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Abstract

This paper is Part 2 of a study of blood flow across cardiovascular stenoses. In Part 1, we developed a
rigorous mathematical approach for deriving a pressure field from experimental data for a velocity field
that can be obtained by direct measurement. In this Part, existing methods for quantifying stenoses, with
specific reference to cardiac valves, are reviewed. Using the mathematically rigorous and physically accu-
rate approach that we developed in Part 1, for a pre-specified flow velocity field proximal to the stenosis
and pressure waveform field distal to the stenosis, we ascertain the intro-stenosis and distal flow velocity
field, pressure field proximal and within the stenosis, and energy dissipation, all as function of position and
time. The computed dissipation, kinetic energy and pressure are then presented in an idealized geometry,
but with realistic geometry, with a symmetric stenosis.
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1. Introduction

Stenotic cardiac valve and arterial occlusive diseases are among the leading causes of death worldwide;
see Go et al. (2013). Interventional and surgical treatments have provided improvements in survival, car-
diac function, and functional capacity. However, procedural therapies have substantial risks, and benefits
are proportional to the physiological severity of the stenoses treated. Consequently, accurate and precise
assessment of stenosis severity is required in order to appropriately decide whether and what type of treat-
ment is warranted for a given lesion.

A stenosis in the cardiovascular system is a reduction in cross-sectional area of a structure across which
blood flows. An anatomic stenosis, which is simply defined by its existence, may or may not result in a
physiologically important stenosis. The physiological impact of a stenosis is the extent to which it poses
increased impedance to blood flow, i.e., the extent to which energy of the flowing blood is dissipated or lost
in order to generate and maintain flow and ultimately, to which blood flow becomes impaired. Stenoses
are generally treated when they are physiologically important. Physiologically important stenoses satisfy
two criteria: (1) hemodynamic severity, and more importantly, (2) adverse effects on proximal (e.g., the
left ventricle in aortic valve stenosis) or distal (e.g., myocardial territory in the distribution of a stenotic
coronary artery) tissues and organs.

Both invasive and non-invasive diagnostic techniques have been used to assess cardiovascular stenoses;
see Bhattacharyya et al. (2013); Leggett and Otto (1996); Carroll (1993). While invasive techniques ac-
curately determine hemodynamic severity and are the historical gold standard, they carry procedural risks.
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Consequently, non-invasive techniques have been used increasingly. However, as we outline below, current
approaches to interpreting non-invasive data are incapable of ascertaining physiologic stenosis severity. In
this manuscript, we develop an improved approach to determination of the energy dissipation in the flow-
ing blood and pressure gradients and differences across cardiovascular stenoses, which can be applied to
non-invasive diagnostic modalities.

Background

Various methods have been used to evaluate stenoses by either anatomic or physiologic criteria. Broadly,
anatomic approaches either directly measure cross-sectional area, or invoke conservation of mass to cal-
culate cross-sectional area. In contrast, physiological approaches directly measure intraluminal pressure
and/or flow velocity. Measured trans-stenosis pressure difference and calculated stenosis “resistance” or
“impedance” are conceptually sound assessments of the physiologic impact of a stenosis. However, other
physiological approaches used currently, notably calculated intraluminal pressure derived from measured
flow velocity, or even calculated cross-sectional area derived from measured intraluminal pressure and vol-
umetric flow rate, are fundamentally unsound from a fluid mechanical perspective. The relative strengths
and weaknesses of these various approaches are reviewed below. Figures 1 - 3 depict the left-sided cardiac
valves (aortic and mitral) and the physiology of cardiovascular stenoses.

1.1. Anatomic

Direct measurement of valve or arterial cross-sectional area historically has been both inaccurate and
imprecise. However, conservation of mass is applicable over one or more cardiac cycles because the cir-
culation is a closed system and blood is an incompressible material, even with deformable conduits. Thus,
the mean volumetric flow rate is constant along a given conduit, assuming the absence of branch vessels.
The cross-sectional area at a given location along the length of the conduit thus may be calculated, as it
equals the mean volumetric flow rate over a cardiac cycle divided by the magnitude of the mean flow ve-
locity through the cross-sectional area in question over a cardiac cycle; see Warth et al. (1984); Kosturakis
et al. (1984). Cardiac valve area and arterial (carotid) cross-sectional area have been determined using this
“continuity”-based approach; see Rodriguez et al. (2011); Alexandrov et al. (1993). However, utilization
of conservation of mass-based approaches only permits determination of cross-sectional area, i.e., whether
an anatomic stenosis is present, not whether it is physiologically important.

1.2. Physiologic

A range of strategies have been developed to determine the physiological significance of a stenosis.
These are listed and discussed below. While 1.2.1, 1.2.2, 1.2.3 are invasive methods, 1.2.4 is a non-invasive.

1.2.1. Trans-stenosis pressure difference (“pressure gradient”)
In a conduit with the same cross-sectional area proximal and distal to the stenosis, the magnitude of the

mean flow velocity (over a cardiac cycle) is the same at the proximal and distal locations, and consequently
the kinetic energy of the flowing blood is unchanged. In the absence of changes in gravitational potential
energy, the mean pressure decreases across the stenosis, thus is equal to amount of energy dissipated across
the stenosis as

Edis = |pprox − pdist |mean. (1)

The absolute value of the trans-stenosis mean pressure difference thus reflects the physiological impact of
the stenosis. However, it is also proportional to the mean volumetric flow rate (and the proximal pressure
and total energy of the flowing blood), and consequently, the absolute trans-stenosis pressure difference is
not a parameter that is solely determined by the properties of the stenosis.

2



1.2.2. Resistance and impedance
A physiologically relevant stenosis is defined by the extent to which it impedes blood flow. Conse-

quently, the usage of resistance to quantify stenosis severity is relatively sound from a conceptual stand-
point; see Ford et al. (1990); Eckstein et al. (1946). Resistance is defined as the mean pressure difference
across the stenosis divided by the mean flow rate, thus

R =
|pprox − pdist |mean

Qmean
(2)

However, in reality proximal and distal pressures, and volumetric flow rate, vary differentially as functions
of time; consequently, resistance may vary as a function of time. The mechanical basis for this is complex,
and is largely due to the non-linear mechanical properties of both the ventricular myocardium that intermit-
tently generates arterial blood flow, as well as the non-linear deformability of cardiovascular conduits. This
is particularly true for cardiac valves, the orifices of which may change substantially during the period of
trans-valvular flow (systolic ejection for the aortic and pulmonary valves, diastolic filling for the mitral and
tricuspid valves). Thus, the notion of “impedance” – which incorporates the time-varying characteristics
of pressure and flow profiles in quantifying mechanical properties of cardiovascular conduits - has been
similarly co-opted from circuit theory and applied to both cardiac valves and the arterial circulation; see
(Schwartz et al., 1997, 1991; Attinger et al., 1966; Spencer and Edmunds, 1968). While both resistance
and impedance are truly intrinsic material parameters – although modifiable by hemodynamic forces, rig-
orous determination of either one requires measurement of proximal and distal pressures – necessitating
invasiveness, along with volumetric flow rate.

1.2.3. Valve area (Gorlin/Hakki Gorlin and Gorlin (1951))
While valve area is strictly an anatomical assessment of stenosis severity for cardiac valves, physiologi-

cal approaches have been employed to ascertain valve area. The archetype for this approach was developed
by Gorlin and Gorlin; see Gorlin and Gorlin (1951), with subsequent simplifications by Hakki et al.; see
Hakki et al. (1981). Using rudimentary hydraulics, Gorlin determined that valve area is equal to the mean
volumetric flow rate divided by the product of the square root of the mean transvalvular pressure difference
and an empirical constant.

Avalve =
Qmean

C
√
|pprox − pdist |mean

(3)

However, the mechanical basis for the Gorlin equation rests on Torricelli’s empirical modification of the
Bernoulli equation, i.e., the “constant” used is actually variable, and its value is in fact what describes
energy dissipation. Moreover, as discussed below, the Bernoulli equation itself is an expression of conser-
vation of energy, and thus is incapable of quantifying energy dissipation. Modifications of the Bernoulli
equation using additional energy dissipation factors such as those in the Gorlin equation are totally empir-
ical and in fact variable from condition to condition – without a basis in mechanics or mathematics that
is reproducible across experimental conditions. Consequently, such approaches lack accurate and precise
predictive capacity requisite of any sound theoretical model.

1.2.4. Derived trans-stenosis pressure difference
Non-invasive techniques have been used to calculate trans-stenosis pressure differences, as opposed to

invasive direct measurements. In clinical parlance these differences are termed "pressure gradients," which
is inaccurate. This approach also utilizes the Bernoulli equation. However, it is unlike the Gorlin-type
approach specifically applied to heart valves, which at least incorporates an empirical constant to attempt
to express energy dissipation (which in reality is actually highly variable). Rather, the Bernoulli equation is
manipulated to allow determination of energy dissipation, even though it is an expression of energy conser-
vation. It is conveniently assumed that energy losses in the flowing blood all occur at the outlet of a stenosis.
As a consequence, the energy losses in the flowing blood can be expressed exclusively as losses in kinetic
energy, and the pressure within the stenosis is equal to the pressure downstream of the stenosis. Further,
the pressure difference across the stenosis is thus equal to the loss in kinetic energy, which can be easily
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calculated based on non-invasively measured flow velocities at different locations relative to the stenosis.
This approach has no rational basis, but loose correlations between non-invasively derived and invasively
measured “pressure gradients” have been demonstrated. Moreover, other studies have demonstrated poor
correlation between echocardiography calculations and catheterization measurements; see Fischer et al.
(1995); Berger et al. (1984), where the correlation coefficient r = 0.79, Doppler gradient = 0.66 · (catheter
gradient) + 17.3.

The characteristic approach; see Hatle et al. (1978, 1980) is to make a modification to Bernoulli’s equa-
tion by introducing an ad hoc term that purportedly accounts for the dissipation; see Akins et al. (2008),
see Dasi et al. (2009). First, Bernoulli’s equation applies to flows of ideal fluids while blood is a viscous
fluid. Thus, such an approach is completely unwarranted. Second, the pressure-velocity pair (pE, vE) that
solves the flow of an ideal Euler fluid that appears in Bernoulli’s equation is far different from the pressure-
velocity pair (pNS, vNS) that solves the Navier-Stokes equation. Third, the methodology adopted to estimate
the ad hoc dissipation term that is added to Bernoulli’s equation is flawed, since it double counts several
of the sources for the dissipation by not recognizing that these terms are inter-related, with these contri-
butions not added as though they were a consequence of a linear problem - wherein such effects could be
superposed.

As mentioned above, a variety of mechanisms contribute to energy losses, see Akins et al. (2008): so
called "viscous losses", "turbulent losses", "flow separation losses", etc. However, these losses are not
independent or additive. More importantly, Bernoulli’s equation is absolutely mute with regard to all three
of these losses, or for that matter, any energy losses. The physical basis for all of these types of energy
losses is viscosity. However, the Bernoulli equation based approach assumes an inviscid fluid. Finally,
with regards to turbulence, no current model is capable of describing the relevant phenomena; we note
the modeling of turbulent flows has remained one of the most important unsolved problems in mechanics.
Thus, to merely appeal to an ad hoc modification of Bernoulli’s equation incorrectly suggests that a more
rigorous approach is being employed than that which is actually used. The thesis of this manuscript is
that more mathematically rigorous and physically relevant approaches to studying the mechanics of blood
flow across cardiovascular stenoses can be developed. In Part 1 of this study; see Švihlová et al. (2016),
we discussed a rigorous new mathematical procedure for the determination of the pressure (normal stress)
field, from pre-specified data for the velocity field that can be obtained through imaging procedures such
as 4D Magnetic Resonance Imaging or Echocardiography.

In this paper, we focus on aortic valve stenosis as an example to apply the approach. Specifically, for
a pre-specified left ventricular outflow tract velocity profile and ascending thoracic aortic pressure profile
as inflow and outflow boundary conditions we determine pressure, velocity, and energy dissipation as
functions of the entire spatial field (left ventricular outflow tract, aortic valve/root, and proximal ascending
thoracic aorta) and time.
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Figure 1: Anatomy of the human aortic valve/root complex. The aortic valve, comprised of three cusps
(leaflets), is shown in the diagram as being attached to the aortic root circumferentially, forming a circum-
ferentially thickened ridge of fused cusp/aortic tissue termed the aortic valve annulus. The annulus is a
three-dimensional crown-like structure, as opposed to a planar structure. In addition, the diameter of the
base of the annulus (ventriculo-aortic junction) is smaller than the diameter of the aortic root-ascending
thoracic aortic junction (a.k.a. sinotubular junction), such that the annulus is within a conic section; this
is not depicted to scale in A. The aortic root constitutes the tissue housing for the valve; the root tissues
are comprised of the three sinuses of Valsalva. At the initiation of left ventricular systolic ejection, the
left ventricular outflow tract-to-aortic root pressure gradient forces the cusps of the aortic valve radially
outwards, increasing the orifice cross-sectional area and permitting blood flow out of the left ventricle and
into the aortic root throughout systolic ejection, and thence downstream. At the end of left ventricular
systolic ejection, the aortic root-to-left ventricular outflow tract pressure gradient forces the cusps radially
inwards, resulting in circumferential cusp coaptation and elimination of the potential orifice for regurgitant
blood flow back into the left ventricular cavity. The left sinus of Valsalva is typically slightly smaller than
the two other sinuses (not shown to scale), the right and noncoronary sinuses. The left main and right
coronary arteries, which provide cardiac tissue/myocardial blood flow, each arise as separate ostia from
the left and right sinuses of Valsalva, respectively. The segment of aorta downstream of/distal to the aortic
root is termed the ascending thoracic aorta, which does not contain branch arteries. A. Long-axis view. In
this view, not all three cusps can be seen. Rather, cross sections of the right and left cusps are shown. The
view demonstrates the valve during either systolic isovolumetric contraction, or either phase of diastole.
B. Short-axis view. In this view, all three cusps can be visualized. This view is an approximate represen-
tation of the surgeon’s view of the aortic valve/root complex when the ascending thoracic aorta has been
transected proximally. The view also demonstrates the valve during systolic isovolumetric contraction, or
either phase of diastole. A central orifice is merely presented to highlight the separate nature of each valve
cusp; in reality, a competent (non-regurgitant) valve has a minimal or absent central orifice.
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Figure 2: Anatomy of the human mitral valve/subvalvular apparatus complex. The mitral valve,
comprised of two leaflets (anterior and posterior), is shown in the diagram as being attached to the mitral
valve annulus, which is a circumferential roughly planar (actually "saddle" shaped) ring of tissue that
demarcates the left atrium and the left ventricle, in contrast to the three-dimensional annulus of the aortic
valve. The mitral valve leaflets insert into the annulus circumferentially, with a tiny separation present at
the medial and lateral commissures (junctions of the leaflets with one another). The leaflets are attached
to chordae tendinae, which anchor to the papillary muscles of the left ventricle. The coaptation surface
between the two leaflets is not actually at the edges of the leaflets, but rather, from surface contacts between
the two leaflet faces. At the initiation of left ventricular diastolic filling, the left atrium-to-left ventricle
pressure gradient, along with relaxation of the papillary muscles to which the mitral valve leaflets attach,
opens the mitral valve radially outwards, increasing the orifice cross-sectional area and permitting blood
flow out of the left atrium and into the left ventricle throughout diastolic filling. At the end of left ventricular
filling (following atrial contraction), the left ventricle-to-left atrium pressure gradient and papillary muscle
contraction act in concert to force the mitral valve closed, resulting in circumferential leaflet coaptation
and elimination of the potential orifice for regurgitant blood flow back into the left atrial cavity. The
anterior leaflet of the mitral valve has a larger radial extent, but a smaller circumferential extent, than the
posterior leaflet. A. Long-axis view. In this view, the larger radial extent of the anterior leaflet can be
readily appreciated. Chordae tendinae and the left ventricular papillary muscles are depicted. The view
demonstrates the valve during either phase of systole, or isovolumetric diastolic relaxation. B. Short-
axis view. This view is an approximate representation of the surgeon’s view of the mitral valve through
a left atrial exposure. The view also demonstrates the valve during either phase of systole, or diastolic
isovolumetric relaxation.
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Forced Application of Ideal fluid to Real fluid: p1 > p3 = p2; |v1| = |v3| < |v2|

Figure 3: Schematic of an arterial stenosis. The diagram depicts an idealized stenosis within an artery;
1 = upstream of/proximal to the stenosis, 2 = within the stenosis, 3 = downstream of/distal to the stenosis.
For an ideal fluid, conservation of energy applies, and p1 = p3 > p2, |v1| = |v3| < |v2|. The degree of p2
decrease and |v2| increase is determined by conservation of energy, with conservation of mass satisfied as
well. For the real case of flowing blood, p1 > p3 [with (p1 − p3) quantifying the energy loss], typically
p3 > p2 (but in principle p3 can be ≤ p2), and |v1| = |v3| < |v2|. When the Bernoulli equation is contrived to
be used in the setting of energy dissipation, it is conveniently assumed that the pressure within the stenosis
is equal to the pressure downstream of/distal to the stenosis, even though this lacks a rational basis. In this
setting, p1 > p2 = p3 (that is, p1 > p2, p1 > p3, and p2 = p3), and |v1| = |v3| < |v2|. Thus, p1 − p3 happens
to be equal to the loss in kinetic energy between the segments within the stenosis and downstream of/distal
to the stenosis (1/2ρ|v2|

2 − 1/2ρ|v3|
2). This unfounded assumption permits calculation of the trans-stenosis

pressure difference indirectly, by determining the loss in kinetic energy.

2. Determination of the energy dissipation

Let us suppose that the flow of blood can be described by the Navier-Stokes equations for an incom-
pressible fluid, as was described at Part 1, namely

div v = 0
∂v
∂t

+ (∇ v) v + ∇
p
ρ∗
− div (2ν∗D(v)) = 0

T = −pI + 2µ∗D,

(4)

where T is the Cauchy stress tensor, p = − 1
3 (tr T) is the mean normal stress that is usually referred to as the

mechanical pressure, v is the velocity of the fluid, D = 1
2

(
∇v +

(
∇v)T

))
, µ∗ denotes the constant dynamic

viscosity and ν∗ =
µ∗
ρ∗

is the kinematic viscosity. We will use the subscript ∗ for constants. The list of
constants and their values used in this study are shown in Tab. 1.

In the case of a fluid characterized by the Navier-Stokes constitutive relation, the dissipation Edis is
given by

Edis = T · D, (5)
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symbol name value
ρ∗ density 1.0 kg

m3

µ∗ dynamic viscosity 3.71.10−3 kg
s m

ν∗ kinematic viscosity 3.71.10−3 m2

s

Table 1: Constant parameters used in calculation.

which in virtue of incompressibility and form of the stress relation (see eq. (4)3) simplifies to

Edis = 2µ∗D · D. (6)

In principle, since we know the velocity field pointwise due to experimental measurements, we can
determine the rate of dissipation given by (6). Instead of trying to crudely estimate the loss of pressure
as a consequence of dissipation, we demonstrated in Part 1 of this study (see Švihlová et al. (2016)) how
to directly obtain the pressure field once the velocity field is known. That velocity field is supposed to be
measured, at least at some subset of points in the flow domain. Consequently, we focused on considering
limited amount of points where the measurement of the velocity field could take place, and considering the
deviations between the (possibly measured) velocity field and the real velocity field. The real velocity field
was in this case also approximated by solution of the Navier-Stokes equations. In the case to be studied
here, i.e. flows in aortic valve stenosis, the minimum focus of the known velocity field is the left ventricular
outflow tract, which is proximal to the valve.

In this portion of our study, we focus on computations of the pressure drop, kinetic energy and dissi-
pation within/across the geometry representing the stenotic aortic valve. We depict the computed velocity
field in the region of the stenosis and distal to it, where secondary flows and recirculation occur. The
pressure drop, kinetic energy and dissipation will be shown in geometries representing aortic valve with
symmetric stenosis of severity 50%, 60%, 70% and 80% where severity is given as (7). The geometry
is limited by the assumption that aortic walls are non-deformable, but with reasonable approximations of
the real geometry. The formulation of the boundary conditions used in the model with physiologically
relevant pressure and flow profiles follows. Finally, in Sec. 3, we will discuss the results achieved from
three-dimensional computations where Navier-Stokes equations are used.

Geometry

The geometry description and the location on the z axis are shown in the Fig. 4, the geometry dimen-
sions are shown in the Fig. 5.

The computational meshes are shown in Fig. 5 and Fig. 6. Firstly, there is a healthy aortic valve and
then aortic valves with symmetric severity up to 80%. The severity is given as a relation between the area of
the healthy part, approximated here by a circle with radius R, and the area of the stenotic part, approximated
by a circle with radius r, i.e.,

severity = (1 −
arear

areaR
) · 100%. (7)
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Figure 4: The description of the geometry. The aortic root is situated between z= -12 and z=12, where
z=-12 corresponds to the ventriculo-aortic junction and z=12 to the sinotubular junction. z=0 corresponds
to a widest place of aortic root. The part from z=-22 to z=-12 is supposed to be 1cm part of the left
ventricular outflow tract, the part between z=12 and z=22 is 1cm part of ascending thoracic aorta.

Figure 5: The geometry dimensions. Left ventricular outflow tract, aortic root and proximal ascending
thoracic aortic dimensions for the healthy case with a rigid wall assumption: The length of the aortic root
is 2.4cm here, the part of the aortic root which should be affected by the stenosis is set to 0.8cm. The
length of the part representing left ventricle junction is 1cm, the length of the cylinder representing the
part of the ascending aorta is 1cm. The diameter of the sinotubular junction is 2.6cm, the diameter of the
ventriculo-aortic junction 2.4cm. Finally the maximal diameter of the geometry is 3.6cm.
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Figure 6: Geometry representing the stenotic valve with a different severity. Severity is assumed to be
equal 1 − πd2

πD2 , where D = 2.4cm is the original diameter of the valve without stenosis and d represents the
diameter of the narrowed geometry. For 50% stenosis diameter d=1.70cm, for 60% stenosis d=1.52cm, for
70% stenosis d=1.31cm and finally d=1.07cm for 80% stenosis.

Boundary conditions

In a given domain Ω ⊂ R3, representing the simplified aortic valve, the velocity v and pressure p satisfy
(4). Let us consider the boundary of the domain ∂Ω, which consists of three parts; see Fig. 3. Γwall denotes
the walls and Γin, Γout are the inlet and outlet, respectively. In order to be physiologically and clinically
relevant, first we consider the known pressure distal to the aortic valve, in the proximal ascending thoracic
aorta, (as a Neumann boundary condition on the outlet) and known velocity of blood ejected by, and flowing
out of, the left ventricle (as a Dirichlet boundary condition on the inlet). On rigid walls, we consider the
no-slip boundary conditions. Hence,

v = 0
v = vin

Tn −
1
2
ρ∗(v · n)−v = −P(t)n

on Γwall,

on Γin,

on Γout.

(8)

Here, n represents the unit normal vector to the boundary and (v · n)− denotes the negative part of the
function v · n, as was analyzed in (Bertoglio and Caiazzo, 2016). The value for the constant parameters are
given in Tab. 1.
The velocity vin is given as a parabolic profile with its magnitude scaled by a time dependent factor, V(t),
representing the mean velocity at the inlet. The velocity time dependent factor V(t) is a curve unique for
an individual patient. Here, we used the curve displayed in Fig. 7, in which each cardiac cycle is 1s and the
systolic ejection period SEP with length 0.3s is the time during which the aortic valve is considered open;
see Fig. 8. During the SEP, the velocity initially is 0m/s (no flow), increases to vmax, and then decreases to
0m/s (at which part the SEP ends). For the purpose of this work, we used vmax = 0.7m/s for all geometries.
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Figure 7: The prescribed outlet pressure and inlet velocity functions P(t) and V(t) as functions of time.

Note that the mean velocity vmean = 2
3 vmax = 0.45m/s, the systolic ejection period S EP = 0.3s, time

for maximum velocity is at 0.15s, and the area of input cross-section
Avalve = πD2

4 = 4.5cm2. The diameter of the input plane is D = 2.4cm. The corresponding stroke volume
SV (volume of the blood ejected by the left ventricle per heart beat) can then be computed from the left
ventricular ejection volumetric flow rate F as

S V =

∫ 1

t=0
F dt =

∫ 1

t=0
Avalve ∗ V(t) dt = Avalve ∗ S EP ∗ vmean

.
= 61ml. (9)

Figure 8: Systolic ejection period SEP.

At the outlet, i.e., the proximal ascending thoracic aorta, we prescribe the pressure mean value P(t),
which is based on information from measurements in the aorta as a function of time. At the output, recir-
culation may occur, and can lead to instabilities. We assume that no aortic valve regurgitation is present,
and use backflow stabilization used at the outlet as developed in Bertoglio and Caiazzo (2016) and Braack
and Mucha (2014).

The function P(t) can depend on the stenosis severity. As aortic valve stenosis progresses, if and
when left ventricular intrinsic systolic function (contractility) decompensates and cannot maintain (i.e.,
contractility is not high enough) adequate stroke volume in the face of elevated afterload posed by the
stenotic valve, systemic arterial hypotension may occur. This occurs, but is uncommon. We have assumed
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adequate (which must actually be supranormal) left ventricular contractility to maintain stroke volume and
distal aortic pressure. Thus, for the purposes of this work, we used the function P(t), see Fig. 8 (right),
such that the peak systolic aortic pressure pmax = 110mmHg and the nadir diastolic aortic pressure
pmin = 75mmHg. For better illustration, we use units of millimeters Hg for pressure (1 Pa = 0,0075
mmHg).

3. Calculation of the pressure drop and energy dissipation across a stenotic aortic valve

FEniCS software for solving partial differential equations Logg et al. (2012) was used to compute the
problem eq.(4)&(8) by the finite element method. The time derivatives in the equations were approximated
by the Crank-Nicholson scheme. Time interval of systolic ejection period length 0.3s was computed, and
an adaptive time step was used. The time step length varies from 1E-2 to 2E-3 for mild stenotic cases with
50% and 60% severity. Because of high velocities in the narrowed part, the length of time step had to be
finer in more severe cases. The time step length varies from 1E-3 to 2E-4 for 70% case and from 1E-3 to
5E-5 for 80% .

In this section, we plot the pressure pΓ introduced in (10), dissipation EdisΓ specified in (11) and kinetic
energy EkΓ defined as (12) along the centerline for meshes with different severities, see (7), namely 50%,
60%, 70% and 80%. The centerline is an axis passing through the vessel; Γ denotes cross-sectional area
along the centerline, see Fig. 9.

Figure 9: Cross-section areas Γ along the cen-
terline, which corresponds to the z axis.

pΓ =

∫
Γ

p dS

area(Γ)
(10)

EdisΓ =
2µ∗

∫
Γ

D:D dS

area(Γ)
(11)

EkΓ =
0.5ρ∗

∫
Γ

v.v dS

area(Γ)
(12)

Graphs of pressure, kinetic energy and energy dissipation, at time at maximum velocity, but varying
as functions of position, are shown in Fig. 11. Similar graphs of time averaged values over the systolic
ejection period, but again varying as functions of position, are displayed in Fig. 12.

Time averaged value of pressure is calculated over the SEP as

pΓaver =

∫ 0.3

0
pΓ dt. (13)

Kinetic energy and energy dissipation are calculated similarly.

Figure 10 depicts transvalvular pressure drop as a function of time over a range of stenosis severities.
Tables 2 and 3 display maximum and mean SEP transvalvular pressure drops over the range of stenosis
severities. These data are consistent with measured data in Garcia et al. (2006). Classically, stenoses are
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thought to cause adverse hemodynamic and other sequelal once stenosis severity is in the range of 70-80%.
Our findings are consistent with this clinical experience.

Figures 11 and 12 show the variables averaged over cross-sectional area Γ as functions of the z coordi-
nate (see Fig. 9), at time t=0.15s, and averaged over the SEP, respectively. Graphs of the time evolution of
variables (i.e., as time-varying functions) during the SEP at specified z coordinates are shown in Fig. 13-17.

The computations here are limited by the fact that stenosis here is symmetric. The study of symmetric
versus asymmetric stenoses in simplified cylindrical geometries is provided in Appendix. The pressure
drop and energy dissipation are higher in geometries with asymmetric obstruction than in the symmetric
problems. The computed results shown in Appendix are in good agreement with this statement.

Figure 10: Pressure drop across the aortic valve during the SEP, for different degrees of of stenosis. Pres-
sure drop is defined as a difference between the pressure averaged over cross-sectional area of output and
pressure averaged over cross-sectional area of input, i.e. the difference between pΓ at z=-22 and pΓ at z=22.

sev input pressure pressure drop
50 115.6 5.6
60 124.3 14.3
70 141.7 31.7
80 183.3 73.3

Table 2: Computed input integral pressure (i.e.
averaged over the input cross-sectional area)
and the pressure drop at time at maximum ve-
locity. Output integral pressure was fixed (pre-
scribed as a boundary condition) to 110mmHg.

sev input pressure pressure drop
50 101.6 3.0
60 106.1 7.5
70 115.1 16.5
80 135.0 36.4

Table 3: Computed input integral pressure (i.e.
averaged over the input cross-sectional area)
and the pressure drop as an average value over
the SEP. Output integral pressure was fixed (pre-
scribed as a boundary condition) to 98.6mmHg.
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Figure 11: Velocity, pressure, kinetic energy and energy dissipation averaged over cross-sectional area Γ,
varying as functions of the z coordinate (length), set at the time of maximum velocity (t = 0.15s)
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Figure 12: Velocity, pressure, kinetic energy and energy dissipation averaged over space (cross-sectional
area Γ) and time (SEP), varying as functions of the z coordinate (length).
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Figure 13: Pressure, kinetic energy and energy dissipation averaged over cross sectional area Γ, varying as
functions of time; at z=-22.

Figure 14: Pressure, kinetic energy and energy dissipation averaged over cross sectional area Γ, varying as
functions of time; at z=-12.

Figure 15: Pressure, kinetic energy and energy dissipation averaged over cross sectional area Γ, varying as
functions of time; at z=-6.

Figure 16: Pressure, kinetic energy and energy dissipation averaged over cross sectional area Γ, varying as
functions of time; at z=0.
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Figure 17: Pressure, kinetic energy and energy dissipation averaged over cross sectional area Γ, varying as
functions of time; at z=12.

4. Discussion

In the previous study, we developed a state-of-art rigorous mathematical approach, incorporating phys-
iologically relevant conditions, to modeling blood flow across cardiovascular stenoses. This approach can
be applied to studying intra-cardiac and intra-arterial flows. In this manuscript, we have applied our model
to a complex pathophysiological state - native aortic valve stenosis. Although we have modeled this in the
absence of coexistent aortic valve regurgitation, our approach can be applied to the mixed disease state.
Most importantly, the model can as extract a wide range of output data from limited input data - with ab
initio specification of the inflow velocity profile and the outflow pressure profile. This enhances its poten-
tial clinically relevancy.

With respect to limitations, there are two oversimplifications. The first oversimplification is principally
geometric, and is the specification of valve structure and stenosis in the absence of actual valve leaflets,
with stenosis modeled as a reduction in housing/wall diameter. The absence of valve leaflets necessitates
up-front specification of the absence of regurgitation via a backstop. However, our upcoming studies are
incorporating moving actual valve leaflets, and modeling stenosis as a reduction in leaflet motion and sys-
tolic (for the aortic valve) ejection orifice expansion and subsequent contraction. Nonetheless, the current
model can yet be applied to arterial blood flow in its current form. The second limitation is that a rigid aorta
is assumed. Many previous studies have incorporated aortic wall mechanics, but using simplified lumped
parameter approaches. Further work will address this oversimplification as well.

The existing body of literature and extant work on modeling of cardiovascular blood flow generally is
limited by important oversimplifications and frank conceptual errors - both mathematical and mechanical.
A need for rigorous mathematical/mechanical modeling of cardiac and vascular function and blood flow
thus is required. This work is a substantial shift in modeling approaches to cardiovascular system function
from which further progress may be made.
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ČR. K. R. Rajagopal thanks the National Science Foundation for its support.

17



Akins, C. W., Travis, B., and Yoganathan, A. P. (2008). Energy loss for evaluating heart valve performance.
The Journal of Thoracic and Cardiovascular Surgery, 136(4):820–833.

Alexandrov, A. V., Bladin, C. F., Maggisano, R., and Norris, J. W. (1993). Measuring carotid stenosis.
Time for a reappraisal. Stroke, 24(9):1292–1296.

Attinger, E., Anné, A., and McDonald, D. (1966). Use of Fourier Series for the Analysis of Biological
Systems. Biophysical Journal, 6(3):291–304.

Berger, M., Berdoff, R. L., Gallerstein, P. E., and Goldberg, E. (1984). Evaluation of aortic stenosis by
continuous wave Doppler ultrasound. Journal of the American College of Cardiology, 3(1):150–156.

Bertoglio, C. and Caiazzo, A. (2016). A Stokes-residual backflow stabilization method applied to physio-
logical flows. Journal of Computational Physics, 313:260–278.

Bhattacharyya, S., Khattar, R., Chahal, N., Moat, N., and Senior, R. (2013). Dynamic assessment
of stenotic valvular heart disease by stress echocardiography. Circulation: Cardiovascular Imaging,
6(4):583–589.

Braack, M. and Mucha, P. B. (2014). Directional Do-Nothing Condition for the Navier-Stokes Equations.
Journal of Computational Mathematics, 32(5):507–521.

Carroll, J. D. (1993). Cardiac catheterization and other imaging modalities in the evaluation of valvular
heart disease. Current opinion in cardiology, 8(2):211–215.

Dasi, L. P., Simon, H. A., Sucosky, P., and Yoganathan, A. P. (2009). Fluid mechanics of artificial heart
valves. Clinical and Experimental Pharmacology and Physiology, 36(2):225–237.

Eckstein, R. W., Liebow, I. M., and Wiggers, C. J. (1946). Limb blood flow and vascular resistance changes
in dogs during hemorrhagic hypotension and shock. The American journal of physiology, 147(4):685–
694.

Fischer, J. L., Haberer, T., Dickson, D., and Henselmann, L. (1995). Comparison of Doppler echocar-
diographic methods with heart catheterisation in assessing aortic valve area in 100 patients with aortic
stenosis. Heart, 73(3):293–298.

Ford, L. E., Feldman, T., Chiu, Y. C., and Carroll, J. D. (1990). Hemodynamic resistance as a measure of
functional impairment in aortic valvular stenosis. Circulation Research, 66(1):1–7.

Garcia, D., Kadem, L., Savéry, D., Pibarot, P., and Durand, L. (2006). Analytical modeling of the instanta-
neous maximal transvalvular pressure gradient in aortic stenosis. Journal of Biomechanics, 39(16):3036–
3044.

Go, A. S., Mozaffarian, D., Roger, V. L., Benjamin, E. J., Berry, J. D., Blaha, M. J., Dai, S., Ford, E. S., Fox,
C. S., Franco, S., Fullerton, H. J., Gillespie, C., Hailpern, S. M., Heit, J. A., Howard, V. J., Huffman,
M. D., Judd, S. E., Kissela, B. M., Kittner, S. J., Lackland, D. T., Lichtman, J. H., Lisabeth, L. D.,
Mackey, R. H., Magid, D. J., Marcus, G. M., Marelli, A., Matchar, D. B., McGuire, D. K., Mohler, E. R.,
Moy, C. S., Mussolino, M. E., Neumar, R. W., Nichol, G., Pandey, D. K., Paynter, N. P., Reeves, M. J.,
Sorlie, P. D., Stein, J., Towfighi, A., Turan, T. N., Virani, S. S., Wong, N. D., Woo, D., and Turner, M. B.
(2013). Heart disease and stroke statistics–2014 update: a report from the American Heart Association.
Circulation, 129(3):e28–e292.

Gorlin, R. and Gorlin, S. (1951). Hydraulic formula for calculation of the area of the stenotic mitral valve,
other cardiac valves, and central circulatory shunts. i. American Heart Journal, 41(1):1–29.

Hakki, A. H., Iskandrian, A. S., Bemis, C. E., Kimbiris, D., Mintz, G. S., Segal, B. L., and Brice, C.
(1981). A simplified valve formula for the calculation of stenotic cardiac valve areas. Circulation,
63(5):1050–1055.

18



Hatle, L., Angelsen, B. A., and Tromsdal, A. (1980). Non-invasive assessment of aortic stenosis by Doppler
ultrasound. Heart, 43(3):284–292.

Hatle, L., Brubakk, A., Tromsdal, A., and Angelsen, B. (1978). Noninvasive assessment of pressure drop
in mitral stenosis by Doppler ultrasound. Heart, 40(2):131–140.

Kosturakis, D., Goldberg, S. J., Allen, H. D., and Loeber, C. (1984). Doppler echocardiographic prediction
of pulmonary arterial hypertension in congenital heart disease. The American Journal of Cardiology,
53(8):1110–1115.

Leggett, M. and Otto, C. M. (1996). Aortic valve disease. Current opinion in cardiology, 11(2):120–125.

Logg, A., Mardal, K., and Wells, G. (2012). Automated Solution of Differential Equations by the Finite
Element Method. Springer Berlin Heidelberg.

Rodriguez, G., Arnaldi, D., Campus, C., Mazzei, D., Ferrara, M., Picco, A., Famà, F., Colombo, B. M.,
and Nobili, F. (2011). Correlation between Doppler Velocities and Duplex Ultrasound Carotid Cross-
sectional Percent Stenosis. Academic Radiology, 18(12):1485–1491.

Schwartz, L. B., Purut, C. M., Craig, D. M., Smith, P. K., Moawad, J., and McCann, R. L. (1997). Measure-
ment of Vascular Input Impedance in Infrainguinal Vein Grafts. Annals of Vascular Surgery, 11(1):35–
43.

Schwartz, L. B., Purut, C. M., O'Donohoe, M. K., Smith, P. K., Hagen, P., and McCann, R. L. (1991). Quan-
titation of vascular outflow by measurement of impedance. Journal of Vascular Surgery, 14(3):353–363.

Spencer, M. P. and Edmunds, L. H. (1968). Evaluation of Operative Left Ventricular Outflow Tract Lesions
with a Fluid Impedance Plot. Circulation, 37(6):912–921.

Švihlová, H., Hron, J., Málek, J., Rajagopal, K., and Rajagopal, K. (2016). Determination of pressure data
from velocity data with a view toward its application in cardiovascular mechanics. Part 1. Theoretical
considerations. International Journal of Engineering Science, 105:108–127.

Warth, D. C., Stewart, W. J., Block, P. C., and Weyman, A. E. (1984). A new method to calculate aortic
valve area without left heart catheterization. Circulation, 70(6):978–983.

19



APPENDIX

Studies of symmetric versus asymmetric stenoses

We computed the pressure, kinetic energy, and energy dissipation, in simplified cylindrical geometries,
as opposed to more clinically relevant geometry. Meshes representing stenoses of up to 80% severity are
shown in Fig. 18 and Fig. 19 for symmetric stenosis and for the axial asymmetric stenosis, respectively.
The computed quantities: pressure, kinetic energy, and energy dissipation, are shown at the peak systolic
ejection time (t=0.15s) in Fig. 20 and Fig. 21.

Figure 18: Three-dimensional computational meshes representing symmetric stenoses of 50%, 60%, 70%
and 80% severities.

Figure 19: Three-dimensional computational meshes representing asymmetric stenoses of 50%, 60%, 70%
and 80% severities.

Figure 20: Trans-stenosis pressure drop, kinetic energy and dissipation over cross-sections as a function of
the position along the centerline for different symmetric geometries, at the time of peak systolic ejection
velocity. Peak velocity here was set to 1m/s.
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Figure 21: Trans-stenosis pressure drop, kinetic energy and dissipation over cross-sections as a function of
the position along the centerline for different asymmetric geometries, at the time of peak systolic ejection
velocity. Peak velocity here was set to 0.7m/s for 50%, 60% and 70% case but for 80% case it was decreased
to 0.6m/s.
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