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ABSTRACT. Employing a construction of Tsirelson-like spaces due
to Argyros and Deliyanni, we show that the class of all Banach
spaces which are isomorphic to a subspace of c0 is a complete an-
alytic set with respect to the Effros Borel structure of separable
Banach spaces. Moreover, the classes of all separable spaces with
the Schur property and of all separable spaces with the Dunford-

Pettis property are Π
1
2-complete.

1. INTRODUCTION AND MAIN RESULTS

During the last two decades, it turned out that descriptive set the-
ory provides a fruitful approach to several questions in separable
Banach space theory. A particular and generally still not well un-
derstood question is the question of the descriptive complexity of
a given class of separable Banach spaces. In the present work, we
introduce a new approach to complexity problems in Banach space
theory which is based on a fundamental example of Tsirelson.

The connections between descriptive set theory and Banach space
theory were discovered by J. Bourgain [4, 5]. Later, B. Bossard [3] in-
vestigated codings of separable Banach spaces up to isomorphism by
standard Borel spaces and used the Effros Borel structure for study-
ing complexity questions in Banach space theory (see Section 2 for
the definitions of the Effros Borel structure and of the related no-
tions used below, let us note here that by an isomorphism we mean
a linear isomorphism throughout this paper).

It can be shown quite easily that the isomorphism class of any sep-
arable Banach space is analytic. B. Bossard asked in [3] whether `2 is
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(up to isomorphism) the only infinite-dimensional separable Banach
space whose isomorphism class is Borel. There are several examples
for which the isomorphism class is shown to be non-Borel, for in-
stance Pełczyński’s universal space [3], C(2N) (see e.g. [18, (33.26)])
or Lp([0, 1]) for 1 < p < ∞, p 6= 2, (see e.g. [9]). A by-product of
the present work are two new examples (

⊕

Gn)c0 and (
⊕

Gn)`1
(see

Remarks 3.9(ii) and 3.10(vii)).
Bossard’s question has been recently answered by G. Godefroy

[11] who has proven the existence of a space which is not isomor-
phic to `2 but the isomorphism class of which is Borel. The following
question posed in [10], however, remains open.

Question 1.1 (Godefroy). Is the class of all Banach spaces isomorphic to
c0 Borel?

In Section 7, we present some remarks concerning this interest-
ing problem. Although we have not found its solution, we have ob-
tained the following related result.

Theorem 1.2. The class of all Banach spaces which can be embedded iso-
morphically into c0 is complete analytic. In particular, it is not Borel.

This result answers [10, Problem 4] and provides most likely the
first example of a space X for which the class of spaces embeddable
into X is shown not to be Borel. In other words, we have proven that
the embeddability relation Y ↪→ X has a non-Borel horizontal sec-
tion · ↪→ X. This discovery is not surprising, as the vertical section
Y ↪→ · is known to be non-Borel for every infinite-dimensional Y
(see [3, Corollary 3.3(vi)]).

Our second main result is based on a combination of methods
used for proving Theorem 1.2 with a tree space method used in [20].

Theorem 1.3. The classes of all separable Banach spaces with the Schur
property and of all separable Banach spaces with the Dunford-Pettis prop-
erty are Π

1
2-complete. In particular, these classes are not Σ

1
2.

This result answers two questions posed by B. M. Braga in [6].
We recall that a Banach space X is said to have the Schur property
if every weakly convergent sequence in X is norm convergent. The
Dunford-Pettis property is defined in Section 4. We note here just that
a remarkable characterization states that X has the Dunford-Pettis
property if and only if x∗n(xn) → x∗(x) whenever x∗n → x∗ weakly in
X∗ and xn → x weakly in X.

Both results above are significantly based on a construction due to
S. A. Argyros and I. Deliyanni [1] who generalized the well-known
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example of B. S. Tsirelson [22]. Let us recall the definition of this
important example.

For E ⊂ N and x ∈ c00(N), we denote by Ex the restriction of x
on E, i.e., the element of c00(N) given by Ex(i) = x(i) for i ∈ E and
Ex(i) = 0 for i /∈ E. A family {E1, . . . , En} of successive finite subsets
of N is said to be admissible if

n < E1 < E2 < · · · < En.

The system of all admissible families is denoted by adm.

Definition 1.4 (Tsirelson). Let Θ be the smallest absolutely convex
subset of c00(N) containing every basic vector ei = 1{i}, i ∈ N, and
satisfying

{E1, . . . , En} ∈ adm & x1, . . . , xn ∈ Θ ⇒
1

2

n

∑
k=1

Ekxk ∈ Θ.

Let ‖ · ‖Ts
∗ be the Minkowski gauge of Θ and let Ts

∗ be a completion
of (c00(N), ‖ · ‖Ts

∗).

The space Ts
∗ is the first example of an infinite-dimensional Ba-

nach space not containing an isomorphic copy of c0 or any `p. It is
well-known that Ts

∗ is reflexive and dual to the space Ts defined as
the Banach space of sequences x = {x(i)}∞

i=1 with the basis ei = 1{i}

and with the implicitly defined norm

‖x‖Ts = max

{

‖x‖∞,
1

2
sup

{ n

∑
k=1

‖Ekx‖Ts : {E1, . . . , En} ∈ adm

}

}

.

2. PRELIMINARIES I

Our terminology concerning Banach space theory and descriptive
set theory follows [8] and [18].

A Polish space (topology) means a separable completely metrizable
space (topology). A set X equipped with a σ-algebra is called a stan-
dard Borel space if the σ-algebra is generated by a Polish topology on
X.

A subset A of a standard Borel space X is called an analytic set (or a
Σ

1
1 set) if there exist a standard Borel space Y and a Borel subset B of

X × Y such that A is the projection of B on the first coordinate. The
complement of an analytic set is called a coanalytic set (or a Π

1
1 set).

A subset A of a standard Borel space X is called a Σ
1
2 set if there ex-

ist a standard Borel space Y and a coanalytic subset B of X × Y such
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that A is the projection of B on the first coordinate. The complement
of a Σ

1
2 set is called a Π

1
2 set.

Let Γ be a class of sets in standard Borel spaces (for example Σ
1
1 or

Π
1
2). A subset A of a standard Borel space X is called a Γ-hard set if

every Γ subset B of a standard Borel space Y admits a Borel mapping
f : Y → X such that f−1(A) = B. A subset A of a standard Borel
space X is called a Γ-complete set if it is Γ and Γ-hard at the same time.

A Σ
1
1-hard (Σ1

1-complete, Π
1
1-hard, Π

1
1-complete) set may be called

also hard analytic (complete analytic, hard coanalytic, complete coana-
lytic).

We note that the introduced notion of a hard (complete) set is suit-
able for classes like Σ

1
1 or Π

1
2 but not for Borel classes in Polish spaces.

In that case, only a zero-dimensional Y and a continuous f are con-
sidered.

Let us recall a standard simple argument for Γ-hardness of a set.

Lemma 2.1. Let A ⊂ X and C ⊂ Z be subsets of standard Borel spaces X
and Z. Assume that C is Γ-hard. If there is a Borel mapping g : Z → X
such that

g(z) ∈ A ⇔ z ∈ C,

then A is Γ-hard as well.

For a topological space X, we denote by F (X) the family of all
closed subsets of X and by K(X) the family of all compact subsets of
X.

The hyperspace of compact subsets of X is defined as K(X) equipped
with the Vietoris topology, i.e., the topology generated by the sets of
the form

{K ∈ K(X) : K ⊂ U},

{K ∈ K(X) : K ∩ U 6= ∅},

where U varies over open subsets of X. If X is Polish, then so is
K(X).

We will need the following classical result (see e.g. [18, (27.4)]).

Theorem 2.2 (Hurewicz). If X is Polish and D ⊂ X is Gδ but not Fσ,
then {K ∈ K(X) : K ∩ D 6= ∅} is complete analytic.

The set F (X) of all closed subsets of X can be equipped with the
Effros Borel structure, defined as the σ-algebra generated by the sets

{F ∈ F (X) : F ∩ U 6= ∅},

where U varies over open subsets of X. If X is Polish, then, equipped
with this σ-algebra, F (X) forms a standard Borel space.
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It is well-known that the space C([0, 1]) contains an isometric copy
of every separable Banach space. By the standard Borel space of sepa-
rable Banach spaces we mean

SE(C([0, 1])) =
{

F ∈ F (C([0, 1])) : F is linear
}

,

considered as a subspace of F (C([0, 1])).
Whenever we say that a class of separable Banach spaces has a

property like being analytic, complete analytic, Π
1
2-complete etc., we

consider the class as a subset of SE(C([0, 1])).
By c00(Λ) we denote the vector space of all systems x = {x(λ)}λ∈Λ

of scalars such that x(λ) = 0 for all but finitely many λ’s. By the
canonical basis of c00(Λ) we mean the algebraic basis consisting of
vectors 1{λ}, λ ∈ Λ. Instead of c00(N), we write simply c00.

In the context of Banach spaces, by a basis we mean a Schauder ba-
sis. A basis {xi}

∞
i=1 of a Banach space X is said to be 1-unconditional if

‖∑i∈A aixi‖ ≤ ‖∑i∈B aixi‖ whenever A ⊂ B are finite sets of natural
numbers and ai ∈ R for i ∈ B.

A basis {xi}
∞
i=1 of a Banach space X is said to be shrinking if

X∗ = span{x∗1 , x∗2 , . . . }

where x∗1 , x∗2 , . . . is the dual basic sequence x∗n : ∑
∞
i=1 aixi 7→ an. The

basis {xi}
∞
i=1 is called boundedly complete if ∑

∞
i=1 aixi is convergent

whenever the sequence of its partial sums is bounded.
Let us recall a classical criterion of reflexivity (see e.g. [8, Theo-

rem 6.11]).

Theorem 2.3 (James). Let X be a Banach space with a basis {xi}
∞
i=1. Then

X is reflexive if and only if {xi}
∞
i=1 is shrinking and boundedly complete.

The remainder of this section is devoted to the proof of the follow-
ing preliminary result.

Lemma 2.4. Let Ξ be a standard Borel space and let {(Xξ , ‖ · ‖ξ)}ξ∈Ξ

be a system of Banach spaces each member of which contains a sequence

x
ξ
1, x

ξ
2, . . . whose linear span is dense in Xξ . Assume that the function

ξ 7→
∥

∥

∥

n

∑
k=1

λkx
ξ
k

∥

∥

∥

ξ

is Borel whenever n ∈ N and λ1, . . . , λn ∈ R. Then there exists a Borel
mapping S : Ξ → SE (C([0, 1])) such that S(ξ) is isometric to Xξ for
every ξ ∈ Ξ.



6 ONDŘEJ KURKA

We need to recall some definitions first. Let ε > 0 and let X, Y be
Banach spaces. A linear operator f : X → Y is called an ε-isometry if

(1 + ε)−1‖x‖ < ‖ f (x)‖ < (1 + ε)‖x‖, x ∈ X \ {0}.

A separable Banach space G is called Gurariy if, for every ε > 0,
every finite-dimensional Banach spaces X and Y with X ⊂ Y and
every isometry f : X → G, there exists some ε-isometry g : Y → G

which extends f . It is known that there exists only one Gurariy space
up to isometry ([21], see also [19]).

Lemma 2.5 (Kubiś, Solecki). Let X0 and X1 be finite-dimensional Banach
spaces with X0 ⊂ X1 and let f : X0 → G be a 2−n-isometry. Then there is

a 2−(n+1)-isometry g : X1 → G such that ‖g|X0
− f‖ < 2 · 2−n.

This lemma is proven in [19] and its purpose is to show that G

contains an isometric copy of every separable Banach space X. Ac-
tually, once the lemma is proven, an isometry f : X → G can be
found easily. Let x1, x2, . . . be a dense sequence in X and let Xn =
span {x1, . . . , xn}. Then Lemma 2.5 allows us to construct a sequence
of linear operators fn : Xn → G such that fn is a 2−n-isometry and
‖ fn+1|Xn − fn‖ < 2 · 2−n. For x ∈ Xm, the sequence { fn(x)}n≥m is
Cauchy. The isometry f∞(x) = limn→∞ fn(x) can be extended from
⋃∞

m=1 Xm to an isometry f : X → G.
To prove Lemma 2.4, we use a leftmost branch argument to show

that this construction can be accomplished in a Borel measurable
way.

Proof of Lemma 2.4. We establish two additional assumptions which
make the situation a bit simpler.

(1) We assume that all spaces Xξ are infinite-dimensional. This is
possible, because Ξ can be decomposed into Borel sets Ξd = {ξ ∈ Ξ :
dim Xξ = d} where 0 ≤ d ≤ ∞. As these sets are Borel, we can deal
with every Ξd separately. We consider only Ξ∞ since other Ξd’s can
be handled in a similar way.

(2) We assume moreover that x
ξ
n does not belong to the linear span

of x
ξ
1, . . . , x

ξ
n−1. This is possible, because the sets

{

ξ ∈ Ξ : x
ξ
n ∈ span{x

ξ
1 , . . . , x

ξ
n−1}

}

, n ∈ N,

are Borel, and so omitting the members which are a linear combi-
nation of its predecessors does not disrupt the assumption of the
lemma (the resulting sequence will be infinite due to the first addi-
tional assumption).
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Now, for every n ∈ N, let un,1, un,2, . . . be a sequence which is
dense in the space L(Rn, G) of linear operators from Rn into G. Let
us define

X
ξ
n = span{x

ξ
1, . . . , x

ξ
n}

and consider operators

u
ξ
n,i : X

ξ
n → G, u

ξ
n,i

( n

∑
k=1

λkx
ξ
k

)

= un,i

(

λ1, . . . , λn

)

.

The operators are well defined since we assume that x
ξ
1, . . . , x

ξ
n are

linearly independent. Notice that every u ∈ L(X
ξ
n, G) can be ap-

proximated by some u
ξ
n,i with an arbitrarily small error. Therefore,

we obtain for every ξ ∈ Ξ that

• there exists j ∈ N such that u
ξ
1,j : X

ξ
1 → G is a 2−1-isometry,

• if u
ξ
n,i : X

ξ
n → G is a 2−n-isometry, then Lemma 2.5 provides

j ∈ N such that u
ξ
n+1,j : X

ξ
n+1 → G is a 2−(n+1)-isometry and

‖u
ξ
n+1,j|Xξ

n
− u

ξ
n,i‖ < 2 · 2−n.

Using the assumption of the lemma, it is straightforward to show
that the sets

Aj =
{

ξ ∈ Ξ : u
ξ
1,j is a 2−1-isometry

}

,

Bn,i,j =
{

ξ ∈ Ξ : u
ξ
n+1,j is a 2−(n+1)-isometry

and ‖u
ξ
n+1,j|Xξ

n
− u

ξ
n,i‖ < 2 · 2−n

}

,

are Borel for every n, i, j ∈ N.
We define recursively Borel functions jn : Ξ → N, n = 1, 2, . . . , as

follows. These functions are required to satisfy

(i) u
ξ
n,jn(ξ)

: X
ξ
n → G is a 2−n-isometry,

(ii) ‖u
ξ
n+1,jn+1(ξ)

|
X

ξ
n
− u

ξ
n,jn(ξ)

‖ < 2 · 2−n.

Let j1(ξ) be the least natural number j such that u
ξ
1,j : X

ξ
1 → G

is a 2−1-isometry. We already know that such a number exists. The
function j1 is Borel, as

(j1)
−1({j}) = Aj \

j−1
⋃

l=1

Al .

Assuming that jn(ξ) is defined, let jn+1(ξ) be the least natural num-

ber j such that u
ξ
n+1,j : X

ξ
n+1 → G is a 2−(n+1)-isometry and ‖u

ξ
n+1,j|Xξ

n
−
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u
ξ
n,jn(ξ)

‖ < 2 · 2−n. We already know that such a number exists. The

function jn+1 is Borel, as

(jn+1)
−1({j}) =

∞
⋃

i=1

[

(jn)−1({i}) ∩
(

Bn,i,j \
j−1
⋃

l=1

Bn,i,l

)

]

.

Our next step is to define an isometry fξ : Xξ → G. For x ∈

X
ξ
m, the sequence {u

ξ
n,jn(ξ)

(x)}n≥m is Cauchy, since ‖u
ξ
n+1,jn+1(ξ)

(x)−

u
ξ
n,jn(ξ)

(x)‖ ≤ 2 · 2−n‖x‖ξ for n ≥ m by (ii). Therefore, we can put

fξ(x) = lim
n→∞

u
ξ
n,jn(ξ)

(x), x ∈
∞
⋃

m=1

X
ξ
m.

Using (i), we obtain

(1 + 2−n)−1‖x‖ξ ≤ ‖u
ξ
n,jn(ξ)

(x)‖ ≤ (1 + 2−n)‖x‖ξ , x ∈ X
ξ
m, n ≥ m.

It follows that ‖ fξ(x)‖ = ‖x‖ξ for x ∈
⋃∞

m=1 X
ξ
m and so that there is

a unique extension fξ : Xξ → G satisfying ‖ fξ(x)‖ = ‖x‖ξ for every
x ∈ Xξ .

Let us realize that the mapping

χk : Ξ → G, χk(ξ) = fξ(x
ξ
k),

is Borel for every k ∈ N. Since

χk(ξ) = fξ(x
ξ
k) = lim

n→∞
u

ξ
n,jn(ξ)

(x
ξ
k) = lim

n→∞
un,jn(ξ)(0, . . . , 0, 1

k
, 0, . . . , 0

n
),

the mapping χk is the pointwise limit of a sequence of Borel map-
pings.

Finally, let us define the desired mapping S. We may suppose that
G is a subspace of C([0, 1]). This allows us to define

S : Ξ → SE(C([0, 1])), S(ξ) = fξ(Xξ), ξ ∈ Ξ.

Since S fulfills the formula

S(ξ) = span {χ1(ξ), χ2(ξ), . . . },

it is straightforward to show that it is a Borel mapping. �
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3. TSIRELSON TYPE SPACES

In this section, we will use Tsirelson type spaces introduced by
S. A. Argyros and I. Deliyanni [1] to show that the class of spaces
embeddable into c0 is not Borel (Theorem 1.2). Those spaces are ob-
tained by a generalization of the notion of an admissible family.

In fact, our approach is slightly different from the approach of
Argyros and Deliyanni. The space defined below is derived from
Tsirelson’s original example Ts

∗, not from its dual Ts (some com-
ments on spaces derived from Ts are provided in Remark 3.10). More-
over, we consider even more general systems of admissible families,
including systems which lead to spaces quite different from Ts

∗ (see
Lemma 3.6). In spite of this, for our purposes, we use the symbol Ts

∗

also for these non Tsirelson-like spaces.
Throughout this paper, we identify elements of 2N with subsets of

N. For this reason, members of K(2N) represent systems of subsets
of N.

Let e1, e2, . . . be the canonical basis of c00 (i.e., en = 1{n}). Let us
recall that we denote Ex = 1E · x for E ⊂ N and x ∈ c00.

For M ∈ K(2N), a family {E1, . . . , En} of successive finite subsets
of N is said to be M-admissible if an element of M contains numbers
m1, . . . , mn such that

m1 ≤ E1 < m2 ≤ E2 < · · · < mn ≤ En.

The system of all M-admissible families is denoted by adm(M).

Definition 3.1. For M ∈ K(2N), let ΘM be the smallest absolutely
convex subset of c00 containing every ei, i ∈ N, and satisfying the
property

{E1, . . . , En} ∈ adm(M) & x1, . . . , xn ∈ ΘM ⇒
1

2

n

∑
k=1

Ekxk ∈ ΘM.

Let ‖ · ‖M be the Minkowski gauge of ΘM and let Ts
∗[M, 1

2 ] be a
completion of (c00, ‖ · ‖M).

First, we introduce without proof some simple facts about Ts
∗[M, 1

2 ].

Fact 3.2. The sequence e1, e2, . . . is a 1-unconditional basis of Ts
∗[M, 1

2 ].

Fact 3.3. If {E1, . . . , En} is M-admissible and x1, . . . , xn ∈ Ts
∗[M, 1

2 ],
then

∥

∥

∥

n

∑
k=1

Ekxk

∥

∥

∥

M
≤ 2 sup

1≤k≤n

‖xk‖M.
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Fact 3.4. If M1,M2 ∈ K(2N) are two systems such that
{

A ∩ {1, . . . , `} : A ∈ M1

}

=
{

A ∩ {1, . . . , `} : A ∈ M2

}

,

then ‖x‖M1
= ‖x‖M2

for every x ∈ span{e1, e2, . . . , e`}.

The following important property of Ts
∗[M, 1

2 ] follows from the
proof of [1, Proposition 1.1].

Lemma 3.5 (Argyros, Deliyanni). If M consists of finite sets only, then

e1, e2, . . . is a boundedly complete basis of Ts
∗[M, 1

2 ], and so Ts
∗[M, 1

2 ]
can not be embedded isomorphically into c0.

We are going to show that the space Ts
∗[M, 1

2 ] is considerably dif-
ferent from Ts

∗ if M contains an infinite set. This phenomenon is the
heart of our argument.

Lemma 3.6. If M contains an infinite set, then Ts
∗[M, 1

2 ] is isomorphic

to the c0-sum of a sequence of finite-dimensional spaces, and so Ts
∗[M, 1

2 ]
can be embedded isomorphically into c0.

Proof. Assuming that {m1 < m2 < . . . } ∈ M, we show for every

x ∈ Ts
∗[M, 1

2 ] that

sup
k∈N∪{0}

‖Ekx‖M ≤ ‖x‖M ≤ ‖E0x‖M + 2 sup
k∈N

‖Ekx‖M

where E0 = {1, . . . , m1 − 1} and Ek = {mk, . . . , mk+1 − 1}. The first
inequality follows from Fact 3.2. For n ∈ N, the family {E1, . . . , En}
is M-admissible, and thus
∥

∥

∥

n

∑
k=0

Ekx
∥

∥

∥

M
≤ ‖E0x‖M +

∥

∥

∥

n

∑
k=1

Ekx
∥

∥

∥

M
≤ ‖E0x‖M + 2 sup

1≤k≤n

‖Ekx‖M

by Fact 3.3. Since x = ∑
∞
k=0 Ekx, the remaining inequality follows.

�

The following lemma, proof of which is essentially contained in
[1], will be useful later.

Lemma 3.7. If M contains all three-element sets, then e1, e2, . . . is a

shrinking basis of Ts
∗[M, 1

2 ]. In particular, if M contains all three-element

sets but it consists of finite sets only, then Ts
∗[M, 1

2 ] is reflexive.

Proof. Let e∗1 , e∗2 , . . . be the dual basic sequence. Given x∗ ∈ (Ts
∗[M, 1

2 ])∗,
we want to show that

x∗ =
∞

∑
i=1

x∗(ei)e∗i .
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Assume the opposite, i.e., that

ε = lim
n→∞

∥

∥

∥
x∗ −

n−1

∑
i=1

x∗(ei)e∗i

∥

∥

∥

M
> 0

(we note that the sequence under the limit is non-increasing, due to
1-unconditionality). Choose m1 ∈ N so that

∥

∥

∥
x∗ −

m1−1

∑
i=1

x∗(ei)e∗i

∥

∥

∥

M
<

4

3
ε

and m2, m3, m4 so that

∥

∥

∥

mk+1−1

∑
i=mk

x∗(ei)e∗i

∥

∥

∥

M
>

8

9
ε, k = 1, 2, 3.

For k = 1, 2, 3, if we put Ek = {mk, . . . , mk+1 − 1}, then we can find

xk ∈ Ts
∗[M, 1

2 ], ‖xk‖M ≤ 1, such that x∗(Ekxk) >
8
9ε. By our as-

sumption, M contains {m1, m2, m3}, and so the family {E1, E2, E3} is
M-admissible. Hence, ‖E1x1 + E2x2 + E3x3‖M ≤ 2 by Fact 3.3, and
we obtain

3 ·
8

9
ε < x∗(E1x1 + E2x2 + E3x3) <

4

3
ε · ‖E1x1 + E2x2 + E3x3‖M ≤

4

3
ε · 2,

a contradiction.
The second part of the statement follows from Lemma 3.5 and The-

orem 2.3. �

Lemma 3.8. There exists a Borel mapping S : K(2N) → SE(C([0, 1]))
such that S(M) is isometric to Ts

∗[M, 1
2 ] for every M ∈ K(2N).

Proof. Due to Lemma 2.4, it is sufficient to realize that the function
M 7→ ‖x‖M is Borel for every x ∈ c00. We show that this function
is continuous. By Fact 3.4, if ` is such that x ∈ span{e1, . . . , e`}, then
the norm ‖x‖M depends only on {A ∩ {1, . . . , `} : A ∈ M}. For this
reason, K(2N) can be decomposed into finitely many clopen sets on
which ‖x‖M is constant. �

Proof of Theorem 1.2. It is easy to show that the class of all Banach
spaces X which can be embedded isomorphically into c0 (shortly
X ↪→ c0) is analytic (see [3, Theorem 2.3]). Let us show that it is
hard analytic. The set of all infinite subsets of N is a Gδ but not Fσ

subset of 2N. By Theorem 2.2, the set

C =
{

M ∈ K(2N) : M contains an infinite set
}
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is complete analytic. Let S be a mapping provided by Lemma 3.8.
Using Lemma 3.5 and Lemma 3.6, we obtain

S(M) ↪→ c0 ⇔ M ∈ C.

It remains to apply Lemma 2.1. �

Remark 3.9. (i) The space c0 is not the only example for which the
argument works. If a separable Banach space Z contains an isomor-
phic copy of c0 but does not contain an infinite-dimensional reflexive
subspace, then the class of all Banach spaces which can be embedded
isomorphically into Z is complete analytic.

(ii) Let G1, G2, . . . be a dense sequence of finite-dimensional spaces
(i.e., for every finite-dimensional Banach space G and every ε > 0,
there is a bijective ε-isometry between G and some Gn). Then the
class of all spaces isomorphic to (

⊕

Gn)c0 is complete analytic. In-

deed, the space Ts
∗[M, 1

2 ] ⊕ (
⊕

Gn)c0 is isomorphic to (
⊕

Gn)c0 if
and only if M contains an infinite set.

Remark 3.10. Argyros and Deliyanni [1] defined a space Ts [M, 1
2 ] as

the Banach space of sequences x = {x(i)}∞
i=1 with the basis ei = 1{i}

and with the implicitly defined norm

‖x‖M = max

{

‖x‖∞,
1

2
sup

{ n

∑
k=1

‖Ekx‖M : {E1, . . . , En} ∈ adm(M)

}

}

.

It can be shown that the sequence ei considered as a basis of Ts
∗[M, 1

2 ]

is dual to the same sequence ei considered as a basis of Ts [M, 1
2 ].

However, the duality between these two spaces is not warranted in
our general setting.

Let us mention some notes and consequences of results from this
section.

(i) If M consists of finite sets only, then e1, e2, . . . is a shrinking

basis of Ts [M, 1
2 ]. In this case, Ts

∗[M, 1
2 ] is the dual of Ts [M, 1

2 ].

(ii) If M contains an infinite set, then Ts [M, 1
2 ] is isomorphic to the

`1-sum of a sequence of finite-dimensional spaces. In this case, the

dual of Ts [M, 1
2 ] is not separable and contains Ts

∗[M, 1
2 ] as a proper

subspace. Notice also that Ts [M, 1
2 ] has the Schur property.

(iii) If M contains all three-element sets, then e1, e2, . . . is a bound-
edly complete basis of Ts [M, 1

2 ], and Ts [M, 1
2 ] is the dual of Ts

∗[M, 1
2 ].

(iv) If M contains all three-element sets but it consists of finite sets
only, then Ts [M, 1

2 ] is reflexive, as well as Ts
∗[M, 1

2 ].



TSIRELSON-LIKE SPACES AND COMPLEXITY 13

(v) There exists a Borel mapping S : K(2N) → SE(C([0, 1])) such

that S(M) is isometric to Ts [M, 1
2 ] for every M ∈ K(2N).

(vi) Let us denote by N[≤3] the system of all subsets of N with at

most three elements. Then M 7→ S(M∪ N[≤3]) is a Borel mapping
which maps a complete analytic set into spaces with the Schur prop-
erty and its complement into reflexive spaces. Therefore, it follows
from the Tsirelson space method that the class of all separable Ba-
nach spaces with the Schur property is not coanalytic. Using a tree
space method developed in [3], it can be shown that this class is not
analytic (see [6, Theorem 27]). Our proof of the proper complexity
result (Theorem 1.3) can be considered as a combination of these two
methods.

(vii) The class of all spaces isomorphic to (
⊕

Gn)`1
is complete

analytic. Indeed, the space Ts [M, 1
2 ] ⊕ (

⊕

Gn)`1
is isomorphic to

(
⊕

Gn)`1
if and only if M contains an infinite set.

4. PRELIMINARIES II

By Λ<N we denote the system of all finite sequences of elements
of a set Λ, including the empty sequence ∅. That is,

Λ<N =
∞
⋃

`=0

Λ`

where Λ0 = {∅}. By |η| we mean the length of η ∈ Λ<N. For σ ∈
ΛN, we denote by σ|` its initial segment (σ(1), . . . , σ(`)) of length
` ∈ N.

A subset T of Λ<N is called a tree on Λ if it is downward closed,
i.e.,

(λ1, λ2, . . . , λk) ∈ T & j ≤ k ⇒ (λ1, λ2, . . . , λj) ∈ T.

The set of all trees on Λ is denoted by Tr(Λ) and endowed with the

topology induced by the topology of 2Λ<N
. The set of all infinite

branches of T ∈ Tr(Λ), i.e., sequences ν ∈ ΛN such that T contains
all initial segments of ν, is denoted by [T].

In what follows, we identify (Θ×Λ)` with Θ` ×Λ` and (Θ×Λ)N

with ΘN × ΛN. In this way, elements of a tree on Θ × Λ are pairs of
sequences of the same length and its infinite branches are elements
of ΘN × ΛN.

If T is a tree on Θ × Λ and σ ∈ ΘN, we define

T (σ) ∈ Tr(Λ), T (σ) = {ν ∈ Λ<N : (σ||ν|, ν) ∈ T }.
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We say that a tree T on N is ill-founded (T ∈ IF) if it has an infinite
branch (i.e., [T] 6= ∅). In the opposite case, we say that T is well-
founded (T ∈ WF).

Lemma 4.1. The set

C =
{

T ∈ Tr(2 × N) : (∀σ ∈ 2N)(T (σ) ∈ IF)
}

is a Π
1
2-complete subset of Tr(2 × N).

It is easy (and not necessary for our purposes actually) to check
that C is a Π

1
2 set. To prove that it is Π

1
2-hard, we will use the follow-

ing well-known results:

• all uncountable standard Borel spaces are Borel isomorphic
(see e.g. [18, (15.6)]) and, for this reason, it is possible to con-
sider only Y = NN in the definition of a Γ-hard set (where
Γ = Π

1
2) and only Y = 2N in the definition of a Σ

1
2 set,

• a subset A of a Polish space X is analytic if and only if it is the
projection of some closed F ⊂ X × NN (see e.g. [18, (14.3)]),

• for a closed F ⊂ ΛN, we have F = [T] for some T ∈ Tr(Λ) (it
is possible to collect all initial segments of elements of F, cf.
[18, (2.4)]).

Proof. (cf. with [18, (37.11)]). Let A be a Π
1
2 subset of NN. We need

to find a Borel mapping f : NN → Tr(2 × N) such that f−1(C) = A.
There exists an analytic subset B of NN × 2N such that NN \ A =
projNN((NN × 2N) \ B), i.e.,

ν ∈ A ⇔ ∀σ ∈ 2N : (ν, σ) ∈ B

for all ν ∈ NN. There exists a closed subset F of NN × 2N × NN

such that B = projNN×2N F, i.e.,

(ν, σ) ∈ B ⇔ ∃ω ∈ NN : (ν, σ, ω) ∈ F.

There is a tree T ∈ Tr(N × 2 × N) such that [T] = F. We have

ν ∈ A ⇔ ∀σ ∈ 2N ∃ω ∈ NN : (ν, σ, ω) ∈ [T]

⇔ ∀σ ∈ 2N ∃ω ∈ NN : ω ∈ [T(ν, σ)]

⇔ ∀σ ∈ 2N : T(ν, σ) ∈ IF

⇔ T(ν) ∈ C

for all ν ∈ NN, and it remains to note that the mapping ν 7→ T(ν) is
continuous. �



TSIRELSON-LIKE SPACES AND COMPLEXITY 15

A bounded linear operator T : X → Y is called weakly compact if
the image of the unit ball of X is relatively weakly compact in Y. The
operator T is called completely continuous if it maps weakly conver-
gent sequences to norm convergent ones.

We say that a Banach space X has the Dunford-Pettis property if
every weakly compact operator T : X → Y from X into another
Banach space Y is completely continuous.

In the remainder of this section, we prove the easy part of Theo-
rem 1.3.

Lemma 4.2. The class of all separable Banach spaces with the Dunford-
Pettis property is Π

1
2.

During the proof, we will use the following known facts:

• an operator T : X → Y is completely continuous if and only
if it maps weakly null sequences to null sequences,

• X has the Dunford-Pettis property if and only if every weakly
compact operator T : X → c0 is completely continuous (see
e.g. [7, Theorem 1]).

Proof. We prove first that X ∈ SE(C([0, 1])) has the Dunford-Pettis
property if and only if

∀(x1, x2, . . . ) ∈ BN
C[0,1] ∀(y1, y2, . . . ) ∈ BN

c0
: (a) or (b) or (c) or (d) or (e),

where we consider properties

(a) BX 6= {x1, x2, . . . },
(b) xn 7→ yn does not define a bounded linear operator from

span{x1, x2, . . . } into c0,
(c) {y1, y2, . . . } is not relatively weakly compact,
(d) x2, x4, x6, . . . is not weakly null,
(e) y2, y4, y6, . . . is null.

Let us assume that X has the Dunford-Pettis property. For se-
quences x1, x2, . . . in BC[0,1] and y1, y2, . . . in Bc0 , we need to show
that some of the five properties is satisfied. Let us suppose that
none of properties (a), (b), (c), (d) is satisfied. So, xn 7→ yn defines a
bounded linear operator T : X → c0 that is weakly compact. More-
over, the sequence x2, x4, x6, . . . is weakly null. As X is assumed to
have the Dunford-Pettis property, T is completely continuous, and
thus it maps the weakly null sequence x2k to a null sequence y2k. It
means that (e) is valid.

Let us assume that the formula is fulfilled for some X ∈ SE(C([0, 1])).
Let T : X → c0 be a weakly compact operator. We need to show that
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T maps a weakly null sequence a1, a2, . . . to a null sequence. We
may suppose that ‖T‖ ≤ 1 and that ak ∈ BX. Let us put x2k = ak

and choose a sequence x1, x3, . . . that is dense in BX. Moreover, let
yn = Txn. As T is weakly compact, the set {y1, y2, . . . } is relatively
weakly compact. So, none of properties (a), (b), (c), (d) is satisfied.
Then (e) has to be valid. That is, the sequence Tak = y2k is null.

So, both implications are verified. To prove the lemma, it remains
to show that each of the five properties define an analytic subset of
SE(C([0, 1])) × BN

C[0,1]
× BN

c0
.

(a) The corresponding set is Borel. Indeed, if U is the open unit
ball of C[0, 1] and G1, G2, . . . is a basis of the norm topology of C[0, 1],

then BX = {x1, x2, . . . } if and only if

∀k ∈ N : [X ∩ U ∩ Gk 6= ∅ ⇔ ∃n ∈ N : xn ∈ Gk].

(b) The corresponding set is Borel. It is sufficient to realize that
xn 7→ yn defines a bounded linear operator from span{x1, x2, . . . }
into c0 if and only if

∃K ∈ N∀m ∈ N∀α1, α2, . . . , αm ∈ Q :
∥

∥

∥

m

∑
n=1

αnyn

∥

∥

∥
≤ K

∥

∥

∥

m

∑
n=1

αnxn

∥

∥

∥
.

(c) Let us notice that Bc0 with the weak topology is a subspace of

the topological product [−1, 1]N. A subset of Bc0 is relatively weakly

compact if and only if its closure in [−1, 1]N is still a subset of Bc0 .
For this reason, {y1, y2, . . . } is not relatively weakly compact if and
only if

∃z ∈ [−1, 1]N :
[

∃l ∈ N∀m ∈ N∃k ≥ m : |z(k)| ≥ 1/l
]

&
[

∀l, m ∈ N∃n ∈ N∀k ≤ m : |yn(k) − z(k)| < 1/l
]

.

Hence, our set is a projection of a Borel subset of SE (C([0, 1])) ×
BN

C[0,1]
× BN

c0
× [−1, 1]N.

(d) The corresponding set is analytic by [6, Theorem 20].
(e) It is easy to show that the corresponding set is Borel. �

5. TREE SPACES UPON TSIRELSON SPACES

In this section, we apply the construction of a tree space studied in
[20] on Tsirelson type spaces presented above. This will enable us to
show that some classes of Banach spaces have quite high complexity
(Theorem 1.3).
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For a finite sequence ν = (n1, n2, . . . , nk) ∈ N<N, let ν̃ = {n1 <

n1 + n2 < · · · < ∑
k
i=1 ni} ⊂ N. Similarly, for an infinite sequence

ν = (n1, n2, . . . ) ∈ NN, let ν̃ = {n1 < n1 + n2 < . . . } ⊂ N.
For every T ∈ Tr(N), we define

MT = {ν̃ : ν ∈ T ∪ [T] or |ν| ≤ 3}.

Let us note that MT belongs to K(2N) and that it contains an infinite
set if and only if T is ill-founded. Thus, we obtain from Lemma 3.6

and Lemma 3.7 a basic discovery about Ts
∗[MT, 1

2 ].

Lemma 5.1. (1) If T ∈ Tr(N) is ill-founded, then Ts
∗[MT, 1

2 ] is isomor-
phic to the c0-sum of a sequence of finite-dimensional spaces.

(2) If T ∈ Tr(N) is well-founded, then Ts
∗[MT, 1

2 ] is reflexive.

The following observation follows from Fact 3.4.

Fact 5.2. If T and S are two trees on N which have the same sequences of
length at most `, then ‖x‖MT

= ‖x‖MS
for every x ∈ span{e1, e2, . . . , e`}.

In particular, if T ∈ Tr(2 × N) and σ, τ ∈ 2N satisfy σ|` = τ|`, then
‖x‖MT (σ)

= ‖x‖MT (τ)
for every x ∈ span{e1, e2, . . . , e`}.

Now, we are ready to introduce our tree space.

Definition 5.3. For T ∈ Tr(2×N), let ET be defined as a completion
of c00(2<N \ {∅}) with the norm

‖x‖T = sup
σ∈2N

∥

∥

∥

∞

∑
`=1

x(σ|`)e`

∥

∥

∥

MT (σ)

.

This space is defined according to [20, Definition 3.1]. Indeed, we

can take T = 2<N \ {∅}, Fσ = Ts
∗[MT (σ),

1
2 ] and f σ

`
= e` for σ ∈ 2N

and ` ∈ N. The requirement from [20, Definition 3.1] is satisfied due
to Fact 5.2.

Thus, results from [20, Section 3] are available. In particular, if we
denote by {zη : η ∈ 2<N \ {∅}} the canonical basis of c00(2<N \
{∅}), then this system forms a basis of ET .

The following two statements follow from [20, Fact 3.2], [20, Propo-
sition 3.5] and Lemma 3.7.

Fact 5.4. For every σ ∈ 2N, we have the 1-equivalence
∥

∥

∥

n

∑
`=1

λ`zσ|`

∥

∥

∥

T
=

∥

∥

∥

n

∑
`=1

λ`e`

∥

∥

∥

MT (σ)

of the sequences zσ|1
, zσ|2 , . . . and e1, e2, . . . .
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Therefore, ET contains a 1-complemented copy of Ts
∗[MT (σ),

1
2 ]. Conse-

quently, E∗
T contains a 1-complemented copy of the dual of Ts

∗[MT (σ),
1
2 ].

Lemma 5.5. The system {zη : η ∈ 2<N \ {∅}} is a 1-unconditional
shrinking basis of ET .

The following crucial lemma will be proven in a separate section.

Lemma 5.6. Let T ∈ Tr(2 × N) be such that ∀σ ∈ 2N : T (σ) ∈ IF.
If x∗1 , x∗2 , . . . is a normalized sequence in E∗

T which converges to 0 in the
w∗-topology, then it has a subsequence y∗1 , y∗2 , . . . such that

∥

∥

∥

n

∑
k=1

λky∗k

∥

∥

∥

T
≥

1

5

n

∑
k=1

|λk|

for all n ∈ N and λ1, . . . , λn ∈ R.

It is not difficult to show that E∗
T has the Schur property if it satis-

fies the conclusion of Lemma 5.6. Nevertheless, we show that a bit
more can be said.

For a bounded sequence x1, x2, . . . in a Banach space X, let us con-
sider quantities

ca(xn) = inf
m∈N

diam{xn : n ≥ m},

δ(xn) = sup
‖x∗‖≤1

inf
m∈N

diam{x∗(xn) : n ≥ m}.

Let C ≥ 1. Following the authors of [15], we say that a Banach space
X has the C-Schur property if

ca(xn) ≤ Cδ(xn)

for any bounded sequence x1, x2, . . . in X.

Proposition 5.7. Let T ∈ Tr(2 × N).
(1) If ∀σ ∈ 2N : T (σ) ∈ IF, then E∗

T has the 6-Schur property. Thus,
E∗
T has the Schur property and the Dunford-Pettis property.
(2) In the opposite case, E∗

T contains a complemented infinite-dimensional
reflexive subspace. Thus, E∗

T does not have the Schur property nor the
Dunford-Pettis property.

Proof. The part (2) follows immediately from Lemma 5.1(2) and Fact 5.4.
Let us prove (1). Suppose that ∀σ ∈ 2N : T (σ) ∈ IF and that
ca(a∗n) > 0 for a bounded sequence a∗1 , a∗2 , . . . in E∗

T . Let Q de-
note the non-empty set of all w∗-cluster points of a∗n. To show that
ca(a∗n) ≤ 6δ(a∗n), we consider two possibilities.
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Assume first that diam Q ≥ 1
6ca(a∗n). Let ε > 0 be given. There

are a∗, b∗ ∈ Q with ‖b∗ − a∗‖T >
1
6ca(a∗n) − ε. Further, there is x ∈

ET , ‖x‖T ≤ 1, such that (b∗ − a∗)(x) >
1
6ca(a∗n) − ε. For every m ∈

N, we can find k, l ≥ m such that a∗k (x) < a∗(x) + ε and a∗l (x) >

b∗(x) − ε. Then diam{a∗n(x) : n ≥ m} ≥ a∗l (x) − a∗k (x) > b∗(x) −

a∗(x)− 2ε >
1
6ca(a∗n)− 3ε. It follows that δ(a∗n) ≥ 1

6ca(a∗n)− 3ε. Since

the argument works for any ε > 0, we obtain δ(a∗n) ≥ 1
6ca(a∗n).

Now, assume that diam Q <
1
6ca(a∗n). Notice that dist(a∗n, Q) ≥

5
12ca(a∗n) for infinitely many n’s. Therefore, we can find a subse-

quence a∗nk
such that dist(a∗nk

, Q) ≥ 5
12ca(a∗n) for every k. We may

suppose that a∗nk
converges to some a∗ ∈ Q in the w∗-topology. Let

us put

x∗k =
1

‖a∗nk
− a∗‖T

(a∗nk
− a∗), k = 1, 2, . . . .

By Lemma 5.6, there is a subsequence x∗kl
such that

∥

∥

∥

m

∑
l=1

λl x
∗
kl

∥

∥

∥

T
≥

1

5

m

∑
l=1

|λl |

for all m ∈ N and λ1, . . . , λm ∈ R. Using the Hahn-Banach extension
theorem, we can find x∗∗ ∈ E∗∗

T with ‖x∗∗‖T ≤ 1 such that

x∗∗(x∗kl
) =

(−1)l

5
, l = 1, 2, . . . .

Then

(−1)l x∗∗(a∗nkl
− a∗) = (−1)l‖a∗nkl

− a∗‖T x∗∗(x∗kl
)

=
1

5
‖a∗nkl

− a∗‖T ≥
1

5
·

5

12
ca(a∗n) =

1

12
ca(a∗n),

and so

x∗∗(a∗nk2j
) ≥ x∗∗(a∗)+

1

12
ca(a∗n), x∗∗(a∗nk2j+1

) ≤ x∗∗(a∗)−
1

12
ca(a∗n).

It follows that δ(a∗n) ≥ 1
6ca(a∗n). �

Lemma 5.8. There exist Borel mappings S, S∗ : Tr(2×N) → SE (C([0, 1]))
such that S(T ) is isometric to ET and S∗(T ) is isometric to E∗

T for every
T ∈ Tr(2 × N).

Proof. Let us prove the existence of S first. Due to Lemma 2.4, it
is sufficient to show that the function T 7→ ‖x‖T is Borel for every
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x ∈ c00(2<N \ {∅}). Let Σ be a finite subset of 2N such that x is
supported by initial segments of elements of Σ. By Fact 5.2, we have

‖x‖T = max
σ∈Σ

∥

∥

∥

∞

∑
`=1

x(σ|`)e`

∥

∥

∥

MT (σ)

, T ∈ Tr(2 × N).

For this reason, T 7→ ‖x‖T is the maximum of finitely many contin-
uous functions. Indeed,

• the mapping T 7→ T (σ) is continuous from Tr(2 × N) into
Tr(N) for every σ ∈ Σ (easy),

• the mapping T 7→ MT is continuous from Tr(N) into K(2N)
(just apply the fact that the Vietoris topology on K(2N) is gen-
erated by the sets {M ∈ K(2N) : M∩ ∆η 6= ∅} and their

complements, where η varies over sequences from 2<N and
∆η denotes the clopen set {σ ∈ 2N : σ||η| = η}),

• the function M 7→ ‖y‖M is continuous for every y ∈ c00 (see
the proof of Lemma 3.8).

Now, let us prove the existence of S
∗. By Lemma 5.5, the system

{zη : η ∈ 2<N \ {∅}} is a shrinking basis of ET for every T . Using
Lemma 2.4 again, it is therefore sufficient to show that the function
T 7→ ‖x∗‖T is Borel for every linear form x∗ on c00(2<N \ {∅}) with
a finite support. Let S ⊂ c00(2<N \ {∅}) be the countable set of all
non-zero vectors with rational coordinates. Then

‖x∗‖T = sup
x∈S

x∗(x)

‖x‖T
, T ∈ Tr(2 × N).

It follows from the first part of the proof that T 7→ ‖x∗‖T is Borel.
�

Proof of Theorem 1.3. The class of all separable Banach spaces with the
Schur property is Π

1
2 ([6, Theorem 28]), as well as the class of all sep-

arable Banach spaces with the Dunford-Pettis property (Lemma 4.2).
Let us show that both classes are Π

1
2-hard. Let S

∗ be a mapping
provided by Lemma 5.8. Using Proposition 5.7, we obtain

∀σ ∈ 2N : T (σ) ∈ IF ⇔ S
∗(T ) has the Schur property

⇔ S
∗(T ) has the Dunford-Pettis property

for every T ∈ Tr(2 × N). It means that S∗(T ) has the Schur prop-
erty (Dunford-Pettis property) if and only if T ∈ C, where C ⊂
Tr(2 × N) is the Π

1
2-complete set from Lemma 4.1. It remains to

apply Lemma 2.1. �
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Remark 5.9. (i) It is possible to use [2, Theorem 3.2] to quantify the
Schur property of E∗

T in a bit different direction. If the assumption

∀σ ∈ 2N : T (σ) ∈ IF is met, then E∗
T has the strong Schur prop-

erty in the sense that every bounded sequence a∗1 , a∗2 , . . . in E∗
T with

inf{‖a∗n − a∗m‖T : n 6= m} > ε has a subsequence a∗nj
such that

∥

∥

∥

k

∑
j=1

λja
∗
nj

∥

∥

∥

T
≥

ε

12

k

∑
j=1

|λj|

for all k ∈ N and λ1, . . . , λk ∈ R.
(ii) If the assumption ∀σ ∈ 2N : T (σ) ∈ IF is met, a quantita-

tive version of the Dunford-Pettis property of E∗
T and of ET can be

obtained as well (see [14, Proposition 6.4 and Theorem 6.5]).
(iii) In [20], a question was considered whether the proposed tree

space method can be used for amalgamating of spaces with the Schur
property (see [20, Remark 3.7(c)] for the exact formulation). Propo-
sition 5.7(1) shows a concrete example of a family of spaces with the
Schur property for which the answer is positive, although not trivial.
Let us note that to prove that E∗

T has the Schur property would be
much simpler if we had the positive answer to the following ques-
tion: Does a Banach space X has necessarily the Schur property if it has a
subset W such that co W = BX and every weakly convergent sequence of
elements of W is convergent in the norm?

6. PROOF OF LEMMA 5.6

Let T ∈ Tr(2 × N) satisfying ∀σ ∈ 2N : T (σ) ∈ IF be given,
together with a normalized sequence x∗1 , x∗2 , . . . in E∗

T converging to 0
in the w∗-topology. Let us recall that our task is to find a subsequence
y∗1 , y∗2 , . . . such that

∥

∥

∥

n

∑
k=1

λky∗k

∥

∥

∥

T
≥

1

5

n

∑
k=1

|λk|

for all n ∈ N and λ1, . . . , λn ∈ R.
Note that each x∗ ∈ E∗

T can be viewed as the system {x∗(zη)}η∈2<N\{∅}

of real numbers. By Lemma 5.5, elements with a finite support are
dense in E∗

T . Note also that x∗k(zη) → 0 for every η.
By the passage to a subsequence and a small perturbation, we can

obtain a sequence (which is denoted also x∗k ) satisfying:
(WLOG-1) There are 1 ≤ p1 ≤ q1 < p2 ≤ q2 < . . . such that

x∗k is supported by sequences of length in [pk, qk]. (Because of the



22 ONDŘEJ KURKA

perturbation, we just need to prove the desired inequality with a

constant better than 1
5).

For every k, let xk ∈ ET be such that x∗k (xk) = ‖xk‖T = 1 and xk is
supported by sequences of length in [pk, qk] (as well as x∗k ). Let

xk = ∑
η∈2pk

xk,η

be the decomposition of xk such that xk,η is supported by sequences
which extend η.

Let us denote ∆ = 2N and ∆η = {σ ∈ ∆ : σ||η| = η}. Let Σ` be the

σ-algebra generated by the sets ∆η , η ∈ 2`. The formula

mk(∆η) = x∗k (xk,η), η ∈ 2pk ,

defines a probability measure on Σpk
. (We have x∗k (xk,η) ≥ 0 because

1 − x∗k (xk,η) = x∗k (xk − xk,η) ≤ ‖xk − xk,η‖T ≤ ‖xk‖T = 1).
Every mk can be extended to a Borel probability measure on ∆. The

sequence of these extensions has a cluster point in the w∗-topology
of C(∆)∗ . We can therefore assume that:

(WLOG-2) The measures mk converge to a Borel probability mea-
sure m on ∆ in the sense that mk(∆η) → m(∆η) for every η ∈ 2<N.

Claim 6.1. There is an increasing sequence s1 < s2 < . . . of natural

numbers and a closed subset Γ ⊂ ∆ such that m(Γ) ≥ 7
8 and, for every

σ ∈ Γ, the system MT (σ) contains a set which intersects [sn, sn+1) for
each n ∈ N.

Proof. The set [T ] of all infinite branches of T is a closed subset of
2N × NN whose sections [T (σ)], σ ∈ 2N, are non-empty due to
the assumption of the lemma. By the Jankov-von Neumann uni-
formization theorem (see e.g. (18.1) in [18]), there exists a selector
σ ∈ 2N 7→ νσ ∈ [T (σ)] which is measurable with respect to the
σ-algebra generated by the analytic subsets of 2N. By a theorem
of Lusin (see e.g. (21.10) in [18]), members of this σ-algebra are m-
measurable, where m denotes the completion of m.

For natural numbers r ≤ s, let us denote

Λr,s = {σ ∈ ∆ : [r, s) ∩ ν̃σ 6= ∅}.

For every r ∈ N and ε > 0, since
⋃∞

s=r Λr,s = ∆, there is s ≥ r such
that m(Λr,s) ≥ 1 − ε.

Let us take a sequence ε1, ε2, . . . of positive numbers such that

∑
∞
n=1 εn <

1
8 . Let s1 = 1 and let s2, s3, . . . be chosen in the way that

m(Λsn ,sn+1
) ≥ 1 − εn
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for n = 1, 2, . . . . The set

Γ0 =
∞
⋂

n=1

Λsn,sn+1

fulfills m(Γ0) > 1 − 1
8 = 7

8 and, for every σ ∈ Γ0, the system MT (σ)

contains the set ν̃σ which intersects [sn, sn+1) for each n ∈ N. Finally,

let Γ ⊂ Γ0 be a compact subset with m(Γ) ≥ 7
8 . �

Now, let us consider such s1 < s2 < . . . and Γ ⊂ ∆ as in Claim 6.1.
Let θ ⊂ 2<N \ {∅} denote the set of all non-empty initial segments
of sequences from Γ. Let

xk = uk + vk

be the decomposition of xk such that uk is supported by θ and vk is
supported by the complement of θ. Let

xk,η = uk,η + vk,η

be the analogous decomposition of xk,η .
We are ready to establish our third and last additional assumption.
(WLOG-3) One of the following possibilities takes place:

(I) x∗k (uk) ≥
1
2 for every k.

(II) x∗k (vk) >
1
2 for every k.

Claim 6.2. There is a subsequence y∗j of x∗k such that, for every m ∈ N,

there is w ∈ ET with ‖w‖T ≤ 1 and

y∗j (w) ≥
1

4
, j = 1, 2, . . . , m.

Before the proof of this claim, we show that the provided sub-
sequence y∗j of x∗k has the desired property. Given m ∈ N and

λ1, . . . , λm ∈ R, taking a suitable w and using that x∗1 , x∗2 , . . . have
disjoint supports, we obtain

∥

∥

∥

m

∑
j=1

λjy
∗
j

∥

∥

∥

T
=

∥

∥

∥

m

∑
j=1

|λj|y
∗
j

∥

∥

∥

T
≥

∥

∥

∥

m

∑
j=1

|λj|y
∗
j

∥

∥

∥

T
‖w‖T

≥
( m

∑
j=1

|λj|y
∗
j

)

(w) =
m

∑
j=1

|λj|y
∗
j (w) ≥

1

4

m

∑
j=1

|λj|.

Let us recall that a better constant than 1
5 is needed because of the

perturbation done at the beginning of this section. As the constant 1
4

is greater than 1
5 , Lemma 5.6 is proven.
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It remains to prove Claim 6.2. We consider separately the possibil-
ities (I) and (II) introduced above.

Proof of Claim 6.2, case (I). We choose a subsequence y∗j = x∗kj
in the

way that

sn1
< sn1+1 < pk1

≤ qk1
< sn2 < sn2+1 < pk2

≤ qk2
< sn3 < sn3+1 < . . .

for some suitable n1, n2, . . . . Let us consider the intervals in N given
by

Ij = [pkj
, qkj

], j = 1, 2, . . . .

Due to the choice of s1 < s2 < . . . and Γ ⊂ ∆ (see Claim 6.1), the
family {I1, . . . , Im} is MT (σ)-admissible for every m ∈ N and every
σ ∈ Γ.

Given m ∈ N, let us define

w =
1

2

m

∑
i=1

uki
.

Using (I), we obtain for 1 ≤ j ≤ m that

y∗j (w) = x∗kj
(w) =

1

2

m

∑
i=1

x∗kj
(uki

) =
1

2
x∗kj

(ukj
) ≥

1

2
·

1

2
=

1

4
,

so it is sufficient to verify that ‖w‖T ≤ 1, i.e., that

∀σ ∈ 2N :
∥

∥

∥

∞

∑
`=1

w(σ|`)e`

∥

∥

∥

MT (σ)

≤ 1.

Consider σ ∈ Γ first. For 1 ≤ i ≤ m, the point ∑
∞
`=1 uki

(σ|`)e` is
supported by [pki

, qki
] = Ii. Using MT (σ)-admissibility of {I1, . . . , Im}

and Fact 3.3, we obtain

∥

∥

∥

∞

∑
`=1

w(σ|`)e`

∥

∥

∥

MT (σ)

=
1

2

∥

∥

∥

m

∑
i=1

∞

∑
`=1

uki
(σ|`)e`

∥

∥

∥

MT (σ)

≤ sup
1≤i≤m

∥

∥

∥

∞

∑
`=1

uki
(σ|`)e`

∥

∥

∥

MT (σ)

≤ sup
1≤i≤m

‖uki
‖T ≤ sup

1≤i≤m

‖xki
‖T = 1.

Now, consider σ ∈ ∆ \ Γ. Note that w is supported by θ and that
σ /∈ Γ = Γ = [θ ∪ {∅}]. Let η be the longest initial segment of σ
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belonging to θ ∪ {∅}. Then η is an initial segment of some σ′ ∈ Γ.
Due to Fact 5.2, we obtain

∥

∥

∥

∞

∑
`=1

w(σ|`)e`

∥

∥

∥

MT (σ)

=
∥

∥

∥

|η|

∑
`=1

w(σ|`)e`

∥

∥

∥

MT (σ)

=
∥

∥

∥

|η|

∑
`=1

w(σ′|`)e`

∥

∥

∥

MT (σ′)

≤
∥

∥

∥

∞

∑
`=1

w(σ′|`)e`

∥

∥

∥

MT (σ′)

≤ 1.

This completes the verification of ‖w‖T ≤ 1. �

Proof of Claim 6.2, case (II). Let Γ(`) denote the smallest set in Σ` con-

taining Γ, that is Γ(`) = {σ ∈ ∆ : σ|` ∈ θ}. We choose a subsequence
y∗j = x∗kj

in the way that

∣

∣mkj+1
(Γ

(qkj
)
)−m(Γ

(qkj
)
)
∣

∣ ≤
1

8
, j = 1, 2, . . . .

We have

mkj+1
(Γ

(qkj
)
) ≥ m(Γ

(qkj
)
)−

1

8
≥ m(Γ) −

1

8
≥

7

8
−

1

8
=

3

4
.

Let us define wk1
= vk1

and

wkj+1
= vkj+1

− ∑
η∈2

pkj+1 ,∆η∩Γ
(qkj

)
=∅

vkj+1,η, j = 1, 2, . . . .

Then, using (II), we obtain x∗k1
(wk1

) = x∗k1
(vk1

) ≥ 1
2 ≥ 1

4 and

x∗kj+1
(wkj+1

) = x∗kj+1
(vkj+1

)− ∑
η∈2

pkj+1 ,∆η∩Γ
(qkj

)
=∅

x∗kj+1
(vkj+1,η)

≥
1

2
− ∑

η∈2
pkj+1 ,∆η∩Γ

(qkj
)
=∅

x∗kj+1
(xkj+1,η)

=
1

2
− ∑

η∈2
pkj+1 ,∆η∩Γ

(qkj
)
=∅

mkj+1
(∆η)

=
1

2
−mkj+1

(∆ \ Γ
(qkj

)
) ≥

1

2
−

1

4
=

1

4
.

(We have x∗kj+1
(vkj+1,η) ≤ x∗kj+1

(xkj+1,η) because 1 − x∗kj+1
(ukj+1,η) =

x∗kj+1
(xkj+1

− ukj+1,η) ≤ ‖xkj+1
− ukj+1,η‖T ≤ ‖xkj+1

‖T = 1).

We claim that every infinite branch intersects the support of at
most one wkj

. Let us make two observations first.
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(a) If σ ∈ Γ
(qki

), then the branch {σ|1, σ|2, . . . } does not intersect
the support of wkj

for j ≤ i.

Indeed, the initial segments σ|1, σ|2, . . . , σ|qki
belong to θ. In par-

ticular, the initial segments σ|pkj
, σ|pkj

+1, . . . , σ|qkj
belong to θ. The

support of wkj
is disjoint from θ, and so {σ|1, σ|2, . . . } does not inter-

sect the support of wkj
.

(b) If σ /∈ Γ
(qki

), then the branch {σ|1, σ|2, . . . } does not intersect
the support of wkj+1

for j ≥ i.

Indeed, we have

∆σ|qki

∩ Γ
(qki

) = ∅

and, in particular,

∆σ|pkj+1

∩ Γ
(qkj

)
= ∅.

The sequence η = σ|pkj+1
appears in the sum in the definition of

wkj+1
, and so wkj+1

(σ|`) = 0 for every ` ≥ pkj+1
.

Now, we obtain from (a) and (b) that

• if σ ∈ ∆ \ Γ
(qk1

), then the branch {σ|1, σ|2, . . . } does not inter-
sect the support of wkj

for j 6= 1,

• if σ ∈ Γ
(qki

) \ Γ
(qki+1

)
for some i, then the branch {σ|1, σ|2, . . . }

does not intersect the support of wkj
for j 6= i + 1,

• if σ ∈
⋂∞

i=1 Γ
(qki

), then the branch {σ|1, σ|2, . . . } does not in-
tersect the support of wkj

for every j.

So, we have shown that every infinite branch intersects the sup-
port of at most one wkj

. Now, given m ∈ N, let us define

w =
m

∑
i=1

wki
.

For every σ ∈ 2N, there is j ≤ m such that w(σ|`) = wkj
(σ|`) for each

` ∈ N (we can choose any j ≤ m if w(σ|`) = 0 for each `), and so

∥

∥

∥

∞

∑
`=1

w(σ|`)e`

∥

∥

∥

MT (σ)

=
∥

∥

∥

∞

∑
`=1

wkj
(σ|`)e`

∥

∥

∥

MT (σ)

≤ ‖wkj
‖T ≤ ‖xkj

‖T = 1.

It follows that ‖w‖T ≤ 1. At the same time, for j ≤ m, we have

y∗j (w) = x∗kj
(w) =

m

∑
i=1

x∗kj
(wki

) = x∗kj
(wkj

) ≥
1

4
,
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and thus w works. �

7. A QUESTION

The aim of this short final section is a discussion on the complexity
of the isomorphism class of c0 (see Question 1.1) and the formulation
of a related problem concerning equivalent norms on c0. First, let us
mention a remarkable conjecture from [12].

Conjecture 7.1 (Godefroy, Kalton, Lancien). If X is a Banach space
with summable Szlenk index whose dual X∗ is isomorphic to `1, then X
is isomorphic to c0.

The validity of this conjecture would imply that every Banach
space uniformly isomorphic to c0 was actually isomorphic to c0. As
noted by G. Godefroy [10], confirming the conjecture would give
also the positive answer to Question 1.1. We are going to provide
a variant of this approach.

We start with an investigation of subspaces of c0 based on a result
of N. J. Kalton [16]. Let us recall that we denote

ca(xn) = inf
m∈N

diam{xn : n ≥ m}

for a bounded sequence x1, x2, . . . in a Banach space X.

Theorem 7.2. For a separable Banach space X, the following assertions are
equivalent:

(i) X can be embedded isomorphically into c0.
(ii) There exists a bounded function µ : BX∗ → R such that

lim inf
n→∞

µ(x∗ + x∗n) ≥ µ(x∗) + lim inf
n→∞

‖x∗n‖

whenever x∗ ∈ BX∗ , x∗ + x∗n ∈ BX∗ and x∗1 , x∗2 , . . . is w∗-null.
(iii) There exists a bounded function π : BX∗ → R such that

π(x∗) ≥ ca(x∗n) + lim inf
n→∞

π(x∗ + x∗n)

whenever x∗ ∈ BX∗ , x∗ + x∗n ∈ BX∗ and x∗1 , x∗2 , . . . is w∗-null.

(iv) We have πα
X < ∞ on BX∗ for every α < ω1 where π0

X(x∗) = 0,

πα+1
X (x∗) = sup

{

ca(x∗n) + lim inf
n→∞

πα
X(x∗ + x∗n) :

x∗ + x∗n ∈ BX∗ and x∗n
w∗

−→ 0
}

and

π
β
X(x∗) = lim

α↗β
πα

X(x∗) if β is limit.
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Note that it is possible to replace “liminf” with “limsup” in the
condition (ii). Of course, there is a version of (iv) based on µ instead
of π, we prefer the current version nevertheless, as the sequence πα

X
is related to the Szlenk derivatives studied in [3]. It can be shown
that a separable Banach space X has summable Szlenk index if and
only if πω

X < ∞ on BX∗ .

Proof (sketch). (i) ⇒ (ii): It is known that the function µ(x∗) = ‖x∗‖
has the desired property if X is isometric to a subspace of c0 [17].

(ii) ⇒ (i): This is a consequence of [16, Theorem 3.3].
(ii) ⇒ (iii): The function π = −2µ works.
(iii) ⇒ (ii): The function µ = −π works.
(iii) ⇒ (iv): We can assume that π ≥ 0, in which case πα

X ≤ π.
(iv) ⇒ (iii): The function π(x∗) = limα↗ω1

πα
X(x∗) works. �

Now, we proceed to our problem.

Question 7.3. Does there exist some α < ω1 such that πα
X = πα+1

X for
every Banach space X isomorphic to c0?

By a classical result of W. B. Johnson and M. Zippin [13], a sub-
space of c0 is isomorphic to c0 if and only if it is an L∞-space. There-
fore, if such α < ω1 as in the question exists, then a separable Banach
space X is isomorphic to c0 if and only if it is an L∞-space, πα

X < ∞

and πα
X = πα+1

X .
Considering results from Section 3, we expect that the answer is

negative for the class of all spaces which are isomorphic to the c0-
sum of a sequence of finite-dimensional spaces and, in particular,
for the class of all spaces which can be embedded isomorphically
into c0.
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