ , c

l
τ ) + τ

l∑

k=1

R

(
zk−1
τ , ck−1

τ , θk−1
τ ; vk−1/2

τ ,
zkτ−z

k−1
τ

τ
, µk−1/2

τ

)

= T (v0) + E (u0, z0, c0) + τ
l∑

k=1

〈
F

k
τ ,

(
vk−1/2
τ , µk−1/2

τ

)〉
(20)

with F k
τ = τ−1

∫ kτ

(k−1)τ
F (t) dt. Moreover, denoting H k

τ = τ−1
∫ kτ

(k−1)τ
H (t) dt, also the discrete analog

of the total energy conservation (6) holds:

T (vlτ ) + E (ulτ , z
l
τ , c

l
τ ) + C (θlτ ) = T (v0) + E (u0, z0, c0)

+ C (θ0) + τ

l∑

k=1

(
H

k
τ +

〈
F

k
τ ,

(
vk−1/2
τ , µk−1/2

τ

)〉)
. (21)

Proof. First, we test (13b) by v
k−1/2
τ and at suitable places substitute also v

k−1/2
τ = 1

τ (u
k
τ−u

k−1
τ ) due

to (13a) and further test (13d) by µ
k−1/2
τ . After using Green’s formula together with the boundary

conditions and summation, we obtain the equality

T (vkτ )− T (vk−1
τ )

τ
+

E (ukτ , z
k−1
τ , ckτ )− E (uk−1

τ , zk−1
τ , ck−1

τ )

τ

+

∫

Ω

(ε2+(zk−1
τ )2)De(vk−1/2

τ ):e(vk−1/2
τ )

+M(zk−1
τ , ck−1

τ , θk−1
τ )∇µk−1/2

τ ·∇µk−1/2
τ dx =

〈
F

k
τ ,

(
vk−1/2
τ , µk−1/2

τ

)〉
(22)
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where we used the structural assumption that both T and E (·, z, ·) are quadratic. More specifically, for
(22), we used the following five bi-nomial formulas:

vkτ−v
k−1
τ

τ
· vk−1/2

τ =
vkτ−v

k−1
τ

τ
·
vkτ+v

k−1
τ

2
=

1

τ

(1
2
|vkτ |

2 −
1

2
|vk−1

τ |2
)
, (23a)

(ε2+(zk−1
τ )2)Ce(uk−1/2

τ ):e(vk−1/2
τ ) = (ε2+(zk−1

τ )2)Ce
(ukτ+uk−1

τ

2

)
:e
(ukτ−uk−1

τ

τ

)

=
1

τ

(ε2+(zk−1
τ )2

2
Ce(ukτ ):e(u

k
τ )−

ε2+(zk−1
τ )2

2
Ce(uk−1

τ ):e(uk−1
τ )

)
, (23b)

ckτ−c
k−1
τ

τ
κ
(ck−1/2

τ

cE
− 1

)
=
ckτ−c

k−1
τ

τ
κ
(ckτ+ck−1

τ

2cE
− 1

)

=
κ

τ

((ckτ )2
2c

E

−
(ck−1

τ )2

2c
E

− ckτ + ck−1
τ

)

=
1

τ

( κ

2c
E

(ckτ−cE)
2 −

κ

2c
E

(ck−1
τ −c

E
)2
)
, (23c)

βM(βtr e(uk−1/2
τ )−ck−1/2

τ )tr e(vk−1/2
τ ) +

ckτ−c
k−1
τ

τ

(
Mck−1/2

τ − βMtr e(uk−1/2
τ )

)

= βM

(
βtr e

(ukτ+uk−1
τ

2

)
−
ckτ+c

k−1
τ

2

)
tr e

(ukτ−uk−1
τ

τ

)

+
ckτ−c

k−1
τ

τ

(
M
ckτ+c

k−1
τ

2
− βMtr e

(ukτ+uk−1
τ

2

))

=
1

τ

(
M

2

(
βtr e(ukτ )− ckτ

)2
−
M

2

(
βtr e(uk−1

τ )− ck−1
τ

)2
)
, (23d)

κ∇ck−1/2
τ ·∇

ckτ−c
k−1
τ

τ
= κ∇

ckτ+c
k−1
τ

2
·∇
ckτ−c

k−1
τ

τ
=

1

τ

(
κ

2
|∇ckτ |

2 −
κ

2
|∇ck−1

τ |2
)
. (23e)

Then we test (13c) by 1
τ (z

k
τ−z

k−1
τ ). After using the following two binomial formulas

zk−1/2
τ

(a0
2ε

+ Ce(ukτ ):e(u
k
τ )
)zkτ−zk−1

τ

τ
=
zkτ+z

k−1
τ

2

(a0
2ε

+ Ce(ukτ ):e(u
k
τ )
)zkτ−zk−1

τ

τ

=
1

τ

(a0
2ε

+ Ce(ukτ ):e(u
k
τ )
)(1

2
(zkτ )

2 −
1

2
(zk−1

τ )2
)
, (24a)

2a0ε∇z
k−1/2
τ ·∇

zkτ−z
k−1
τ

τ
= 2a0ε∇

zkτ+z
k−1
τ

2
·∇
zkτ−z

k−1
τ

τ

=
1

τ

(
a0ε|∇z

k
τ |

2 − a0ε|∇z
k−1
τ |2

)
, (24b)

we obtain

E (ukτ , z
k
τ , c

k
τ )− E (ukτ , z

k−1
τ , ckτ )

τ
−

∫

Ω

a(θk−1
τ )

2ε

zkτ−z
k−1
τ

τ
dx = 0. (25)

In fact, the difference E (ukτ , z
k
τ , c

k
τ )− E (ukτ , z

k−1
τ , ckτ ) does not even depend on ckτ at all. Summing (22)

and (25), we can exploit the cancellation of the terms ±E (ukτ , z
k−1
τ , ckτ ) and, after summing it from

k = 1, ..., l ≤ T/τ , we obtain (20). When testing (13e) by 1, we obtain

C (θkτ ) = C (θk−1
τ ) + R

(
zk−1
τ , ck−1

τ , θk−1
τ ; vk−1/2

τ ,
zkτ−z

k−1
τ

τ
, µk−1/2

τ

)
+ H

k
τ .

Adding it to (20), the R-terms cancel and we eventually obtain also (21).

Considering {ukτ}k=0,...,K with K = T/τ , we introduce a notation for the piecewise-constant and the
piecewise affine interpolants defined respectively by

uτ (t) = ukτ , uτ (t) = uk−1
τ , uτ (t) = uk−1/2

τ , and (26a)

uτ (t) =
t− (k−1)τ

τ
ukτ +

kτ − t

τ
uk−1
τ for (k−1)τ < t ≤ kτ. (26b)
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The symbols vτ , vτ , vτ , cτ , etc., have analogous meanings. In this notation, we can write (13) in a
“compact” form closer to (1):

.
uτ = vτ , (27a)

̺
.
vτ − div σ̃τ = gτ with σ̃τ = (ε2+z2τ )

(
De(vτ ) + Ce(uτ )

)

+ βM(βtr e(uτ )−cτ )I, (27b)

N{
.
z≤0}

(.
zτ

)
+
a0
2ε
zτ + zτCe(uτ ):e(uτ )− 2a0ε∆zτ ∋

a

2ε
, (27c)

.
cτ = div

(
M(zτ , cτ , θτ )∇µτ

)

with µ
τ
=

(
M+

κ

c
E

)
cτ − βMtr e(uτ )− κ− κ∆cτ , (27d)

.
ϑτ − div

(
K(zτ , cτ , θτ )∇θτ

)
= r̃τ with ϑτ = Cv(θτ ) and

with r̃τ = r
(
zτ , cτ , θτ ; e(vτ ),

.
zτ ,∇µτ

)
, (27e)

where ϑτ is the piecewise affine interpolant corresponding to ϑτ . Of course, (27) is to be supplemented
by the boundary conditions (15) written analogously “compactly”, involving fτ , jB,τ , and hB,τ .

4. Numerical stability and convergence. Besides existence of discrete solutions and energy con-
servation proved in Propositions 1–2, another important attribute of the discretisation scheme is its
numerical stability in the sense that it complies with certain a-priori estimates:

Proposition 3 (A-priori estimates). Let again (18) hold. Then the following estimates hold with C
and Cp independent of τ :

‖uτ‖H1(I;H1(Ω;Rd)) ≤ C and ‖
.
uτ‖BV(I;H1(Ω;Rd)∗) ≤ C, (28a)

‖vτ‖L∞(I;L2(Ω;Rd))∩L2(I;H1(Ω;Rd))∩H1(I;H1(Ω;Rd)∗) ≤ C, (28b)

‖zτ‖L∞(I;H1(Ω))∩L∞(I×Ω)∩W 1,1(I;L1(Ω)) ≤ C, (28c)

‖cτ‖L∞(I;H1(Ω))∩H1(I;H1(Ω)∗) ≤ C and ‖∆cτ‖L∞(I;L2(Ω)) ≤ C, (28d)

‖µτ‖L∞(I;L2(Ω))∩L2(I;H1(Ω)) ≤ C, (28e)

‖θτ‖L∞(I;L1(Ω)) ≤ C and ‖∇θτ‖Lr(I×Ω;Rd) ≤ Cp for any r <
d+2

d+1
, (28f)

‖ϑτ‖L∞(I;L1(Ω))∩W 1,1(I;H(d+3)/2(Ω)∗) ≤ C. (28g)

Sketch of the proof. First, we use the discrete chemo-mechanical energy balance (20) to obtain the
first L∞(I)-estimates in (28b-d) from the uniform bound on the stored energy E and further the L2(I)-
estimate in (28b) and also the estimate of∇µτ in L2(I×Ω;Rd) from the overall dissipated-energy bound.
The right-hand side of (20) is to be treated by Young’s inequality with the help of the assumptions (18e,f)
on g, f , and j

B
and the uniform quadratic coercivity of R(z, c, θ; ·, ·, ·), as well as the Young inequality

for estimation of∫

Γ

jk
B,τµ

k−1/2
τ dS ≤ ‖jk

B,τ‖
2
L2(Γ)/ε+ ε‖µk−1/2

τ ‖2L2(Γ)

≤ ‖jk
B,τ‖

2
L2(Γ)/ε+ εNΓ‖µ

k−1/2
τ ‖2L2(Ω) + εNΓ‖∇µ

k−1/2
τ ‖2L2(Ω;Rd)

with NΓ the norm of the trace operator H1(Ω) → L2(Γ); note that the last term can be absorbed by the

dissipation potential when choosing ε > 0 small while ‖µ
k−1/2
τ ‖2L2(Ω) can be estimated by ‖c

k−1/2
τ ‖2L2(Ω)+

‖tr e(u
k−1/2
τ )‖2L2(Ω) and then handled by a discrete Gronwall inequality. Eventually, we thus get also the

L∞-estimate in (28e). Combining it with the mentioned ∇µτ -estimate, we obtain the second estimate
in (28e), too. Then, from the L∞-estimates (28a,d,e) and from knowing that κ∆cτ = (M+κ/c

E
)cτ −

βMtr e(uτ )− κ− κ∆cτ − µ
τ
, we deduce the last estimate in (28d).

We now know the bound of σ̃τ from (27b) in L2(I;L2(Ω;Rd×d)) and thus, by comparison, from (27b)
we obtain ̺

.
vτ bounded in L2(I;H1(Ω;Rd)∗), i.e. the last estimate in (28b). This yields immediately the

bound of
.
vτ in L1(I;H1(Ω;Rd)∗) and, using (27a),

..
uτ is bounded as a measure in Meas(I;H1(Ω;Rd)∗).

Thus the second estimate in (28a) is achieved. By comparison, we also obtain the H1-estimate in (28d).
The L∞(I×Ω)-estimate in (28c) follows from the already proved bound (19). The W 1,1-estimate in

(28c) is then a simple consequence of the constraint
.
zτ ≤ 0 together with the mentioned bound (19).

Then, using also (21), we obtain the L∞(I)-estimates in (28e,f); in particular, the estimate of θτ in
L∞(I;L1(Ω)) is to be shown for executing the test of (27e) by 1 by exploiting also the nonnegativity of
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θτ proved already in (19). Furthermore, the Lr-estimate in (28f) needs a sophisticated non-linear test of
the heat equation together with a function-space interpolation by the Gagliardo-Nirenberg inequality.
More specifically, knowing already that θτ ∈ L∞(I;L1(Ω)), we test (27e) by χ(θτ ) with an increasing
nonlinear function χ : [0,+∞) → [0, 1] defined as χ(w) := 1 − (1+w)−ǫ with ǫ > 0; this test was
essentially proposed by E. Feireisl and J.Málek [17], simplifying the original idea of L. Boccardo and
T.Gallouët [6]. First, take 1 ≤ r < 2 and estimate the Lr-norm by Hölder’s inequality as

∫

I×Ω

|∇θτ |
r dxdt =

∫

I×Ω

(1 + θτ )
(1+ǫ)r/2 |∇θτ |

r

(1 + θτ )(1+ǫ)r/2
dxdt

≤

(∫

I×Ω

(1+θτ )
(1+ǫ)r/(2−r) dxdt

)1−r/2(∫

I×Ω

|∇θτ |
2

(1+θτ )1+ǫ
dxdt

)r/2

= Cǫ,r,T

(∫ T

0

∥∥1 + θτ (t, ·)
∥∥(1+ǫ)r/(2−r)

L(1+ǫ)r/(2−r)(Ω)
dt

)1−r/2

Lǫ(θτ )
r/2 (29)

with a constant Cǫ,r,T dependent on ǫ, r, and T , and with the shorthand notation Lǫ(θ) :=∫
I×Ω

|∇θ|2/(1+θ)1+ǫ dxdt. Then, with the Gagliardo-Nirenberg inequality, we interpolate the Lebesgue

space L(1+ǫ)r/(2−r)(Ω) between the spaces W 1,r(Ω) and L1(Ω) and in order to exploit the already ob-
tained estimate in L∞(I;L1(Ω)). More in detail, we estimate

∥∥1+θτ (t, ·)
∥∥
L(1+ǫ)r/(2−r)(Ω)

≤ CλC
1−λ
0

(
C0 +

∥∥∇θτ (t, ·)
∥∥
Lr(Ω;Rd)

)λ

(30)

with C0 = measd(Ω)+C with C from the former estimate in (28f) and Cλ from the mentioned Gagliardo-
Nirenberg inequality with the weight 0 < λ < 1; here we choose an optimal weight λ := (2− r)/(1 + ǫ)
which leads to the highest possible restriction on r as stated in (28f). Then we can continue in the
estimation of (29) as follows:

∫ T

0

∥∥1 + θτ (t, ·)
∥∥(1+ǫ)r/(2−r)

L(1+ǫ)r/(2−r)(Ω)
dt

≤

∫ T

0

C
(1+ǫ)r/(2−r)
λ C

(1−λ)(1+ǫ)r/(2−r)
0

(
C0+

∥∥∇θτ (t, ·)
∥∥
Lr(Ω;Rd)

)λ(1+ǫ)r/(2−r)

dt

≤

∫ T

0

C
(1+ǫ)r/(2−r)
λ C

(1−λ)(1+ǫ)r/(2−r)
0

(
C0+

∥∥∇θτ (t, ·)
∥∥
Lr(Ω;Rd)

)r

dt

= C1 + C2

∫

I×Ω

∣∣∇θτ
∣∣r dxdt. (31)

Furthermore, we estimate Lǫ(θτ ) in (29). Let us denote by X the primitive function of χ◦C−1
v with the

mentioned nonlinearity χ(w) := 1 − (1+w)−ǫ such that X(0) = 0. Realizing that χ′(w) = ǫ/(1+w)1+ǫ

and denoting κ0 := inf ming∈Rd K(·, ·, ·)g·g > 0, we get

Lǫ(θτ ) =

∫

I×Ω

χ′(θτ )|∇θτ |
2

ǫ
dxdt ≤

∫

I×Ω

χ′(θτ )K(zτ , cτ , θτ )∇θτ ·∇θτ
κ0ǫ

dxdt

=

∫

I×Ω

K(zτ , cτ , θτ )∇θτ ·∇χ(θτ )

κ0ǫ
dxdt

≤
1

κ0ǫ

(∫

I×Ω

K(zτ , cτ , θτ )∇θτ · ∇χ(θτ ) dxdt+

∫

Ω

X(θτ (T, ·)) dx

)

≤
1

κ0ǫ

(∫

Ω

X(θ0) dx+

∫

I×Γ

hB,τχ(θτ ) dSdt+

∫

I×Ω

r̃τχ(θτ ) dxdt

)

≤
1

κ0ǫ

(∥∥Cv(θ0)
∥∥
L1(Ω)

+
∥∥hB,τ

∥∥
L1(I×Γ)

+
∥∥r̃τ

∥∥
L1(I×Ω)

)
. (32)

The equation (27e) tested by χ(θτ ) has been used for the penultimate inequality, exploiting also that
X is convex because both χ and C−1

v are increasing. Joining (29) with (32) and with (31) gives the

estimate of the type ‖∇θ̄τ‖
r
Lr(Q;Rd)/(1+‖∇θ̄τ‖

r(1−r/2)

Lr(Q;Rd)
) ≤ C(1+‖ξ(θ̄τ )‖L1(Q))

r/2, which gives the second

estimate in (28f). Cf. e.g. [47, Sect. 12.1] for some more details. However, it should be emphasized that
here the procedure (29)–(32) was only formal because we did not have granted θτ (t) ∈ H1(Ω) so that

also χ(θτ (t)) does not need to live in H1(Ω) and may not be a legitimate test function. This is because
we did not regularize the heat equation in order to preserve the discrete energy conservation (21). Yet,
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the resulting estimate (28f) is correct. Hence, in addition to the standard argumentation, we should still
make a regularization: only for this step, considering zτ , cτ , r̃τ , hB,τ , and θ0 fixed, we regularize (27e)

with corresponding boundary condition by considering r̃τ/(1+εr̃τ ), hB,τ/(1+εhB,τ ), and θ0/(1+εθ0)

with some ε > 0 in place of by r̃τ , hB,τ , and θ0, respectively. The corresponding solution θτε is then
valued in H1(Ω) and all the estimates (29)–(32) are legitimate. Arriving thus to the estimate (28f) for

θτε uniform with respect to ε, we can pass ε → 0. The limit in ϑτε = Cv(θτε) is to be done as in the
proof of Proposition 4 but with τ fixed here. Notably, this limit solves the recursive semilinear equation
(13e) and is therefore unique, so that this procedure is indeed legitimate for θτ considered in the desired
estimate (28f).

Eventually, the estimate
.
ϑτ ∈ L1(I;H(d+3)/2(Ω)∗) in (28g) can be obtained by comparison, using

that H(d+3)/2(Ω) ⊂W 1,∞(Ω).

Let us remark that, in contrast to [51], we have not used a regularization of the right-hand side
r in (13e) to make it bounded in a better space than L1(I×Ω) which would here violate the energy
conservation in the discrete scheme.

A final justification of the model is certainly the convergence as τ → 0 to a suitably defined weak
solution to the continuous initial-boundary-value problem (12) with (2)–(3). This is a fairly nontrivial
task. In the literature, such an analysis has been performed for such type of thermally coupled damage-
diffusion models in [27] (where the chemical potential was augmented by the time derivative of c) and
in [51] (where a regularization by an auxiliary phase field was adopted). The key point is a suitable
definition of a weak solution, using the concept of energetic solution by A.Mielke et al. [36, 37, 39] for
the rate-independent damage subsystem which is governed by the energy E (u, ·, c) which is convex and
therefore this concept is reliable, efficient, and essentially equivalent to the conventional weak solution.
In fact, the mentioned energetic-solution concept applies to purely rate-independent systems and its
combination with rate-dependent phenomena has been devised in [45, 46], cf. also [37, Chap. 5].

Definition 1 (Weak solution to (1)-(2)-(3)). The quadruple (u, z, c, θ) is called a weak solution to
the initial-boundary-value problem (1)-(2)-(3) if u ∈ H1(I;H1(Ω;Rd)) ∩ Cweak(I;L

2(Ω;Rd)), z ∈
L∞(I;H1(Ω)) ∩ BV(I;L1(Ω)), c ∈ Cweak(I;H

1(Ω)), θ ∈ Cweak(I;L
q1(Ω)) ∩ Lp(I;W 1,r(Ω)) with r

as in (28f), with µ from (1c) belonging to L2(I×Ω), with the measure
.
z ∈ Meas(I×Ω) the distributional

time derivative of z, and with ϑ = Cv(θ) ∈ L1(I×Ω), and:

∀ ũ ∈ H1(I×Ω;Rd)), ũ(T ) = 0 :

∫ T

0

∫

Ω

σ:e(ũ)− ̺
.
u·
.
ũ− g·ũdxdt

=

∫ T

0

∫

Γ

f ·ũdSdt+

∫

Ω

̺v0·ũ(0) dx, with σ from (1a), (33a)

∀a.a.t ∈ I ∀ z̃ ∈ H1(Ω) ∩ L∞(Ω), z̃ ≤ z(t) on Ω :∫

Ω

z(t)2Ce(u(t)):e(u(t)) +
a0
4ε

(1−z(t))2 + εa0|∇z(t)|
2 dx

≤

∫

Ω

z̃2Ce(u(t)):e(u(t)) +
a0
4ε

(1−z̃)2+ εa0|∇z̃|
2−

a1
ε
(z̃−z(t)) dx, (33b)

∀ µ̃ ∈ H1(I×Ω), µ̃(T ) = 0 :∫ T

0

∫

Ω

M(z, c, θ)∇µ·∇µ̃− c
.
µ̃ dxdt =

∫ T

0

∫

Γ

j
B
µ̃ dSdt+

∫

Ω

c0·µ̃(0) dx, (33c)

∀ c̃ ∈ L2(I;H1(Ω)) :∫ T

0

∫

Ω

κ∇c·∇c̃+
((
M+

κ

c
E

)
c− βMtr e(u)− κ− µ

)
c̃ dxdt = 0, (33d)

∀ θ̃ ∈ W 1,∞(I×Ω), θ̃(T ) = 0 :

∫ T

0

∫

Ω

K(z, c, θ)∇θ·∇θ̃ − ϑ
.
θ̃ dxdt

=

∫ T

0

∫

Ω

θ̃
[
r(z, c, θ; e(

.
u),

.
z,∇µ)

]
(dxdt)

+

∫ T

0

∫

Γ

h
B
θ̃ dSdt+

∫

Ω

Cv(θ0)θ̃(0) dx (33e)
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with the measure r ∈ Meas(I×Ω) from (1d), and the energy balance (6) holds for t = T at least as an
inequality, i.e.

∫

Ω

̺

2
|
.
u(T )|2 + ϕ(e(u(T )), z(T ), c(T ),∇z(T ),∇c(T )) + Cv(θ(T )) dx

≤

∫ T

0

∫

Ω

g·
.
u dxdt+

∫ T

0

∫

Γ

f ·
.
u+ j

B
µ+ h

B
dSdt

+

∫

Ω

̺

2
|v0|

2 + ϕ(e(u0), z0, c0,∇z0,∇c0) + Cv(θ0) dx (33f)

with ϕ from (5a), and also with the remaining initial condition u(0) = u0 satisfied.

The inequality (33b) is called a semistability condition and, together with the energy inequality (33f),
assembles the definition of the mentioned energetic solution, here built into the context of the other
rate-dependent equations. In particular, this semistability replaces the global stability standardly used
in energetic solutions. In fact, one can prove that (33f) holds even as an equality and, for smooth
solutions, the damage flow rule (1b) holds a.e. on I×Ω.

Proposition 4 (Convergence for τ → 0). Let (18) hold with D = χC with some fixed relaxation-time
constant χ > 0. Then there is a converging subsequence (denoted again by {(uτ , vτ , zτ , cτ , θτ )}τ>0 for
simplicity) and its limit (u, v, z, c, θ) such that, for the corresponding interpolants uτ , vτ , zτ , and zτ , it
holds

uτ → u weakly* in H1(I;H1(Ω;Rd)) ∩W 1,∞(I;L2(Ω;Rd)), (34a)

uτ → u strongly in L2(I;H1(Ω;Rd)), (34b)

vτ → v strongly in L2(I;H1(Ω;Rd)) and

weakly* in L2(I;H1(Ω;Rd)) ∩ L∞(I;L2(Ω;Rd)), (34c)

zτ (t) → z(t) weakly* in H1(Ω) ∩ L∞(Ω) for all t ∈ I, (34d)

zτ (t) → z(t) weakly* in H1(Ω) ∩ L∞(Ω) for a.a. t ∈ I, (34e)
.
zτ →

.
z weakly* in Meas(I×Ω), (34f)

cτ → c weakly* in L∞(I;H1(Ω)), (34g)

∇µ
τ
→ ∇µ strongly in L2(I×Ω;Rd), (34h)

θτ → θ weakly in Lp(I;W 1,r(Ω)) with any r from (28f) (34i)

for τ → 0, where µ
τ
is from (27d) and µ from (1c). Moreover, v =

.
u and the measure

.
z in (34f) is

the distributional time derivative of z, and every (u, z, c, θ) obtained by such a way is a weak solution
according Definition 1.

Let us comment that the restriction D = χC facilitates involving damage not only in the elastic
but also in the whole visco-elastic response by using a fine algebraic manipulation. More specifically,
introducing the auxiliary variable w := χv + u, one can use a parabolic problem for this variable for
proving strong convergence which, in turn, is needed for the limit passage in the dissipation energy in
the heat-transfer equation.

Sketch of the proof of Proposition 4. We divide the proof into seven steps that are carefully assembled
in a specific order.

Step 1: Selection of a convergent subsequence. By the Banach selection principle, we choose a subse-
quence converging weakly* in the topologies indicated in (28a-f) except the W 1,1-estimate in (28c) for
which we use the Helly’s selection principle. More specifically, we can select a subsequence such that
(34e,f) holds; in particular (34e) holds for all instants t of continuity of z; recall that functions with
bounded variations are continuous with the exception of at most a countable number of time instances.
Later, we will also exploit that

uτ (T ) → u(T ) weakly in H1(Ω;Rd), (35a)

vτ (T ) → v(T ) weakly in L2(Ω;Rd), and (35b)

cτ (T ) → c(T ) weakly in H1(Ω), (35c)

which follows from the L∞-estimates together with the information about the time derivatives (28a,b,d).
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Step 2: Convergence in the force equilibrium and diffusion. The limit passage in the semilinear equation
(27a,b) towards (12a,b) in the weak formulation (33a) as well as in the semilinear equation (27d)
towards (12d) in the weak formulation (33c,d) is easily achievable by using the weak convergence from
Step 1 together with the Aubin-Lions compactness theorem for the strong convergence M(zτ , cτ , θτ ) →

M(z, c, θ). More in detail, since we do not have any direct information about
.
θτ , we can first apply

the Aubin-Lions theorem to ϑτ where we have time-derivative controlled, cf. (28g). To this goal, let
us realize that ∇ϑτ = C′

v(θτ )∇θτ = cv(θτ )∇θτ is estimated in Lp(I × Ω;Rd) through (28f) because
we have assumed cv(·) bounded, cf. (18d). Then the strong convergence of ϑτ → ϑ in Lq(I × Ω) with
any 1 ≤ q < 1 + 2/d follows by the interpolation with the estimate (28g). The same convergence
applies also for the needed piecewise constant interpolant, i.e. ϑτ → ϑ, and, by the continuity of the
Nemytskĭı (or here just superposition) mapping induced by the continuous mapping with at most linear
growth C−1

v , also θτ = C−1
v (ϑτ ) → C−1

v (ϑ) = θ in Lq(I × Ω). The last equality uses also the weak
convergence θτ → θ and, in particular, we thus proved ϑ = Cv(θ), which is a part of Definition 1. Then
M(zτ , cτ , θτ ) → M(z, c, θ) in any Ls(I×Ω;Rd×d) with any 1 ≤ s < ∞ follows by the continuity of the
Nemytskĭı (or here just superposition) mappings; here (18c) has been used. Thus we can also see that
M(zτ , cτ , θτ )∇µτ

→ M(z, c, θ)∇µ weakly in L2(I×Ω;Rd).

Step 3: Strong convergence of e(uτ ) and of e(vτ ). We use the technique from [37, Step.2 of the proof
of Thm. 5.1.2] modified here for our Crank-Nicolson scheme. We write (27b) for D = χC and use the
substitution wτ := χvτ + uτ , i.e.

̺
.
vτ − div

(
(ε2+z2τ )Ce(wτ ) + βM(βtr e(uτ )−cτ )I

)
= gτ . (36)

We further add ̺
.
uτ/χ and use the analogous substitution wτ = χvτ + uτ , so that (36) reads as

̺

χ

.
wτ − div

(
(ε2+z2τ )Ce(wτ ) + βM(βtr e(uτ )−cτ )I

)
= gτ +

̺

χ

.
uτ . (37)

Similarly, we rewrite (12b) proved already in Step 2 by adding ̺
.
u/χ and by using the substitution

w := χv + u in the form
̺

χ

.
w − div

(
(ε2+z2)Ce(w) + βM(βtr e(u)−c)I

)
= g +

̺

χ

.
u . (38)

We further test the difference (37) and (38) by wτ − w to obtain
∫

Ω

̺

χ
(
.
wτ−

.
w)·(wτ−w) + (ε2+z2τ )Ce(wτ−w):e(wτ−w) + β2Mtr e(uτ−u) tr e(wτ−w) dx

=

∫

Ω

βM(cτ−c)tr e(wτ−w) + (z2−z2τ )Ce(w):e(wτ−w) + (gτ−g)·(wτ−w)

+
̺

χ
(
.
uτ−

.
u)·(wτ−w) dx +

∫

Γ

(fτ−f)·(wτ−w) dS (39)

holding at a.e. time instant t ∈ I. We integrate (39) over I. We then use that
∫ T

0

(
.
wτ−

.
w)·(wτ−w) dt =

1

2
|wτ (T )−w(T )|

2 −
1

2
|wτ (0)−w(0)|

2 (40)

a.e. on Ω, which can be seen by the binomial formula if w is piecewise affine on the partition with the
time step τ and then, by arbitrarily refining it, by a general w too; actually, we exploit only the “≥”
inequality in (40). Further, using (27a), we can see the estimate

tr e(uτ−u) tr e(wτ−w) = tr e(uτ−u) tr e(uτ−u) + χtr e(uτ−u) tr e(vτ−v)

≥ χtr e(uτ−u) tr e(vτ−v) = χtr e(uτ−u) tr e(
.
uτ−

.
u)

and then, by similar argumentation as used for (40), we can see that
∫ T

0

tr e(uτ−u) tr e(wτ−w) dt ≥
χ

2
|tr e(uτ (T )−u(T ))|

2−
χ

2
|tr e(uτ (0)−u(0))|

2 (41)

a.e. on Ω. Therefore, exploiting uτ (0) = u0 = u(0) and also wτ (0) = χv0 + u0 = w(0), from (39) we
obtain the estimate

ε2
∫ T

0

∫

Ω

Ce(wτ−w):e(wτ−w) dxdt

≤

∫

Ω

̺

2χ
|wτ (T )−w(T )|

2 dx+ ε2
∫ T

0

∫

Ω

Ce(wτ−w):e(wτ−w) dxdt +

∫

Ω

β2M
χ

2
|tr e(uτ (T )−u(T ))|

2dx
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≤

∫ T

0

∫

Ω

̺

χ
(
.
wτ−

.
w)·(wτ−w) + (ε2+z2τ )Ce(wτ−w):e(wτ−w) + β2Mtr e(uτ−u) tr e(wτ−w) dxdt

=

∫ T

0

∫

Ω

βM(cτ−c) tr e(wτ−w) + (z2−z2τ )Ce(w):e(wτ−w) +
̺

χ
(
.
uτ−

.
u)·(wτ−w)

+ (gτ−g)·(wτ−w) dxdt +

∫ T

0

∫

Γ

(f τ−f)·(wτ−w) dS → 0. (42)

The convergence of the right-hand side term of (42) to zero has used cτ → c and (z2τ−z)Ce(w) → 0 in
L2(I×Ω;Rd×d). Moreover, it also has used that

∫ T

0

∫

Ω

(
.
uτ−

.
u)·(wτ−w) dxdt → 0

because wτ−w is certainly bounded in L2(I×Ω;Rd) while
.
uτ →

.
u strongly in L2(I×Ω;Rd) due to the

bounds (28a) and the generalized Aubin-Lions theorem for functions whose distributional derivatives
are measures, cf. [47, Cor. 7.9].

Then, by using also the Korn inequality, from (42) we obtain wτ → w in L2(I;H1(Ω;Rd)). Since
χ
.
uτ + uτ = χvτ + uτ + (uτ−uτ ) = wτ + (uτ−uτ ) → w = χv + u = χ

.
u+ u in L2(I;H1(Ω;Rd)), we can

see that uτ → u in L2(I;H1(Ω;Rd)) and then also vτ =
.
uτ →

.
u in L2(I;H1(Ω;Rd)), i.e. the strong

convergence in (34c). Then also the strong convergence (34b) of uτ follows.

Step 4: Convergence in the semistability. From (13c) we can see that zkτ minimizes the functional
z 7→ R(z−zk−1

τ ) + 2E (ukτ ,
1
2z + 1

2z
k−1
τ ) where the c-variable involved in E in (5a) is irrelevant here

(hence omitted) and similarly R = R(
.
z) also ignores all variables which are irrelevant for minimization

in z only. Using the 1-homogeneity of R, we obtain 2E (ukτ ,
1
2z+

1
2z

k−1
τ ) ≤ 2E (ukτ ,

1
2 z̃+

1
2z

k−1
τ )+R(z̃−zkτ )

for any z̃. This gives the following discrete (and modified) semi-stability
∫

Ω

(zτ )
2
Ce(uτ ):e(uτ ) +

a0
4ε

(1−zτ )
2 + εa0|∇zτ |

2 dx ≤

∫

Ω

( z̃−zτ
2

)2

Ce(uτ ):e(uτ )

+
a0
4ε

(
1−

z̃−zτ
2

)2

+ εa0

∣∣∣∇ z̃−zτ
2

∣∣∣
2

−
a1
ε
(z̃ − zτ ) dx (43)

holding for a.a. t ∈ I and for any z̃ ∈ H1(Ω) ∩ L∞(Ω) such that z̃ ≤ zτ (t).
We now take t fixed such that (34e,f) hold. For the linear/quadratic functional z 7→ E (u, z), again

now by ignoring the irrelevant constant and the dependence of E on c, we further denote by 〈·, ·〉E ,u :
Z × Z → R the underlying linear/bilinear form defined by

〈z, z̃〉E ,u :=
〈
∂zE (u)z, z̃

〉
=

∫

Ω

(
Ce(u):e(u) +

a0
4ε

)
zz̃ + εa0∇z·∇z̃ −

a0
2ε
z̃ dx.

Choosing z̃ arbitrary, we use the binomial trick with the so-called mutual recovery sequence z̃τ =
zτ (t) + z̃ − z(t). More specifically, any sequence {z̃k}k∈N is called a mutual recovery one with respect
to a sequence {(uk, zk)}k∈N if

lim sup
k→∞

(
E (uk, z̃k)− E (uk, zk) + R(z̃k−zk)

)
≤ E (u, z̃)− E (u, z) + R(z̃−z). (44)

In contrast to the original variant invented in [38] which recovers also u-variable to obtain a full stability,
we here have formulated (44) in the (weaker) variant which will lead to semistability as introduced in [45].
The main motivation of the mentioned choice is to make R(z̃τ−zτ (t)) = R(z̃−z(t)) simply constant
while z̃τ → z̃ weakly*, which makes the limit passage through the nonlinearities in (43) possible,
cf. [37] for details about this technique for the backward Euler formula. Here we will still modify the
construction (44), designed for the backward-Euler formula, for our Crank-Nicholson scheme. More
specifically, we will exploit the following joint continuity

∀ z̃ ∈ H1(Ω) ∩ L∞(Ω) : (u, z) 7→
〈
z, z̃

〉
E ,u

is (strong×weak)-continuous (45)

and, using elementary algebra and the above mentioned choice of the mutual recovery sequence, obtain
the convergence of the E -terms to be used in the modified version of (44):

E (uτ (t), zτ )− E

(
uτ (t),

z̃τ+zτ (t)

2

)
= E

(
uτ (t),

zτ (t)+zτ (t)

2

)
− E

(
uτ (t),

z̃τ+zτ (t)

2

)

= E

(
uτ (t),

zτ (t)

2

)
+

1

4

〈
zτ (t), zτ (t)

〉
E ,uτ (t)

− E

(
uτ (t),

z̃τ
2

)
−

1

4

〈
z̃τ , zτ (t)

〉
E ,uτ (t)

=
1

8

〈
zτ (t)+z̃τ , zτ (t)−z̃τ

〉
E ,uτ (t)

+
1

4

〈
zτ (t)−z̃τ , zτ (t)

〉
E ,uτ (t)
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=
1

8

〈
zτ (t)+z̃τ , z(t)−z̃

〉
E ,uτ (t)

+
1

4

〈
z(t)−z̃, zτ (t)

〉
E ,uτ (t)

→
1

8

〈
z(t)+z̃, z(t)−z̃

〉
E ,u(t)

+
1

4

〈
z(t)−z̃, z(t)

〉
E ,u(t)

= E (u(t), z(t))− E

(
u(t),

z̃+z(t)

2

)
. (46)

For the convergence, we used (45) relying on the fact that, by the previous Step 3, we know
that (zτ )

2Ce(uτ ):e(uτ ) → z2Ce(u):e(u) in L1(I×Ω) and, having it bounded in L∞(I;L1(Ω)), also
(zτ (t))

2
Ce(uτ (t)):e(uτ (t)) → z(t)2Ce(u(t)):e(u(t)) in L1(Ω) for a.a. in Ω (possibly under another

selection of a subsequence, if needed); here, also (34d) and (34e) have been used proving that
zτ (t) = 1

2zτ (t) +
1
2zτ (t) → 1

2z(t) +
1
2z(t) = z(t) for a.a. t ∈ I. Then we can easily perform the

limit passage in (43), obtaining

∀z̃ ∈ H1(Ω) ∩ L∞(Ω) : E (u(t), z(t)) ≤ E

(
u(t),

z̃+z(t)

2

)
+ R

( z̃−z(t)
2

)
. (47)

Now substituting z̃ = 2ẑ − z(t) so that z̃+z(t)
2 = ẑ and z̃−z(t)

2 = ẑ − z(t), we obtain the desired
semistability (33b) only with ẑ instead of z̃ .

Step 5: Strong convergence of ∇µ
τ
. For a.a. x ∈ Ω, using again the binomial formula, it holds

1

2
M

(
βtr e(uτ (T ))− cτ (T )

)2
−

1

2
M

(
βtr e(uτ (0))− cτ (0)

)2

=

∫ T

0

βM(βtr e(uτ )−cτ )tr e(
.
uτ ) +M(cτ−βtr e(uτ ))

.
cτ dt. (48)

Testing (36) by
.
uτ gives
∫ T

0

∫

Ω

̺
.
vτ ·
.
uτ +

(
(ε2+z2τ )Ce(wτ ):e(

.
uτ ) + βM(βtr e(uτ )−cτ )tr e(

.
uτ ) dxdt

=

∫ T

0

∫

Ω

gτ
.
uτ dxdt +

∫ T

0

∫

Γ

f τ

.
uτ dSdt. (49)

Using (27a) and again the binomial formula (23a), we can see that
∫ T

0
̺
.
vτ ·

.
uτ dt =

∫ T

0
̺
.
vτ ·vτ dt =

̺
2 |vτ (T )|

2 − ̺
2 |vτ (0)|

2 on Ω and merging (49) with (48), we obtain

∫ T

0

∫

Ω

M(cτ−βtr e(uτ ))
.
cτ dxdt

=

∫

Ω

M

2

(
βtr e(uτ (T ))−cτ (T )

)2
−
M

2

(
βtr e(uτ (0))−cτ (0)

)2
dx−

∫ T

0

∫

Ω

βM(βtr e(uτ )−cτ )tr e(
.
uτ ) dxdt

=

∫

Ω

̺

2
|vτ (T )|

2 +
1

2
M

(
βtr e(uτ (T ))− cτ (T )

)2
−
̺

2
|vτ (0)|

2 −
1

2
M

(
βtr e(uτ (0))− cτ (0)

)2
dx

−

∫ T

0

∫

Γ

fτ ·
.
uτ dSdt+

∫ T

0

∫

Ω

(ε2+z2τ )Ce(wτ ):e(
.
uτ )− βM(βtr e(uτ )−cτ )tr e(

.
uτ )− gτ ·

.
uτ dxdt.

Then, exploiting also the strong convergence wτ → w proved already in Step 3 as well as (35), we can
estimate

lim inf
τ→0

∫ T

0

∫

Ω

M(cτ−βtr e(uτ ))
.
cτ dxdt ≥

∫

Ω

̺

2
|v(T )|2 +

1

2
M

(
βtr e(u(T ))− c(T )

)2

−
̺

2
|v(0)|2 −

1

2
M

(
βtr e(u(0))− c(0)

)2
dx−

∫ T

0

∫

Γ

f ·
.
u dSdt

+

∫ T

0

∫

Ω

(ε2+z2)Ce(w):e(
.
u)− βM(βtr e(u)−c)tr e(

.
u)− g·

.
u dxdt. (50)

Now we can perform the desired estimate:
∫ T

0

∫

Ω

M(z, c, θ)∇µ·∇µ dxdt ≤ lim inf
τ→0

∫ T

0

∫

Ω

M(zτ , cτ , θτ )∇µτ
·∇µ

τ
dxdt

≤ lim sup
τ→0

∫ T

0

∫

Ω

M(zτ , cτ , θτ )∇µτ
·∇µ

τ
dxdt

= lim sup
τ→0

(∫ T

0

∫

Γ

j̄E,τ ·µτ
dSdt−

∫ T

0

∫

Ω

.
cτµτ

dxdt

)
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= lim sup
τ→0

(∫ T

0

∫

Γ

j̄E,τ ·µτ
dSdt+

∫ T

0

∫

Ω

(
βMtr e(uτ )−

(
M+

κ

c
E

)
cτ + κ

).
cτ − κ∇cτ ·∇

.
cτ dxdt

)

= lim sup
τ→0

(∫ T

0

∫

Γ

j̄E,τ ·µτ
dSdt+

∫ T

0

∫

Ω

(
M(βtr e(uτ )−cτ

).
cτ dxdt

+

∫

Ω

κ

2cE
c20 +

κ

2
|∇c0|

2 + κc0 −
κ

2cE
cτ (T )

2 −
κ

2
|∇cτ (T )|

2 − κcτ (T ) dx

)

≤

∫

Ω

κ

2cE
c20 +

κ

2
|∇c0|

2 + κc0 +
̺

2
|v0|

2 +
1

2
M

(
βtr e(u+ 0)−c0

)2
−

κ

2cE
c(T )2

−
κ

2
|∇c(T )|2 − κc(T )−

̺

2
|v(T )|2 −

1

2
M

(
βtr e(u(T ))− c(T )

)2
dx

+

∫ T

0

∫

Ω

βM(βtr e(u)−c)tr e(
.
u)−

(
(ε2+z2)Ce(w):e(

.
u) + g·

.
udxdt

+

∫ T

0

∫

Γ

f ·
.
u+ j

B
·µ dSdt =

∫ T

0

(∫

Γ

j
B
·µ dS − H1(Ω)∗

〈.
c, µ

〉
H1(Ω)

)
dt

=

∫ T

0

∫

Ω

M(z, c, θ)∇µ·∇µ dxdt, (51)

where we used the identities
∫ T

0
cτ ·

.
cτ dt = 1

2c
2
τ (T ) −

1
2c

2
τ (0) and

∫ T

0
∇cτ ·∇

.
cτ dt = 1

2 |∇cτ (T )|
2 −

1
2 |∇cτ (0)|

2 on Ω. We also used that c and µ are already proved to solve (1c) in the weak sense.

Note that we cannot rely on an estimate of
.
c in a Lebesgue space so that we have to use a duality

between
.
c and µ relying on the H1(I;H1(Ω)∗)-estimate (28d). The last equation can be obtained by

testing the boundary-value problem for c by a spatial mollification of µ and then making a limit passage.

Altogether, (51) yields limτ→0

∫ T

0

∫
Ω
M(zτ , cτ , θτ )∇µτ

·∇µ
τ
dxdt =

∫ T

0

∫
Ω
M(z, c, θ)∇µ·∇µ dxdt. From

this, we can see that

∥∥∇µ
τ
−∇µ

∥∥2

L2(I×Ω;Rd)
≤

∫ T

0

∫

Ω

M(zτ , cτ , θτ )

infM(R3)
∇(µ

τ
−µ)·∇(µ

τ
−µ) dxdt

=

∫ T

0

∫

Ω

M(zτ , cτ , θτ )

infM(R3)
∇µ

τ
·∇µ

τ
dxdt+

∫ T

0

∫

Ω

M(zτ , cτ , θτ )

infM(R3)
∇(µ−2µ

τ
)·∇µ dxdt

→

∫ T

0

∫

Ω

M(z, c, θ)

infM(R3)
∇µ·∇µ dxdt+

∫ T

0

∫

Ω

M(z, c, θ)

infM(R3)
∇(µ−2µ)·∇µ dxdt = 0,

which proves (34h).

Step 6: Convergence in the heat-transfer equation. From the convergence proved in Steps 3 and 5,
specifically (34c,f,h), we know that r̃τ → r weak* in Meas(I×Ω) and thus the convergence of the
distributional solution to the semi-linear equation (27e) towards (12e) is easy.

Step 7: Convergence in the energy balance. Eventually, we obtain the inequality (33f) by weak lower
semicontinuity from the discrete energy balance (21) written for l = T/τ .

Remark 7 (Another generalization: concentration-dependent heat capacity). The heat capacity can
naturally be affected by the content of the fluid c, i.e. cv = cv(c, θ). This can be modelled by modifying
the free energy (7) as

ψ(e, z, c,∇z,∇c, θ) = ϕ(e, z, c,∇z,∇c) + φ(c, θ). (52)

The entropy s = −φ′θ(c, θ) now becomes c-dependent and substituting it into the so-called entropy

equation, i.e. θ
.
s+ div j = r =heat production rate, gives

cv(c, θ)
.
θ + div j = r + θφ′′cθ(c, θ)

.
c with cv(c, θ) = −θφ′′θθ(c, θ).

This reveals that the heat capacity cv becomes temperature-dependent and the right-hand side of the
heat-transfer equation is augmented by the adiabatic-like term θφ′′cθ(c, θ)

.
c. The internal energy u =

ψ+sθ equals to ϕ(e, z, c,∇z,∇c)+φ(c, θ)−θφ′θ(c, θ). The chemical potential then becomes temperature-
dependent as it is augmented to µ = ϕ′

c(e, z, c,∇z,∇c)+φ
′
c(c, θ)−divϕ′

∇c(∇c). Testing (1c) by µ gives,
in addition, the term φ′c(c, θ)

.
c. In the overall energy balance, this term balances the rate of the thermal

part of the internal energy by obvious calculations, cancelling the terms ±φ′θ(c, θ)
.
θ, yields

∂

∂t
(φ(c, θ) − θφ′θ(c, θ)) = φ′c(c, θ)

.
c − θφ′′θθ(c, θ)

.
θ − θφ′′cθ(c, θ)

.
c.
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Estimation of the mentioned adiabatic term θφ′′cθ(c, θ)
.
c needs some “viscosity” that would control

.
c.

Following Gurtin’s ideas [21], this is achieved by considering a so-called viscous Cahn-Hilliard equation
with the chemical potential

µ = ϕ′
c(e, z, c,∇z,∇c) + φ′c(c, θ)− divϕ′

∇c(∇c) + α
.
c with α > 0 ;

cf. e.g. also [15,27,40,43,44]. The heat-production rate r is then augmented by α|
.
c|2 and Step 5 in the

above proof considerably simplifies.
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