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Abstract. We deal with a three dimensional model based on the use of barycentric
velocity that describes unsteady flows of a heat conducting electrically charged multicom-
ponent chemically reacting non-Newtonian fluid. We show that under certain assumptions
on data and the constitutive relations for such a fluid there exists a global in time and
large data weak solution. The paper has two key novelties. The first one is that we
present a model that is thermodynamically and mechanically consistent and that is able
to describe the cross effects in a generality never considered before, i.e., we cover the so-
called Soret effect, Dufour effect, Ohm law, Peltier effect, Joul heating, Thompson effect,
Seebeck effect and also the generalized Fick law. The second key novelty is that contrary
to the previous works on the similar topic, we do not need to deal with the energy equality
method and therefore we are able to cover a large range of power-law parameters in the
Cauchy-stress. In particular, we cover even the Newtonian case (which is the most used
model), for which the existence analysis was missing.

1. Introduction

We consider a model of an incompressible, multicomponent, heat conducting, electrically
charged fluid that is capable to capture the cross-diffusion effects and that is mechanically
and thermodynamically consistent. The main goal of this paper is to propose such a model
which is able to describe many physical phenomena and to establish the global in time and
large data existence of weak solutions to this model. The general framework we deal with
is as follows. For a bounded open set Ω ⊂ R3 with a boundary of the class C1,1 and given
the length of the time interval T > 0, we denote ΩT := (0, T ) × Ω. We consider a flow
of an incompressible mixture in ΩT that consists of L ∈ N constituents with L ≥ 2. This
problem is described by the following set of equations

for i = 1, 2, . . . , L : ∂tci + div(civ + qi~c)− ri = 0,(1.1)

∂tv + div(v ⊗ v − T ) +Q∇ϕ = 0,(1.2)

div v = 0,(1.3)

−∆ϕ = Q,(1.4)
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∂tE + div

((
|v|2

2
+ e+Qϕ

)
v + ϕ

L∑
i=1

ziq
i
~c + qe − T v − ϕ∇∂tϕ

)
= 0.(1.5)

Here, ~c := (c1, . . . , cL): ΩT → [0, 1]L are the species concentrations, v = (v1, v2, v3):
ΩT → R3 is the velocity field, ϕ: ΩT → R is the electric potential, qi~c = (qi1~c , q

i2
~c , q

i3
~c ):

ΩT → R3 are the fluxes of the corresponding concentrations ci, qe = (q1
e , q

2
e , q

3
e): ΩT → R3

denotes the heat flux, ~r = (r1, . . . , rL): ΩT → RL are the reaction/productions terms for
the concentration ~c, ~z = (z1, . . . , zL) ∈ RL are the specific electric charges of ~c, Q :=∑L

i=1 cizi = ~c ·~z is the total electric charge, T : ΩT → R3×3 is the Cauchy stress tensor and
E : ΩT → R+ is the total energy of the fluid given as a sum of the kinetic, the internal
and the electrostatic energy, i.e., E := |v|2/2 + e+ |∇ϕ|2/2 with e: ΩT → R+ the internal
energy. The terms inside the divergence in (1.5) represent the fluxes of the total energy
due to the dissipation, the heat transfer, the flux of all charged constituent and the flux
due to the time evolution of the electrostatic potential.

System (1.1)–(1.5) is completed by the initial conditions

(1.6) ~c(0) = ~c 0, v(0) = v0, e(0) = e0,

and by the following set of boundary conditions on Γ := (0, T )× Ω

v · ν = 0, (I − ν ⊗ ν)T ν = −γv,(1.7)

qi~c · ν = qi~c Γ, qe · ν = qeΓ, ∇ϕ · ν = qϕΓ,(1.8)

where ν denotes the unit outward normal vector to ∂Ω. All parameters, i.e., γ, qi~c Γ, qeΓ, qϕΓ

may depend on (t, x) and also on some unknowns and their form will be specific later. We
would like to underline that while in (1.7), which are the Navier slip boundary conditions,
we do not permit the total mass to flow through the boundary, the boundary conditions
(1.8) allow to consider the flux of the single species, heat and charge.

System (1.1)–(1.5) contains a lot of simplifications. First, we consider the volume ad-
ditivity and model the whole mixture as being incompressible, and we set the density to
be equal to one. Second, the magnetic field and polarization are neglected, which reduces
the Maxwell equations to (1.4), where again without loss of generality but for simplicity of
further explanation, we set the permittivity equal to one. The Lorenz force in the momen-
tum equation (1.2) is then reduced to Q∇ϕ. The justification of such simplifications can
be found e.g. in [12, 33, 34, 35]. On the other hand, the above system is still rich enough
to describe many phenomena presented in the electrically charged and heat conducting
mixture flow, as for example the Peltier effect, the Joule heat, the Fourier, the Fick and
the Ohm laws, the Soret and the Dufour effects. The goal of the paper is to introduce
such constitutive assumptions on parameters that will lead to this generality on one hand
and will be mathematically treatable on the other hand. The main concept and also the
key tool, used in this paper, is the mechanical and thermodynamic compatibility of all
assumptions, that will lead to the energy balance, and the entropy inequality which will
provide us with the key estimates allowing us to develop the existence theory.
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Notation. Throughout the paper we use the following notation. A scalar or a scalar-
valued function is printed with the usual font, a vector or a vector-valued function corre-
sponding to the three-dimensional space are printed in bold-face, the vectors and vector-
valued functions connected with the number of species (L) are printed with the sign ~
above the letter, the tensors and tensor-valued functions in three space dimensions (i.e.,
with 9 components) are printed with a special font (as e.g. I for I) and the tensors and
tensor-valued functions connected at least with one component to the number of species
are printed with another special font (as e.g. I for I).

For any nonzero vector ~a ∈ RL we introduce the matrix P~a ∈ RL×L by the formula

P~a := I− ~a⊗ ~a
|~a|2

, i.e. (P~a)ij := δij −
aiaj
|~a|2

.

The role of P~a is that it generates the projection onto the space orthogonal to ~a, i.e., for
any ~x ∈ RL there holds P~a~x · ~a = 0. We also define the vector

~̀ := (1, . . . , 1) ∈ RL.

Concerning the function spaces, we will use standard notation for the Lebesgue spaces
(Lp) and the Sobolev spaces (W k,p) endowed with the standard norms. We denote the cor-
responding norm with the lower index p and, k, p, respectively. For vector-valued functions
on Ω we will use notation Lp(Ω;R3); similarly for tensor-valued functions, Sobolev spaces
etc. We further define for 1 < p <∞

Lp0,div(Ω) := C∞0,div(Ω;R3)
‖·‖Lp(Ω)

and

W 1,p
div (Ω) := C∞div(Ω;R3)

‖·‖W1,p(Ω)
,

where C∞0,div(Ω;R3) denotes the set of smooth compactly supported functions in Ω with
zero divergence. Next, we define

W 1,p
0,ν (Ω) = {u ∈ Lp(Ω;R3);∇u ∈ Lp(Ω;R3×3),u · ν = 0 on ∂Ω},

where ν denotes the unit outer normal vector on ∂Ω. For the functions defined on the
time–space we use the notation Lp(0, T ;Lq(Ω)) and similarly for other spaces. For the
notation of the norms, we will use the full description. For the corresponding dual spaces
we will use the standard notation.

2. Constitutive relations and main assumptions

2.1. Mechanical and thermodynamical consistency. First, it is natural to assume
that the chemical reactions change neither the total mass nor the total charge, i.e.,

L∑
i=1

ri =
L∑
i=1

ziri = 0.(2.1)
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Second, since qi~c model the flux of ci, that is the difference of civ
i and civ, where vi is the

velocity of the i-th species, we also impose the assumption

L∑
i=1

qi~c = 0(2.2)

in order to obtain a compatible model, see [5] for more details. Note that summing (1.1)
over i = 1, . . . , L then leads under the assumptions (2.1)–(2.2) to the following transport
equation

(2.3) ∂t(~c · ~̀) + div
(

(~c · ~̀)v
)

= 0.

Next, we focus on the equation for the internal energy and then also on the entropy
inequality. Thus, we multiply the i-th equation in (1.1) by zi, sum over i = 1, . . . , L and

use (2.1) to obtain the following identity for the total charge Q =
∑L

i=1 cizi

∂tQ+ div

(
Qv +

L∑
i=1

ziq
i
~c

)
= 0,(2.4)

which can be in view of (1.4) rewritten as

−∆∂tϕ+ div

(
Qv +

L∑
i=1

ziq
i
~c

)
= 0.(2.5)

It is worth noticing that this is also equivalent to

div

(
Qv +

L∑
i=1

ziq
i
~c −∇∂tϕ

)
= 0.

Next, we multiply (2.5) by ϕ and obtain

∂t
|∇ϕ|2

2
+ div

(
Qϕv + ϕ

L∑
i=1

ziq
i
~c − ϕ∇∂tϕ

)
−Q∇ϕ · v −∇ϕ ·

L∑
i=1

ziq
i
~c = 0.(2.6)

Finally, taking the scalar product of (1.2) with v, we deduce the following identity for the
kinetic energy

∂t
|v|2

2
+ div

(
|v|2v

2
− T v

)
+ T : ∇v +Qv · ∇ϕ = 0.(2.7)

Consequently, subtracting (2.6) and (2.7) from (1.5), we obtain the equation for the internal
energy

∂te+ div(ev + qe)− T : ∇v +
L∑
i=1

ziq
i
~c · ∇ϕ = 0.(2.8)
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To end this part we derive the identity for the entropy. We assume that the entropy
density associated to system (1.1)–(1.5) is a function of the internal energy and the con-
centration vector ~c, i.e., s := s∗(~c, e) : (0, 1)L × R+ → R+. Next, we define the chemical

potential1 ~ζ: ΩT → RL and the temperature θ: ΩT → R+ as

~ζ = ~ζ∗(~c, e) := −∂~cs∗(~c, e), θ = θ∗(~c, e) :=
1

∂es∗(~c, e)
.(2.9)

Then, multiplying (1.1) by ζi, (2.8) by θ−1 and using the fact that div v = 0 (see (1.3)) we
get

∂ts = −
L∑
i=1

ζi∂tci + θ−1∂te

=
L∑
i=1

ζi
(
div(civ + qi~c)− ri

)
+

1

θ

(
− div(ev + qe) + T : ∇v −

L∑
i=1

ziq
i
~c · ∇ϕ

)

= v ·

(
L∑
i=1

ζi∇ci −
∇e
θ

)
+ div

(
L∑
i=1

ζiq
i
~c −

qe
θ

)
−

L∑
i=1

qi~c · ∇ζi + qe · ∇
1

θ

−
L∑
i=1

ζiri +
T : ∇v

θ
− 1

θ

L∑
i=1

ziq
i
~c · ∇ϕ

= div

(
L∑
i=1

ζiq
i
~c −

qe
θ

)
− v · ∇s− ~ζ · ~r +

T : ∇v

θ

−
L∑
i=1

qi~c ·
(
∇ζi +

zi
θ
∇ϕ
)

+ qe · ∇
1

θ
,

which, again due to (1.3), leads to the final entropy identity

∂ts+ div

(
sv −

L∑
i=1

ζiq
i
~c +

qe
θ

)

= −~ζ · ~r +
T : ∇v

θ
−

L∑
i=1

qi~c ·
(
∇ζi +

zi
θ
∇ϕ
)

+ qe · ∇
1

θ
.

(2.10)

The Second law of thermodynamics dictates that the right-hand side of (2.10) has to be
nonnegative and in what follows we introduce the constitutive relations for parameters
that will be designed to satisfy this constraint.

2.2. Constitutive equations and assumptions. Next, we specify the assumptions on
the constitutive equations. We also denote C1 and C2 some positive constants that will
appear in the assumptions below.

1Usually the chemical potential is also given as µ
θ , where µ is the vector of mobilities.
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Assumptions on the reaction term ~r. We assume that there exists a continuous functions

~r ∗ : RL × R+,0 × RL → R such that for all (~c, θ, ~ζ) ∈ RL × R+,0 × RL, we have

|~r ∗(~c, θ, ~ζ)| ≤ C2, ~ζ · ~r ∗(~c, θ, ~ζ) ≤ 0, ~r ∗(~c, θ, ~ζ) · ~̀= ~z · ~r ∗(~c, θ, ~ζ) = 0.(2.11)

Recall that ~̀= (1, . . . , 1) ∈ RL. We also point out that in general, it is enough to assume
that r∗ is defined only for ~c from [0, 1]L and θ ∈ R+, however, it will be easier for us to
assume that this function is extended onto the whole RL or to R+,0; the same will be used
several times below. Then in (1.1) we set

~r := ~r ∗(~c, θ, ~ζ).

Note that (2.1) immediately follows from (2.11). Moreover, we see that the first term on
the right-hand side of (2.10) is nonnegative. It is worth noticing that we do not consider
any coercivity for ~r ∗, which was the essential assumption in [5] in order to get a priori

estimate on ~ζ.

Assumptions on the fluxes q~c and qe. For simplicity, we focus in this paper only on the
linear dependence of fluxes on the gradients of the temperature, chemical and electrostatic
potentials and through the paper we shall assume that the fluxes are of the following form

q~c = {qi~c}Li=1 with qi~c := −
L∑
j=1

Mij

(
∇ζj +

zj
θ
∇ϕ
)
−mi∇

1

θ
,(2.12)

qe := −κ∇θ −
L∑
i=1

mi

(
∇ζi +

zi
θ
∇ϕ
)
.(2.13)

Next, we introduce the assumptions on further parameters appearing in (2.12) and (2.13).
We assume that κ = κ∗(~c, θ): RL × R+ → R+ is a continuous function satisfying for some
β ∈ [0, 2] (here the upper bound for β is taken just for simplicity of the presentation and
it is possible to allow higher values of β) and all (~c, θ) ∈ RL × R+

C1 ≤
κ∗(~c, θ)

1 + θ−β
≤ C2.(2.14)

Notice here that κ∗(~c, θ)∇θ represents the Fourier law with the heat conductivity κ∗(~c, θ)
which is assumed to be uniformly bounded with respect to chemical concentration but can
possibly blow up if the temperature θ tends to zero which is a natural2 requirement.

Second, we assume that M = M∗(~c, θ) = {M∗
ij(~c, θ)}Li,j=1: RL × R+,0 → RL×L

sym is a

continuous symmetric3 matrix-valued mapping and ~m = ~m∗(~c, θ) = {m∗i (~c, θ)}Li=1: RL ×

2It should be also emphasized here that for many fluids this behavior is irrelevant since much before
the temperature reaches zero a phase transition will occur. On the other hand, for liquid gasses with the
temperature near the absolute zero, which can be modeled as incompressible fluids, this behavior is quite
typical.

3Here, the space RL×Lsym denotes the space of all symmetric L× L matrices.
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R+,0 → RL is a continuous vector-valued mapping satisfying for all (~c, θ) ∈ RL × R+,0

L∑
i=1

M∗
ij(~c, θ) =

L∑
i=1

m∗i (~c, θ) = 0, for all j = 1, . . . , L,(2.15)

for all ~w ∈ RL and M(θ) ≥ 0

C1M(θ)|P~̀ ~w|2 ≤
L∑

i,j=1

M∗
ij(~c, θ)wiwj ≤ C2M(θ)|P~̀ ~w|2,(2.16)

and for some ε0 > 0

(2.17)

C1 min(1, θβ−ε0) ≤M(θ) ≤ C(1 + θ)
5
3
−ε0 ,

|~m∗(~c, θ)|2 ≤ C2

{
min{M(θ)θ−β+ε0 , θ−2(β−1)+ε0} for θ < 1,

M(θ)θ for θ ≥ 1.

Let us make few comments about the model represented by (2.12) and (2.13). First,
condition (2.2) is automatically satisfied due to assumption (2.15). Therefore, we see that
the matrix M cannot be positive definite. On the other hand, due to assumption (2.16), we

see that it is positive definite on the subspace of RL which is orthogonal to ~̀. In addition,

this subspace is evidently also the range of this matrix. The part of q~c with M∇~ζ represents
the generalized Fick law and we see that due to the possible non-diagonal form of M and

due to the presence of ∇~ζ instead of ∇~c, we are able to cover the so-called cross effects in
a big generality. In addition, the presence of M(θ) in (2.16) and the fact that it is possibly
vanishing at zero and tending to infinity for the temperature growing to infinity, makes
the model also fully compatible with the Einstein law. Further, the part of the flux with

M~z∇ϕ/θ models the Ohm law. Next, the term M∇~ζ : (~z∇ϕ) in (1.5) models the Peltier
effect, and the term D(~z∇ϕ) : (~z∇ϕ)/θ models4 the power of the Joul heat. Finally, the
possible dependence of q~c on ∇θ then models the so-called Soret effect and conversely, the

dependence of qe on ∇~ζ models the Dufour effect. It is noticeable here that the second law
of thermodynamics requires also the presence of ∇ϕ in the equation for qe, as will be seen
later. This represents the Tomphson effect and the Seebeck effect. We refer at this point
to [37] and [5] for more detailed explanation of these phenomena and for further physical
models.

Assumptions on the Cauchy stress T . We assume that the Cauchy stress is decomposed
into two parts

(2.18) T = −pI + S,
where p : ΩT → R is the mean normal stress — the pressure — which is in the incompress-
ible setting also an unknown function, and S is the constitutively determined part of the
Cauchy stress given by

S = S∗(~c, θ,D(v)).(2.19)

4D will be introduced later, in connection with the boundary conditions.
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Here, D(v) denotes the symmetric part of the velocity gradient, i.e., D(v) := (∇v +
(∇v)T )/2, and the mapping S∗: RL × R+,0 × R3×3

sym → R3×3
sym is assumed to be continuous.

Further, we assume that for some r ∈ (1,∞) and for all (~c, θ,D,B) ∈ RL ×R+,0 ×R3×3
sym ×

R3×3
sym we have

S∗(~c, θ,D) : D ≥ C1|D|r − C2,(2.20)

|S∗(~c, θ,D)| ≤ C2(1 + |D|r−1),(2.21)

S∗(~c, θ, 0) = 0, (S∗(~c, θ,D)− S∗(~c, θ,B)) : (D − B) ≥ 0.(2.22)

Such a general framework allows to cover also non-Newtonian behavior of the fluid. We
would like to emphasize here that the existence theory built in [5, 37] holds true for r ≥
11/5 and therefore does not include the Newtonian fluids and considers only the shear-
thickening fluids. It is however not the case in our setting and we will be able to treat more
physically relevant cases, including the Newtonian and the non-Newtonian shear-thinning
fluids. Finally, the monotonicity of S∗, see (2.22), and the fact that div v = 0 lead to the
nonnegativity of the second term on the right hand side of (2.10), which is the entropy
production due to the mechanical dissipation.

A typical example we have in mind is

S∗(~c, θ,D(v)) = g∗(~c, θ)(1 + |D(v)|r−1)D(v),

where g∗(~c, θ) is a continuous function bounded from below (by a positive constant) and
from above.

Assumptions on the entropy. We assume that the entropy s decomposes as a sum of two
contributions, one from the internal energy e and another from the concentration vector ~c,
i.e., we assume that

s = s∗e(e) + s∗~c(~c),(2.23)

where s∗e: R+,0 → R+,0 and s∗~c : RL → R+,0 are strictly concave C2 functions. Concerning
s∗~c , we assume that for all ~c, ~x ∈ RL there holds

−
L∑

i,j=1

xixj∂
2
cicj
s∗~c(~c) ≥ C|~x|2(2.24)

and that for all K > 0 there exists ε > 0 such that for all ~c ∈ RL and all i = 1, . . . , L we
have

|∂~cs∗~c(~c)| ≤ K =⇒ ci ≥ ε.(2.25)

This assumption was firstly used in [5] and plays the key role in proving the minimum
principle for chemical concentration. The singularity of the entropy derivative at 0 prevents
each concentration from vanishing. A model example for s~c used frequently in practice is

s∗~c(~c) =
L∑
i=1

(
ci − ci log(ci)

)
,
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where 0 < ci < 1, i = 1, . . . , L. Indeed, this function may be extended to RL fulfilling all
the assumptions above.

For s∗e we assume that it is a strictly increasing nonnegative function fulfilling for all
e > 1

C1 ≤ −
(s∗e)

′′(e)

(s∗e)
′(e)2

≤ C2.(2.26)

In addition, concerning its behavior near zero, we assume that

lim
e→0+

1

(s∗e)(e)
= lim

e→0+

(s∗e)
′(e) = lim

e→0+

− (s∗e)
′′(e)

(s∗e)
′(e)2

=∞.(2.27)

It also follows from (2.26) and (2.27) that θ∗(0) = 0 and that the heat capacity of the
fluid vanishes as the temperature tends to zero, which is nothing else but the Third law of
thermodynamics. Furthermore, we see that for e > 1 (with possibly changed constants C1

and C2)

C1 ≤
θ∗(e)

e
≤ C2(2.28)

and in addition (again for some possibly enlarged C2 > 0) that for all e ≥ 0

e− 2s∗e(e) + C2 ≥ 0.(2.29)

A possible example fulfilling (2.26)–(2.29) is

s∗e(e) =

{
C1 + C2 ln(e+ C3), e > 1

C4e
a, 0 < e ≤ 1,

where 0 < a < 1 and C1, . . . , C4 are suitably chosen constants ensuring the smoothness of
se(e).

Second law of thermodynamics. Having introduced all constitutive relations and assump-
tions, we focus finally on the validity of the Second law of thermodynamics. By replacing
the terms on the right-hand side of (2.10) by the corresponding terms from (2.12), (2.13)
and (2.19) and recalling that div v = 0, we get

∂ts+ div

(
sv −

L∑
i=1

ζiq
i
~c +

qe
θ

)
= −~ζ · ~r +

S : D(v)

θ

+ M

(
∇~ζ +

~z

θ
∇ϕ
)
·
(
∇~ζ +

~z

θ
∇ϕ
)

+
κ|∇θ|2

θ2
≥ 0,

(2.30)

where the inequality follows from assumptions (2.11), (2.14), (2.16) and (2.22).
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2.3. Boundary and initial conditions. First, we characterize the reasonable assump-
tions on the initial data, where the function spaces are chosen so that the initial energy
and the entropy is finite.

(2.31)
~c 0 ∈ L∞([0, 1]L), c0

i > 0 a.e. in Ω ∀i ∈ {1, 2, . . . , L}, ~c 0 · ~̀= 1 a.e. in Ω,
v0 ∈ L2

0,div(Ω)
e0 ∈ L1(Ω).

In what follows, we will use the following notation

G := {~x ∈ RL; ∀i = 1, 2, . . . , L, xi > 0, ~x · ~̀= 1}.
Therefore, we may restate the first constraint in (2.31) as

~c 0 ∈ G.
Next, we will introduce the assumptions on the boundary data on Γ. Concerning (1.7),

we use the structure of T and we see that it reduces to

v · ν = 0, (I − ν ⊗ ν)Sν = −γv on Γ,(2.32)

where γ = γ∗(~c, θ) is a nonnegative continuous function fulfilling for all (c, θ) ∈ RL × R+,0

0 ≤ γ∗(c, θ) ≤ C2.

Next, for the particular fluxes, we assume that the fluxes are proportional to a differences
of corresponding quantities in the fluid and outside the domain Ω, i.e.,

qi~cΓ = q∗,i~cΓ(x,~c, θ, ~ζ, ϕ) =
L∑
j=1

D∗ij(x,~c, θ)

(
ζj − ζΓ

j (x) +
zj

θΓ(x)
(ϕ− ϕΓ(x))

)
on Γ,(2.33)

qeΓ = q∗eΓ(x,~c, θ) = −κ∗Γ(x,~c, θ)

(
1

θ
− 1

θΓ(x)

)
on Γ,(2.34)

qϕΓ = q∗ϕΓ(x, ϕ) = −λΓ(x)(ϕ− ϕΓ(x)) on Γ.(2.35)

Here D = D∗(x,~c, θ) = {D∗ij(x,~c, θ)}Li,j=1: ∂Ω × RL × R+,0 → RL×L is a Carathéodory
mapping fulfilling for some measurable nonnegative d: ∂Ω → R,+0 almost all x ∈ ∂Ω and
all (~c, ~w, θ) ∈ RL × RL × R+,0 the following inequality

C1d(x)|P~̀ ~w|2 ≤
L∑

i,j=1

D∗ij(x,~c, θ)wiwj ≤ C2d(x)|P~̀ ~w|2.(2.36)

Moreover, for (x,~c, θ) ∈ Ω× RL × R+,0

(2.37)
L∑
i=1

D∗ij(x,~c, θ) = 0,

and the non-negative function d satisfies

(2.38)

∫
∂Ω

d(x) dS > 0.
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The function κ∗Γ(x,~c, θ): ∂Ω× RL × R+,0 → R+,0 is a nonnegative Carathéodory function
satisfying

(2.39) C1κ(x) ≤ κ∗Γ(x,~c, θ) ≤ C2κ(x)

with some measurable nonnegative function κ: ∂Ω→ R+,0 fulfilling

(2.40)

∫
∂Ω

κ(x) dS > 0.

Finally, we require λΓ ∈ C1,1(∂Ω) to be a nonnegative function that satisfies

(2.41)

∫
∂Ω

λΓ(x) dS > 0.

We conclude by making the following assumptions on the regularity of the boundary data

(2.42) (θΓ)−1 ∈ L2(Γ), P~̀
~ζ Γ ∈ L2(Γ;RL), ϕΓ ∈ C1,1(∂Ω).

Let us point out at this place that we assume on purpose that κ and d can vanish
on some part of the boundary, while they must be strictly positive on a set of nonzero
measure. This should model two different phenomena. First, when the boundary consists
of a wall preventing any energy, ion or mass transfer, and the second one, where there still
is no mass transfer, but the transfer of the heat and the concentrations is driven by the
difference of the corresponding quantities.

We now collect all our assumptions in order to have all of them at one place. Recall
we consider system (1.1)–(1.5) with initial conditions (1.6) and boundary conditions (1.7)–
(1.8).
Hypothesis (H1): chemical reactions

We assume that ~r = ~r ∗(~c, θ, ~ζ) is a bounded continuous function on RL × R+,0 × RL, and

L∑
i=1

r∗i =
L∑
i=1

r∗i zi = 0

such that for all ~ζ ∈ RL it holds ~r ∗ · ~ζ ≤ 0.
Hypothesis (H2): stress tensor
We assume that S = S∗(~c, θ,D) is a continuous function on RL × R+,0 × R3×3

sym such that

for some r ∈ (1,∞) and all (~c, θ,D,B) ∈ RL × R+,0 × R3×3
sym × R3×3

sym we have

S∗(~c, θ,D) : D ≥ C1|D|r − C2,

|S∗(~c, θ,D)| ≤ C2(1 + |D|r−1),

S∗(~c, θ, 0) = 0, (S∗(~c, θ,D)− S∗(~c, θ,B)) · (D − B) ≥ 0.

Hypothesis (H3): flux of concentrations and heat flux
We assume that

qi~c = q∗,i~c (~c, θ,∇~ζ,∇θ,∇ϕ) := −
L∑
j=1

M∗
ij(~c, θ)

(
∇ζj +

zj
θ
∇ϕ
)
−m∗i (~c, θ)∇

1

θ
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and

qe = q∗e(~c, θ,∇~ζ,∇θ,∇ϕ) := −κ∗(~c, θ)∇θ −
L∑
i=1

m∗i (~c, θ)
(
∇ζi +

zi
θ
∇ϕ
)

with the matrix-valued function M = M∗(~c, θ) = {M∗
ij(~c, θ)}Li,j=1: RL × R+,0 → RL×L

sym

and the vector-valued function ~m = ~m ∗(~c, θ) = {m∗i (~c, θ)}Li=1: RL × R+,0 → R continuous
mappings such that for all (~c, θ) ∈ RL × R+,0,

L∑
i=1

M∗
ij(~c, θ) =

L∑
i=1

m∗i (~c, θ) = 0, for all j = 1, . . . , L,

for all ~w ∈ RL

C1M(θ)|P~̀ ~w|2 ≤
L∑

i,j=1

M∗
ij(~c, θ)wiwj ≤ C2M(θ)|P~̀ ~w|2,

and for some ε0 > 0

C1 min(1, θβ−ε0) ≤M(θ) ≤ C(1 + θ)
5
3
−ε0 ,

|~m ∗(~c, θ)|2 ≤ C2

{
min{M(θ)θ−β+ε0 , θ−2(β−1)+ε0} for θ < 1,

M(θ)θ for θ ≥ 1.

Hypothesis (H4): heat conductivity
We assume that κ = κ∗(~c, θ): RL × R+ → R+ is a continuous function satisfying for some
β ∈ [0, 2] and all (~c, θ) ∈ RL × R+

0 < C1 ≤
κ∗(~c, θ)

1 + θ−β
≤ C2.

Hypothesis (H5): entropy
We assume that s = s∗(e,~c) = s∗e(e) + s∗~c(~c), where s∗e: R+,0 → R+,0 and s∗~c : RL → R+,0

are strictly concave C2 functions. Moreover, for all ~c, ~x ∈ RL

−
L∑

i,j=1

xixj∂
2
cicj
s∗c(~c) ≥ C|~x|2,

and for all K > 0 there exists ε > 0 such that for all ~c ∈ RL and all i = 1, . . . , L we have

|∂~cs∗~c(~c)| ≤ K =⇒ ci ≥ ε.

For s∗e we assume that it is a strictly increasing function fulfilling for all e > 1

C1 ≤ −
(s∗e)

′′(e)

(s∗e)
′(e)2

≤ C2

and that its behaviour near zero is described by the following limits as

lim
e→0+

1

(s∗e)(e)
= lim

e→0+

(s∗e)
′(e) = lim

e→0+

− (s∗e)
′′(e)

(s∗e)
′(e)2

=∞.
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Hypothesis (H6): initial conditions

~c 0 ∈ G, v0 ∈ L2
0,div(Ω), e0 ∈ L1(Ω).

Hypothesis (H7): boundary conditions for the velocity
We assume that γ = γ∗(~c, θ) is a nonnegative continuous functions on RL×R+,0 such that

0 ≤ γ∗(~c, θ) ≤ C2

for all (~c, θ) ∈ RL × R+,0.
Hypothesis (H8): boundary conditions for the flux of concentrations

qi~cΓ = q∗,i~cΓ(x,~c, θ, ~ζ, ϕ) :=
L∑
j=1

D∗ij(x,~c, θ)
(
ζj − ζΓ

j +
zj
θΓ

(ϕ− ϕΓ)
)

with D = D∗ = {D∗ij(x,~c, θ)}Li,j: ∂Ω×RL×R+ → RL×L a Carathéodory mapping fulfilling

for some nonnegative d ∈ L∞(∂Ω), almost all x ∈ ∂Ω and all (~c, ~w, θ) ∈ RL × RL × R+,0

the following inequality

C1d(x)|P~̀ ~w|2 ≤
L∑

i,j=1

D∗ij(x,~c, θ)wiwj ≤ C2d(x)|P~̀ ~w|2.

Moreover,
L∑
i=1

D∗ij = 0,

∫
∂Ω

d(x) dS > 0

and

(θΓ)−1 ∈ L2(Γ), P~̀
~ζ Γ ∈ L2(Γ;RL), ϕΓ ∈ C1,1(∂Ω).

Hypothesis (H9): boundary conditions for the flux of internal energy

qeΓ = q∗eΓ(x,~c, θ) := −κ∗Γ(x,~c, θ)

(
1

θ
− 1

θΓ(x)

)
.

The function κ∗Γ(x,~c, θ): ∂Ω× RL × R+,0 → R+,0 is a nonnegative Carathéodory function
satisfying

C1κ(x) ≤ κ∗Γ(x,~c, θ) ≤ C2κ(x),

where κ ∈ L∞(∂Ω), and ∫
∂Ω

κ(x) dS > 0.

Hypothesis (H10): boundary conditions for the flux of the electric potential

qϕΓ = q∗ϕΓ(x, ϕ) := −λΓ(x)(ϕ− ϕΓ(x)),

where λΓ ∈ C1,1(∂Ω) is a nonnegative function that satisfies∫
∂Ω

λΓ(x) dS > 0.
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Note that, for the sake of simplicity, we assume that all quantities depend explicitly only
on x, but nor on t. We could, indeed, assume also the dependence on time, however, we
prefer to omit it in order to simplify the presentation.

2.4. Auxiliary results. Here we present some results that will be helpful in the following.

Lemma 1 (Korn inequality). Let Ω ⊂ R3 be an open bounded Lipschitz domain, p ∈ (1,∞).
Then:

(2.43) ‖v‖W 1,p(Ω) ≤ C(p,Ω)‖D(v)‖Lp(Ω) ∀v ∈ W 1,p
0 (Ω;R3),

(2.44) ‖v‖W 1,p(Ω) ≤ C(p,Ω)‖D(v)‖Lp(Ω) + ‖v‖Lp(Ω) ∀v ∈ W 1,p
0,ν (Ω).

If, additionally, Ω is not axially symmetric, then (2.43) holds also for v ∈ W 1,p
0,ν (Ω).

Proof. See e.g. [28]. �

Lemma 2 (Interpolation inequality). Let Ω ⊂ R3 be an open bounded Lipschitz domain,
p ∈ [6

5
,∞) and q ≥ 2. Then for all u ∈ W 1,p(Ω)

‖u‖qLq(Ω) ≤ C(p, q,Ω)‖u‖αL2(Ω)‖u‖1−α
W 1,p(Ω),

provided that α ∈ [0, 1] and 1
q

= α
2

+ (1− α)(1
p
− 1

3
).

Proof. See [2]. �

Lemma 3 (Generalized Aubin’s lemma). Let {yn}n∈N, {zn}n∈N be sequences in L∞(Ω ×
(0, T )) such that:

‖yn‖L∞(Ω×(0,T )) + ‖zn‖L∞(Ω×(0,T )) ≤ C,(2.45)

‖yn‖L2(0,T ;W 1,2(Ω)) + ‖ynzn‖L2(0,T ;W 1,2(Ω)) + ‖∂tzn‖L2(0,T ;W−1,2(Ω)) ≤ C,(2.46)

yn → y strongly in L2(Ω× (0, T )) (up to subsequences),(2.47)

zn ⇀
∗ z weakly* in L∞(Ω× (0, T )) (up to subsequences).(2.48)

Then:

ynzn → yz strongly in Lq(Ω× (0, T )) (up to subsequences), ∀q ∈ [1,∞).(2.49)

Proof. The proof is almost identical to the one of [21, Lemma 13]. The only difference is
that the expression ‖zn(·, · + k) − zn‖L2(0,T ;W−1,2(Ω)) (with k ∈ R arbitrary) appearing in

the terms J1, J2 can be controlled by k‖∂tz(n)‖L2(0,T ;W−1,2(Ω)). �

Lemma 4 (Lemma 3.6 in [5]). Let s∗~c satisfy (2.24) and define ~ζ∗(c) := −∂~cs∗~c(~c). Then
there exists C > 0 such that for all ~c ∈ [0, 1]L there holds

~ζ ∗i (~c) ≤ C, |~ζ ∗(~c)| ≤ C

ci
for all i = 1, . . . , L.(2.50)

Moreover, there exists C > 0 such that for all c ∈ G, we have

(2.51) |~ζ ∗(~c)| ≤ C(1 + |P~̀
~ζ ∗(~c)|).
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3. A priori estimates

In this section we derive uniform estimates valid for any sufficiently smooth solution that
also help us to introduce a proper notion of a solution. In what follows, we omit writing
dependence of quantities on spatial and time variables. From now on, the constant C > 0
denotes some generic constant that can vary line to line, but can depend only on the data
of our problem.

3.1. Uniform bound for ~c and ϕ. We start with (2.3). Since we assume, see (2.31), that

~c(0) · ~̀≡ 1 in Ω, div v = 0 and v · ν = 0 on Γ, we get that ~c · ~̀≡ 1 almost everywhere in

ΩT . Next, we assume that ~ζ is well defined (possible unbounded), therefore it also follows
from (2.25) that for all i = 1, . . . , L we have ci ≥ 0 in ΩT which implies ~c ∈ L∞(ΩT ;RL).
To justify that

(3.1) ~c ∈ G almost everywhere in ΩT ,

we need to verify that in fact ci > 0 for all i ∈ {1, 2, . . . , L} a.e. in ΩT . We show this at

the end of this section by proving that ~ζ is finite a.e.
Furthermore, using the fact that Q := ~z · ~c, we get

(3.2) sup
t∈(0,T )

‖Q‖∞ ≤ C(~z).

Using now the theory for the Laplace equation (1.4), the fact that Ω ∈ C1,1 and the
assumptions on λΓ and ϕΓ from Hypotheses (H8) and (H10), we deduce that for all q ∈
[1,∞)

(3.3) sup
t∈(0,T )

‖ϕ‖2,q ≤ C(~z, q, ϕΓ, λΓ).

3.2. Uniform bounds based on the total energy and the entropy. First, we focus
on information coming from (1.5). Thus, we integrate (1.5) over Ω and use integration by
parts to obtain (note here that several boundary integrals vanish due to (2.32))

d

dt

∫
Ω

E dx+

∫
∂Ω

(
ϕ

L∑
i=1

ziq
i
~c + qe − T v − ϕ∇∂tϕ

)
· ν dS = 0.

Using (2.18), (2.32), (2.35) and the symmetry of S, we find∫
∂Ω

−T v · ν dS =

∫
∂Ω

pv · ν − Sv · ν dS

=

∫
∂Ω

−Sν · v dS =

∫
∂Ω

γ|v|2 − S(ν ⊗ ν)ν · v dS

=

∫
∂Ω

γ|v|2 dS,

−
∫
∂Ω

ϕ∇∂tϕ · ν dS =

∫
∂Ω

ϕλΓ∂t(ϕ− ϕΓ) dS =
1

2

d

dt

∫
∂Ω

λΓ|ϕ|2 dS.
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Hence, using also Hypotheses (H8) and (H9) we obtain

d

dt

(∫
Ω

E dx+

∫
∂Ω

λΓ|ϕ|2

2
dS

)
+

∫
∂Ω

γ|v|2 dS

=

∫
∂Ω

κΓ

(
1

θ
− 1

θΓ

)
−

L∑
i,j=1

Dijzi

(
ζj − ζΓ

j +
zj
θΓ

(ϕ− ϕΓ)
)
ϕ dS.

(3.4)

Similarly, integration (2.30) over Ω leads after using integration by parts and the fact
that v · ν vanishes on ∂Ω to

d

dt

∫
Ω

−s dx+

∫
Ω

S : D(v)

θ
− ~ζ · ~r dx

+

∫
Ω

M

(
∇~ζ +

~z

θ
∇ϕ
)
·
(
∇~ζ +

~z

θ
∇ϕ
)

+
κ|∇θ|2

θ2
dx

=

∫
∂Ω

−
L∑
i=1

ζiq
i
~c · ν +

qe · ν
θ

dS

= −
∫
∂Ω

D

(
~ζ − ~ζ Γ +

~z

θΓ
(ϕ− ϕΓ)

)
~ζ + κΓ

(
1

θ
− 1

θΓ

)
1

θ
dS.

(3.5)

Hence, summing (3.4) and (3.5) and reordering the corresponding terms we find

d

dt

(∫
Ω

E − s dx+

∫
∂Ω

λΓ|ϕ|2

2
dS

)
+

∫
∂Ω

γ|v|2 dS +

∫
Ω

κ|∇θ|2

θ2
dx

+

∫
Ω

S : D(v)

θ
− ~ζ · ~r + M

(
∇~ζ +

~z

θ
∇ϕ
)
·
(
∇~ζ +

~z

θ
∇ϕ
)

dx

+

∫
∂Ω

κΓ

∣∣∣∣1θ − 1

θΓ

∣∣∣∣2 + D

(
~ζ − ~ζ Γ + (ϕ− ϕΓ)

~z

θΓ

)
·
(
~ζ − ~ζ Γ + (ϕ− ϕΓ)

~z

θΓ

)
dS

= −
∫
∂Ω

κΓ

(
1

θ
− 1

θΓ

)(
1

θΓ
− 1

)
+ D

(
~ζ Γ + ϕΓ ~z

θΓ

)
·
(
~ζ − ~ζ Γ +

~z

θΓ
(ϕ− ϕΓ)

)
dS

+

∫
∂Ω

D

(
~ζ − ~ζ Γ +

~z

θΓ
(ϕ− ϕΓ)

)
· ~zϕ

(
1− 1

θΓ

)
dS.

(3.6)

This inequality is the starting point for getting a priori estimates. First, due to Hypothesis
(H1), the term with ~r on the left-hand side is nonnegative and therefore will be neglected.
Moreover, since the matrix D is positive definite on the range of P~̀, we can use the
Cauchy–Schwarz inequality to absorb the corresponding terms on the right-hand side by
the left-hand side. To estimate the term with the heat conductivity, we use Hypothesis
(H4), for the term involving the matrix M we use Hypothesis (H3). Finally, for the
boundary integral, we use the Hölder inequality and also Hypotheses (H5), (H8), (H9) and
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the uniform bound (3.3) to obtain

d

dt

(∫
Ω

E − s+ C2 dx+

∫
∂Ω

λΓ|ϕ|2

2
dS

)
+

∫
∂Ω

γ|v|2 dS

+

∫
Ω

S : D(v)

θ
+ C1M(θ)

∣∣∣∣P~̀

(
∇~ζ +

~z

θ
∇ϕ
)∣∣∣∣2 + C1

(1 + θ−β)|∇θ|2

θ2
dx

+ C

∫
∂Ω

κ

∣∣∣∣1θ − 1

θΓ

∣∣∣∣2 + d

∣∣∣∣P~̀

(
~ζ − ~ζ Γ + (ϕ− ϕΓ)

~z

θΓ

)∣∣∣∣2 dS

≤ C
(∫

∂Ω

κ

∣∣∣∣ 1

θΓ
− 1

∣∣∣∣2 + d

∣∣∣∣P~̀

(
~ζ Γ + ϕΓ ~z

θΓ

)∣∣∣∣2 dS + 1
)
.

(3.7)

Finally, using Hypotheses (H8), (H9) and (H10) and the assumptions on the initial data
(2.31), the Young inequality and the estimate (3.3), we have (notice that all terms appear-
ing on the left-hand side are nonnegative)

sup
t∈(0,T )

∫
Ω

E(t)− s(t) + C2 dx+

∫
Γ

γ|v|2 + κθ−2 + d
∣∣∣P~̀

~ζ
∣∣∣2 dS dt

+

∫
ΩT

S : D(v)

θ
+M(θ)

∣∣∣∣P~̀

(
∇~ζ +

~z

θ
∇ϕ
)∣∣∣∣2 + |∇ ln θ|2 + |∇θ−

β
2 |2 dx dt ≤ C.

(3.8)

Thus, employing Hypothesis (H5) and the definition of E, we see that

(3.9) sup
t∈(0,T )

(‖v(t)‖2 + ‖e(t)‖1 + ‖s(t)‖1 + ‖θ(t)‖1) ≤ C.

Next, using (3.9), Hypothesis (H9), the fact that β ≤ 2 and the Poincaré inequality, we
have

(3.10)

∫
ΩT

‖ ln θ‖2
1,2 + ‖θ−

β
2 ‖2

1,2 dt ≤ C.

3.3. Uniform bounds based on the kinetic and the internal energy identity.
Integrating (2.7) over Ω, using the fact that div v = 0, assumptions (1.7) and (2.18), we
get

d

dt

∫
Ω

|v|2

2
dx+

∫
∂Ω

γ|v|2 dS +

∫
Ω

S : D(v) dx = −
∫

Ω

Qv · ∇ϕ dx.(3.11)

Thus, applying Hypothesis (H2), the already obtained uniform bound (3.2) and (3.3), and
the standard interpolation inequality (see Lemma 2), we deduce after integration over
(0, T )

(3.12)

∫ T

0

‖√γv‖2
L2(∂Ω) + ‖v‖

5r
3
5r
3

+ ‖v‖r1,r + ‖S‖r′r′ dt ≤ C(T,v0,~c, ~z,Ω).

Consequently, following the procedure developed in [6] and using the fact that Ω ∈ C1,1,
we can decompose the pressure into four parts

p = p1 + p2 + p3 + p4,
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such that for all ψ ∈ W 2,∞(Ω) fulfilling ∇ψ · ν = 0 on ∂Ω and for almost all t ∈ (0, T )∫
Ω

p1∆ψ dx =

∫
Ω

S : ∇2ψ dx,(3.13) ∫
Ω

p2∆ψ dx = −
∫

Ω

(v ⊗ v) : ∇2ψ dx,(3.14) ∫
Ω

p3∆ψ dx =

∫
∂Ω

γv · ∇ψ dS,(3.15) ∫
Ω

p4∆ψ dx =

∫
Ω

Q∇ϕ · ∇ψ dx.(3.16)

Consequently, it follows from (3.13)–(3.16) and the already stated a priori estimates (3.2),
(3.3) and (3.12) that (see [6] for details) whenever r > 6/5, we have5

(3.17) sup
t∈(0,T )

‖p4(t)‖∞ +

∫
ΩT

|p1|r
′
+ |p2|

5r
6 + |p3|2 dx dt ≤ C.

Next, we introduce a nonnegative function f(s) ∈ C∞(0,∞), such that |f(s)| ≤ 1,
which in addition will satisfy f(s) = 0 for s ∈ (0, 1) and f(s) := (1 + s)−λ for s ≥ 2, where
λ ∈ (0, 1) is arbitrary. Multiplying (2.8) by f(e), integrating over Ω and using the fact
that v · ν = 0 on boundary and div v = 0, we observe

− d

dt

∫
Ω

F (e) dx+

∫
∂Ω

f(e)κΓ

(
1

θ
− 1

θΓ

)
dS +

∫
Ω

f(e)S : D(v) dx

−
∫

Ω

f ′(e)

(
κ∇θ · ∇e+

L∑
i=1

mi

(
∇ζi +

zi
θ
∇ϕ
)
· ∇e

)
dx

+

∫
Ω

f(e)
L∑

i,j=1

Mij

(
∇ζj +

zj
θ
∇ϕ
)
· (zi∇ϕ)− f(e)~m · ~z

θ2
∇θ · ∇ϕ dx = 0,

where F ′ = f . Next, using Hypotheses (H2), (H3) and (H9) together with the fact that
f(e) ≤ 1 and the Cauchy–Schwarz and the Young inequalities, we find

(3.18)

− d

dt

∫
Ω

F (e) dx+ λ

∫
{e≥2}

κ∇θ · ∇e
(1 + e)λ+1

dx−
∫
{1≤e≤2}

f ′(e)κ∇θ · ∇e dx

≤ C

∫
∂Ω

κ

∣∣∣∣1θ − 1

θΓ

∣∣∣∣ dS + C

∫
{e≥1}

|~m|2|∇e|2

M(θ)(1 + e)2λ+2
dx

+ C

∫
{e≥1}

M(θ)

∣∣∣∣P~̀

(
∇~ζ +

~z

θ
∇ϕ
)∣∣∣∣2 +M(θ)|P~̀ (~z∇ϕ)|2 dx

+

∫
{e≥1}

δ|∇θ|2

(1 + e)1+λ
+ C(δ−1)

(1 + e)1−λ|~m · ~z|2

θ4
|∇ϕ|2 dx,

5Indeed, we could (at least for r > 3
2 ) improve the integrability of p3, but we do not need it here.
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where δ > 0 is arbitrary. Then, the integration over (0, T ) and the use of Hypotheses (H4)
and (H5) and the already obtained estimates (3.3), (3.8) and (3.9) together with the fact
that |F (e)| ≤ C(λ)(1 + e) lead to (with a constant C > 0 depending on the data and on
λ > 0) ∫

{e≥2}

|∇θ|2

(1 + θ)λ+1
dx dt ≤ C + C

∫
{1≤e≤2}

|∇θ|2 dx dt

+ C

∫
{e≥2}

|~m|2|∇θ|2

M(θ)(1 + θ)2λ+2
dx dt+ C

∫
{e≥1}

M(θ) dx dt

+

∫
{e≥2}

Cδ|∇θ|2

(1 + θ)1+λ
+
C(δ−1)|~m|2

(1 + θ)3+λ
dx dt,

which, by using Hypothesis (H3), can be simplified as

(3.19)

∫
{e≥2}

|∇θ|2

(1 + θ)λ+1
dx dt ≤ C + C

∫
{1≤e≤2}

|∇θ|2 dx dt

+ C

∫
{e≥2}

|∇θ|2

(1 + θ)1+λ

(
δ +

1

(1 + θ)λ

)
+ C(δ−1)

∫
{e≥1}

M(θ) dx dt

≤ C + C(δ−1)

∫
{e≥1}

|∇θ|2

θ2
+M(θ) dx dt

+ Cδ

∫
{e≥2}

|∇θ|2

(1 + θ)1+λ
dx dt.

We see that for any fixed λ ∈ (0, 1) (so that the constant C above, which may depend on
λ is now also fixed), we can find δ such that Cδ ≤ 1/2 and therefore the last integral in
(3.19) can be absorbed by the left hand side. Thus, using in addition Hypothesis (H3) and
estimate (3.10), we obtain

(3.20)

∫
ΩT

|∇θ|2

(1 + θ)λ+1
dx dt ≤ C(λ)

(
1 +

∫
ΩT

(1 + θ)
5
3
−ε0 dx dt

)
.

Finally, to estimate the right-hand side, we use bound (3.9), the interpolation in Lebesgue
spaces and the Sobolev embedding theorem. We have∫

ΩT

(1 + θ)
5
3
−ε0 dx dt =

∫ T

0

‖(1 + θ)
1−λ

2 ‖
2(5−3ε0)
3(1−λ)

2(5−3ε0)
3(1−λ)

dt

≤ C

∫ T

0

‖(1 + θ)
1−λ

2 ‖
2(5−3ε0)
3(1−λ)

− 2(2−3ε0)
2−3λ

2
1−λ

‖(1 + θ)
1−λ

2 ‖
2(2−3ε0)

2−3λ

1,2 dt

≤ C + C

∫ T

0

(∫
Ω

|∇θ|2

(1 + θ)1+λ
dx

) 2−3ε0
2−3λ

dt.

Consequently, assuming that λ < min{ε0,
2
3
} (note that we in fact use finally λ close to

zero, therefore the upper bounds do not play any important role), we can use this estimate
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in (3.20), which after a direct application of the Young inequality leads to

(3.21)

∫
ΩT

|∇θ|2

(1 + θ)λ+1
dx dt ≤ C(λ) for all λ > 0.

In addition, using the above computation, we get

(3.22)

∫
ΩT

|θ|
5
3
−λ + |∇θ|

5
4
−λ +

|∇θ|2

(1 + θ)λ+1
dx dt ≤ C(λ).

Note that the estimate holds in fact for any λ > 0, however, blows up when λ→ 0+.

3.4. A priori estimates for fluxes. Take any q ∈ (1, 2). Using Hypothesis (H3), we
see that by virtue of the Cauchy–Schwarz and the Young inequality the following estimate
holds true∫

ΩT

|q~c|q dx dt ≤ C

∫
ΩT

∣∣∣∣MP~̀

(
∇~ζ +

~z

θ
∇ϕ
)∣∣∣∣q +

|~m|q|∇θ|q

θ2q
dx dt

≤ C

∫
ΩT

|M(θ)|
q
2

(
M(θ)

∣∣∣∣P~̀

(
∇~ζ +

~z

θ
∇ϕ
)∣∣∣∣2
) q

2

dx dt

+ C

∫
{θ≥1}

|~m|q

(1 + θ)2q− q(1+λ)
2

(
|∇θ|2

(1 + θ)1+λ

) q
2

dx dt+ C

∫
{θ<1}

|~m|q

θ
q(2−β)

2

(
|∇θ|2

θβ+2

) q
2

dx dt

≤ C

∫
ΩT

|M(θ)|
q

2−q +M(θ)

∣∣∣∣P~̀

(
∇~ζ +

~z

θ
∇ϕ
)∣∣∣∣2 dx dt

+ C

∫
{θ≥1}

|~m|
2q

2−q

(1 + θ)
4q

2−q−
q(1+λ)

2−q

+
|∇θ|2

(1 + θ)1+λ
dx dt+

∫
{θ<1}

|~m|
2q

2−q

θ
q(2−β)

2−q

+
|∇θ|2

θβ+2
dx dt

≤ C(λ) + C

∫
ΩT

|M(θ)|
q

2−q + C

∫
{θ≥1}

|~m|
2q

2−q

(1 + θ)
4q

2−q−
q(1+λ)

2−q

dx dt+

∫
{θ<1}

|~m|
2q

2−q

θ
q(2−β)

2−q

dx dt,

where for the last inequality we used (3.8). Employing also assumption (2.17) and setting
λ sufficiently small, the above inequality reduces to∫

ΩT

|q~c|q dx dt ≤ C + C

∫
ΩT

θ( 5
3
−ε0) q

2−qχ{θ≥1} + θ−
q(β−ε0)

2−q χ{θ≤1} dx dt.

Thus, using the a priori estimates (3.10) and (3.22), we see that

(3.23)

∫
ΩT

|q~c|q dx dt ≤ C,
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for q chosen by

(3.24)

q = 2 if ε0 ≥ max

{
β,

5

3

}
,

q < min

{
10

10− 3ε0

,
2β

2β − ε0

}
otherwise.

Second, we focus on estimates for qe. Using (2.13)–(2.15) and the Young inequality, we
get ∫

ΩT

|qe|q dx dt ≤ C

∫
ΩT

|κ|q|∇θ|q + |~m|q
∣∣∣∣P~̀

(
∇~ζ +

~z

θ
∇ϕ
)∣∣∣∣q dx dt

≤ C

∫
ΩT

|∇θ|qχ{θ≥1} +
|∇θ|q

θβq
χ{θ≤1} dx dt

+

∫
ΩT

|~m|
2q

2−q

|M(θ)|
q

2−q
+M(θ)

∣∣∣∣P~̀

(
∇~ζ +

~z

θ
∇ϕ
)∣∣∣∣2 dx dt.

Due to the assumption (2.17) and the a priori estimates (3.8) and (3.22), the above in-
equality reduces for all q ∈ (1, 5/4) to∫

ΩT

|qe|q dx dt ≤ C(q) +

∫
ΩT

(
|∇θ|2

θβ+2

) q
2
(

1

θβ−2

) q
2

χθ≤1 dx dt

+

∫
ΩT

θ
q

2−qχθ>1 + θ−
q(β−ε0)

2−q χθ≤1 dx dt

≤ C(q) +

∫
ΩT

|∇θ|2

θβ+2
+ θ

q
2−qχθ>1 + θ−

q(β−ε0)
2−q χθ≤1 + θ−

q(β−2)
2−q χθ≤1 dx dt.

Hence, repeating the same procedure as above, we deduce that provided ε0 < β,6 for all q
fulfilling

q < min

{
5

4
,

2β

2β − ε0

}
there holds

(3.25)

∫
ΩT

|qe|q dx dt ≤ C(q).

3.5. Estimates on the chemical potential and concentration. Let us consider q ∈
(1, 2]. Then using the triangle inequality, the Hölder inequality, the structural assumption

6In what follows, we will need that β ≥ 1, therefore the case ε0 ≥ 2β is not interesting for us.
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(2.17) and a priori bounds (3.3) and (3.8), we can find∫
ΩT

|P~̀∇~ζ|q dx dt ≤ C

∫
ΩT

∣∣∣∣P~̀

(
∇~ζ +

~z

θ
∇ϕ
)∣∣∣∣q +

∣∣∣∣~zθ∇ϕ
∣∣∣∣q dx dt

≤ C + C

∫
ΩT

1

(M(θ))
q

2−q
+

1

θq
dx dt

≤ C + C

∫
ΩT

1

θ
q(β−ε0)

2−q

+
1

θq
dx dt.

Therefore, setting

(3.26) q = a := min

{
β,

2β

2β − ε0

}
and recalling the a priori bound (3.10), we finally obtain

(3.27)

∫
ΩT

|P~̀∇~ζ|a dx dt ≤ C + C

∫
ΩT

1

θβ
dx dt ≤ C.

Hence, using the fact that we control the trace of P~̀
~ζ, see (3.8), and assumption (2.38),

the Poincaré inequality yields that

(3.28)

∫ T

0

‖P~̀
~ζ‖a1,a dt ≤ C.

Consequently, it follows directly from (2.51) that

(3.29)

∫ T

0

‖~ζ‖aa dt ≤ C.

It is worth noticing here that the above estimate together with assumption (2.25) directly
imply that each concentration ci is strictly positive almost everywhere in ΩT . Finally, a
direct computation together with assumption (2.24) implies

C1|∂xk~c|2 ≤ −
L∑

i,j=1

∂2
cicj
s∗~c(~c)∂xkci∂xkcj = ∂xk

~ζ · ∂xk~c = ∂xk(P~̀
~ζ) · ∂xk~c,

where the last identity follows from (3.1). Thus, we have

C1|∇~c| ≤ |∇(P~̀
~ζ)|

and the a priori bound (3.28) yields

(3.30)

∫ T

0

‖~c‖a1,a dt ≤ C.

Finally we estimate the boundary fluxes. We easily see that

(3.31)

∫
Γ

|~q~c Γ|2 + |qeΓ|2 + |qϕΓ|q dS dt ≤ C,

where 1 ≤ q <∞ arbitrary, and C depends on the data of the problem.
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4. Weak solution, main results

4.1. Different types of weak solutions. In this paper, we will consider three different
types of the solution. The natural definition is connected with the weak formulation of the
system of equations (1.1)–(1.5) with initial and boundary conditions (1.6)–(1.8). Taking
into account Hypotheses (H1)–(H10), we have

Definition 1. We say that (~c,v, e, ϕ) is a weak total energy solution to problem (1.1)–(1.8)
in ΩT , provided

• ~c ∈ G for a.a. t ∈ [0, T ), v ∈ Lr(0, T ;W 1,r
0,ν (Ω)) ∩ L∞(0, T ;L2(Ω;R3)), v ∈

L3(ΩT ;R3), div v = 0 a.e. in ΩT , ϕ ∈ L∞(0, T ;W 1,q(Ω)) ∩ W 1,p(ΩT ) for all
q ∈ [1,∞) and some p > 1, e ∈ L∞(0, T ;L1(Ω)) ∩ Lq(0, T ;W 1,q(Ω)) for some
q > 1, 1/e ∈ Ls(0, T ;W 1,s(Ω)) for some s > 1
• ~c ∈ Cweak([0, T ];Lq(Ω;RL)) for some q > 1, v ∈ Cweak([0, T ];L2(Ω;R3)), e ∈
Cweak([0, T ];L1(Ω)) and the initial conditions (~c 0,v0, e0) are fulfilled in the weak
sense
• the weak formulation of the species equations holds true

(4.1)

∫
ΩT

~c · ∂t ~ψ + (~c⊗ v + q~c) : ∇~ψ + ~r · ~ψ dx dt+

∫
Ω

~c 0 · ~ψ(0) dx =

∫
Γ

~q~c Γ · ~ψ dS dt

for all ~ψ ∈ C∞(ΩT ;RL), ~ψ(T ) = ~0
• the weak formulation of the momentum equation holds true

(4.2)

∫
ΩT

v · ∂tu + (v ⊗ v − S) : D(u)−Q∇ϕ · u dx dt

+

∫
Ω

v0 · u(0) dx =

∫
Γ

γv · u dS dt

for all u ∈ C∞(ΩT ;R3), u(T ) = 0, u · ν = 0 on (0, T )× ∂Ω, div u = 0 in ΩT

• the equation for the electrostatic potential is fulfilled in the strong sense

(4.3) −∆ϕ = Q

a.e. in QT , including the time instant t = 0, and ∇ϕ · ν = qϕΓ a.e. on Γ
• the weak formulation of the total energy balance holds true

(4.4)

∫
ΩT

E∂tψ +
(( |v|2

2
+ e+Qϕ

)
v + ϕ

L∑
i=1

ziq
i
~c + qe − T v − ϕ∇∂tϕ

)
· ∇ψ dx dt

+

∫
Ω

E(0)ψ(0) dx =

∫
Γ

(
γ|v|2 + ϕ~z · ~q~c Γ + qeΓ − ϕ∂tqϕΓ

)
ψ dS dt

for all ψ ∈ C∞(ΩT ) with ψ(T ) = 0, where ϕt solves (4.3) differentiated with respect

to time (in the weak sense) and E(0) = |v|2(0)
2

+ e(0) + |∇ϕ|2(0)
2

, where the initial
value of ϕ is a solution to (4.3) at the time instant t = 0
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Note that the main trouble maker is the convective term in the total energy balance as
for some r (the parameter in the power law model for the stress tensor) the velocity may
be not integrable in the third power. To this aim, we introduce another definition of weak
solution

Definition 2. We say that (~c,v, e, ϕ) is a variational energy solution to problem (1.1)–(1.8)
in ΩT , provided the functions (~c,v, e, ϕ) fulfill the integrability and continuity assumptions
from Definition 1 with v ∈ L3(ΩT ;R3) replaced by ve ∈ L1(ΩT ;R3), the species equation,
the momentum equation and the equation for the electrostatic potential are fulfilled in the
same sense as in Definition 1 (4.1–4.3), and the weak formulation of the total energy
balance is replaced by the inequality for the internal energy balance

(4.5)

∫
ΩT

e∂tψ + S : D(v)ψ dx dt+

∫
Ω

e0ψ(0) dx

≤
∫

ΩT

~z · (q~c∇ϕ)ψ − (ev + qe) · ∇ψ dx dt+

∫
Γ

qeΓψ dS dt

for all nonnegative ψ ∈ C∞(ΩT ), ψ(T ) = 0, and by the global total energy balance (i.e.,
the total energy balance integrated over ΩT )

(4.6)

∫
Ω

E(t) dx+

∫
Γ

γ|v|2ψ + ϕ~z · (q~c Γ) + qeΓ − ϕ∂tqϕΓ dS dt ≤
∫

Ω

E(0) dx

for a.a. t ∈ (0, T ).

Finally, in some cases we can even verify the weak formulation of the internal energy
balance.

Definition 3. We say that (~c,v, e, ϕ) is a weak internal energy solution to problem (1.1)–
(1.8) in ΩT , provided the functions (~c,v, e, ϕ) fulfill the integrability and continuity as-
sumptions from Definition 1 with v ∈ L3(ΩT ;R3) replaced by ve ∈ L1(ΩT ;R3), the species
equation, the momentum equation and the equation for the electrostatic potential are ful-
filled in the same sense as in Definition 1 (4.1–4.3), and the weak formulation of the total
energy balance is replaced by the weak formulation for the internal energy balance, i.e.

(4.7)

∫
ΩT

e∂tψ + S : D(v)ψ dx dt+

∫
Ω

e0ψ(0) dx

=

∫
ΩT

~z · (q~c∇ϕ)ψ − (ev + qe) · ∇ψ dx dt+

∫
Γ

qeΓψ dS dt

for all ψ ∈ C∞(ΩT ), ψ(T ) = 0.

4.2. Main results. In the subsequent sections we will prove the following results.

Theorem 1. Let r > 3
2

and 1 < β ≤ 2. Under the assumptions stated in Hypotheses (H1)–
(H10) there exists a variational energy solution to our problem in the sense of Definition
2.
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Theorem 2. Let r > 9
5

and 1 < β ≤ 2. Under the assumptions stated in Hypotheses (H1)–
(H10) there exists a weak total energy solution to our problem in the sense of Definition
1.

Theorem 3. Let r ≥ 11
5

and 1 < β ≤ 2. Under the assumptions stated in Hypotheses
(H1)–(H10) there exists a weak internal energy solution to our problem in the sense if
Definition 3.

Let us mention that the results of Theorem 1 and Theorem 3 remain true also if we re-
place the slip boundary condition for the velocity by the homogeneous Dirichlet conditions.
Under slight modifications of the definition of the solutions, the proof is almost identical.
On the other hand, the result of Theorem 2 is based on the use of the Navier boundary
conditions; we need to have an integrable pressure. Since the weak total energy solution
is physically the most relevant, we prefer to perform the proof with the Navier boundary
conditions. Furthermore, if r ≥ 11

5
, the total energy balance holds as well (provided we use

the Navier boundary conditions for the velocity).
The bounds for r are connected with the following observations. If r ≥ 3

2
, the term ve

belongs to L1(ΩT ;R3). In order to prove the existence of the solution, we need compactness
of this term which results in the strict inequality. Similarly, for r ≥ 9

5
, the term |v|3 is

integrable and the strict inequality is needed to verify the compactness of the sequence of
the approximate solutions. The limit r ≥ 11

5
ensures that the velocity can be used as a

test function in the weak formulation of the momentum equation (4.2) which guarantees
the information that S : D(v) converges weakly in L1(ΩT ).

Note that the natural limit coming form the integrability of the convective term for
the shear-thinning fluid is r > 6

5
which yields the compactness of the convective term.

Replacing condition (2.14) by

C1 ≤
κ∗(~c, θ)

(1 + θα)(1 + θ−β)
≤ C2

with α > 0, and modifying accordingly assumptions (2.17), we could reach for a suitable
choice of α that e ∼ θ ∈ Lq(ΩT ) for q > 2 for any r > 6

5
. Then the term ev ∈ L1(ΩT ;R3)

for any r > 6
5

and we would prove existence of a variational energy solution for any r > 6
5
.

Last but not least, let us underline that if the variational energy solution is sufficiently
smooth, then it is actually a classical solution to our original problem. This follows exactly
as in the case of compressible Navier–Stokes–Fourier system (see [14]).

4.3. Known results. Modeling of ionized mixtures is very important for the design of
devices, such as fuel cells (see eg. [30, 39]), and in biology (see eg. [13, 20, 22]). This
subject has been studied from the thermodynamical point of view for a long period. The
approach used here relies on the concept of the barycentric velocity and has been invented
by Eckart and Prigogine, see [12, 33]. We use the linear treatment of the chemical reactions,
as detailed in [9]. A similar treatment of chemical reactions appears already in [29]. The
gradient structure of chemical reactions is emphasized in [25], where, in contrast to our
approach, the free energy approach is employed. The diffusion matrix has been derived in
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[8]. The thermodynamical treatment is based on [32], which presents the mixture model
in light of the GENERIC framework; for more informations see [19, 31].

The mixture theory implicitly assumes that we can find every component of the mixture
in every macroscopic point of the domain. This assumption was used in its full strength in
rational thermodynamics, see for example [26, 35, 38]. The assumption might be relaxed in
the phenomenological thermodynamics framework to the assumption that chemical poten-
tial of each constituent is defined almost everywhere in the domain. Another relaxation of
the assumption was done in [24]. A different approach was used to obtain results for mono-
atomic gases. In this case macroscopic, equations are obtained as a limit from the system
of Boltzmann’s equations. This approach was used in [16] on gases without ionization or
chemical reactions. Chemical reactions were added in [18].

In [36, 37] models are presented and analysed, which combine the incompressible Navier–
Stokes equations with both Newtonian and non-Newtonian stress tensor, the Nernst–
Planck equation for chemically reacting, electrically charged mixtures, a balance equation
for the temperature and the Poisson equation for the electrostatic potential. Althought the
models presented in the papers are quite general, no cross-diffusion coupling is considered
in the equations for concentrations and temperature. An isothermal version of such models
can be found in [7]. The compressible case have been analyzed in [1, 15, 27]. Alternative
models for similar physical situations can be found in [11, 23].

5. Proof of the main theorems

In what follows we consider the approximation of our problem. We will introduce six
parameters and by passing subsequently to the limits as parameters tend either to zero
or infinity we finally prove existence of a solution to our original problem. We follow the
ideas developed in [5]; however, certain modifications are needed due to the presence of
the electrostatic field and due to the fact that we extend the results for more general class
of power-law fluids, including also the shear-thinning models.

5.1. Approximate problem. First, we denote for ε and δ > 0

(5.1) s∗,ε~c (~c) := s∗~c(~c) + ε
L∑
i=1

ln ci,

and

(5.2) s∗,ε,δ~c (~c) :=

{
s∗,ε~c (~c) for i = 1, 2, . . . , L : δ ≤ ci ≤ 2

δ
concave otherwise,

so that s∗,ε,δ~c ∈ C2(RL) and for any ~c ∈ RL

(5.3)

−C1(δ)(|~c|2 + 1) ≤ s∗,ε,δ~c (~c) ≤ −C2(δ)|~c|2 + C3,

|{∂2
cicj
s∗,ε,δ~c (~c)}Li,j=1|(1 + |~c|) + |∂~cs∗,ε,δ~c (~c)| ≤ C(δ)(1 + |~c|),

L∑
i,j=1

∂2
cicj
s∗,ε,δ~c (~c)xixj ≤ −C(δ)|~x|2, ~x ∈ RL.
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We further introduce the approximate chemical potential as

(5.4) ~ζ∗,ε(~c) := −∂~cs∗,ε~c (~c), ~ζ∗,ε,δ(~c) := −∂~cs∗,ε,δ~c (~c).

Note that as in [5] we may show that there exists C > 0 independent of ε such that

(5.5) |~ζ∗,ε(~c)|2 ≤ C(1 + |P~̀
~ζ∗,ε(~c)|2),

and

(5.6) |~ζ∗(~c)| ≤ C(1 + |~ζ∗,ε(~c)|)
for all ~c ∈ G. Next, we set

(5.7) s∗,δe (e) :=

{
s∗e(e) for δ ≤ e ≤ 2

δ
,

concave, increasing otherwise,

where s∗,δe ∈ C2(R),

(5.8) |∂es∗,δe (e)|+ |∂2
ees
∗,δ
e (e)| ≤ C(δ).

The approximate temperature is defined as

(5.9) θ∗,δ(e) :=
1

∂es∗,δ(e)
.

Next, for 0 < δ < 1
2

we introduce a cut-off function

Tδ(y) :=


0 y ≤ δ
1 2δ ≤ y ≤ 1

δ
0 2

δ
≤ y

linear otherwise,

and

Tδ(~c) =
L∏
i=1

Tδ(ci)

for ~c ∈ RL. We are now prepared to define the fluxes and the reaction term

(5.10)

q∗,δ~c (e,~c, θ,∇~ζ,∇θ,∇ϕ) := Tδ(~c)Tδ(e)q
∗
~c(~c, θ,∇~ζ,∇θ,∇ϕ),

q∗,δe (e,~c, θ,∇~ζ,∇θ,∇ϕ) := Tδ(~c)Tδ(e)q
∗
e(~c, θ,∇~ζ,∇θ,∇ϕ),

r∗,δ(e,~c, θ, ~ζ) := Tδ(~c)Tδ(e)r
∗(~c, θ, ~ζ),

Q∗,δ(~c) := Tδ(~c)~z · ~c,
and the boundary fluxes

(5.11)

~q ∗,δ~c Γ (x, e,~c, θ, ~ζ, ϕ) := Tδ(~c)Tδ(e)~q
∗
~c Γ(x,~c, θ, ~ζ, ϕ),

q∗,δeΓ (x, e,~c, θ, ~ζ) := Tδ(~c)Tδ(e)q
∗
eΓ(x,~c, θ),

q∗,δϕΓ(x, ϕ) := q∗ϕΓ(x, ϕ),
γ∗,δ(e,~c, θ) := Tδ(~c)Tδ(e)γ

∗(~c, θ).

Next, we introduce a basis of W 3,2(Ω)∩W 1,r
ν,div(Ω) consisting of functions {wi}∞i=1. Notice

that by density this is also a basis in W 1,r
ν,div(Ω). We assume that this basis is moreover
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orthonormal in L2(Ω) and denote by Wn the linear span of {wi}ni=1 and by Pn
1 the or-

thogonal projection from W 3,2
div (Ω;R3) ∩W 1,r

0,ν (Ω) to Wn. Similarly, we introduce a basis
in W 1,2(Ω), orthonormal in L2(Ω), consisting of functions {ui}∞i=1 and denote by Um the
linear span of {ui}mi=1 and by Pm

2 the orthogonal projection from W 1,2(Ω) to Um. Finally,
we introduce a nonincreasing smooth function ξ: [0,∞) → R+,0 such that ξ ≡ 1 in [0, 1],
ξ ≡ 0 in [2,∞) and 0 ≥ ξ′ ≥ −2 in R+. For k ∈ N we define

ξk(y) := ξ(y/k), y ∈ [0,∞).

We can now formulate our approximate problem: for fixed k, l,m, n ∈ N and 0 < δ <
ε < 1 we look for functions vk,n,ε,δ,m,l, ~c k,n,ε,δ,m,l, ek,n,ε,δ,m,l, ϕk,n,ε,δ,m,l such that

vk,n,ε,δ,m,l(t, x) :=
∑n

i=1 α
k,n,ε,δ,m,l
i (t)wi(x),

~c k,n,ε,δ,m,l(t, x) :=
∑m

i=1
~β k,n,ε,δ,m,l
i (t)ui(x),

ek,n,ε,δ,m,l(t, x) :=
∑l

i=1 σ
k,n,ε,δ,m,l
i (t)ui(x),

αk,n,ε,δ,m,li : [0, T ] → R, ~β k,n,ε,δ,m,l
i : [0, T ] → RL and σk,n,ε,δ,m,li : [0, T ] → R are absolutely

continuous functions, where

vk,n,ε,δ,m,l(0) := Pn
1 (v0), ~c k,n,ε,δ,m,l(0) := (Pm

2 (cδ0)1, . . . , P
m
2 (cδ0)L), ek,n,ε,δ,m,l(0) = P l

2(eε,δ0 )

with

~c δ
0 :=

~c 0

1 + δL
+

δ~̀

1 + δL
, eε,δ0 := min{ε−1, e0}+ δ.

Furthermore, we require on (0, T )
(5.12)∫

Ω

∂t~c
k,n,ε,δ,m,l · ~ψ + ε∇~c k,n,ε,δ,m,l : ∇~ψ −

(
~c k,n,ε,δ,m,l ⊗ vk,n,ε,δ,m,l + qk,n,ε,δ,m,l~c

)
: ∇~ψ dx

= −
∫
∂Ω

~q k,n,ε,δ,m,l
~cΓ · ~ψ dS +

∫
Ω

~r k,n,ε,δ,m,l · ~ψ dx

for all ~ψ ∈ ~Um,
(5.13)∫

Ω

∂tv
k,n,ε,δ,m,l · u + Sk,n,ε,δ,m,l : D(u)− ξk(|vk,n,ε,δ,m,l|2)(vk,n,ε,δ,m,l ⊗ vk,n,ε,δ,m,l) : ∇u dx

= −
∫
∂Ω

γk,n,ε,δ,m,lvk,n,ε,δ,m,l · u dS −
∫

Ω

Qk,n,ε,δ,m,l∇ϕk,n,ε,δ,m,l · u dx

for all u ∈Wn,
(5.14) ∫

Ω

∂te
k,n,ε,δ,m,lψ + ε∇ek,n,ε,δ,m,l · ∇ψ −

(
ek,n,ε,δ,m,lvk,n,ε,δ,m,l + qk,n,ε,δ,m,le

)
· ∇ψ dx

= −
∫
∂Ω

qk,n,ε,δ,m,leΓ ψ dS +

∫
Ω

(
Sk,n,ε,δ,m,l : D(vk,n,ε,δ,m,l)− ~z · (qk,n,ε,δ,m,l~c ∇ϕk,n,ε,δ,m,l)

)
ψ dx
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for all ψ ∈ U l,

(5.15)

∫
Ω

(
∇ϕk,n,ε,δ,m,l · ∇ψ −Qψ

)
dx =

∫
∂Ω

qk,n,ε,δ,m,lϕΓ ψ dS

for all ψ ∈ W 1,2(Ω), where
(5.16)

qk,n,ε,δ,m,l~c := q∗,δ~c (ek,n,ε,δ,m,l,~c k,n,ε,δ,m,l, θk,n,ε,δ,m,l,∇~ζ k,n,ε,δ,m,l,∇θk,n,ε,δ,m,l,∇ϕk,n,ε,δ,m,l),
(5.17)

qk,n,ε,δ,m,le := q∗,δe (ek,n,ε,δ,m,l,~c k,n,ε,δ,m,l, θk,n,ε,δ,m,l,∇~ζ k,n,ε,δ,m,l,∇θk,n,ε,δ,m,l,∇ϕk,n,ε,δ,m,l),

(5.18) Sk,n,ε,δ,m,l := S∗(~c k,n,ε,δ,m,l, θk,n,ε,δ,m,l,D(vk,n,ε,δ,m,l)),

(5.19) ~r k,n,ε,δ,m,l := ~r ∗,δ(ek,n,ε,δ,m,l,~c k,n,ε,δ,m,l, θk,n,ε,δ,m,l, ~ζ k,n,ε,δ,m,l),

(5.20) Qk,n,ε,δ,m,l = Q∗,δ(~c k,n,ε,δ,m,l),

the boundary fluxes

(5.21)

~q k,n,ε,δ,m,l
~cΓ := ~q ∗,δ~cΓ (x, ek,n,ε,δ,m,l,~c k,n,ε,δ,m,l, θk,n,ε,δ,m,l, ~ζ k,n,ε,δ,m,l, ϕk,n,ε,δ,m,l),

qk,n,ε,δ,m,leΓ := q∗,δeΓ (x, ek,n,ε,δ,m,l,~c k,n,ε,δ,m,l, θk,n,ε,δ,m,l, ~ζ k,n,ε,δ,m,l),

qk,n,ε,δ,m,lϕΓ := q∗,δϕΓ(x, ϕk,n,ε,δ,m,l),

γk,n,ε,δ,m,l := γ∗,δ(~c k,n,ε,δ,m,l, ek,n,ε,δ,m,l, θk,n,ε,δ,m,l),

and, in addition,

(5.22) θk,n,ε,δ,m,l := max{δ2, θ∗,δ(ek,n,ε,δ,m,l)},

(5.23) ~ζ k,n,ε,δ,m,l :=
(
Pm

2 (ζ∗,ε,δ1 (~c k,n,ε,δ,m,l)), . . . , Pm
2 (ζ∗,ε,δL (~c k,n,ε,δ,m,l))

)
.

We proceed as follows. In the first step we show that for a fixed electrostatic potential
problem (5.12)–(5.14) is uniquely solvable globally in time. Then using a suitable fixed-
point argument, we verify that indeed, also problem (5.12)–(5.15) is solvable globally in
time. In both cases, the most important information used in the proof are the a priori
estimates. Having solved (5.12)–(5.15), we let subsequently l → ∞, m → ∞, δ → 0+,
ε → 0+ and n → ∞. Then, we rewrite the internal energy balance into the total energy
balance (for r ≥ 9

5
) and let finally k →∞ to prove Theorems 1–3.

5.2. Solvability of the approximate problem. We start with the first step. We fix
ϕ0 ∈ L2(0, T ;W 1,2(Ω)) and consider problem (5.12)–(5.14) with ϕk,n,ε,δ,m,l replaced by ϕ0.
In what follows, we skip the indices k, n, ε, δ,m, l. We also suitably mollify all functions
which are only continuous in ~c, v and e in such a way that the main properties required
in Hypotheses (H1)–(H10) needed below remain valid, and denote the mollified functions
by the index η.

Note that system (5.12)–(5.14) is locally in time solvable due to the classical theory
of systems of ODE’s (the system can be rewritten as system of the first order with the
right-hand side Lipschitz continuous in ~c, v and e). In order to verify that the solution is
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in fact global in time, we prove estimates of solutions which will exclude the possibility of
the blow-up before the time instant t = T . Moreover, these estimates will also provide us
with important piece of information in order to verify solvability of (5.12)–(5.15).

We first take as test functions in (5.12) the function ~c, in (5.13) the function v and in
(5.14) the function e. First, for the approximate velocity we have

(5.24)
1

2

d

dt
‖v‖2

2 + ‖Sη : D(v)‖1 +

∫
∂Ω

γη|v|2 dS =

∫
Ω

Qv · ∇ϕ0 dx.

Due to the definition of Q we immediately have

(5.25) ‖v‖2
L∞(0,T ;L2(Ω;R3)) + ‖∇v‖rLr(ΩT ;R9) ≤ C(‖∇ϕ0‖2

L2(ΩT ;R3) + 1).

Next, (5.12) and (5.14) yield
(5.26)

1

2

d

dt
‖~c‖2

2 + ε‖∇~c‖2
2 ≤

∣∣∣ ∫
Ω

q~c,η : ∇~c+ ~rη · ~c dx−
∫
∂Ω

~q~cΓ,η · ~c dS

1

2

d

dt
‖e‖2

2 + ε‖∇e‖2
2 ≤

∣∣∣ ∫
Ω

qe,η · ∇e+ (Sη : D(v))e− ~z · (q~c,η∇ϕ0)e dx−
∫
∂Ω

qeΓ,ηe dS.

Summing up these two identities, using the fact that e, ~c and v are from a finite dimen-
sional space, we end up with

(5.27) ‖(~c; e)‖2
L∞(0,T ;L2(Ω;RL+1)) + ‖∇(~c; e)‖2

L2(ΩT ;R3(L+1)) ≤ C(1 + ‖ϕ0‖2
L2(0,T ;W 1,2(Ω;R3))).

This estimate together with (5.25) implies that the solution exists on the whole time
interval (0, T ). Furthermore, it is easy to see that the operator L assigning

ϕ0 7→ (v,~c, e) 7→ ϕ1,

where ϕ1 solves (5.15) with Q = Q∗,δ(~c(ϕ0)), qϕΓ = q∗,δϕΓ(x, ϕ1), is continuous from the

space L2(0, T ;W 1,2(Ω)) to itself. Moreover, as Q is bounded and ∂t~c can be estimated in
L2(ΩT ;RL), the operator is compact. In order to apply a version of the Schauder fixed
point theorem (sometimes called also Schaefer’s theorem), it is enough to verify that the
possible fixed points

sL(ϕ) = ϕ

are bounded independently of s ∈ [0, 1]. Due to the form of equation (5.15) it is an easy
matter to verify also this step. Then we pass to the limit with the mollifying parameter
η → 0+. Whence, we proved existence of a solution to our system (5.12)–(5.15).

5.3. Limit passage l → ∞. Next, we aim at letting l → ∞. We denote all unknown
functions with the upper index l. We first prove estimates independent of this parameter.
Note that equation (5.15) provides the estimate

(5.28) ‖ϕl‖L∞(0,T ;W 2,q(Ω)) ≤ C(δ).

Next, similar reasoning as in (5.24)–(5.25) yields

(5.29) ‖vl‖L∞(0,T ;L2(Ω;R3)) + ‖∇vl‖Lr(ΩT ;R9) + ‖S l‖Lr′ (ΩT ;R9) ≤ C(δ).
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Using the fact that for vl and ~c l all norms are equivalent, it is not difficult to see that

(5.30) ‖(~c l; el)‖2
L∞(0,T ;L2(Ω;RL+1)) + ‖∇(~c l; el)‖2

L2(ΩT ;R3(L+1)) ≤ C(m, δ).

Moreover, we also have

(5.31)

∫ T

0

‖∂t~c l‖2
2 + ‖∂tvl‖2

2 + ‖∂tel‖2
−1,2 dt ≤ C(m, δ),

where the lower index −1,2 denotes the norm in (W 1,2(Ω))′, the dual space to W 1,2(Ω).
Therefore also

(5.32)

∫ T

0

‖∇∂tϕ‖2
L2(Ω;R3) dt ≤ C.

Next, estimates above imply

(5.33)

∫ T

0

‖ql~c‖2
2 + ‖qle‖2

2 + ‖~q l
~c Γ‖2

L2(∂Ω;RL) + ‖qleΓ‖2
L2(∂Ω)

+‖qlϕΓ‖2
L∞(∂Ω) + ‖~ζ l‖2

1,2 + ‖S l‖r′r′ dt ≤ C(m).

Combining estimates above with the fact that the velocity and the concentrations remain
in finite dimensional spaces we easily deduce that (possibly for subsequences)

(5.34)

vl → v strongly in C([0, T ]; Wn),

∂tv
l → ∂tv weakly in L2(ΩT ;R3),

~c l → ~c strongly in C([0, T ]; (Um)L),

∂t~c
l → ∂t~c weakly in L2(ΩT ;R3),

el → e strongly in L2(ΩT ),

el → e weakly in L2(0, T ;W 1,2(Ω)),

∂te
l → ∂te weakly in L2(0, T ;W−1,2(Ω)),

ϕl → ϕ strongly in Lq(0, T ;W 1,q(Ω)), 1 ≤ q <∞,
ϕl → ϕ weakly in Lq(0, T ;W 2,q(Ω)), 1 ≤ q <∞,
ql~c → q~c weakly in L2(0, T ;L2(Ω;R3)),

qle → qe weakly in L2(0, T ;L2(Ω;R3L)),

~q l
~c Γ → ~q~c Γ weakly in L2(0, T ;L2(∂Ω;RL)),

qleΓ → qeΓ weakly in L2(0, T ;L2(∂Ω)),

qlϕΓ → qϕΓ weakly ∗ in L2(0, T ;L∞(∂Ω)),

~ζ l → ~ζ weakly in L2(0, T ;W 1,2(Ω;RL)),

S l → S weakly in Lr
′
(ΩT ;R9),
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and the limit functions fulfill for a.e. t ∈ (0, T )

(5.35)

∫
Ω

∂t~c · ~ψ + ε∇~c : ∇~ψ −
(
~c⊗ v + q~c

)
: ∇~ψ dx = −

∫
∂Ω

~q~cΓ · ~ψ dS +

∫
Ω

~r · ~ψ dx

for all ~ψ ∈ ~Um,
(5.36)∫

Ω

∂tv · u + S : D(u)− ξk(|v|2)(v ⊗ v) : ∇u dx = −
∫
∂Ω

γv · u dS −
∫

Ω

Q∇ϕ · u dx

for all u ∈Wn,

(5.37)

〈∂te, ψ〉W−1,2(Ω);W 1,2(Ω) +

∫
Ω

ε∇e · ∇ψ −
(
ev + qe

)
· ∇ψ dx

= −
∫
∂Ω

qeΓψ dS +

∫
Ω

(
S : D(v)− ~z · (q~c∇ϕ)

)
ψ dx

for all ψ ∈ W 1,2(Ω), limt→0+ e(t) = eε,δ0 in L2(Ω) while for ~c and v the initial conditions
are fulfilled in the same sense as above,

(5.38)

∫
Ω

∇ϕ · ∇ψ −Qψ dx =

∫
∂Ω

qϕΓψ dS

for all ψ ∈ W 1,2(Ω). It is an easy matter to verify at this moment that

(5.39) q~c = q∗,δ~c (e,~c, θ,∇~ζ,∇θ,∇ϕ),

(5.40) qe = q∗,δe (e,~c, θ,∇~ζ,∇θ,∇ϕ),

(5.41) S = S∗(~c, θ,D(v)),

(5.42) ~r = ~r ∗,δ(e,~c, θ, ~ζ),

(5.43) Q = Q∗,δ(~c),

the boundary fluxes

(5.44)

~q~cΓ = ~q ∗,δ~cΓ (x, e,~c, θ, ~ζ, ϕ),

qeΓ = q∗,δeΓ (x, e,~c, θ, ~ζ),

qϕΓ = q∗,δϕΓ(x, ϕ),

γ = γ∗,δ(e,~c, θ),

and, in addition,

(5.45) θ = max{δ2, θ∗,δ(e)},

(5.46) ~ζ =
(
Pm

2 (ζ∗,ε,δ1 (~c)), . . . , Pm
2 (ζ∗,ε,δL (~c))

)
.
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5.4. Limit passage m → ∞. First, note that we can show the minimum principle for
em. Using as test function in (5.37) the function ψ = min{0, em− δ} and recalling that for
em ≤ δ the fluxes are zero due to the cut-off function Tδ(e), we get, thanks to the form of
the initial condition, that

d

dt
‖min{0, em − δ}‖2

2 ≤ 0,

hence em ≥ δ a.e. in ΩT . Therefore, for δ sufficiently small, we have

θm = θ∗,δ(em).

Note that estimates (5.28)–(5.29) remain valid (with l replaced by m). Next we would like
to obtain similar estimates as above in order to let m → ∞. Even though inspired by
[5], we have to modify the procedure as we are not able to estimate the internal energy
independently of m and the estimate of the total energy is not yet available at this moment.
Anyway, we first compute an estimate of the internal energy and later on, we will estimate
the term which will remain on the right-hand side.

Let us choose ψ = χ[0,t]×Ω (the characteristic function of [0, t]×Ω) in (5.37). Indeed, we
are not allowed to do so directly, but after smoothing this function in time we get

∫
Ω

em(t) dx =

∫
Ω

eε,δ0 dx−
∫ T

0

∫
Γ

qmeΓ dS dτ +

∫
ΩT

Sm : D(vm)− ~z · (qm~c ∇ϕm) dx dτ.

(5.47)

Since qi,m~c = −Tδ(em)Tδ(~c
m)
(∑L

j=1 Mij(∇ζmj + (θm)−1zj∇ϕm)−mi∇((θm)−1)
)

and θm is

strictly positive, we can write |qm~c | ≤ C1 + C2Tδ(e
m)Tδ(~c

m)(|∇~ζ m|+ |∇θm|). Thus∫
Ω

em(t) dx ≤ C

(
1 +

∫
ΩT

Tδ(e
m)Tδ(~c

m)(|∇(~ζ m)|+ |∇θm|) dx dτ

)
.(5.48)

Now, choose ψ = ∂s∗,δe
∂e

(em) in (5.37). It follows

d

dt

∫
Ω

s∗,δe (em) dx =

〈
∂em

∂t
,
∂s∗e
∂e

(em)

〉
= −ε

∫
Ω

∇em · ∇ 1

θm
dx+

∫
Ω

(emvm + qme ) · ∇ 1

θm
dx

−
∫
∂Ω

qmeΓ
1

θm
dS +

∫
Ω

1

θm
Sm : D(vm)− 1

θm
~z · (qm~c ∇ϕm) dx.

It holds

−ε
∫

Ω

∇em · ∇ 1

θm
dx = −ε

∫
Ω

∂2s∗,δe
∂e2
|∇em|2dx ≥ 0

because s∗,δe is concave. Moreover, as div vm = 0,∫
Ω

emvm · ∇ 1

θm
dx = 0.

Furthermore,∫
Ω

qme · ∇
1

θm
dx =

∫
Ω

Tδ(e
m)Tδ(~c

m)
κ|∇θm|2

|θm|2
dx
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−
∫

Ω

Tδ(e
m)Tδ(~c

m)
L∑
i=1

mi

(
∇ζmi +

zi
θm
∇ϕm

)
· ∇ 1

θm
dx.

What’s more, since a(a− b) ≥ −b2/2 for any a, b ∈ R,

−
∫
∂Ω

qmeΓ
1

θm
dS =

∫
∂Ω

κΓ
1

θm

(
1

θm
− 1

θΓ

)
dS ≥ −1

2

∫
∂Ω

κΓ

(θΓ)2
dS ≥ −C.(5.49)

Then, observe that ∫
Ω

1

θm
Sm : D(vm) dx ≥ 0,(5.50)

and

−
∫

Ω

1

θm
(~z · qm~c ∇ϕm) dx =

∫
Ω

Tδ(e
m)Tδ(~c

m)M
(
∇~ζ m +

~z

θm
∇ϕm

)
:
~z

θm
∇ϕm

+~m · ~z∇ 1

θm
· ∇ϕm 1

θm
dx.

Putting together the previous relations yields

d

dt

∫
Ω

s∗,δe (em) dx ≥ −C +

∫
Ω

Tδ(e
m)Tδ(~c

m)

(
κ|∇θm|2

|θm|2
+

L∑
i,j=1

M : (~z ⊗ ~z)

∣∣∣∣∇ϕmθm

∣∣∣∣2
)

dx

(5.51)

+

∫
Ω

Tδ(e
m)Tδ(~c

m)

(
−

L∑
i=1

mi∇(ζmi ) · ∇ 1

θm
+

L∑
i,j=1

Mij∇ζmj ·
zi
θm
∇ϕm

)
dx.

Next, take ~ψ = −~ζ m = −Pm
2 (~ζ ∗(~c m)) in (5.35). As it is an appropriate test function

(therefore the projection was needed), it follows

d

dt

∫
Ω

s∗,ε,δ~c (~c m) dx = −
∫

Ω

∂t~c
m · ~ζ ∗(~c m) dx = −

∫
Ω

∂t~c
m · Pm

2 (~ζ ∗(~c m)) dx =∫
Ω

ε∇~c m : ∇(Pm
2 (~ζ ∗(~c m))) − (~c m ⊗ vm) : ∇(Pm

2 (~ζ ∗(~c m)))− q~c : ∇(Pm
2 (~ζ ∗(~c m))) dx

+

∫
∂Ω

~q m
~c Γ · Pm

2 (~ζ ∗(~c m)) dS −
∫

Ω

~r m · Pm
2 (~ζ ∗(~c m)) dx.

The orthogonality of the basis functions (ui)i∈N in L2(Ω) and W 1,2(Ω) as well as the strict

concavity of s∗,ε,δ~c imply

ε

∫
Ω

∇~c m : ∇(Pm
2 (~ζ ∗(~c m))) dx

=ε

∫
Ω

∇~c m : ∇(~ζ ∗(~c m)) dx = −ε
∫

Ω

∇~c m :
∂2s∗,ε,δ~c

∂~c 2
∇~c m dx ≥ εC‖∇~c m‖2

2.
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Moreover, the boundedness of Pm
2 in L2(Ω) and the fact that |~c m|2 ≤ C(1 + |s∗,ε,δ~c (~c m)|)

lead to

−
∫

Ω

(~c m ⊗ vm) : ∇(Pm
2 (~ζ ∗(~c m))) dx ≥ −‖vm‖∞‖~c m‖2‖∇Pm

2 (~ζ ∗(~c m))‖2

≥ −C‖vm‖∞‖~c m‖2‖∇~ζ ∗(~c m)‖2 ≥ −C‖vm‖∞(1 + ‖s∗,ε,δ~c ‖1/2
1 )(1 + ‖∇~c m‖2).

Furthermore

−
∫

Ω

qm~c : ∇(Pm
2 (~ζ ∗(~c m))) dx

=

∫
Ω

Tδ(e
m)Tδ(~c

m)
( L∑
i,j=1

Mij

(
∇
(
Pm

2 (ζ∗j (~c m))
)

+
zj
θm
∇ϕm

)
· ∇
(
Pm

2 (ζ∗i (~c m))
)

+
L∑
i=1

mi∇
1

θm
· ∇
(
Pm

2 (ζ∗i (~c m))
))

dx

=

∫
Ω

Tδ(e
m)Tδ(~c

m)
L∑

i,j=1

Mij∇
(
Pm

2 (ζ∗i (~c m))
)
· ∇
(
Pm

2 (ζ∗j (~c m))
)

dx

+

∫
Ω

Tδ(e
m)Tδ(~c

m)
( L∑
i,j=1

Mij
zj
θm
∇ϕm · ∇

(
Pm

2 (ζ∗i (~c m))
)

+
L∑
i=1

mi∇
1

θm
· ∇
(
Pm

2 (ζ∗i (~c m))
))

dx.

What’s more, again due to the elementary fact that a(a− b) ≥ −b2/2 for any a, b ∈ R,∫
∂Ω

~q m
~c Γ · Pm

2 (~ζ ∗(~c m)) dS =

∫
∂Ω

~q m
~c Γ · ~ζ m dS(5.52)

=
L∑
j=1

∫
∂Ω

Tδ(e
m)Tδ(~c

m)Dij

(
ζmj − ζΓ

j +
zj
θΓ

(ϕm − ϕΓ)
)
ζmj dx

≥ −1

2

L∑
j=1

∫
∂Ω

Tδ(e
m)Tδ(~c

m)
(
ζΓ
j −

zj
θΓ

(ϕm − ϕΓ)
)2

dx ≥ −C.

Moreover, by assumption,

−
∫

Ω

~r m · ~ζ m dx ≥ 0.

So, collecting all these inequalities yields

d

dt

∫
Ω

s∗,ε,δ~c (~c m) dx ≥ −C + εC‖∇~c m‖2
2 − C‖vm‖∞(1 + ‖s∗,ε,δ~c ‖1/2

1 )(1 + ‖∇~c m‖2)(5.53)
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+

∫
Ω

Tδ(e
m)Tδ(~c

m)
L∑

i,j=1

Mij∇ζmi · ∇ζmj dx

+

∫
Ω

Tδ(e
m)Tδ(~c

m)
( L∑
i,j=1

Mij
zj
θm
∇ϕm · ∇ζmi +

L∑
i=1

mi∇
1

θm
· ∇ζmi

)
dx.

We get, summing (5.51) and (5.53)

d

dt

∫
Ω

s∗,δe (em) + s∗,ε,δ~c (~c m) dx

≥ −C + εC‖∇~c m‖2
2 − C‖vm‖∞(1 + ‖s∗,ε,δ~c ‖1/2

1 )(1 + ‖∇~c m‖2)

+

∫
Ω

Tδ(e
m)Tδ(~c

m)
(κ|∇θm|2
|θm|2

+
L∑

i,j=1

Mij

(
∇ζ m

i +
zi
θm
∇ϕm

)
·
(
∇ζ m

j +
zj
θm
∇ϕm

))
dx.

Young’s inequality and the fact that of s∗e(e) is nonnegative (see (2.29)) imply

− C + εC‖∇~c m‖2
2 − C‖vm‖∞(1 + ‖s∗,ε,δ~c (~c m)‖1/2

1 )(1 + ‖∇~c m‖2)

≥ ε‖∇~c m‖2
2 − ε−1C

(
1 +

∫
Ω

s∗,ε,δ~c (~c m) dx

)
≥ ε‖∇~c m‖2

2 − ε−1C1

(
1 +

∫
Ω

s∗,ε,δ~c (~c m) + s∗,δe (em) dx

)
.

So we conclude

d

dt
F + ε−1C1F ≥ ε‖∇~c m‖2

2 +

∫
Ω

Tδ(e
m)Tδ(~c

m)
κ|∇θm|2

|θm|2
dx(5.54)

+

∫
Ω

Tδ(e
m)Tδ(~c

m)
L∑

i,j=1

Mij

(
∇ζmi +

zi
θm
∇ϕm

)
·
(
∇ζmj +

zj
θm
∇ϕm

)
dx,

where

F (t) ≡ 1 +

∫
Ω

s∗,δe (em(t)) + s∗,ε,δ~c (~c m(t)) dx.

We get the following upper bound

ε

∫ t

0

∫
Ω

|∇~c m|2 dx dτ +

∫ t

0

∫
Ω

Tδ(e
m)Tδ(~c

m)
κ|∇θm|2

|θm|2
dx dτ

+

∫ t

0

∫
Ω

Tδ(e
m)Tδ(~c

m)
L∑

i,j=1

Mij

(
∇ζmi +

zi
θm
∇ϕm

)
·
(
∇ζmj +

zj
θm
∇ϕm

)
dx dτ

≤ eCt/ε
(

1 +

∫
Ω

(s∗,δe (em(t)) + s∗,ε,δ~c (~c m(t))) dx

)
, t > 0.
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We know that s∗,δe (e) ≤ K(1 + e). Let ~̂c ∈ RL
+ be generic but fixed. Since s∗,ε,δ~c is concave,

s∗~c(~c) ≤ s∗~c (̂~c) + ∂~cs
∗
~c (̂~c) · (~c− ~̂c) ≤ K(1 + |~c|), ~c ∈ RL

+,

for some constant K > 0 depending on ~̂c. As a consequence, from the above bounds and
Young’s inequality, we obtain

ε

∫ t

0

∫
Ω

|∇~c m|2 dx dτ +

∫ t

0

∫
Ω

Tδ(e
m)Tδ(~c

m)
κ|∇θm|2

|θm|2
dx dτ(5.55)

+

∫ t

0

∫
Ω

Tδ(e
m)Tδ(~c

m)
L∑

i,j=1

Mij

(
∇ζmi +

zi
θm
∇ϕm

)
·
(
∇ζmj +

zj
θm
∇ϕm

)
dx dτ

≤ eCt/ε
(
λ−1 + λ

∫
Ω

(|em(t)|2 + |~c m(t)|2) dx

)
, t > 0,

for any λ ∈ (0, 1).

Let us choose ~ψ = ~c m in (5.35) and ψ = em in (5.37). It follows

d

dt

∫
Ω

|em|2 + |~c m|2 dx+ ε

∫
Ω

|∇~c m|2 + |∇em|2 dx ≤
∫

Ω

qme · ∇em dx(5.56)

+

∫
∂Ω

qmeΓe
m dS +

∫
Ω

emSm : D(vm) dx−
∫

Ω

em~z · (qm~c ∇ϕm) dx

+

∫
Ω

qm~c : ∇~c m dx−
∫
∂Ω

~q m
~c Γ · ~c m dS +

∫
Ω

~r m · ~c m dx.

Let us estimate the terms on the right-hand side of (5.56). The lower bound for θm and
Young’s inequality imply∫

Ω

qme · ∇em dx = −
∫

Ω

Tδ(e
m)Tδ(~c

m)κ∇θm · ∇em dx

−
∫

Ω

Tδ(e
m)Tδ(~c

m)
L∑
i=1

mi

(
∇ζmi +

zi
θm
∇ϕm

)
· ∇em dx

≤ K

∫
Ω

Tδ(e
m)Tδ(~c

m)

∣∣∣∣∇~ζ m +
~z

θm
∇ϕm

∣∣∣∣2 dx.

Again, Young’s inequality implies (η ∈ (0, 1) will be specified later)∫
∂Ω

qmeΓe
m dS = −

∫
Ω

κ

(
1

θm
− 1

θΓ

)
em dS ≤ K

(
η−1 + η

∫
Ω

|∇em|2 dx

)
,∫

Ω

emSm : D(vm) dx ≤ K

(
η−1 + η

∫
Ω

|∇em|2 dx

)
.
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Furthermore, since e/θ(e) is bounded as e→∞ and θm is strictly positive, we deduce

−
∫

Ω

em~z · (qm~c ∇ϕm) dx =

∫
Ω

Tδ(e
m)Tδ(~c

m)em
L∑

i,j=1

ziMij

(
∇ζmj +

zj
θm
∇ϕm

)
∇ϕm dx

−
∫

Ω

Tδ(e
m)Tδ(~c

m)
L∑
i=1

mizi
em

(θm)2
∇θm · ∇ϕm dx

≤ K

(
η−1 + η

∫
Ω

|∇em|2 dx+

∫
Ω

Tδ(e
m)Tδ(~c

m)

∣∣∣∣∇~ζ m +
~z

θm
∇ϕm

∣∣∣∣2 dx

)
.

Moreover,∫
Ω

qm~c : ∇~c m dx = −
∫

Ω

Tδ(e
m)Tδ(~c

m)
L∑

i,j=1

Mij

(
∇ζmj +

zj
θm
∇ϕm

)
· ∇cmi dx

−
∫

Ω

Tδ(e
m)Tδ(~c

m)
L∑
i=1

mi∇
1

θm
· ∇cmi dx

≤ K

(
η−1 + η−1

∫
Ω

|∇~c m|2 dx+ η

∫
Ω

|∇em|2 dx

)
.

Furthermore,

−
∫
∂Ω

~q m
~c Γ · ~c m dS =

∫
∂Ω

D

(
~ζ m − ~ζ Γ +

~z

θm
(ϕm − ϕΓ)

)
· ~c m dS

≤ K

(
1 +

∫
Ω

|∇~c m|2 + |~c m|2 dx

)
,

and ∫
Ω

~r m · ~c m dx ≤ K

(
1 +

∫
Ω

|~c m|2 dx

)
.

Putting all the previous inequalities together yields, for any η ∈ (0, 1)

d

dt

∫
Ω

|em|2 + |~c m|2 dx+ ε

∫
Ω

|∇~c m|2 + |∇em|2 dx

≤ K1

∫
Ω

|em|2 + |~c m|2 dx+K2

(
η−1 + η−1

∫
Ω

|∇~c m|2 dx+ η

∫
Ω

|∇em|2 dx

)
+K3

∫
Ω

Tδ(e
m)Tδ(~c

m)

∣∣∣∣∇~ζ m +
~z

θm
∇ϕm

∣∣∣∣2 dx.

Choosing η < ε/K2 leads to

d

dt

∫
Ω

|em|2 + |~c m|2 dx ≤ K1

∫
Ω

|em|2 + |~c m|2 dx+K ′2

∫
Ω

|∇~c m|2 dx
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+K3

∫
Ω

Tδ(e
m)Tδ(~c

m)

∣∣∣∣∇~ζ m +
~z

θm
∇ϕm

∣∣∣∣2 dx.

Applying Gronwall’s inequality we deduce

∫
Ω

|em(t)|2 + |~c m(t)|2 dx ≤ KeK1t

(
1 +

∫ t

0

∫
Ω

|∇~c m|2 dx dτ(5.57)

+

∫ t

0

∫
Ω

Tδ(e
m)Tδ(~c

m)

∣∣∣∣~ζ m +
~z

θm
∇ϕm

∣∣∣∣2 dx dτ

)
, t > 0.

Putting (5.55) and (5.57) together and choosing λ > 0 small enough, we conclude

sup
t∈(0,T )

∫
Ω

|em(t)|2 + |~c m|2 dx+

∫
ΩT

ε|∇~c m|2 + Tδ(e
m)Tδ(~c

m)
κ|∇θm|2

|θm|2
dx dτ(5.58)

+

∫
ΩT

Tδ(e
m)Tδ(~c

m)

∣∣∣∣∇~ζ m +
~z

θm
∇ϕm

∣∣∣∣ dx dτ ≤ K.

Returning back to (5.56) we also have

(5.59)

∫
ΩT

|∇em|2 dx dt ≤ K.

Next, as above, we may show the following estimates of the time derivative

(5.60)

∫ T

0

‖∂t~c m‖2
−1,2 + ‖∂tem‖2

−1,2 + ‖∂tvm‖2
2 + ‖∇ϕt‖2

2 dt ≤ C
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and consequently

(5.61)

vm → v strongly in C([0, T ]; Wn),

∂tv
m → ∂tv weakly in L2(ΩT ;R3),

~c m → ~c strongly in L2(ΩT ;RL),

~c m → ~c weakly in L2(0, T ;W 1,2(Ω;RL)),

∂t~c
m → ∂t~c weakly in L2(0, T ;W−1,2(Ω;RL),

em → e strongly in L2(ΩT ),

em → e weakly in L2(0, T ;W 1,2(Ω)),

∂te
m → ∂te weakly in L2(0, T ;W−1,2(Ω)),

ϕm → ϕ strongly in Lq(0, T ;W 1,q(Ω)), 1 ≤ q <∞,
ϕm → ϕ weakly in Lq(0, T ;W 2,q(Ω)), 1 ≤ q <∞,
qm~c → q~c weakly in L2(0, T ;L2(Ω;R3)),

qme → qe weakly in L2(0, T ;L2(Ω;R3L)),

~q m
~c Γ → ~q~c Γ weakly in L2(0, T ;L2(∂Ω;RL)),

qmeΓ → qeΓ weakly in L2(0, T ;L2(∂Ω)),

qmϕΓ → qϕΓ weakly ∗ in L2(0, T ;L∞(∂Ω)),

~ζ m → ~ζ weakly in L2(0, T ;W 1,2(Ω;RL)),

Sm → S weakly in Lr
′
(ΩT ;R9).

The limit functions fulfill

(5.62)

〈∂t~c, ~ψ〉W−1,2(Ω);W 1,2(Ω) +

∫
Ω

ε∇~c : ∇~ψ −
(
~c⊗ v + q~c

)
: ∇~ψ dx

= −
∫
∂Ω

~q~cΓ · ~ψ dS +

∫
Ω

~r · ~ψ dx

a.e. in (0, T ) and for all ~ψ ∈ W 1,2(Ω;RL), limt→0+ ~c(t) = ~c δ
0 in L2(Ω;RL),

(5.63)

∫
Ω

∂tv · u + S : D(u)− ξk(|v|2)(v ⊗ v) : ∇u dx

= −
∫
∂Ω

γv · u dS −
∫

Ω

Q∇ϕ · u dx

for all u ∈Wn,

(5.64)

〈∂te, ψ〉W−1,2(Ω);W 1,2(Ω) +

∫
Ω

ε∇e · ∇ψ −
(
ev + qe

)
· ∇ψ dx

= −
∫
∂Ω

qeΓψ dS +

∫ T

0

∫
Ω

(
S : ∇v − ~z · (q~c∇ϕ)

)
ψ dx
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a.e. in (0, T ) and for all ψ ∈ W 1,2(Ω), limt→0+ e(t) = eε,δ0 in L2(Ω). For v, the initial
condition is fulfilled in the same sense as in the previous step. Furthermore

(5.65)

∫
Ω

∇ϕ · ∇ψ −Qψ dx =

∫
∂Ω

qϕΓψ dS

for all ψ ∈ W 1,2(Ω). As in the previous step, it is not difficult to verify that

(5.66) q~c = q∗,δ~c (e,~c, θ,∇~ζ,∇θ,∇ϕ),

(5.67) qe = q∗,δe (e,~c, θ,∇~ζ,∇θ,∇ϕ),

(5.68) S = S∗(~c, θ,D(v)),

(5.69) ~r = ~r ∗,δ(e, θ,~c, ~ζ),

(5.70) Q = Q∗,δ(~c),

the boundary fluxes

(5.71)

~q~cΓ = ~q ∗,δ~cΓ (x, e,~c, θ, ~ζ, ϕ),

qeΓ = q∗,δeΓ (x, e,~c, θ, ~ζ),

qϕΓ = q∗,δϕΓ(x, ϕ),

γ = γ∗,δ(e,~c, θ),

and, in addition,

(5.72) θ = θ∗,δ(e),

(5.73) ~ζ = ~ζ ∗,ε,δ(~c).

Since the proof of the attainment of the initial conditions is rather standard we omit the
details here.

5.5. Limit δ → 0. First, recall that exactly as in the previous section, we keep the min-
imum principle for the internal energy (and for the temperature). Hence, eδ ≥ δ and
θδ = θ∗,δ(eδ) ≥ Cδ. Similarly, we can now establish the minimum principle for the concen-
trations.

To this aim, we use in (5.62) as test function ψi = δij min{0, cj − δ} for i = 1, 2, . . . , L;
recalling the cut-off in the fluxes for ci ≤ δ and the fact that div vδ = 0, we deduce

cj ≥ δ, j = 1, 2, . . . , L.

Furthermore, fixing an arbitrary function u ∈ W 1,2(Ω) and using as test function in (5.62)
~ψ = u~̀, we get

(5.74) 〈∂t(~c δ · ~̀), u〉W−1,2(Ω),W 1,2(Ω) + ε

∫
Ω

∇(~c δ · ~̀) · ∇u− (~c δ · ~̀)vδ · ∇u dx = 0

a.e. in (0, T ). As u ∈ W 1,2(Ω) is arbitrary and ~c δ
0 · ~̀≡ 1, we get

~c δ · ~̀= 1
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a.e. in ΩT . Therefore ~c δ ∈ G a.e. in ΩT uniformly with respect to δ, which means that
for δ sufficiently small the ”cut-off” Tδ(~c) ≡ 1 a.e. in ΩT . Moreover, we have

sup
t∈(0,T )

‖~c δ‖L∞(Ω;RL) ≤ 1

which implies that the definitions of ~ζ δ and ~ζ ε,δ coincide. We also keep in mind that
estimates (5.28)–(5.29) (with l replaced by δ) still remain valid. Note, however, that due
to the L∞-bound of ~c δ the constants on the right-hand side of these estimates are actually
independent of any parameter.

Due to the fact that we have already passed to the limit in the Galerkin approximations
for the internal energy balance and the balance of species, we can now deduce an analogue
of the entropy inequality (on the approximate level). Next, we also deduce the total energy
balance and the sum of these two identities will allow us to obtain the required estimates
independent of δ. Moreover, we will be able to pass to the limit in these identities (getting,
however, rather inequalities than equalities) and use them in order to get estimates in the
following limit passages.

First, let us use as test function in (5.64) ψ := 1
θδ

= 1
θ∗,δ(eδ)

. Recall that this function

belongs to W 1,2(Ω) ∩ L∞(Ω) and therefore it is an appropriate test function. We have

(5.75)

d

dt

∫
Ω

s∗,δe (eδ) dx+

∫
Ω

ε∂2
e2s
∗,ε
e (eδ)|∇eδ|2 − (eδvδ + qδe) · ∇

1

θδ
dx

= −
∫
∂Ω

qδeΓ
1

θδ
dS +

∫
Ω

Sδ : D(vδ)

θδ
− ~z

θδ
· (q δ

~c ∇ϕδ) dx.

Next, we use as test function in (5.62) the function ~ψ := −~ζδ = ∂~cs
∗,δ
~c (~c δ). It yields

(5.76)

d

dt

∫
Ω

s∗,δ~c (~c δ) dx+

∫
Ω

ε∇~c δ : ∇~ζ δ + (~c δ ⊗ vδ + q δ
~c ) : ∇~ζ δ dx

=

∫
∂Ω

~q δ
~c Γ · ~ζ δ dS −

∫
Ω

~r δ · ~ζ δ dx.

Summing up (5.75) and (5.76) and using the specific form of the fluxes we end up with

(5.77)

d

dt

∫
Ω

s∗,δe (eδ) + s∗,δ~c (~c δ) dx+ ε

∫
Ω

∂2
e2s
∗,ε
e (eδ)|∇eδ|2 −∇~c δ : ∇~ζ δ dx

=

∫
Ω

Sδ : D(vδ)

θδ
− ~r δ · ~ζ δ + Tδ(e

δ)
κ|∇θδ|2

(θδ)2
dx

+

∫
Ω

Tδ(e
δ)M

(
∇~ζ δ +

~z

θδ
∇ϕδ

)(
∇~ζ δ +

~z

θδ
∇ϕδ

)
dx

+

∫
∂Ω

Tδ(e
δ)κΓ

( 1

θδ
− 1

θΓ

) 1

θδ
+ Tδ(e

δ)D
(
~ζ δ − ~ζ Γ +

~z

θΓ
(ϕδ − ϕΓ)

)
~ζδ dS.

Next we deal with the total energy balance. We test the equation for the internal energy
(5.64) by χ[0,t]×Ω (indeed, after suitable regularization in time), the momentum equation
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(5.63) by vδ and the ”balance of the total charge” by ϕ. The internal energy balance reads

(5.78)
d

dt
‖eδ‖1 +

∫
∂Ω

qδeΓ dS =

∫
Ω

Sδ : D(vδ)− ~z · (qδ~c∇ϕδ) dx,

the kinetic energy balance is

(5.79)
1

2

d

dt
‖vδ‖2

2 +

∫
Ω

Sδ : D(vδ) dx+

∫
∂Ω

γ|vδ|2 dS = −
∫

Ω

Qδ∇ϕδ · vδ dx.

The total charge balance with the test function ϕδ has the form

(5.80)

〈∂tQδ, ϕ〉W−1,2(Ω);W 1,2(Ω) +

∫
Ω

ε∇Qδ · ∇ϕ−Qδ∇ϕδ · vδ − ~z · (qδ~c∇ϕδ) dx

=

∫
∂Ω

~q δ
~c Γ · ~zϕ dS +

∫
Ω

~r δ · ~zϕ dx.

Using (5.65), Hypothesis (H1) and the form of Qδ = ~z · ~c δ, we get after summing (5.78)–
(5.80)
(5.81)

d

dt

(
‖eδ‖1 +

1

2
‖vδ‖2

2 +
1

2
‖∇ϕδ‖2

2 +
1

2

∫
∂Ω

λΓ|ϕδ|2 dS
)

+

∫
∂Ω

γ|vδ|2 dS +

∫
Ω

ε|Qδ|2 dx =∫
∂Ω

Tδ(e
δ)κΓ

(
1

θδ
− 1

θΓ

)
+ εQδλΓ(ϕδ − ϕΓ) + Tδ(e

δ)D
(
~ζ δ − ~ζ Γ +

~z

θΓ
(ϕδ − ϕΓ)~zϕδ dS.

Subtracting (5.77) from (5.81) we end up with

(5.82)

d

dt

(
‖eδ‖1 +

1

2
‖vδ‖2

2 +
1

2
‖∇ϕδ‖2

2 −
∫

Ω

s∗,δe (eδ) + s∗,δ~c (~c δ) dx+
1

2

∫
∂Ω

λΓ|ϕδ|2 dS
)

+

∫
Ω

ε|Qδ|2 − ε∂2
e2s
∗,ε
e (eδ)|∇eδ|2 + ε∇~c δ : ∇~ζ δ +

Sδ : D(vδ)

θδ
+ Tδ(e

δ)
κ|∇θδ|2

(θδ)2
dx

+

∫
Ω

Tδ(e
δ)M

(
∇~ζ δ +

~z

θδ
∇ϕδ

)(
∇~ζ δ +

~z

θδ
∇ϕδ

)
dx

+

∫
∂Ω

γ|vδ|2 + Tδ(e
δ)κΓ

( 1

θδ
− 1

θΓ

)2

dS

+

∫
∂Ω

Tδ(e
δ)D

(
~ζ δ − ~ζ Γ +

~z

θΓ
(ϕδ − ϕΓ)

)
·
(
~ζ δ − ~ζ Γ +

~z

θΓ
(ϕδ − ϕΓ)

)
dS

=

∫
Ω

~r δ · ~ζ δ dx−
∫
∂Ω

Tδ(e
δ)κΓ

(
1

θδ
− 1

θΓ

)(
1

θΓ
− 1

)
+ εQδλΓ(ϕδ − ϕΓ) dS

+

∫
∂Ω

Tδ(e
δ)D

(
~ζ δ − ~ζ Γ +

~z

θΓ
(ϕδ − ϕΓ)

)
·
(
~ζ Γ +

~z

θΓ
ϕδ
)

dS

+

∫
∂Ω

Tδ(e
δ)D

(
~ζ δ − ~ζ Γ +

~z

θΓ
(ϕδ − ϕΓ)

)
· ~z
ϕ

δ(
1− 1

θΓ

)
dS.
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Using our Hypotheses we read from (5.82) the following estimates uniform in δ (but also
in n, ε and k)
(5.83)

‖eδ‖L∞(0,T ;L1(Ω)) + ‖vδ‖L∞(0,T ;L2(Ω;R3)) + ‖ϕδ‖L∞(0,T ;W 1,2(Ω)) + ε
∥∥∥∇eδ
eδ

∥∥∥
L2(ΩT ;R3)

+ ε‖∇~c δ‖L2(ΩT ;R3L) +

∫
ΩT

Tδ(eδ)M(θ)
∣∣∣P~̀

(
∇~ζ δ +

~z

θδ
∇ϕδ

)∣∣∣2 + Tδ(e
δ)
κ|∇θδ|2

(θδ)2
dx dt

+

∫
Γ

Tδ(e
δ)
∣∣∣P~̀

(
~ζ δ − ~ζ Γ +

~z

θΓ
(ϕδ − ϕΓ)

)∣∣∣2 +
κ

(θδ)2
dS dt ≤ C.

Furthermore, we may use eδ as test function in (5.64) the function and get

(5.84) ‖eδ‖L∞(0,T ;L2(Ω)) + ε‖∇eδ‖L2(0,T ;L2(Ω)) ≤ C.

Finally, for the time derivatives we have
(5.85)
‖∂teδ‖L2(0,T ;W−1,2(Ω)) + ‖∂tvδ‖L2(QT ;R3) + ‖∂t~c δ‖(L2(0,T ;W 1,2(Ω;RL))∩La′ (0,T ;W 1,a′ (Ω;RL)))′

+ ‖∇ϕδ‖(L2(0,T ;W 1,2(Ω;RL))∩La′ (0,T ;W 1,a′ (Ω;RL)))′ ≤ C,

where a = min{β, 2β
2β−ε0}, see (3.26), and a′ = a

a−1
. Note that the reason for worse

estimate of the time derivative of ~c (and, consequently, of ∇ϕ) is connected with the
integrability of qδ~c. More precisely, the most restrictive term is m∇ 1

θδ
. We may now

repeat the computations from Subsections 3.4 and 3.5 to get the same estimates on the
integrability of the fluxes now denoted by δ. We have shown that for δ → 0+ we have
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(possibly for subsequences)

(5.86)

vδ → v strongly in C([0, T ]; Wn),

∂tv
δ → ∂tv weakly in L2(ΩT ;R3),

~c δ → ~c strongly in Lq(ΩT ;RL), 1 ≤ q <∞
~c δ → ~c weakly in L2(0, T ;W 1,2(Ω;RL)),

∂t~c
δ → ∂t~c weakly in (L2(0, T ;W 1,2(Ω;RL)) ∩ La′(0, T ;W 1,a′(Ω;RL)))′,

eδ → e strongly in L2(ΩT ),

eδ → e weakly in L2(0, T ;W 1,2(Ω)),

∂te
δ → ∂te weakly in L2(0, T ;W−1,2(Ω)),

ϕδ → ϕ strongly in Lq(0, T ;W 1,q(Ω)), 1 ≤ q <∞,
ϕδ → ϕ weakly in Lq(0, T ;W 2,q(Ω)), 1 ≤ q <∞,
q δ
~c → q~c weakly in Lq(QT ;R3L), q from (3.24),

qδe → qe weakly in La(QT ;R3), a from (3.26),

~q δ
~c Γ → ~q~c Γ weakly in L2(Γ;RL),

qδeΓ → qeΓ weakly in L2(Γ),

qδϕΓ → qϕΓ weakly in L2(0, T ;L∞(∂Ω),

~ζ δ → ~ζ weakly in La(0, T ;W 1,a(Ω;RL)),

Sδ → S weakly in Lr
′
(ΩT ),

and the limit functions fulfill

(5.87)

〈∂t~c, ~ψ〉W−1,a(Ω);W 1,a′ (Ω) +

∫
Ω

ε∇~c : ∇~ψ −
(
~c⊗ v + q~c

)
: ∇~ψ dx

= −
∫
∂Ω

~q~cΓ · ~ψ dS +

∫
Ω

~r · ~ψ dx

a.e. in (0, T ) and for all ~ψ ∈ W 1,a′(Ω;RL), limt→0+ ~c (t) = ~c 0 in L2(Ω;RL),

(5.88)

∫
Ω

∂tv · u + S : D(u)− ξk(|v|2)(v ⊗ v) : ∇u dx

= −
∫
∂Ω

γv · u dS −
∫

Ω

Q∇ϕ · u dx

for all u ∈Wn, the initial condition for v is fulfilled in the same sense as above,

(5.89)

〈∂te, ψ〉W−1,2(Ω);W 1,2(Ω) +

∫
Ω

ε∇e · ∇ψ −
(
ev + qe

)
· ∇ψ dx

= −
∫
∂Ω

qeΓψ dS +

∫ T

0

∫
Ω

(
S : ∇v − ~z · (q~c∇ϕ)

)
ψ dx
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a.e. in (0, T ) and for all ψ ∈ W 1,2(Ω), limt→0+ e(t) = e0 in L2(Ω),

(5.90)

∫
Ω

∇ϕ · ∇ψ −Qψ dx =

∫
∂Ω

qϕΓψ dS

for all ψ ∈ W 1,2(Ω), where

(5.91) q~c = q∗~c(e,~c, θ,∇~ζ,∇θ,∇ϕ),

(5.92) qe = q∗e(e,~c, θ,∇~ζ,∇θ,∇ϕ),

(5.93) S = S∗(~c, θ,D(v)),

(5.94) ~r = ~r ∗(e,~c, θ, ~ζ),

(5.95) Q = Q∗(~c),

the boundary fluxes

(5.96)

~q~cΓ = ~q ∗~cΓ(x, e,~c, θ, ~ζ, ϕ),

qeΓ = q∗eΓ(x, e,~c, θ, ~ζ),
qϕΓ = q∗ϕΓ(x, ϕ),
γ = γ∗(e,~c, θ).

Furthermore,

(5.97) θ = θ∗(e),

(5.98) ~ζ = ~ζ ∗(~c).

Note, however, that statements (5.87)–(5.96) require more careful proof than in the
previous limit passages, where the situation was much simpler. On the other hand, we
may follow directly the approach from [5]. The main problem is connected with possible
degeneracy of the temperature and concentrations and we have to control the size of the
subset of ΩT , where some of these quantities are less than say δ0. Due to the estimates
above, the size of this singular set can be controlled by C/ ln δ0 and this allows to show
the limit passages in the fluxes.

Note also that we may pass to the limit in the entropy identity to get the entropy
inequality
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(5.99)

∫
Ω

(s∗e(e) + s∗~c(~c))(t) dx ≥
∫

Ω

(s∗e(e) + s∗~c(~c))(0) dx

− ε
∫

ΩT

∂2
e2s
∗,ε
e (e)|∇e|2 −∇~c : ∇~ζ dx dt

+

∫
ΩT

S : D(v)

θ
− ~r · ~ζ +

κ|∇θ|2

(θ)2
+ M

(
∇~ζ +

~z

θ
∇ϕ
)(
∇~ζ +

~z

θ
∇ϕ
)

dx dt

+

∫
Γ

κΓ

(1

θ
− 1

θΓ

)1

θ
+ D

(
~ζ − ~ζ Γ +

~z

θΓ
(ϕ− ϕΓ)

)
~ζ dS dt.

5.6. Limit passage n → ∞ and ε → 0+. We take e.g. εn = 1
n

and consider the limit
passage n→∞. Let us first collect estimates independent of n. Recalling that

(5.100) ‖~c n‖L∞(ΩT ;RL) ≤ 1

we can read from (5.90)

(5.101) ‖ϕn‖L∞(0,T ;W 2,q(Ω)) ≤ C(q)

for any 1 ≤ q <∞ as well from (5.88) with test function vn

(5.102) ‖vn‖L∞(0,T ;L2(Ω;R3)) + ‖∇vn‖Lr(ΩT ;R9) + ‖Sn‖Lr′ (ΩT ;R9) ≤ C.

Next, we read from (5.83)

(5.103)

sup
t∈(0,T )

‖en(t)‖L1(ΩT ) +

∫
QT

M(θ)
∣∣∣P~̀

(
∇~ζ n +

~z

θn
∇ϕn

)∣∣∣2 +
κ|∇θn|2

|θn|2
dx dt

+

∫
Γ

∣∣∣P~̀

(
~ζ n − ~ζ Γ +

~z

θΓ
(ϕn − ϕΓ)

)∣∣∣2 +
κ

|θn|2
dS dt ≤ C.

Further, we may repeat computations between (3.18)–(3.22) to conclude that for any λ > 0

(5.104)

∫
QT

|θn|
5
3
−λ + |∇θn|

5
4
−λ +

|∇θn|2

(1 +∇θn)1+λ
dx dt ≤ C(λ)

and
(5.105)

‖qn~c ‖Lq1 (ΩT ;R3L) + ‖qne‖Lq2 (ΩT ;R3) + ‖~ζ n‖Lq3 (0,T ;W 1,q3 (Ω;RL)) + ‖~c n‖Lq3 (0,T ;W 1,q3 (Ω;RL)) ≤ C,

where

q1 < min
{ 10

10− 3ε0

,
2β

2β − ε0

}
, q2 = min

{5

4
,

2β

2β − ε0

}
, q3 = min

{
β,

2β

2β − ε0

}
.

Next, we compute the estimates of the time derivatives. We can show

(5.106)
‖∂tvn‖(Lr(0,T ;W 1,r

0,ν (Ω)∩W 1,r
div (Ω)))′ + ‖∂t~c

n‖(L2(0,T ;W 1,2(Ω))∩La′ (0,T ;W 1,a′ (Ω)))′

+ ‖∂ten‖L1(0,T ;(W 2,3(Ω))∗) + ‖∂t∇ϕn‖(L2(0,T ;W 1,2(Ω))∩La′ (0,T ;W 1,a′ (Ω)))′ ≤ C.
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Therefore, we have (with a possible choice of a subsequence)

(5.107)

vn → v weakly in Lr(0, T ;W 1,r(Ω;R3)),

vn → v weakly∗ in L∞(0, T ;L2(Ω;R3)),

∂tv
n → ∂tv weakly in (Lr(0, T ;W 1,r

0,ν (Ω) ∩W 1,r
div(Ω)))′,

~c n → ~c strongly in Lq(ΩT ;RL), 1 ≤ q <∞,
~c n → ~c weakly in Lq3(0, T ;W 1,q3(Ω;RL)),

∂t~c
n → ∂t~c weakly in (L2(0, T ;W 1,2(Ω;RL))

∩ La′(0, T ;W 1,a′(Ω;RL)))′,

en → e strongly in Lq(ΩT ), q <
5

3
,

en → e weakly in Lq(0, T ;W 1,q(Ω)), q <
5

4
,

∂te
n → ∂te weakly in M(0, T ; (W 3,2(Ω))∗),

ϕn → ϕ strongly in Lq(0, T ;W 1,q(Ω)), 1 ≤ q <∞,
ϕn → ϕ weakly in Lq(0, T ;W 2,q(Ω)), 1 ≤ q <∞,
q n
~c → q~c weakly in Lq1(QT ;R3L),

qne → qe weakly in Lq2(QT ;R3),

~q n
~c Γ → ~q~c Γ weakly in L2(Γ;RL),

qneΓ → qeΓ weakly in L2(Γ),

qnϕΓ → qϕΓ weakly in L2(0, T ;L∞(∂Ω),

~ζ n → ~ζ weakly in La(0, T ;W 1,a(Ω;RL)),

Sn → S weakly in Lr
′
(ΩT ).

The limit functions satisfy

(5.108) 〈∂t~c, ~ψ〉W−1,a(Ω);W 1,a′ (Ω) −
∫

Ω

(
~c⊗ v + q~c

)
: ∇~ψ + ~r · ~ψ dx = −

∫
∂Ω

~q~cΓ · ~ψ dS

a.e. in (0, T ) and for all ~ψ ∈ W 1,a′(Ω;RL); limt→0+ ~c(t) = ~c0 in Lq(Ω;RL), 1 ≤ q < ∞
arbitrary,

(5.109)

〈∂tv,u〉W−1,r′ (Ω);W 1,r(Ω) +

∫
Ω

S : D(u)− ξk(|v|2)(v ⊗ v) : ∇u dx

= −
∫
∂Ω

γv · u dS −
∫

Ω

Q∇ϕ · u dx
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a.e. in (0, T ), for all u ∈ W 1,r
0,ν (Ω) ∩W 1,r

div(Ω), limt→0+ v(t) = v0 in L2(Ω;R3),

(5.110)

〈∂te, ψ〉W−1,2(Ω);W 1,2(Ω) −
∫

Ω

(
ev + qe

)
· ∇ψ −

(
S : D(v)− ~z · (q~c∇ϕ)

)
ψ dx

= −
∫
∂Ω

qeΓψ dS

a.e. in (0, T ) and for all ψ ∈ W 1,2(Ω), limt→0+ e(t) = e0 in L1(Ω). However, this must be
shown more carefully. Next,

(5.111)

∫
Ω

∇ϕ · ∇ψ −Qψ dx =

∫
∂Ω

qϕΓψ dS.

Further, the main difficulty is to show that

(5.112) S = S∗(~c, θ,D(v))

as well as the fact that Sn : D(vn)→ S∗(~c, θ,D(v)) : D(v) weakly in L1(ΩT ). As there is
still a cut-off in the convective term, we can verify the limit passage using the Minty trick
only. More precisely, due to estimates above we know that

(5.113) lim sup
n→∞

∫
QT

Sn : D(vn) dx dt ≤
∫
QT

S : D(v) dx dt

as well as

(5.114) S∗(~c n, θn,B)→ S∗(~c, θ,B)

strongly in Lr
′
(0, T ;Lr

′
(Ω;R9)) for any symmetric matrix-valued function B being in the

space Lr(0, T ;Lr(Ω;R9)). The monotonicity of the stress tensor implies

(5.115)

∫
ΩT

(
Sn − S∗(~c n, θn,B)

)
: (D(vn)− B) dx dt ≥ 0;

whence

(5.116)

∫
ΩT

(
S − S∗(~c, θ,B)

)
: (D(v)− B) dx dt ≥ 0

for all B ∈ Lr′(0, T ;Lr
′
(Ω;R9)), symmetric. The Minty trick gives us

(5.117) S = S∗(~c, θ,D(v))

as well as

(5.118) (Sn − S∗(~c n, θn,D(v))) : (D(vn)−D(v))→ 0

strongly in L1(QT ). This implies

(5.119) Sn : D(vn)→ S : D(v)
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weakly in L1(QT ). We may use this information to conclude that ∂te
n → ∂te weakly in

L1(0, T ; (W 2,3(Ω))′) and therefore e ∈ C([0, T ]; (W 2,3(Ω))′). Moreover, using this informa-
tion and the weak formulation of the internal energy balance we conclude

(5.120)

∫
Ω

(e(t)− e0)ψ dx→ 0

for t→ 0+ for all ψ ∈ C(Ω), i.e.

(5.121) e(t)→ e0

weakly∗ in M(Ω). Then, exactly as in [5], using the Biting lemma, we may conclude that

(5.122) e(t)→ e0 for t→ 0+ weakly in L1(Ω).

Next, we employ the assumption (2.25) to verify that

(5.123) ~ζ = ~ζ∗(~c)

and

(5.124) ~ζ n → ~ζ

strongly in L1(ΩT ;RL). Recalling the previous limit passage we can show that

Tδ(~c
n)~ζ n → Tδ(~c)~ζ

strongly in L1(ΩT ;RL) for any fix δ > 0. However, due to (2.25), inequality (5.6) and the

control of ~ζ n in Lq3(ΩT ;RL), we may control uniformly the smallness of the set, where cni ,
= 1, 2, . . . , L, are small. This finishes the proof of (5.123).

To conclude this limit passage, let us note that we may pass to the limit also in the
entropy inequality to get

(5.125)

∫
Ω

(s∗e(e) + s∗~c(~c))(t) dx ≥
∫

Ω

(s∗e(e) + s∗~c(~c))(0) dx

+

∫
ΩT

S : D(v)

θ
− ~r · ~ζ +

κ|∇θ|2

(θ)2
+ M

(
∇~ζ +

~z

θ
∇ϕ
)(
∇~ζ +

~z

θ
∇ϕ
)

dx dt

+

∫
Γ

κΓ

(1

θ
− 1

θΓ

)1

θ
+ D

(
~ζ − ~ζ Γ +

~z

θΓ
(ϕ− ϕΓ)

)
~ζ dS dt.

5.7. Limit passage k →∞. We may deduce almost the same set of estimates independent
of k as in the previous subsection. We have
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(5.126)
vk → v weakly in Lr(0, T ;W 1,r(Ω;R3)),

vk → v weakly∗ in L∞(0, T ;L2(Ω;R3)),

∂tv
k → ∂tv weakly in (Lr(0, T ;W 1,r

0,ν (Ω) ∩W 1,r
div(Ω)) ∩ L

5r
5r−6 (0, T ;W

1, 5r
5r−6

0,ν (Ω)))′,

~c k → ~c strongly in Lq(ΩT ;RL), 1 ≤ q <∞,
~c k → ~c weakly in Lq3(0, T ;W 1,q3(Ω;RL)),

∂t~c
k → ∂t~c weakly in (L2(0, T ;W 1,2(Ω;RL)) ∩ La′(0, T ;W 1,a′(Ω;RL)))′,

ek → e strongly in Lq(ΩT ), q <
5

3
,

ek → e weakly in Lq(0, T ;W 1,q(Ω)), q <
5

4
,

∂te
k → ∂te weakly in M(0, T ; (W 3,2(Ω))∗),

ϕk → ϕ strongly in Lq(0, T ;W 1,q(Ω)), 1 ≤ q <∞,
ϕk → ϕ weakly in Lq(0, T ;W 2,q(Ω)), 1 ≤ q <∞,
q k
~c → q~c weakly in Lq1(QT ;R3L),

qke → qe weakly in Lq2(QT ;R3),

~q k
~c Γ → ~q~c Γ weakly in L2(Γ;RL),

qkeΓ → qeΓ weakly in L2(Γ),

qkϕΓ → qϕΓ weakly in L2(0, T ;L∞(∂Ω),

~ζ k → ~ζ weakly in La(0, T ;W 1,a(Ω;RL)),

Sk → S weakly in Lr
′
(ΩT ).

The only difference with respect to (5.107) is a slightly worse information concerning the
time derivative of v connected with the convective term in the momentum equation. To
proceed, we have to distinguish three cases:
• r ≥ 11

5

• 9
5
< r < 11

5

• 3
2
< r ≤ 9

5

5.7.1. The case r ≥ 11
5

. This case is the simplest one as we may proceed exactly as in
the previous limit passage. The reason for it is that we may still use the velocity as test
function in the limit of the momentum equation which is the most important piece of
information to deduce that

(5.127) Sk : D(vk)→ S∗(~c, θ,D(v)) : D(v)



52 MIROSLAV BULÍČEK, MILAN POKORNÝ, AND NICOLA ZAMPONI

weakly in L1(ΩT ). Therefore we use the procedure described in the previous subsection to
finish the proof of Theorem 3.

5.7.2. The case 9
5
< r < 11

5
. The main difference in this case is that we are not anymore

able to justify (5.127) and we have to use the definition of the weak solution based on
the total energy balance. Therefore, before passing to the limit in the equations, we first
write down the approximate total energy balance. We proceed similarly as above with the
difference that we aim at weak formulation, not just the balance of the total energy. To
this aim, for ψ arbitrary sufficiently smooth function, we use as test function in (5.109)
the function vkψ, in (5.108) we use as test function ~zϕψ and sum up these two identities
with (5.110). We integrate the resulted identity over time and get

(5.128)

∫ T

0

∫
Ω

Ek∂tψ dx dt+

∫ T

0

∫
Ω

((
|v|2ξk(|vk|2)− 1

2
Ξk(|vk|2) + ek +Qkϕk

)
vk

+ϕk~z · qk~c + qke − Skvk + pkvk − ϕk∇∂tϕk
)
· ∇ψ dx dt+

∫
Ω

Ek(0)ψ(0) dx

=

∫ T

0

∫
∂Ω

(
γk|vk|2ψ + ϕk~z · ~q k

~c Γ + qkeΓ − ϕ∂tqkϕΓ

)
ψ dS dt,

where Ξk is a primitive function to ξk, E
k = ek + 1

2
|vk|2 + 1

2
|∇ϕk|2, Qk =

∑L
i=1 zic

k
i and

pk is the pressure due to the divergence-less constraint on vk. Note that the fact that we
deal with the slip boundary conditions for the velocity plays an important role here; the
pressure is namely known to be integrable, see (3.13)–(3.17). Estimates (3.17) (with pi
replaced by pki , i = 1, . . . , 4) holds true. Note finally that the meaning of the fluxes with
the upper index k is similar as in the previous limit passages.

We may now pass to the limit in the weak formulation (5.108), (5.109), (5.128) and
(5.111). As

|v|2ξk(|vk|2)− 1

2
Ξk(|vk|2)→ 1

2
|v|2

strongly in Lq(ΩT ) for any q < 5r
6

and vk → v weakly in L
3r

3−r (ΩT ;R3), the limit passage in

the convective term of the total energy (see (5.128)) is possible for r > 9
5
. All other terms

in the weak formulation of the total energy, concentration equation, momentum equation
and the equation for the electrostatic potential are simpler. We rewrite the time derivative
and integrate the equalities over time. We get

(5.129)

−
∫

ΩT

~c · ∂t ~ψ dx dt−
∫

Ω

~c 0 · ~ψ(0) dx+

∫
ΩT

−
(
~c⊗ v + q~c

)
: ∇~ψ dx dt

= −
∫

Γ

~q~cΓ · ~ψ dS dt+

∫
ΩT

~r · ~ψ dx dt
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for all ~ψ ∈ C∞(ΩT ;RL), ~ψ(T ) = ~0,

(5.130)

−
∫

ΩT

v · ∂tu dx dt−
∫

Ω

v0 · u(0) dx+

∫
ΩT

S : D(u)− (v ⊗ v) : ∇u dx dt

= −
∫

Γ

γv · u dS dt−
∫

ΩT

Q∇ϕ · u dx dt

for all u ∈ C∞(ΩT ;R3), u(T ) = 0, u · ν = 0 on ∂Ω, div u = 0 in ΩT ,

(5.131)

∫ T

0

∫
Ω

E∂tψ dx dt+

∫ T

0

∫
Ω

((1

2
|v|2 + e+Qϕ

)
v

+ϕ~z · q~c + qe − Sv + pvI − ϕ∇∂tϕ
)
· ∇ψ dx dt+

∫
Ω

E(0)ψ(0) dx

=

∫ T

0

∫
∂Ω

(
γ|v|2ψ + ϕ~z · ~q~c Γ + qeΓ − ϕ∂tqϕΓ

)
ψ dS dt

for all ψ ∈ C∞(ΩT ), ψ(T ) = 0,

(5.132)

∫
Ω

∇ϕ · ∇ψ −Qψ dx =

∫
∂Ω

qϕΓψ dS

for all ψ ∈ W 1,2(Ω).
We would like to identify the limits of the fluxes, especially we would like to show that

(5.133) S = S∗(~c, θ,D(v)).

However, we meet here a new difficulty. Since we cannot use as test function in the
limit momentum equation the function v, the idea based on the theory of the monotone
operators is not any more applicable. We have to replace it by another method, based
on the Lipschitz truncation method. Strictly speaking, for the parameter r in the present
range we could apply another method, based on the L∞-truncation, but this method works
only up to r = 8

5
and our aim is to consider in the next case 3

2
< r < 8

5
. For this reason

we present here only the method based on the Lipschitz truncation. This methods has the
origin in the work [17] (for steady case) and its parabolic version were obtained in [10] and
for Navier slip boundary condition and general Orlicz growth in [4]. Here, we use the very
improved version of this method, which is introduced in [3].

Note first that it is not difficult to justify (by using the strong convergence of ~c k and
θk) that

Sk − S∗(~c, θ,D(vk))→ 0

weakly in Lr
′
(ΩT ;R9) and even strongly in L1(ΩT ;R9), therefore we will replace (5.133) by

considering the

(5.134) lim
k→∞
Sk0 − S∗(~c, θ,D(v)),

where we denoted Sk0 = S∗(~c, θ,D(vk)).
We will use Theorem 2.2 and Corollary 2.4 from [3]. We first introduce certain notation.

For α > 0 we say that Q = I ×B ⊂ R×R3 is an α-parabolic cylinder, if rI = αr2
B, where
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rI is the radius of the interval I and rB the radius of the ball B. By Qα we denote the set
of all α-parabolic cylinders. For κ > 0 we denote κQ the scaled cylinder κQ = (κI)×(κB),
where κB is the scaled ball with the same center, similarly κI. Then α-parabolic maximal
operators Mα and Mα

s , s ∈ [1,∞) are defined

(Mαf)(t, x) := sup
Q′∈Qα;(t,x)∈Q′

1

|Q′|

∫
Q′
|f(s, y)| ds dy,

(Mα
s f)(t, x) :=

(
(Mα|f |s)(t, x)

) 1
s
.

For λ, α > 0 and σ > 1 we define

Oαλ(z) :=
{

(t, x); (Mα
σ(ξ 1

3
Q0
|∇2z|) > λ ∩ (Mα

σ(ξ 1
3
Q0
|∂tz|) > λ

}
,

where ξ is a suitable cut-off function and z ∼ ∇−1v; for more precise definition of z see
the proof of Theorem 2.2 in [3].

We have (see Theorem 2.2 and Corollary 2.4 in [3])

Proposition 1. Let 1 < r <∞, r, r′ > σ. Let wk and Gk satisfy

〈∂twk,u〉 = 〈div Gk,u〉

for all u ∈ C∞0,div(Q0), Q0 = I0 × B0 ⊂ R × R3. Assume that wk is a weak null se-

quence in Lr(I0;W 1,r(B0;R3)) and a strong null sequence in Lσ(Q0;R3) and bounded in
L∞(I0;Lσ(B0;R3)). Further assume that Gk = Gk1 +Gk2 such that Gk1 is a weak null sequence
in Lr

′
(Q0;R9) and Gk2 converges strongly to zero in Lσ(Q0;R9). Then there exists a double

sequence {λm,k} ⊂ R+ and m0 ∈ N with

(a) 22m ≤ λm,k ≤ 22m+1

such that the double sequence wm,k := w
λm,k
αm,k ∈ L1(Q0;R3), αm,k := λ2−r

m,k and

Om,k := Oαm,kλm,k
defined above satisfy for all m ≥ m0

(b) wm,k ∈ Ls(1
4
I0;W 1,s

0,div(1
6
B0;R3)) for all s <∞ and supp wm,k ⊂ 1

6
Q0

(c) wm,k = wk a.e. on 1
8
Q0 \ Om,k

(d) ‖∇wm,k‖L∞( 1
4

(Q0);R3) ≤ cλm,k

(e) wm,k → 0 in L∞(1
4
Q0;R3) for k →∞ and m fixed

(f) ∇wm,k ⇀
∗ 0 in L∞(1

4
Q0;R9) for k →∞ and m fixed

(g) lim supk→∞ λ
q
m,k|Om,k| ≤ c2−m

(h) lim supk→∞

∣∣∣ ∫Q0
Gk : ∇wm,k dx dt

∣∣∣ ≤ cλrm,k|Om,k|
(i) Additionally, let ζ ∈ C∞0 (1

6
Q0) with χ 1

8
Q0
≤ ζ ≤ χ 1

6
Q0

. Let wk be uniformly bounded

in L∞(I0;Lσ(B0;R3)), then for every K ∈ Lr′(1
6
Q0;R9)

lim sup
k→∞

∣∣∣( ∫
Q0

(Gk1 +K) : ∇wk
)
ζχOCm,k dx dt

∣∣∣ ≤ c2−
m
r .
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We apply this theorem to our problem; cf. Theorem 3.1 in [3]. We denote wk = vk − v.
Then

wk ⇀ 0 in Lr(0, T ;W 1,r
div(Ω)),

wk → 0 in L2σ(QT ;R3),
wk ⇀∗ 0 in L∞(0, T ;L2(Ω;R3)),

see (5.126). Further ∫ T

0

∫
Ω

wk · ∂tu dx dt =

∫ T

0

∫
Ω

Gk : D(u) dx dt

for all u ∈ C∞0 (ΩT ;R3), where Gk = Gk1 + Gk2 with

Gk1 = Sk0 − S
Gk2 = −(vk ⊗ vk)ξ(|vk|2) + (v ⊗ v) +Qk∇ϕk −Q∇ϕ+ Sk0 − Sk.

We have ‖Gk1‖Lr′ (0,T ;Lr′ (Ω;R9)) ≤ C and Gk2 → 0 in Lσ1(ΩT ) for some σ1 > 1 see (5.128).

Take now Q ⊂⊂ (0, T )×Ω. Due to properties mentioned above, assumptions of Proposi-
tion 1 (i) are fulfilled. Hence, plugging in K = −S∗(~c, θ,D(v))+S we have for ζ ∈ C∞0 (1

6
Q0)

lim sup
k→∞

∣∣∣ ∫ T

0

∫
Ω

(
Gk1 +K

)
: D(wk)ζχOCm,k dx dt

∣∣∣ ≤ C2−
m
r .

Therefore, using the fact that wk coincides with (vk − v) on OCm,k and also the definition

of Gk1 , we get

lim sup
k→∞

∣∣∣ ∫ T

0

∫
Ω

(
Sk0 − S∗(~c, θ,D(v))

)
: D(vk − v)ζχOCm,k dx dt

∣∣∣ ≤ C2−
m
r .

This however due to the monotonicity of S∗ implies that

lim sup
k→∞

∫ T

0

∫
Ω

∣∣∣(Sk0 − S∗(~c, θ,D(v))
)

: D(vk − v)
∣∣∣ζχOCm,k dx dt ≤ C2−

m
r .

Next, we take arbitrary µ ∈ (0, 1) and by virtue of Hölder’s inequality and Proposition 1
(g) we deduce that

lim sup
k→∞

∫ T

0

∫
Ω

∣∣∣(Sk0 − S∗(~c, θ,D(v))) : D(vk − v)
∣∣∣µζχOm,k dx dt

≤ C lim sup
k→∞

|Ok,m|1−µ ≤ C2−(1−µ)m
r .

Thus, combining both estimates we observe that

lim sup
k→∞

∫ T

0

∫
Ω

∣∣∣(Sk0 − S∗(~c, θ,D(v))) : D(vk − v)
∣∣∣µ ≤ C2−(1−µ)m

r .

Taking limm→∞ the right-hand side tends to zero and consequently we have that∣∣∣(Sk0 − S∗(~c, θ,D(v))) : D(vk − v)
∣∣∣µ → 0
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in L1(0, T ;L1(Ω)). Thus, using the Egorov theorem, we find that for any ε > 0 there exists
Ωε
T such that

(Sk0 − S∗(~c, θ,D(v))) : D(vk − v)→ 0

uniformly in Ωε
T and |ΩT \ Ωε

T | ≤ ε, which due to the weak convergence of vk to v also
implies that Sk0 : D(vk − v) → 0 weakly in L1(Ωε

T ). Due to the monotonicity of S∗ and
(5.134), we can apply the Minty method to finally obtain that

S = S∗(~c, θ,D(v)) a.e. in Ωε
T .

Since, ε > 0 is arbitrary, we can finally let it to zero and due to the fact that |ΩT \Ωε
T | ≤ ε,

we see that the above identity holds a.e. in ΩT Therefore the proof of (5.133) is finished.
Having shown (5.133), we may easily repeat the arguments from the preceding section,

including the validity of the entropy inequality. Note that due to the form of the weak
formulation of the total energy it is not difficult to verify the information about the con-
tinuity of E. Theorem 2 is proved. Notice finally that the weak formulation of the total
energy holds for any r > 9

5
, including the situation covered by Theorem 3. However, we

my deduce the weak formulation of the total energy after the limit passage as we may test
the momentum equation by vψ.

5.7.3. The case 3
2
< r ≤ 9

5
. In this situation we do not have enough information about the

integrability of the velocity to justify neither the limit passage in the weak formulation of
the internal energy balance nor in the weak formulation of the total energy balance. The
way out is to pass to the limit in the weak formulation of the internal energy balance with
only non-negative test functions, receiving only inequality in limit, and pass to the limit
in the total energy balance (weak formulation tested by a constant test function).

In the latter case, approximating first the characteristic function of [0, t] × Ω and then
letting k →∞ in (5.128) the total energy inequality
(5.135)∫

Ω

E(t)ψ dx+

∫ t

0

∫
∂Ω

(
γ|v|2ψ + ϕ~z · ~q~c Γ + qeΓ − ϕ∂tqϕΓ

)
ψ dS dt ≤

∫
Ω

E(0) dx.

Next, taking the limit k →∞ in the weak formulation of the internal energy balance yields
due to the weak lower semicontinuity of

∫
ΩT
Sk : D(vk) dx dt inequality (4.5). Note that

the limit r > 3
2

is due to the integrability of the term ve. To pass to the limit in the

momentum equation, we use the Lipschitz truncation method exactly as in the case r > 9
5
.

The rest is the same as in the previous case. Theorem 1 is proved.
Finally note that it would be more natural to replace the inequality in the internal energy

balance by the inequality in the entropy inequality (with nonnegative test functions). This
is, however, not so easy as we do not have enough information about the time integrability
of some terms. The trouble makers are terms with θ in the negative powers. Therefore we
can dispose with the entropy inequality tested only by a constant function.
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