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Abstract

A posteriori error analysis in numerical PDEs aims at providing sufficiently accurate information
about the distance of the numerically computed approximation to the true solution. Besides esti-
mating the total error, a posteriori analysis should also provide information about its discretization
and (inexact) algebraic computation parts. This issue has been addressed by many authors using
different approaches. Historically probably the first and practically very important approach is based
on combination of the classical residual-based bound on the discretization error with the adaptive
hierarchy of discretizations and computations that allows to incorporate, using various heuristic ar-
guments, the algebraic error. Motivated by some recent publications, this text uses a complementary
approach and examines subtleties of the (generalized) residual-based a posteriori error estimator for
the total error that rigorously accounts for the algebraic part of the error. The aim is to show on
the standard Poisson model problem example, which is used here as a case study, that a rigorous
incorporation of the algebraic error represents an intriguing problem that is not yet completely re-
solved. That should be of concern in h-adaptivity approaches where the refinement of the mesh is
determined using the residual-based a posteriori error estimator assuming Galerkin orthogonality.
The commonly used terminology such as “guaranteed computable upper bounds” should be in the
presence of algebraic error cautiously examined.

Keywords: A posteriori error analysis, residual-based estimator, finite element method, Galerkin or-
thogonality, inexact algebraic solution, total error estimator, guaranteed computable upper bound.
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1 Introduction

Historically, most a posteriori analysis in numerical PDEs focuses on estimating the discretization error,
i.e., on the discrepancy between the solution of the original infinite-dimensional formulation of the prob-
lem and the ezact solution of its discretized counterpart. This information is crucial for h-adaptivity,
which refines discretization in the parts of the domain where the estimator indicates a large discretization
error with the goal of achieving its close-to-uniform spatial distribution over the domain. Estimation
of the discretization error, however, has to deal with the principal difficulty: the exact solution of the
original problem is unknown, and, unless the algebraic computations providing the coordinates of the
discrete solution in the discretization basis are performed exactly or with a negligible algebraic error,
the exact solution of the discretized problem is also unknown. Near-to-exact algebraic computations
can be prohibitive due to extensive computational cost. When solving practical problems, one typically
needs to estimate the error even for the computed approximation far from the exact solution of the
discretized problem; see, e.g., (Nordbotten & Bjgrstad, 2008, Conclusions), Keilegavlen & Nordbotten
(2015), Nissen et al. (2015). Reaching exact algebraic results can even be theoretically prohibitive. The
matrix eigenvalues, e.g., are (in general) in principle uncomputable by any finite formula as proved by
the Abel-Galois theorem, and they can only be approximated iteratively. Moreover, in case of highly
non-normal matrices there is no guaranteed forward estimate of the accuracy of the computed eigenvalue
approximations and we can guarantee the backward error only. As a consequence, due to the inexactness
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of algebraic computations, the a posteriori error estimates should be based, from their derivation to their
application, on the available computed approximations to the solution of the discrete problem.

When considering simple model problems, the previous point is seemingly unimportant. The need
for solving adaptively large scale problems however requires abandoning the concept of highly accurate
algebraic solutions. Incorporating multilevel discretization structure and the associated preconditioned
iterative algebraic solvers with reliable stopping criteria is becoming a prerequisite for efficient very large
scale numerical PDE solvers. This has been clearly formulated as a program by Becker, Johnson, and
Rannacher already in the paper Becker et al. (1995); see also other relevant references below. Since then,
there is a growing number of work in this direction. The recent survey with many references can be found,
e.g., in (Arioli et al., 2013a, Section 4); see also the introductory parts of Jirdnek et al. (2010), Arioli
et al. (2013b), Papez et al. (2016), and (Mdlek & Strakos, 2015, Chapter 12). Multilevel discretization
structure is often obtained using discretization mesh adaptivity that requires, as mentioned above, local
estimation of the discretization error in order to identify mesh elements that need to be refined. For
that purpose a standard residual-based a posteriori bound on the discretization error is used; see, e.g.,
Babuska & Rheinboldt (1978), (Verfiirth, 1996, Section 1.2), (Ainsworth & Oden, 2000, Section 2.2),
(Brenner & Scott, 2008, Section 9.2). Since the exact solution of the algebraic problem is not available,
the computed approximation that does not satisfy Galerkin orthogonality is often used in the bound,
which violates the assumptions under which the bound has been derived.

This raises a question to which extent the standard a posteriori error bounds assuming Galerkin
orthogonality can be modified in order to estimate the total error and, at the same time, to allow
comparison of the discretization and algebraic part of the error, and, consequently, construction of
reliable stopping criteria for algebraic iterative solvers. The standard residual-based a posteriori bound
is also a key ingredient of the works that use hierarchy of approximation spaces for estimating the total
error and its algebraic part; for the early examples we refer, in particular, to Bramble et al. (1990), Xu
(1992), Oswald (1993), Riide (1993a,b), Griebel & Oswald (1995), Becker et al. (1995).

Therefore we focus in this paper on the residual-based a posteriori bound as a basic building block
used elsewhere and investigate its extension for estimating the total error. We do not share the belief
that the matter has been fully resolved, apart from simple technicalities. We describe difficulties that
still remain open and have to be taken into account in various circumstances.

Using, in particular, the papers by Becker & Mao (2009), Carstensen (1999), and Arioli et al. (2013b),
we discuss the subtleties one has to deal with while estimating the total and discretization error using a
residual-based a posteriori error estimator. We show that removing the standard Galerkin orthogonality
assumption, which can not be used in a large scale practical application of the bound, requires a nontrivial
revision of the known estimator. Even for the simple model problem, the derived extension of the bound
contains multiplicative factors that are potentially very large, as shown also in Arioli et al. (2013b), and
that can not be, in general, easily and accurately determined. Moreover, despite the claims published
in literature, there exist no a posteriori estimator for the algebraic part of the error that is cheap, easily
computable and that gives in practice a tight guaranteed upper bound. As pointed out below, a rigorous
a posteriori analysis that incorporates algebraic errors is for realistic problems substantially more difficult
than the analysis that assumes exact algebraic computations.

In Section 2 we set the notation, discuss some methodological questions, and recall several approaches
that use a residual-based a posteriori error estimator as a building block. Section 3 recalls the results
from Carstensen (1999) on quasi-interpolation. Section 4 presents the revision of the upper bound on
the total error from Becker & Mao (2009) and gives its detailed proof that abandons the Galerkin
orthogonality assumption. Section 5 comments on the upper bound on the total error presented in Arioli
et al. (2013b). Numerical illustrations of the difficulties associated with the multiplicative factors are
present in Section 6. Section 7 addresses estimates of the algebraic error and explains misunderstandings
present in literature. The paper is closed by conclusions.

2 Model problem and comments on methodology

We will use the following standard model problem. Let 2 C R? be a polygonal domain (open, bounded
and connected set with a polygonal boundary). We consider the Poisson problem with the homogeneous



Dirichlet boundary condition
findu: Q—>R: —Au=f in €, u=0 on 09, (2.1)

where f : 2 — R is the source term. Hereafter we use the standard notation for the Sobolev spaces. For
D C Q, L*(D) denotes the space of the (Lebesgue) integrable functions in D, L?(D) denotes the space
of the square integrable functions in D, (w,v)p = fD vw denotes the L2-inner product on L?(D), and

lw]lp = (w,w)}j/2 denotes the associated L?-norm. We omit the subscripts for D = Q. H¥(Q2) denotes
the Hilbert space of functions in L?(£2) whose weak derivatives up to the order k belong to L(£2). H}(Q)
denotes the space of functions in H'(£2) with vanishing trace on the boundary 0.

Assuming f € L?(f2), the problem (2.1) can be written in the following weak form

find u € V = Hy(Q) : (Vu, Vo) = (f,v) forallve V. (2.2)

Let 7 be a conforming triangulation of the domain €2, i.e., two distinct and intersecting elements
Ty, Ty € T share a common face, edge or vertex. Let A/ denote the set of all nodes (i.e. the vertices of
the elements of 7) while Ny = M\OQ denotes the set of the free nodes. By & we denote the set of all
edges of the elements of T and, similarly, &,y = £\OQ. For any node z € N, let ¢, be the corresponding
hat-function, i.e., the piecewise linear function that takes value 1 at the node z and vanishes at all other
nodes. By w, we denote the support of ¢, which is equal to the patch w, = U{T € T|z € T}. For an
element T' € T we denote hr = diam(T), similarly h, = diam(w,) denotes the diameter of w,, z € N.
By Vi, € V we denote the space of the continuous piecewise linear functions on the triangulation 7
vanishing on the boundary 99, i.e. Vi, = span{y.|z € Mint}. The discrete formulation of (2.2) then
reads

find up € Vi : (Vuh, V’Uh) = (f7 ’Uh) for all vy, € V}, . (23)

The solution up, of (2.3) is called the Galerkin solution. Subtracting (2.3) from (2.2) and using V3, C V,
we get the Galerkin orthogonality

(V(u —up),Vop) =0 for all v, € V. (2.4)

The difficulty in estimating the discretization error u — u; mentioned above can be formulated as
follows. Consider any estimator EST(-) that provides an upper bound

v = unl|| <EST(un), (2.5)
where ||| - ||| denotes an appropriate norm (for the model problem (2.1) typically the energy norm
[[lw||| = |Vw| = (Vw, Vw)'/?). In order to evaluate the right-hand side of (2.5) we need uy, that is

not available. The common practice is then replacing u;, by the computed approximation ug, giving the
seemingly easy solution
[l — un|| < BST(uf) .

This inequality is, however, not guaranteed to hold without further justification that can be highly
nontrivial or even impossible to achieve. Provided that

EST(up) = inf EST(vp), (2.6)

vp €V

the bound (2.5) does indeed lead to a guaranteed upper bound
[llu — upl|| < EST(vy) for all vy € V4. (2.7

Proving (2.6) can, however, represent a challenge and the authors are unaware of any applicable results
of this kind published in literature. Another option is simply writing

EST(up) = EST(uf)) + (EST(un) — EST (uf))) , (2.8)

or using a variant of this based on a specific form of the estimator. Then the evaluation of the first term
EST(u') does not require any assumptions (it should not be confused with estimating the total error).
Provided that the second term EST (uy,) — EST(u$') could be bounded using the computed quantity S,



the relation (2.8) would give a rigorous bound on the discretization error. This consideration has been
used in combination with heuristics in various approaches.

Before focusing on the residual-based error estimator itself, we recall several ideas from the approaches
combining this estimator with the hierarchy of discretizations. In the prototype paper Becker et al.
(1995), the error u — vy, of any approximation vy, € H}(f2) is expressed® as

IV (u v = (f,u—vn) = (Von, V(u—vp))

=: (r(vp),u — vp)

where r(vy,) € H71(Q) is the associated residual and (-,-) : H=1(Q) x H3(Q) — R represents the
duality pairing. Using the hierarchy of meshes and the associated discrete approximation subspaces
Vo C Vi C--- CVy CHE), the paper considers a multigrid algorithm with the Galerkin projection
property and the operators I, j =0,1,..., L, where

I; - HY(Q) =V, j=0,1,...,L.
A straightforward substitution then gives

(r(vp),u —vp) = (r(vp), (u—vp) — I (u—vp)) (2.9)

L
+ > (r(on), (I; = 1) (u—vn)) (2.10)
1

+ (r(vn), lo(u — vn)) . (2.11)

The first term (2.9) is then bounded using the standard residual-based a posteriori error estimator with
the (non-Galerkin) input quantity v,. The second term (2.10) is bounded using the algebraic residuals
on the individual levels j = L, L —1,...,1. This will bring in nontrivial multiplicative factors analogous
to these presented later in our paper. Finally, the last term (2.11) is assumed to vanish because of the
exact solution of the problem on the coarsest mesh. This assumption is substantial, as demonstrated also
by the numerical experiment in Section 7 of the quoted paper. The authors also suggest heuristics for
stopping criteria in an adaptive algorithm and for approximation of the unknown multiplicative factors.
The derivation does not consider roundoff error.

There is a large amount of work that in principle can be put into the framework of (2.8), where
EST(-) is again the residual-based error estimator and the difference (EST(us) — EST(uf)) that reflects
the algebraic error is estimated using the hierarchy of splittings of the approximation space H}(Q) or of
its appropriate discretization; see, e.g., Bramble et al. (1990), Xu (1992), Oswald (1993), Riide (1993a,b),
Griebel & Oswald (1995), Becker et al. (1995), Harbrecht & Schneider (2016), as well as further references
in (Arioli et al., 2013a, Section 4), (Mélek & Strakos, 2015, Chapter 12).

The instructive paper Stevenson (2007) extends the approach of another remarkable paper Morin
et al. (2002) on convergence of adaptive FEM, where the adaptivity is based on the residual-based
a posteriori error bound on the discretization error. Stevenson’s rigorously presented results account for
inexact algebraic computations, but they show that such extension is indeed highly intriguing. The main
result in Stevenson (2007) relies on the continuity argument, i.e., it assumes that the algebraic solver
deviates from the exact result in a sufficiently small way. For the algebraic solver this paper refers to
the work of Wu & Chen (2006) on uniform convergence of multigrid V-cycle algorithm. The paper Wu
& Chen (2006) assumes exact arithmetic and, in particular, the exact solution of the problem on the
coarsest mesh.

The recalled results underline the importance of understanding the extension of the residual-based
a posteriori error bounds to inexact algebraic computations (non-Galerkin solutions). In (Becker & Mao,
2009, Lemma 3.1) the bound on the total error is given in the form

IV (u—vp)||> < C-EST(vp) + 2|V (un — vn)||?, (2.12)

where C is stated to depend only on the minimal angle of the triangulation 7, and v, € V}, is arbitrary,
i.e., it can account for inexact algebraic computations where v, = u$. Here the first term C - EST(vy,)

IHere we use the notation of our paper and consider the estimate for the energy norm of the error.



represents the first term in (2.8) given by the standard residual-based a posteriori error estimator for the
discretization error (with replacing the Galerkin solution u; by v;). The second term 2|V (up — vp)]|?
does not have the meaning of the second term in (2.8). The proof refers for the case v, = uy, i.e., for
estimating the discretization error, to the paper Carstensen (1999). The proof is completed by arguing,
without detailed explanation, that the general case (2.12) follows via the triangle inequality.

In order to be valid and applicable in practical computations as an upper bound, the total error
estimator of the form (2.12) must resolve two challenges.

1. Tt must rigorously justify using the arbitrary (non-Galerkin) vy, € Vj, in the first term on the
right-hand side of (2.12) and give the necessary information on the value of the factor C.

2. Tt must be proved that in practical computations we can indeed provide a meaningful (i.e. inex-
pensive and tight) upper bound on the norm ||V (uj, — u$)| of the algebraic error.

In the present paper we examine the derivation of (2.12) and prove that an estimator of the analogous
form can indeed be used also for approximations ug that do not solve the discretized problem exactly.
Although the derivation is simple, and in comparison to the standard residual-based a posteriori error
estimator assuming Galerkin orthogonality, the resulting bound seemingly only adds the term bounding
the algebraic error, the whole matter is, in our opinion, not simple. First, as explained below, there
is no proof that the given estimator provides in practice a guaranteed computable upper bound due to
subtleties determining the multiplicative factors and due to effects of roundoff on estimating the algebraic
error. Second, here we consider a simple model problem and point out difficulties that are not technical
but methodological. Tt is not clear at all whether for more complicated problems an extension of the
estimator preserves the same form or even whether an estimator based on the related methodology can
meaningfully incorporate algebraic errors.

3 Quasi-interpolation results

This section presents results from Carstensen (1999) used further in the text. We include them here for
completeness and self-consistency of the text. Denote by ¥ a piecewise linear function taking value 1 at
the inner nodes z € Ny and vanishing on the boundary 09, 1 = Ezej\/;m ©,. Then ¢, /v, z € N,
represents in ) a partition of unity. Indeed, since ¢., z € Nint, sum up to ¢, we have D e Ny P2 /=1
in ; see (Carstensen, 1999, Proposition 2.1). The quasi-interpolation operator Z : L(2) — V, is then
defined in the following way. For a given w € L(£2),

Tw= Z WzPz where w, = M

2€Nint (1’ 902)

The error w — Zw has a vanishing weighted average. Namely, for w, R € L?(f2) and arbitrary numbers
Rz € Ra FAS Mnt 9

/Q Rw-Tw) = Y [ (R-R)w—w.)(p:/0); (3.1)

ZEMnt Q2

see (Carstensen, 1999, Remark 2.4). Since

/ (10— w.th) (9o /i) =0 for all 2 € N,
Q

the numbers R, € R, can be chosen arbitrarily. In particular, R, can be chosen as the mean value of R
on w,. Then fwz |R — R.|? is minimal among all R, € R.

The following lemmas are stated and proved in Carstensen (1999) for a more general case. Considering
the model problem (2.1), we restrict ourselves to the case w € Hg(2). The multiplicative factors in the
lemmas then depend on

I. the shape of w,

I1. the shapes of w.p0 = (W, Uwe | 2 € Nint, & € N\ Ning, w, Nwe # 0),



III. the shape coefficients ([ ¢./|w.| | z € M), where |w.| stands for the Lebesgue measure of w.,

IV. the overlap
M, = max card{¢ € N\Nint | w; Nwe # 0},

V. the shape of the elements T' € T,
VI. the value max,cn h,||V@:||co, where || - ||oo denotes the L>°(Q)-norm and h, = diam(w,),

VII. the value
My = esssup{h(x)/hr |2 €T €T},
zeN

where h(z) = max{h, | ¢.(x) >0,z € M}, hy = diam(T) .

The proofs of the lemmas use the Poincaré inequality on w, and the Friedrichs inequality on w, g0 defined
in IT. In order to prove Lemma 3.2, the so-called trace theorem (see, e.g., (Carstensen, 1999, Proposition
4.1)) is used on each element of the triangulation T € T; the multiplicative factor then depends on the
shape of the elements; see V. The quantities max,ca b, ||V@.|lco and Mz (see VI. and VIL.) are of the
order one on a shape-regular mesh, where |Vo,|r|e = h;l and h, ~ hp,T € w,. They deteriorate
on a mesh consisting of triangles with small inner angles, where small and large elements (in the sense
of their diameter) adjoint. In order to see the development of the argument, for clarity we present the
following two lemmas.

Lemma 3.1 (see (Carstensen, 1999, Theorem 3.1, statement 1.)). There exists a multiplicative factor
C > 0 depending on the triangulation T (more precisely on I.—IV.), but not on the size of the elements
hr, such that, for all R € L?(Y), for all w € HE(Q) and for arbitrary numbers R, € R, z € Niy ,

1/2
/QR(wIw)SCIV’wII{ > hﬁ/ ©: /Y IRRZQ} :

ZeMnt
Lemma 3.1 is a consequence of the definition of the quasi-interpolation operator Z; see (3.1).

Lemma 3.2 (see (Carstensen, 1999, Theorem 3.2)). Let S C €. There exists a multiplicative factor
C > 0 depending on the triangulation T (more precisely on I.-VII.), but not on the size of the elements
hr, such that for all J € L?(S) and for all w € H} (),

1/2
/sJ(w —Iw) < C||Vu|| (Z hTJ||25maT> .

TeT

Combining Lemmas 3.1 and 3.2 we get the final inequality.

Lemma 3.3 (see (Carstensen, 1999, Corollary 3.1)). Let S C €. There exists a multiplicative factor
C1 > 0 depending on I.-VII. such that, for all J € L*(S), for all R € L*(2), for all w € H}(Q), and
for arbitrary numbers R, € R, z € Ny,

/QR(wfIw)wL/J(wfIw)

S
1/2
<cl||Vw||{ > RR-R.Z. + ZhTHJ%maT} :
2ENint TeT

The following lemma introduces a positive multiplicative factor Cin, that plays a key role in our dis-
cussion on incorporating the algebraic error into the a posteriori bound on the total error; see Section 4
and the numerical experiments in Section 6.

Lemma 3.4 (see (Carstensen, 1999, Theorem 3.1, statement 3.)). There exists a multiplicative factor
Cintp > 0 depending on the triangulation T (more precisely on I.-IV. and VI.) such that,
for all w € H}(Q),

IVIw]| < Cinep [ V] - (3.2)



Remark 3.1. The factor Cinp satisfies

[VZuwl|

weni(@) IV

< C1intp .

Obtaining a value of Cin, such that the above inequality is tight represents a nontrivial issue. Using
the proof of (Carstensen, 2006, Theorem 2.4) and the discussion in (Carstensen, 2006, Example 2.3), we
can get a better idea about the size of Cinp. For a shape-regular mesh with max.en h. ||V, | s = 2
(see VI.), there holds Cintp =~ 6. In general, as stated in Carstensen (2006), it may be very large for
small angles in the triangulation.

For f € L'(2) define the mean-value operator 7, (f) = fwz f/lw.|. We denote, for 2 € A and for
any subset Z C N,

1/2
osc; = |w. 2| f — T, fllu. » osc(Z) = (Z OSC§> ,

measuring the oscillations of f, i.e. the variations of the function f from the mean value m,_f on the
subdomains w,. Given v, € V},, define for F € &,y and any subset F' C & the edge residuals

9 1/2
v,
|:(9771E:| 9 vha (Z JE Uh ) 9

EEF
where [-] denotes the jump of a piecewise continuous function and ng denotes the unit normal to F
(for each E € & the orientation of the unit normal is set arbitrarily but fixed). The edge residual
JE(vr), vy, € Vi, measures the jump of the piecewise constant gradient Vuy, over the inner edge E. We
set for brevity osc = osc(N) and J(vp,) = J(vp, Eing). For a given vy, € Vj, we define the jump function
J (vn) € L*(Eint) on the inner edges

T (vn) = |B|'/?

E

8Uh

8TLE

I (vn)le = [ ] , Eeéin. (3.3)

The Green’s formula (see, e.g., (Ciarlet, 2002, p. 14)) gives for a domain D with a Lipschitz continuous
boundary dD and for v € H?(D), w € HY(D)

/Vv.Vw:—/Avw+/ < ov )w, (3.4)
D D ap \Onap

where ngp denotes the unit normal to dD pointing outwards. Let vy, € Vj, and T € T. Then vp|7 is
a linear function, vy |r € H?(T) and Awvp|r = 0. Then, applying the Green’s formula (3.4) elementwise
yields, for any v, € Vi, w € H (),

_ _ 8vh
/QVvh.Vw = Z/TVvh-Vw— < /Avhw+/(9T<an8T>w>

/ T (vp) (3.5)

ult

The results recalled in this section are used to prove the upper bound on the total error in the next
section.

4 Upper bound on the total error

Now we state the upper bound on the energy norm of the total error using the residual-based a posteriori
error estimator.



Theorem 4.1. There exist triangulation-dependent positive multiplicative factors C, Cinp, and Co such
that for the solution u of (2.2), the Galerkin solution up of (2.3), and an arbitrary vy, € Vy,

IV (u—wn)lI* <2CF C3 (J*(vn) + 05¢?) + 2 Cyp IV (un, — vn) 1. (4.1)

In particular, C1 depends on I.-VII. (see Lemma 3.3), Cingp depends on I.-IV. and VI. (see Lemma 3.4),
and the factor Cy depends on the ratios h?/|w.|, z € Nin, and hr/|E|, T € T, E € 0T N &y -

Proof. We will use the standard expression for the norm

1
IV(u—va)l| =  sup 7/ V(u— ) - V. (4.2)
orweri(@) IVl Jo

Let vy, € V), and w € H}(Q), w # 0, be arbitrary,

/QV(u—vh)-Vw = /QV(u—vh)-V(w—Iw)—i—/ﬂV(u—vh)-VIw

/QV(u—vh)-V(w—Iw)—i—/QV(u—uh)-VIw
+/9V(uh—vh)~VIw.

It follows from the definition of the interpolation operator that Zw € V},. The Galerkin orthogonality (2.4)
gives

/V(ufuh)~VIw =0.
Q

Then

V(u—wp) -V(w—Zw)+ [ V(up —vp) - VIw
Q Q

= /Vu-V(w—Iw)— Vo - V(w — Tw)
Q Q

/QV(u—vh)-Vw

+/ V(up —vp) - VIw.
Q

Using the weak formulation (2.2) and the equality (3.5),
/ V(u—wp) - Vw = / flw—Tw) — / J (vp)(w — Tw) —|—/ V(up —vp) - VIw.
Q Q Eint Q

Then Lemma 3.3 with S =&y, R=f, R, = 7. f, 2 € Nint, J = —T (vp) gives

N

A

/va—vm-w < aleH{Z ho |l T i)l nor + Y h?lf—mszIiz}

TeT 2€Ning

+/ V(up —vp) - VZw
Q

(SIS

IN

C102||Vw||{ Yo IENT @l + Iwzlllfmzfllf,z}

Ec&in 2E€Nint

+/ V(up —vp) - VIw

Q

= 10|V (JQ(vh)+osc2)1/2+/ V(up —vp) - VIw.
Q

Using the Cauchy-Schwarz inequality,

/ V(= vp) - Vo < C1Ca| V|| (J2(vn) + 0s¢?)"® 4 |V Tw|| |V (un — v)]| - (4.3)
Q



Dividing (4.3) by ||Vw|| and using Lemma 3.4,

1 172 ||VZIw||
Lt N < 2 2 _
Vol /QV(u vp) -V < C1Cy (J?(vp) +osc®) 7+ Vul IV (up, — vp)||
< C1Cy (J*(on) + osc2)1/2 + Cintp ||V (ur, —vp)|| -

Using the representation (4.2) of the energy norm, recall that w € H{ () was chosen arbitrarily,

IV (w = o) | < C1LCo (T2 (0n) + 03¢%) " 4 Cru |V (ur, — vn)]. (4.4)

Finally, we deduce (4.1) using the inequality (a + b)? < 2a? + 2b°. O

The multiplicative factor Cintp is independent of the solution u € Hj of (2.2) 2 and of its approxi-
mation v, € V. We will now give another bound on the total error that will contain information about
the exact solution w of (2.2). It is useful for illustration of the role of the factor Cinyp in (4.1). Setting
w=u—uv, €H Q) in (4.3), we get

IV (u— o) [|> < CLCa[|V (1 — wp) | (% (vn) + 05¢2) > + |V (Tu = Ton) || |V (un — va)]|.

Dividing both sides by ||V (u — vp)]|| gives

IV (u— op)|| < C1Ca (J2(vp) + 0sc®) 2 + w IV (un = vn)]l, (4.5)
which is formulated as the following corollary.
Corollary 4.1. Using the notation of Theorem 4.1,
IV (u—op)[* < 2CF CF (J(0n) + 05¢*) + 2 Cig, (1w, v) |V (un — o)1, (4.6)
where
Cintp (1, V) = W < Ciup (4.7)

Since Cintp is independent of u € H} (independent of the source term f) and of v, € Vj,, we must

have (T 7
sup sup ||(u——vh)|| < Cintp - (4.8)
u€H}, u solves (2.2), fEL2(QY) vr€Vh HV(U - Uh)”

Therefore Cinyp, represents a worst-case scenario factor and one may expect that most likely

C'intp (ua 'Uh) < Cintp .

5 A related result

In Arioli et al. (2013b) the authors consider elliptic self-adjoint problems and they use a residual-based
error estimator for setting the stopping criterion for the conjugate gradient method (CG). Following their
approach, one can easily get a theoretical upper bound on the total error. Although the bound is not
stated explicitly in Arioli et al. (2013b), it appears in the proof of Theorem 3.3; see the inequality (Arioli
et al., 2013b, (3.22)). The derivation proceeds differently from the proof of the bound (4.1); it again
demonstrates that the price to be paid for removing the assumption on exact algebraic computations in
terms of including unknown and possibly large multiplicative factors can be high. Moreover, in contrast
to the statements in Arioli et al. (2013b), the resulting estimator cannot be considered a guaranteed
practical upper bound due to the difficulties in estimating the algebraic part of the error; see Section 7
below.

2In the setting of this paper it means independent of the source term f € L?(Q).



First, (Arioli et al., 2013b, Theorem 2.2) recalls the bound on the discretization error: there exists
a multiplicative factor Cy5 > 0 that is dependent on the minimal angle of the triangulation 7 but
independent of h, u, and uy, such that

1/2
IV(u—up)|? < Coon(un),  n(un) = (Z T f + Aunl7 + (J(Uh))2> ; (5.1)
TeT

see, e.g., (Verfiirth, 1996, Section 1.2) and (Ainsworth & Oden, 2000, Section 2.2). Using inverse estimates
for piecewise polynomial functions and Young’s inequality, (Arioli et al., 2013b, Lemma 3.1) yields the
inequality

n2(wh) <(1+4+7) nz(vh) +C5.1(1 —|—’y*1)||V(vh - wh)||2 ,  for all wp, v, € Vi, v >0,

where the positive factor Cs; depends on the minimal angle of the triangulation 7. Combining these
bounds and the equality

IV (w = on)1* = 1V (u = un) |* + |V (u, — vn)|®
that follows from the Galerkin orthogonality (2.4), we get the upper bound on the total error

IV (u = o) Coz 17 (un) + [V (ur, — vn)|®

<
< Coa(L4+7) 77 (vn) + (1 + ConCsa (L+471) [IV(un — vp)?

Finally, by setting v =1,
IV (u = wn)lI* < 2C22m%(vn) + (1 +2Ca.2 C30) [V (un — vn) || - (5:2)

Comparing (5.1) with (5.2) we see that replacing the Galerkin solution uj, by an arbitrary vy, € V3
results in the additional term ||V (up — vy)||?, which is, however, multiplied by an unknown and poten-
tially very large multiplicative factor (1 + 2Cs5 Cs5.1). In the criteria proposed in (Arioli et al., 2013b,
Section 5) for numerical experiments the factors are empirically set to Cao = 40, Cs1 = 10, giving
(14+2C52C571)=2801; cf. (2.12). This nicely underlines the subtleties of the residual-based bounds
discussed above. In addition, as mentioned above and explained in detail in Section 7 below, getting a
tight practical upper bound on ||V (up — vp)||? represents an unresolved challenge.

6 Numerical illustrations

We use, on purpose, very simple problems to illustrate the possible difference in the values of C~'intp(u, vp)
and Cinep . While E'intp(m vp) can be, assuming the knowledge of the exact solution u, evaluated up to
a negligible quadrature error, for the factor Cin, we present a lower bound given by plugging a chosen
function into (3.2). The derivation of a more accurate estimate for Ciy, (see also the discussion in
Remark 3.1) is beyond the scope of this paper.

6.1 Numerical illustration in one dimension

We first consider a one-dimensional analogue of the Clément-type quasi-interpolation operator Z to
illustrate that Cinp can be significantly larger than one.
Consider the domain 2 = (0, 1) with the (non-uniform) partition

0,8, 8,23+ 8,1-p,1]; B =001
This partition is adapted to the 1D Laplace problem with the solution

u(z) = tan"'(cx) —tan"!(c(x — 1/3)) 4+ tan~ ! (c(z — 2/3)) (6.1)
—tan"!(c(z — 1)) — tan~'(¢/3) + tan~1(2¢/3) — tan~"!(c),
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with ¢ = 1000. The left part of Figure 1 depicts the solution v and the Clément-type quasi-interpolant
Zu. For a zero approximate vector, we have
[(Zu)'|

[/l

Chntp (1, 0) = = 0.77. (6.2)

For a quadratic function w(x) = (1 — ), w € Hg (), we have

I !/
1@l _ 7,
ol

see the right part of Figure 1 for the plot of the function w and the interpolant Zw. Consequently,
Cintp > 3.70.

1 0.2

0.5
0.15¢
0
0.1~

-0.5¢

1t 1 0.05
-15¢ of

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 1: Left: the solution w (6.1) (solid line) and the interpolant Zu (dotted line). Right: the function
w(z) = 2(1 — x) (solid line) and Zw (dotted line).

6.2 Two-dimensional numerical illustration

For two-dimensional numerical illustration we consider the square domain = (—1,1) x (—1,1) and the
triangulation 7~ generated by MATLAB? command initmesh(’squareg’, ’Hmax’, 0.1) that provides
a Delaunay triangulation consisting of 1368 elements with the maximal diameter less than or equal to
0.1. The minimal angle of the mesh is 35.9° and the average of the minimal angles of the elements is
50.3°.

Consider the solution of problem (2.1):

uWD(z,y)=(@—1)(z+1)(y—Dy+1). (6.3)

1)
h

For the zero approximate solution and the Galerkin solution u, ’ corresponding to u(!), we have

Contp(u,0) =1.02,  Ciep(u™,ul”) = 0.16.
Similarly, for the exact solution
u? (2, y) = (x = 1)(z +1)(y — 1)(y + 1) exp(=100(z* + ¢°)) , (6.4)

we have N N
Cintp(u®,0) = 0.76,  Cingp(u®,uf’)) = 0.28.

In Figure 2 we show the values of éimp (u(j ), vy) for vy, generated in CG iterations with zero initial vector
for solving the linear algebraic systems corresponding to the discretization of (2.2) with the solutions
u®, 4@ defined above.

3using the Partial Differential Equation Toolbox
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1.2 : : : : :

solution u

—==solution u®

0 5 10 15 20 25 30
CG iteration

Figure 2: The values of éimp(u(f ), vp,) for vy, generated in conjugate gradient iterations with zero initial
vector for solving the linear algebraic systems corresponding to the discretization of (2.2) with the
solutions u™™, u(?; see (6.3) and (6.4) respectively.

To bound the constant Cinep, from below we consider wy, € Vj, such that

wp(z) =1, 2z € N, wp =0 on 0N. (6.5)
For this function IV Zwn|
wp,
1.10 = —+ < Cinip -
[Vwn|| ’

Figure 3 gives the difference wy, —Zwy, . This is a piecewise linear function that is on the machine precision
level in most of the domain except patches around the inner nodes adjacent to the boundary 9€2. We
recall that for this simple problem and a shape-regular mesh Ciyp = 6; see Remark 3.1 and the original

paper Carstensen (2006). It can therefore indeed hold Cinep > CN'mtp(u, vp).

1 0
-0.02
0.5
-0.04
0 -0.06
10.08
05
0.1
-1
1 05 0 0.5 1

Figure 3: The difference w;, — Zwy, for wy, given by (6.5).
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7 Algebraic error estimates

Various published papers that include algebraic errors in a posteriori error analysis consider precondi-
tioned iterative methods (such as the conjugate gradient method) for solving the associate symmetric
positive definite algebraic problem. Estimating the algebraic error ||V (uy, —u$)|| is then often considered
to be resolved, apart from some seemingly technical issues such as the choice of a number of extra CG
iterations or the approximation of the smallest eigenvalue of the system matrix; see, e.g., (Arioli et al.,
2013b, Section 4), where the presented Gauss—Radau quadrature-based bound is considered “the only
guaranteed upper bound for the A-norm of the CG error.” Here we present mathematical arguments
that challenge this opinion. In short, as above, theoretical results with assumptions that do not hold
in practical computations can not be applied without an appropriate theoretical justification, here the
numerical stability analysis. In practice the Gauss—Radau quadrature-based estimate does not give, in
general, a guaranteed and tight upper bound.

The Gauss—Radau quadrature requires an approximation of the smallest eigenvalue of the system
matrix from below. A close approximation to the smallest eigenvalue from above can be in theory ob-
tained in the process of (exact arithmetic) CG computations. A closer investigation reveals, however, a
serious difficulty. If the approximation to the smallest eigenvalue is not accurate enough, the estimate for
the norm of the algebraic error can be inaccurate. If, on the other hand, the eigenvalue approximation
approaches the smallest eigenvalue, then the computation of the Gauss—Radau estimator must be cau-
tiously done in a numerically stable way since it (implicitly) inverts a matrix that becomes in such case
close to numerically singular. Moreover, if a second approximation of the smallest eigenvalue is formed
due to loss of linear independence of the computed vectors generating the associated Krylov subspaces,
then the Gauss—Radau quadrature estimates exhibit instabilities that are not yet understood. We can
see again the generally valid principle: In evaluation of a posteriori error estimates all sources of errors,
including roundoff, must be taken into consideration. This is also illustrated by the following point,
which is valid even if the difficulty with a tight approximation of the smallest eigenvalue from below is
resolved. In numerical computations we can not guarantee that Gauss-Radau quadrature estimates give
an upper bound due to effects of roundoff errors to the underlying short recurrences in CG computations.
This is a principal issue as explained next.

Due to the loss of orthogonality caused by roundoff errors, the formulas that express the error norms
in CG iterations under the assumption of exact arithmetic and, consequently, orthogonality among
the computed basis vectors are no longer valid. In practical computations we do not have orthogonal
bases nor we have Krylov subspaces in the strict mathematical meaning. Unless the problem is really
computationally simple (as in the Poisson model problem)?*, orthogonality and also linear independence
among the vectors computed using short recurrences is, in general, rather quickly lost and convergence
of the computed iterations is substantially delayed. In terms of the computed Jacobi matrices that are
substantial in the derivation of the Gauss—Radau quadrature bounds, their entries will quickly become
far away (orders of magnitude) from their theoretical counterparts. Recent description of the related
issues can be found in the paper Gergelits & Strakos (2014) with the references to many earlier papers;
see, e.g., Paige (1980), Greenbaum (1989), Strakos (1991), Greenbaum & Strakos (1992), Notay (1993),
Strako$ & Tichy (2002), Strakos & Tichy (2005), Meurant & Strakos (2006), O’Leary et al. (2007). The
matter has been comprehensively discussed already in the survey paper Strakos & Liesen (2005) and it
is also covered in the recent monograph (Liesen & Strakos, 2013, Section 5.9).

In summary, the following principal question is omitted in works assuming exact arithmetic: Con-
sidering the effects of roundoff recalled above, how do we know that the formulas derived under the
assumptions that are so drastically violated give anything meaningful in practical computations? This
fundamental issue can not be resolved by heuristic arguments; it requires thorough analysis.

The question on the effects of roundoff errors to error estimation in iterative methods such as CG has
already been raised in the seminal paper Dahlquist et al. (1979). It has been investigated in Section 5
(called “Rounding error analysis”) of the paper Golub & Strakos (1994), and again very thoroughly (in
the context of different estimates) in the paper Strakos & Tichy (2002) with the title “On error estimation
in the conjugate gradient method and why it works in finite precision computations”; see also the survey

4Simple model problems can not be used for verification of computational efficiency and numerical behaviour of methods
and algorithms. Extrapolation of the results observed on simple model problems to difficult practical problems can lead to
false conclusions, because some phenomena (such as significant loss of orthogonality and delay of convergence in CG) are
on model problems (such as the Poisson boundary value problem) simply not observable.
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paper Meurant & Strakos (2006). This underlines the point.

Without thorough rounding error analysis, we may say that we have observed some behaviour on
some examples, and nothing more. With thorough rounding error analysis, we can explain why and under
which conditions some estimates work and prove them numerically safe. Perhaps even more important,
we can prove that other (mathematically equivalent) estimates can behave in a numerically unstable way
and they should not be used. Estimates that has been proved numerically unstable (see, e.g., Strakos &
Tichy (2002)) are unfortunately indeed frequently used in practice. The facts presented, e.g., in (Golub
& Strakos, 1994, Section 5), (Strakos & Tichy, 2002, Section 7), (Meurant, 2006, Chapter 7), (Meurant
& Strakos, 2006, Section 5), O’Leary et al. (2007), and (Liesen & Strakos, 2013, Section 5.9) show that
without a thorough and rigorous analysis, application of the error bounds, derived under the assumption
of exact computation, to the results of finite precision computations, is not only methodologically wrong
but it can indeed lead to false conclusions.

A partial theoretical justification of the Gauss and Gauss—Radau quadrature estimates is provided
(based on the earlier works of Paige, Greenbaum and others) in Section 5 of the paper Golub & Strakos
(1994). In short, justification of the quadrature-based bounds must be based on the Riemann—Stieltjes
integration using the distribution function with possibly many more points of increase than the original
distribution function determined by the data of the problem; see also the associated arguments in the
paper O’Leary et al. (2007) on sensitivity of the Gauss quadrature. The paper Golub & Strakos (1994)
mentioned above justifies using Gauss and Gauss—Radau quadrature estimates in finite precision compu-
tations (with limitations specified in the paper). The estimates based on the Gauss-Radau quadrature
can be useful but they can not be proved to give a tight guaranteed upper bound on the error norms.

Summarizing, accurate and computationally efficient estimation of the algebraic error ||V (uj, — uf)||
still represents a challenge. This challenge is not resolved by deriving estimators assuming exact compu-
tations and then plugging in the computed quantities. The fact that some estimators can be used in the
same form for input entries computed using finite precision arithmetic is not at all obvious and it can
not be guessed a priori by any heuristics. This fact can only result from a rigorous analysis that is (in
these cases) highly nontrivial.

8 Conclusion

The presented paper investigates changes in derivation and application of the standard residual-based
a posteriori error bound on the discretization error needed in order to get an estimator (not necessarily
a practically applicable guaranteed upper bound) for the total error. Technically, this paper provides a
detailed proof of the residual-based upper bound on the total approximation error that requires knowledge
of the associated multiplicative factors. As published previously in Becker & Mao (2009) and Arioli
et al. (2013b), abandoning the Galerkin orthogonality assumption in the derivation leads naturally to an
additional term accounting for the algebraic part of the error.

We show that the contribution of the algebraic error is scaled by a nontrivial multiplicative factor;
see (4.1) and (4.5)—(4.7). This multiplicative factor Cinp(u,vs) depends, besides the computed ap-
proximation vy, also on the unknown infinite-dimensional solution w of (2.2). Therefore it is generally
uncomputable. It can be bounded, using the a prior: information, by the factor Cinp independent of u
and vy, given by (3.2). The value of Ciyyp can therefore overestimate the value of éintp(w vy ). Moreover,
as another substantial point, a guaranteed computationally efficient upper bound on the algebraic part
of the error that provides, in general, sufficiently tight results is not available.

The main message of this paper does not concern technical details about multiplicative factors in the
residual-type a posteriori error estimators for the total error developed for the given model problem. It
shows that handling inexact algebraic computations still needs, despite many remarkable results, further
work. In practical computations we can not avoid using various heuristics. This paper supports using
heuristics (they are used in many papers coauthored by the authors of this paper). It points out, however,
a need for supporting analysis. It shows that even for the simple model problem and the standard residual-
based a posteriori error estimator the matter is not easy and the unresolved questions can be practically
important. As, e.g., numerically illustrated in (Papez, 2016, Section 4.2) and as mentioned in the
Introduction, application of the residual-based error estimator for the mesh refinement adaptivity remains
in the presence of algebraic errors an open problem. When the standard estimator for the discretization
error is evaluated using computed quantities, there is no guaranty that its local contributions provide a
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meaningful indication of the spatial distribution of the discretization error over the domain. The matter
is practically very important because it can affect efficiency of h-adaptive computations. Extrapolation
of the observations obtained for simple model problems can not be considered the final and generally
valid justification. The fact that in (4.1) and (4.6) the algebraic error is estimated globally, and the
multiplicative factors Cingp and éintp(u, vp,) are not easy to estimate, suggests that the matter is intriguing
and it requires further work.

This paper can not survey the previously published and recently developed results towards robust
stopping criteria that balance the algebraic and discretization error. This is addressed, e.g., in the
works using the hierarchy of subspace splittings recalled in Section 2 (see also Huber et al. (2017)) or
in (Arioli et al., 2013a, Section 4), Jirdnek et al. (2010), Papez et al. (2014), (Carstensen et al., 2014,
Section 7.1), and Papez et al. (2016). In Papez et al. (2016) it is shown, using the methodology based
on flux reconstruction, that such stopping criteria could indeed be constructed and rigorously supported
by analysis. It also shows, however, that in practical applications there is a substantial computational
cost to be paid, and this cost can even become in some cases excessive. There is still a work to be done.
As shown at the example of the residual-based a posteriori error estimator in the presented paper, such
work should go hand in hand with analysis. Practical importance of Theorem 4.1 is not in application
of the bound (4.1). It is in the warning that such application can be difficult and unjustified heuristics
can be misleading. In particular, any use of the adjective “guaranteed” should carefully examine the
assumptions under which this adjective holds in practice.

Acknowledgement: The authors are grateful to David Silvester, Endre Siili and an anonymous referee
for valuable comments, which improved the text.
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