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Plan of the talk

Existence of weak solutions to the generalized Stokes system

(t, x)-dependent growth conditions of the stress tensor

Implicit constitutive relations
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Generalized Stokes system

Let Ω ⊆ Rd be a bounded, open set and Q = (0,T )× Ω. The
velocity field u and the pressure p describe the unsteady flow of
the incompressible fluid

∂tu − div S(t, x ,Du) +∇p = f in (0,T )× Ω,

div u = 0

u(0, x) = u0 in Ω,

u(t, x) = 0 on (0,T )× ∂Ω,

where S is the stress tensor and f are given body forces.
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Typical models

1 Navier-Stokes equations

S(Dv) = νDv

2 Power-law fluids

S(Dv) · Dv ≥ c(1 + |Dv |)q, |Dv | ≤ c(1 + |Dv |)q−1
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More general setting

Let us assume that S : Ω× Rd×d
sym → Rd×d

sym satisfies:

1 S(x , ξ) is a Caratheodory function and S(x , 0) = 0.

2 There exist a positive constant c , integrable function k and an
N-function M satisfying for all ξ

S(x , ξ) · ξ ≥ c{M(ξ) + M∗(S(x , ξ))} − k(x)

3 S is monotone i.e. for all ξ1, ξ2 ∈ Rd×d and a.a. x ∈ Ω

[S(x , ξ1)− S(x , ξ2)] · [ξ1 − ξ2] ≥ 0.
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N− functions

Notation

M is an N− function if M is convex, M(x , 0) = 0, has superlinear
growth and M(x , ξ) = M(x ,−ξ)
M∗ is defined as M∗(x , η) = supξ∈Rd×d

sym
(η · ξ −M(x , ξ)).

∆2–condition

We say that M satisfies ∆2–condition if for some constant C > 0
and an integrable function m

M(x , 2ξ) ≤ CM(x , ξ) + m(x) for all ξ ∈ Rd×d
sym and a.a. x ∈ Ω.
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Motivation

Slow motion of a fluid of Prandtl–Eyring type

T = c0
arcsinh(α|Du|)

α|Du|
Du

or Powell–Eyring

T = c1Du + c0
arcsinh(α|Du|)

α|Du|
Du

For simplicity
M(ξ) = |ξ| ln(1 + |ξ|)
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Weak solutions

u ∈ L∞(0,T ; L2(Ω)),

∫
Q
M(x ,Du) dx dt <∞,∫

Q
M∗(x ,S(Du)) dx dt <∞

∫
Q
−u · ∂tϕ+ S(t, x ,Du) · Dϕdxdt =

∫
Q
f · ϕdxdt −

∫
Ω
u0ϕ(0)dx

for all ϕ ∈ C∞c ((−∞,T )× Ω), divϕ = 0.
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Some properties of Orlicz spaces

The Orlicz class LM(Q) is the set of all measurable functions
ξ : Q → Rd×d

sym such that∫
Q
M(ξ)dxdt <∞.

By LM(Q) we mean the vector valued Orlicz space which is the
set of all measurable functions ξ : Q → Rd×d

sym which satisfy∫
Q
M(λξ(x))dxdt → 0 asλ→ 0.

The generalized Orlicz space is a Banach space with respect to
the Luxemburg norm

‖ξ‖ = inf

{
λ > 0 :

∫
Q
M

(
ξ

λ

)
dxdt ≤ 1

}
.
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Some properties of Orlicz spaces

The space EM

By EM(Q) we denote the closure of L∞(Q) in LM(Q)

(EM)∗ = LM∗

If M does not satisfy ∆2–condition, then EM  LM  LM

If M satisfies ∆2–condition, LM is separable and
LM = EM = LM . If both M and M∗ satisfy ∆2–condition,
then LM is reflexive.

Definition

A sequence z j converges modularly to z in LM(Q) if there exists
λ > 0 such that

∫
Q M

(
(z j − z)/λ

)
dxdt → 0.

Properties

Orlicz spaces are separable w.r.t. the modular convergence
and smooth functions are dense
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Integrating by parts

Classical case

H– Hilbert space, X– Banach space, X ↪→ H ' H∗ ↪→ X ∗,
u ∈ Lp(0,T ;X ), dudt ∈ Lp

′
(0,T ;X ∗). Then for all s0, s1 ∈ (0,T )∫ s1

s0

〈
du(t)

dt
, u(t)

〉
X

dt =
1

2
‖u(s1)‖2

H −
1

2
‖u(s0)‖2

H .

Problem:

LM(Q) 6= LM(0,T ; LM(Ω))
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Energy identity

From the Galerkin method we have the identity
((S(t, x ,Du)

∗
⇀ χ in LM∗(Q))∫

Q
utϕdxdt +

∫
Q
χ · Dϕdxdt =

∫
Q
f ϕdxdt

for each compactly supported, divergence-free and smooth
function ϕ.

As a first step we will prove a function of the form

ϕj = %j ∗ %j ∗ u

to be proper test function, where % ∈ C∞(R), % has a
compact support,

∫
R %(τ)dτ = 1 and we define %j(t) = j%(jt)

If χ ∈ EM∗ we pass to the limit with weak star convergence
If χ /∈ EM∗ we pass to the limit with modular convergence
(here we need that modular and weak star limits coincide)
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Integrating by parts

We observe that for 0 < s0 < s < T it follows∫ s

s0

〈ut , ϕj〉 dt =

∫ s

s0

〈ut , (%j ∗ %j ∗ u)〉 dt =

∫ s

s0

〈(%j ∗ ut), (%j ∗ u)〉 dt

=

∫ s

s0

1

2

d

dt
‖%j ∗ u‖2

2 dt =
1

2
‖%j ∗ u(s)‖2

2 −
1

2
‖%j ∗ u(s0)‖2

2.

Next, we pass to the limit with j →∞ and obtain for a.a. s0, s

lim
j→∞

∫ s

s0

〈ut , uj〉 dt =
1

2
‖u(s)‖2

2 −
1

2
‖u(s0)‖2

2.
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Anisotropic case M : Rd×d → R+

1 the case of star-shaped domain and the anisotropic
N-function with absolutely no restriction on the growth

2 the case of arbitrary Lipschitz domains. Here we define two
functions m, m : R+ → R+ as follows

m(r) := min
ξ∈Rd×d

sym ,|ξ|=r
M(ξ),

m(r) := max
ξ∈Rd×d

sym ,|ξ|=r
M(ξ)

and assume the control of anisotropy of N-function

m(r) ≤ cm((m(r))
n

n−1 + |r |2 + 1).

for all r ∈ R+, and m satisfies ∆2-condition.
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Tools: variant of the Sobolev-Korn inequality

‖u‖
L

n
n−1 (Ω)

≤ ‖Du‖L1(Ω)

Generalization for Orlicz spaces

Let Ω be a bounded domain and
u ∈ {ϕ ∈W 1,1

0 (Ω;Rn);
∫

Ω M(|Dϕ|)dx <∞}. Then

‖M(|u|)‖
L

n
n−1 (Ω)

≤ Cn‖M(|Du|)‖L1(Ω).
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Bogovski theorem

Let Ω be a bounded domain with a Lipschitz boundary. Let m be
an N–function satisfying ∆2-condition and such that mγ is
quasiconvex for some γ ∈ (0, 1). Then, for any f ∈ Lm(Ω) such
that ∫

Ω
f dx = 0,

the problem of finding a vector field v : Ω→ Rn such that

div v = f in Ω

v = 0 on ∂Ω

has at least one solution v ∈ Lm(Ω;Rn) and ∇v ∈ Lm(Ω; ;Rn×n).
Moreover, for some positive constant c∫

Ω
m(|∇v |)dx ≤ c

∫
Ω
m(|f |)dx .
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(t, x)−dependent N−function

First question - density

Density of compactly supported smooth functions with respect to
the modular topology

Second question - continuity

∫
Q
M(t, x , (ρj ∗ z)(t, x)) dx dt ≤ c

∫
Q
M(t, x , z(t, x)) dx dt

for every z ∈ LM(Q).

Regularity w.r.t. (t, x)

There exists a constant H > 0 such that

M(t, x , ξ)

M(s, y , ξ)
≤ |ξ|

H

log 1
|t−s|+|x−y|
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Implicit constitutive relation

We look for u and S such that

ut − div S +∇p = f in Q,

(Du, S) ∈ A(t, x) in Q

u(0, x) = u0 in Ω,

u(t, x) = 0 on (0,T )× ∂Ω.

Introducing the graph A ⊂ Rd×d
sym × Rd×d

sym through the natural
characterization

(D,S) ∈ A ⇐⇒ G (D, S) = 0 ,

we can specify precisely the class of admissible responses G by
formulating the assumptions on A.
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Graph

(A1) A comes through the origin.

(A2) A is a monotone graph.

(S1−S2)·(D1−D2) ≥ 0 for all (D1,S1), (D2,S2) ∈ A(t, x) .

(A3) A is a maximal monotone graph. Let (D2,S2) ∈ Rd × Rd .

If (S1 − S2) · (D1 − D2) ≥ 0 for all (D1,S1) ∈ A(t, x)

then (D2,S2) ∈ A(t, x).

(A4) A is an M− graph. There are non-negative k ∈ L1(Q),
c∗ > 0 and N-function M such that for all (D, S) ∈ A(t, x)

S · D ≥ −k(t, x) + c∗(M(t, x ,D) + M∗(t, x , S))

(A5) The existence of a measurable selection.
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Lemma

Let A be maximal monotone M-graph. Assume that there are
sequences {Sn}∞n=1 and {Dun}∞n=1 defined on Q such that the
following conditions hold:

(Dun,Sn) ∈ A a.e. in Q,

Dun
∗
⇀ Du weakly∗in LM(Q),

Sn ∗⇀ S weakly∗in LM∗(Q),

lim sup
n→∞

∫
Q
Sn · Dun dz ≤

∫
Q
S · Du dz .

Then
(Du,S) ∈ A a.e. in Q,
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