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EXISTENCE OF GLOBAL WEAK SOLUTIONS TO
IMPLICITLY CONSTITUTED KINETIC MODELS OF

INCOMPRESSIBLE HOMOGENEOUS DILUTE POLYMERS

MIROSLAV BULÍČEK, JOSEF MÁLEK, AND ENDRE SÜLI

Abstract. We show the existence of global weak solutions to a general class of kinetic
models of homogeneous incompressible dilute polymers. The main new feature of the
model is the presence of a general implicit constitutive equation relating the viscous part
SSSv of the Cauchy stress and the symmetric part DDD of the velocity gradient. We consider
implicit relations that generate maximal monotone (possibly multivalued) graphs, and
the corresponding rate of dissipation is characterized by the sum of a Young function
and its conjugate depending on DDD and SSSv, respectively. Such a framework is very gen-
eral and includes, among others, classical power-law fluids, stress power-law fluids, fluids
with activation criteria of Bingham or Herschel–Bulkley type, and shear-rate dependent
fluids with discontinuous viscosities as special cases. The appearance of SSSv and DDD in all
the assumptions characterizing the implicit relationship GGG(SSSv,DDD) = 0 is fully symmetric.
The elastic properties of the flow, characterizing the response of polymer macromolecules
in the viscous solvent, are modelled by the elastic part SSSe of the Cauchy stress tensor,
whose divergence appears on the right-hand side of the momentum equation, and which
is defined by the Kramers expression involving the probability density function, associ-
ated with the random motion of the polymer molecules in the solvent. The probability
density function satisfies a Fokker–Planck equation, which is nonlinearly coupled to the
momentum equation. We establish long-time and large-data existence of weak solutions
to such a system, completed by an initial condition and either a no-slip or Navier’s slip
boundary condition, by using properties of maximal monotone operators and Lipschitz
approximations of Sobolev-space-valued Bochner functions via a weak compactness argu-
ments based on the Div-Curl Lemma and Chacon’s Biting Lemma. A key ingredient in
the proof is the strong compactness in L1 of the sequence of Galerkin approximations to
the probability density function and of the associated sequence of approximations to the
elastic part SSSe of the Cauchy stress tensor.

2000 Mathematics Subject Classification. AMS subject classifications. 35D05, 35Q35, 46E30, 76D03,
76Z99.

Key words and phrases. Viscoelastic fluids, non-Newtonian fluids, implicit constitutive theory, kinetic
theory, unsteady flow, weak solution, long-time and large-data existence, maximal monotone graph, Lips-
chitz approximation of Bochner functions.
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1. Introduction

Let Ω ⊂ Rd, d = 2, 3, be a bounded open Lipschitz domain, let T denote the length of the
time interval of interest and let Q := Ω× (0, T ) signify the associated space-time domain.
We consider the following system of nonlinear partial differential equations, modelling the
motion of an incompressible homogeneous fluid:

ρ (v,t + div(v ⊗ v))− divTTT = ρf in Q,(1.1)

div v = 0 in Q,(1.2)

subject to the initial condition

v(·, 0) = v0(·) in Ω,(1.3)

and the boundary conditions

v · n = 0 on ∂Ω× (0, T ),(1.4)

λ(TTTn)τ + (1− λ)γ∗vτ = 0 on ∂Ω× (0, T ).(1.5)

In the equations (1.1)–(1.2), v : Q→ Rd is the velocity of the fluid, TTT : Q→ Rd×d denotes
the Cauchy stress, f : Q→ Rd is the density of external body forces, and ρ is the density of
the fluid, which we assume here to be constant. We note in connection with the boundary
conditions (1.4)–(1.5) that we shall only consider internal flows here, i.e., the equation
(1.4) will be assumed to hold, where n = n(x) denotes the outer unit normal vector at
a point x ∈ ∂Ω. For the tangential part vτ of the velocity vector v (where the symbol
wτ (x) denotes the projection of w(x) on the tangent plane to the boundary at x ∈ ∂Ω,
i.e., wτ := w − (w · n)n), we assume that the fluid either slips along ∂Ω (when λ = 1 in
(1.5)) or partially slips (when λ ∈ (0, 1), and then the condition (1.5) is called the Navier
slip boundary condition), or it adheres to the boundary (when λ = 0), in which case (1.5)
represents the standard no-slip boundary condition v = 0 on ∂Ω × (0, T ). The positive
constant γ∗ denotes a friction coefficient whose actual value is of no significance for the
discussion that will follow, and we therefore set it to 1; we follow the same convention for
the fluid density ρ, which we also set to 1 in the sequel.

To complete the system (1.1)–(1.5), we need to state the constitutive equation for the
Cauchy stress TTT. In what follows we assume that the Cauchy stress is decomposed as

(1.6) TTT = −p III + SSSv + SSSe,

where SSSv : Q→ Rd×d
sym represents the viscous part of the stress, SSSe : Q→ Rd×d

sym corresponds
to the elastic part of the stress and p : Q→ R is the pressure. The viscous part SSSv of the
Cauchy stress TTT and the symmetric part of the velocity gradient DDD(v) := 1

2
(∇v + (∇v)T)

will be assumed to be related through a maximal monotone graph (cf. below for details)
described by an implicit relation of the form

(1.7) GGG(SSSv,DDD(v)) = 0,

where GGG : Rd×d
sym × Rd×d

sym → Rd×d
sym is a continuous mapping. The class of fluids described by

(1.7) is very general and includes not only Newtonian (Navier–Stokes) fluids (SSS = 2µ∗DDD(v)
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with µ∗ being a positive constant), but also standard power-law fluid models, where SSSv =
2µ∗|DDD(v)|r−2DDD(v), 1 ≤ r < ∞, and their generalizations (SSSv = 2µ̃(|DDD(v)|2)DDD(v)), stress
power-law fluid flow models and their generalizations of the form DDD(v) = α(|SSSv|2)SSSv, fluids
with the viscosity depending on the shear rate and the shear stress

SSSv = 2µ̂(|DDD(v)|2, |SSSv|2)DDD(v),

as well as activated fluids, such as Bingham and Herschel–Bulkley fluids, characterized via
the equation1

2ν(|DDD|2)
(
τ∗ + (|SSS| − τ∗)+

)
DDD = (|SSS| − τ∗)+ SSS,

where τ∗ > 0 and x+ = max{x, 0}. For further details concerning the physical background
of the implicit constitutive theory we refer the reader to the papers by Rajagopal [35, 36]
and Rajagopal & Srinivasa [37], and the introductory parts of Buĺıček, Gwiazda, Málek &

Świerczewska-Gwiazda [11, 15] and Buĺıček, Gwiazda, Málek, Rajagopal & Świerczewska-
Gwiazda [14].

Dilute polymers can be viewed as mixtures of some base liquid (the solvent) and poly-
mer macromolecules flowing in it. This is reflected here in the form of the equation for the
Cauchy stress, see (1.6), which is, similarly as in a Kelvin–Voigt model, the sum of two
parts of the stress: one corresponding to the elastic response and the other corresponding
to the fluid response (plus a spherical stress, reflecting the fact that the fluid is incompress-
ible). Usually the liquid is considered to be a Newtonian (Navier–Stokes) fluid. There are
however many liquids that shear-thin or shear-thicken, or they may change their properties
dramatically once a certain critical value of the stress (or the shear rate) is reached. Such
a behavior can be conveniently described within the class of implicitly constituted fluids
characterized by the constitutive equation (1.7).

Finally, we state the constitutive relation for the elastic part SSSe of the Cauchy stress
tensor TTT. In a bead-spring chain model for dilute polymers, consisting of K + 1 beads
coupled with K elastic springs to represent a polymer chain, the elastic extra-stress tensor
SSSe is defined by the Kramers expression as a weighted average of ψ, the probability density
function of the (random) conformation q := (q1, . . . , qK) ∈ Rd×K of the chain (see eq.
(1.11) below), with the (column) vector qj := (qj1, . . . , q

j
d)

T representing the d-component
conformation/orientation vector of the jth spring in the bead-spring chain. For ease of
exposition, superscripts throughout the paper are related to the number of springs (i.e.,
the number of configuration space dimensions) and can attain the values 1, . . . , K, while
subscripts are generally related to the number of physical space dimensions d, so they can
attain the values 1, . . . , d.

The Kolmogorov equation satisfied by ψ is a second-order parabolic equation, the Fokker–
Planck equation (see eq. (1.13) below), whose transport coefficients depend on the velocity

1A usual description of fluids of Bingham or Herschel–Bulkley type reads as follows (see, for example,
the monograph of Duvaut & Lions [21]):

|SSS| ≤ τ∗ ⇔ DDD = 0 and |SSS| > τ∗ ⇔ SSS =
τ∗DDD

|DDD|
+ 2ν(|DDD|2)DDD.
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field v. The domain D of admissible conformation vectors D ⊂ Rd×K ∼= RKd is a K-fold
Cartesian product D1 × · · · × DK of balanced convex open sets Dj ⊂ Rd, j = 1, . . . , K;
the term balanced means that qj ∈ Dj if, and only if, −qj ∈ Dj. Hence, in particular,
0 ∈ Dj, j = 1, . . . , K. Typically Dj is the whole of Rd or a bounded open d-dimensional
ball centred at the origin 0 ∈ Rd for each j = 1, . . . , K. When K = 1, the model is referred
to as the dumbbell model.

Let Ij ⊂ [0,∞) denote the image of Dj under the mapping qj ∈ Dj 7→ 1
2
|qj|2, and

consider the spring potential U j ∈ C0,1
loc (I

j;R≥0), j = 1, . . . , K. Clearly, 0 ∈ Ij. Typically,
U j(0) = 0 and U j is monotonic increasing and unbounded on Ij for each j = 1, . . . , K;
however, we do not explicitly require these properties in our analysis. The elastic spring-
force FFFj : Dj ⊆ Rd → Rd of the jth spring in the chain is defined by

(1.8) FFFj(qj) = (U j)′(1
2
|qj|2) qj, j = 1, . . . , K.

Example 1.1. In the Hookean dumbbell model K = 1, and the spring force is defined
by FFF(q) = q, with q ∈ D = Rd, corresponding to U(s) = s, s ∈ I = [0,∞). This model
is physically unrealistic as it admits an arbitrarily large extension of the spring modelling
the polymer molecule. �

We shall therefore assume in what follows that D is a Cartesian product of K bounded
open balls Dj ⊂ Rd, each centred at the origin 0 ∈ Rd, j = 1, . . . , K, with K ≥ 1. We
define the (normalized) Maxwellian M j with respect to the variable qj by

M j(qj) =
1

Zj
e−U

j( 1
2
|qj |2), Zj :=

∫
Dj

e−U
j( 1

2
|qj |2) dqj,

where dqj := dqj1 · · · dq
j
d, j = 1, . . . , K. The (full) Maxwellian in the model is then defined

by

M(q) :=
K∏
j=1

M j(qj) ∀ q := (q1, . . . , qK) ∈ D :=
K×
j=1

Dj.(1.9)

Observe that, for q ∈ D and j = 1, . . . , K,

(1.10) M(q)∇qj [M(q)]−1 = −[M(q)]−1∇qjM(q) = ∇qjU j(1
2
|qj|2) = (U j)′(1

2
|qj|2) qj.

Here ∇qj := (∂/∂qj1, . . . , ∂/∂q
j
d)

T, for j = 1, . . . , K. We define divqj := ∇qj · = (∇qj)T,
and for a mapping q ∈ D → B(q) ∈ Rd×K we let divqB := divq1B1 + · · · + divqKB

K ,
where Bj, j = 1, . . . , K, denote the (d-component) column vectors of the matrix B = B(q).
Finally, we define the (d×K)-component differential operator ∇q := (∇q1 , . . . ,∇qK ).

We use the standard notation for differential operators when we differentiate with respect
to the spatial variable x or the time variable t; in particular, differential operators, such as
div, ∇, ∆, bearing no subscript, signify differential operators with respect to the variable x.
Differential operators with respect to the configuration space variable q = (q1, . . . , qK) ∈ D
will be subscripted according to the notational conventions introduced in the previous
paragraph. We shall denote by ∇x,q the gradient operator with respect to the variable
(x, q), with analogous definitions of the differential operators ∇t,x,q and divt,x,q.
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Example 1.2. In the FENE (finitely extensible nonlinear elastic) dumbbell model K = 1

and the spring force is given by FFF(q) = (1− |q|2/b)−1 q, q ∈ D = B(0, b
1
2 ), corresponding

to U(s) = − b
2

ln
(
1− 2s

b

)
, s ∈ I = [0, b

2
). Here B(0, b

1
2 ) is a bounded open ball in Rd

centred at the origin 0 ∈ Rd and of fixed radius b
1
2 , with b > 0. The usual assumption

in the case of the FENE model is that b > 2 (cf. [7] and [8]). For the purposes of our
large-data global existence result herein, the weaker assumption b > 0 will suffice. �

The governing equations of the general FENE-type bead-spring chain model with centre-
of-mass diffusion are (1.1)–(1.7), where the extra-stress tensor SSSe is defined by the Kramers
expression:

(1.11) SSSe(x, t) := k

(
K∑
j=1

∫
D

ψ(x, q, t) qj qj
T

(U j)′
(

1
2
|qj|2

)
dq −K%(x, t) III

)
,

with III denoting the d×d unit matrix, dq := dq1 · · · dqK , and the density of polymer chains
(not to be confused with the constant density ρ of the fluid, which we set to 1,) located at
x at time t defined by

(1.12) %(x, t) :=

∫
D

ψ(x, q, t) dq.

The probability density function ψ is a solution of the Fokker–Planck equation

ψ,t + div (ψv) +
K∑
j=1

divqj
(
(∇v)qj ψ

)
= ε∆ψ +

1

4λ

K∑
i=1

K∑
j=1

Aij divqi

(
M ∇qj

(
ψ

M

))
in Ω×D × (0, T ].(1.13)

The dimensionless constant k > 0 featuring in (1.11) is a constant multiple of the product
of the Boltzmann constant kB and the absolute temperature T. In (1.13), ε > 0 is the

centre-of-mass diffusion coefficient defined as ε := (`0/L0)2/(4(K+1)λ) with `0 :=
√
kBT/H

signifying the characteristic microscopic length-scale and λ := (ζ/4H)(U0/L0), where ζ > 0
is a friction coefficient and H > 0 is a spring-constant. The dimensionless positive parameter
λ characterizes the elastic relaxation property of the fluid. In the subsequent discussion
we shall simply take ε = 1 and λ = 1/4, since none of our results depend on the specific
values of these positive parameters.

Further, A = (Aij)
K
i,j=1 ∈ RK×K

sym is a constant symmetric positive definite matrix, referred

to as the Rouse matrix. We associate with A the linear mapping A : Rd×K → Rd×K defined,
for any B = (Bj

i )
j=1,...,K
i=1,...,d ∈ Rd×K , by (A(B))ji :=

∑K
k=1B

k
i Akj, and let Aj : Rd×K → Rd be

the linear mapping defined by (Aj(B))i := (A(B))ji , for i = 1, . . . , d and j = 1, . . . , K. We
then deduce from the assumed positive definiteness of the Rouse matrix A ∈ RK×K

sym the
existence of positive constants C1 and C2 such that

(1.14) C1|B|2 ≤ A(B) : B ≤ C2|B|2 ∀B ∈ Rd×K .
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Let us define

ψ̂ :=
ψ

M
.

With this notation, we have from (1.11) and (1.12) that the elastic part of the Cauchy
stress defined by the Kramers expression can be rewritten as

(1.15) SSSe(x, t) := k
K∑
j=1

∫
D

M(q)∇qj ψ̂(x, q, t)⊗ qj dq,

and the Fokker–Planck equation (1.13) becomes

(Mψ̂),t + div
(
Mψ̂v

)
+ divq

(
Mψ̂(∇v)q

)
−4(Mψ̂)− divq A(M∇qψ̂) = 0(1.16)

in O× (0, T ), with O := Ω×D. The Fokker–Planck equation (1.16) will be supplemented
by the following boundary conditions:

M∇ψ̂ · n = 0 on ∂Ω×D × (0, T ),(1.17) (
Mψ̂(∇v)qj − Aj(M∇qψ̂)

)
· nj = 0 on Ω× ∂D̄j × (0, T ),(1.18)

for all j = 1, . . . , K, and the initial condition

ψ̂(x, q, 0) = ψ̂0(x, q) in O.(1.19)

In (1.15)–(1.18), we used the following notations and abbreviations that will be also used
in what follows. Concerning the notation related to the boundary terms, ∂D̄j signifies

∂D̄j := D1 × · · · ×Dj−1 × ∂Dj ×Dj+1 × · · · ×DK

and nj = (nj1, . . . , n
j
d)

T is the unit outward normal vector to ∂Dj, j = 1, . . . , K.
We continue with a brief literature survey that will be followed by an overview of the

main contributions of the paper. Unless otherwise stated, in the survey, the centre-of-mass
diffusion term is absent from the model considered in the cited reference (i.e., ε is set to
0), the viscous part, SSSv, of the Cauchy stress, TTT, is assumed to be a linear function of
the symmetric part of the velocity gradient, and K = 1, i.e., a simple dumbbell model is
considered rather than a bead-spring chain model.

An early contribution to the existence and uniqueness of local-in-time solutions to a
family of dumbbell type polymeric flow models is due to Renardy [39]. While the class of
potentials considered by Renardy [39] (cf. hypotheses (F) and (F′) on pp. 314–315) does
include the case of Hookean dumbbells, it excludes the practically relevant case of the
FENE dumbbell model (see Example 1.2 above). E, Li & Zhang [22] and Li, Zhang &
Zhang [29] revisited the question of local existence of solutions for dumbbell models. A
further development in this direction is the work of Zhang & Zhang [42], where the local
existence of regular solutions to FENE-type dumbbell models was shown. All of these
papers require high regularity of the initial data. Constantin [16] considered the Navier–
Stokes equations coupled to nonlinear Fokker–Planck equations describing the evolution
of the probability distribution of the particles interacting with the fluid. Subsequently,
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in [17], Constantin & Seregin explored the question of global regularity of solutions to
a coupled system involving the incompressible Navier–Stokes equations and a nonlinear
Fokker–Planck equation. Otto & Tzavaras [34] investigated the Doi model (which is similar
to a Hookean model (cf. Example 1.1 above), except that D = S2) for suspensions of rod-
like molecules in the dilute regime. Jourdain, Lelièvre & Le Bris [27] studied the existence
of solutions to the FENE dumbbell model in the case of a simple Couette flow. By using
tools from the theory of stochastic differential equations, they showed the existence of a
unique local-in-time solution to the FENE dumbbell model for d = 2 when the velocity
field v is unidirectional and of the particular form v(x1, x2) = (v1(x2), 0)T.

In the case of Hookean dumbbells (K = 1), and assuming ε = 0 and constant solvent
density ρ, the coupled microscopic-macroscopic model described above yields (with a linear
relationship between the SSSv and DDD(v) in the momentum equation), formally, taking the
second moment of q 7→ ψ(x, q, t), the fully macroscopic, Oldroyd-B model of viscoelastic
flow. Lions & Masmoudi [30] showed the existence of global-in-time weak solutions to the
Oldroyd-B model in a simplified corotational setting (i.e., with ∇v replaced by 1

2
(∇v −

(∇v)T)) by exploiting the propagation in time of the compactness of the solution (i.e., the
property that if one takes a sequence of weak solutions that converges weakly and such
that the corresponding sequence of initial data converges strongly, then the weak limit
is also a solution) and the DiPerna–Lions [19] theory of renormalized solutions to linear
hyperbolic equations with nonsmooth transport coefficients. It is not known if an identical
global existence result for the Oldroyd-B model also holds in the absence of the crucial
assumption that the drag term is corotational. With ε > 0 and constant solvent density ρ,
the coupled microscopic-macroscopic model above yields, taking the appropriate moments
in the case of Hookean dumbbells, a dissipative version of the Oldroyd-B model. In this
sense, the Hookean dumbbell model has a macroscopic closure: it is the Oldroyd-B model
when ε = 0, and a dissipative version of Oldroyd-B when ε > 0 (cf. Barrett & Süli [5]).
Barrett & Boyaval [3] have proved a global existence result for this dissipative Oldroyd-B
model in two space dimensions. In contrast, the FENE model is not known to have an exact
closure at the macroscopic level, though Du, Yu & Liu [20] and Yu, Du & Liu [40] have
recently considered the analysis of approximate closures of the FENE dumbbell model.
Lions & Masmoudi [31] proved the global existence of weak solutions for the corotational
FENE dumbbell model, once again corresponding to the case of ε = 0, constant solvent
density ρ, and K = 1, and the Doi model, also called the rod model; see also the work of
Masmoudi [32]. Recently, Masmoudi [33] has extended this analysis to the noncorotational
case.

Previously, El-Kareh & Leal [23] had proposed a steady macroscopic model, with the
conformation tensor ∫

D

q qTU ′(1
2
|q|2)ψ(x, q) dq

satisfying a transport equation with an added diffusion term, referred to as stress-diffusion,
in order to account for Brownian motion across streamlines; the model can be thought of
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as an approximate macroscopic closure of a FENE-type micro-macro model with centre-
of-mass diffusion.

Barrett, Schwab & Süli [4] proved the existence of global weak solutions to the coupled
Navier–Stokes–Fokker–Planck system with ε = 0, K = 1, constant solvent-density ρ, an
x-mollified velocity gradient in the Fokker–Planck equation and an x-mollified probability
density function ψ in the Kramers expression, admitting a large class of potentials U
(including the Hookean dumbbell model and general FENE-type dumbbell models); in
addition to these mollifications, v in the x-convective term (v · ∇)ψ in the Fokker–Planck
equation was also mollified. Unlike Lions & Masmoudi [30], the arguments in Barrett,
Schwab & Süli [4] did not require that the drag term ∇q · (∇v q ψ) in the Fokker–Planck
equation was corotational in the FENE case.

In [5], Barrett & Süli derived the Fokker–Planck equation with centre-of-mass diffusion
(1.13), in the case of K = 1 and constant solvent-density ρ. They established the existence
of global-in-time weak solutions to a mollification of the model for a general class of spring-
force-potentials including in particular the FENE potential. They justified also, through
a rigorous limiting process, certain classical reductions of this model appearing in the
literature that exclude the centre-of-mass diffusion term from the Fokker–Planck equation
on the grounds that the diffusion coefficient is small relative to other coefficients featuring
in the equation. In the case of a corotational drag term they performed a rigorous passage
to the limit as the mollifiers in the Kramers expression and the drag term converge to
identity operators.

In [6], Barrett & Süli showed the existence of global-in-time weak solutions to the gen-
eral class of noncorotational FENE type dumbbell models (including the standard FENE
dumbbell model) with centre-of-mass diffusion, in the case of K = 1 and constant solvent-
density ρ, with microsropic cut-off in the drag term. Subsequently, in [7] and [8], they
removed the presence of the cut-off by passing to the limit L → ∞ with the cut-off pa-
rameter L, with K ≥ 1, and the solvent density, the viscosity and the drag coefficient
kept constant. In a more recent paper, [9], they proved the existence of global-in-time
weak solutions to a general class of coupled bead-spring chain models that arise from the
kinetic theory of dilute solutions of nonhomogeneous polymeric liquids with noninteract-
ing polymer chains with FENE type potentials. The class of models under consideration
involves the unsteady incompressible Navier–Stokes equations with variable density and
density-dependent dynamic viscosity in a bounded domain in Rd, d = 2 or 3, for the den-
sity, the velocity and the pressure of the fluid, with an elastic extra-stress tensor appearing
on the right-hand side of the momentum equation. Crucial features of the Fokker–Planck
equation in the model are the presence of a centre-of-mass diffusion term and a nonlinear
density-dependent drag coefficient. With initial density ρ0 ∈ [ρmin, ρmax] for the continuity
equation, where ρmin > 0; a square-integrable and divergence-free initial velocity datum
v0 for the Navier–Stokes equation; and a nonnegative initial probability density function
ψ0 for the Fokker–Planck equation, which has finite relative entropy with respect to the
Maxwellian M associated with the spring potential in the model, they proved, by a limit-
ing procedure on certain regularization parameters, the existence of a global-in-time weak
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solution t 7→ (ρ(t),v(t), ψ(t)) to the coupled Navier–Stokes–Fokker–Planck system, satisfy-
ing the initial condition (ρ(0),v(0), ψ(0)) = (ρ0,v0, ψ0), such that t 7→ ρ(t) ∈ [ρmin, ρmax],
t 7→ v(t) belongs to the classical Leray space and t 7→ ψ(t) has bounded relative entropy
with respect to M and t 7→ ψ(t)/M has integrable Fisher information over any time interval
[0, T ], T > 0. The paper also includes a careful derivation of the Fokker–Planck equation
with centre-of-mass diffusion, in the case of general bead-spring chains, and admitting
nonlinear dependence of the drag coefficient on the density of the fluid.

The key feature of our work here, which makes it different from previous studies of
Navier–Stokes–Fokker–Planck systems in the literature, is that we admit a nonlinear (non-
Newtonian) constitutive relation between the dissipative part SSSv of the Cauchy stress and
the symmetric part of the velocity gradient DDD(v). Thus, the fluid in which the polymer
macromolecules are dissolved is not necessarily Newtonian but may exhibit shear-thinning
or shear-thickening with the possibility of being suitably activated or deactivated. In order
to establish the existence of a global weak solution (i.e., to prove that an appropriately
defined (weak) solution exists for any size of the data including T , Ω, Di, v0, ψ0, etc., mea-
sured in norms in which the a priori estimates are available) we rely on recent advances in
large-data existence theory for global weak solutions to power-law type (implicitly consti-
tuted) incompressible fluid flow models, [18] and [15]. In those papers, the existence of a
weak solution to the problem (1.1)–(1.7) (with SSSe ≡ 0 in (1.6)) was proved for power-law
indices r > 2d

d+2
and for source terms of the form f = divFFF, with FFF ∈ L1(0, T ; Ω)d×d, using

two properties: the fact that the principal part of the differential operator in the balance of
linear momentum equation generates a maximal monotone graph; and properties of Lips-
chitz approximations of Sobolev-space-valued Bochner spaces. In particular, we can apply
the results presented in [11, 18] for a no-slip boundary condition, and in [14] for Navier’s
slip boundary condition, once we have identified a suitable approximation scheme, indexed
by the parameter ` (say), and established the strong convergence of the corresponding
sequence of approximations {SSS`e}`≥1 to SSSe in L1(Ω × (0, T ))d×d as ` → ∞. Proving the
latter is one of the key contributions of the present paper, and in the proof of our main
result, Theorem 1.1, we shall focus mainly on proving this fact. To this end, we use the
Div-Curl lemma, which has a further advantage in comparison with earlier approaches:
it allows us to weaken the demands on the rate of decay of the Maxwellian M near the
boundary of the configuration space domain D, see (1.21). In particular, our results are
applicable to FENE-type models, see Example 1.2, with any FENE exponent b > 0 (while
earlier results, based on the use of Schauder’s Fixed Point Theorem to show the existence
of an approximate solution at every time level to a temporally semi-discrete approximation
scheme, used compact embeddings of Maxwellian-weighted Sobolev spaces, which then de-
manded larger values of b; e.g. b > 2 in the case of a FENE bead-spring-chain model or
b > 3 for Cohen’s Padé Approximation to the Inverse Langevin function (CPAIL model));
see [4]–[9]. In contrast with [4]–[9], we use a Galerkin method here to construct a sequence
of spatially semi-discrete approximations to the initial-boundary-value problem, and we do
not require compact embedding theorems in Maxwellian-weighted Sobolev spaces.
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For the physical background of the theory of implicitly constituted models we refer
to the papers by Rajagopal [35, 36] and Rajagopal & Srinivasa [37], and for a survey
of analytical contributions to the PDE theory of implicitly constituted fluid flow models
the interested reader should consult the recent articles by Buĺıček, Gwiazda, Málek &
Świerczewska-Gwiazda [11, 14, 15]. Those papers also contain detailed surveys of earlier
results concerning the analysis of mathematical models for incompressible power-law type
fluids.

The paper is structured as follows. In the next subsection we shall introduce the nec-
essary function spaces together with our assumptions on the data. In Subsection 1.2 we
shall state the main result of the paper, concerning the existence of global weak solutions
to the class of kinetic models under consideration. The rest of the paper is then devoted
to the proof of the theorem.

We begin, in Section 2, by introducing an approximate problem based on truncating the
probability density function in the drag term in the Fokker–Planck equation. In order to
maintain energy balance in the resulting coupled (truncated) Navier–Stokes–Fokker–Planck
system, the probability density function has to be truncated in the Kramers expression as
well; we also truncate the initial condition for the Fokker–Planck equation accordingly.
We shall ultimately let the truncation parameter ` pass to ∞. In Section 2 we state,
in Theorem 2.1, the existence of global weak solutions to this truncated Navier–Stokes–
Fokker–Planck system. The proof of Theorem 2.1 is based on performing a spatial Galerkin
semidiscretization of the truncated Navier–Stokes–Fokker–Planck system with the velocity
expanded in terms of n ∈ N divergence-free Galerkin basis functions, and the probability
density function expanded in terms of m ∈ N (different) Galerkin basis functions. In
Subsection 2.2 we derive n-independent a priori estimates, which then allow us to pass to
the limit n→∞ in Subsection 2.3. Passage to the limit m→∞ requires the nonnegativity

of the Galerkin approximations ψ̂m to the probability density function ψ̂` satisfying the

truncated Fokker–Planck equation. Strictly speaking the Galerkin approximations to ψ̂`

should have been denoted by ψ̂`,m, but since the value of ` is fixed in this part of the proof,
we omit the letter ` and use the single superscript m instead of the double superscript `,m.

The nonnegativity of the functions ψ̂m is proved in Subsection 2.4. In Subsection 2.5 we

derive m-independent a priori bounds on the sequence {ψ̂m}m≥1, which then allow us to
pass to the limit m → ∞ in Subsection 2.6. The most technical part of the argument in

Subsection 2.6 is the proof of strong convergence of the sequence {ψ̂m}m≥1 to ψ̂` in the
Maxwellian-weighted L1 space L1

M(O×(0, T )) (recall that O := Ω×D). It involves a chain
of theorems, including the Div-Curl Lemma, to deduce from the weak convergence of the

sequence {ψ̂m}m≥1 in L1(On×(0, T )), where On is any open subset ofO, such thatOn ⊂ O,

the weak convergence of the sequence {(1 + ψ̂m)1+α}m≥1, α ∈ (0, 1
2
), in L1(On × (0, T )),

by noting that thanks to the energy estimates and various bounds that result from them
via function-space interpolation on On × (0, T ) in standard (non-weighted) Lebesgue and

Sobolev spaces, the sequences {ψ̂m}m≥1 and {(1 + ψ̂m)α}m≥1 are weakly convergent in
Lp(On × (0, T )) and Lq(On × (0, T )) for certain p > 1 and q > 1. As s ∈ [0,∞) →
(1+s)1+α is a continuous strictly convex function, one can employ Theorem 10.20 in [24] to
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deduce that (up to the extraction of a subsequence), {ψ̂m}m≥1 converges almost everywhere
on On × (0, T ). By applying a diagonal procedure, we then extract a subsequence that

converges to ψ̂` almost everywhere on O × (0, T ). Since our energy estimates imply that

the sequence {G(ψ̂m)}m≥1 is bounded in L∞(0, T ;L1
M(O)), with G(s) := s ln s + e−1, it

follows by de la Vallée Poussin’s Theorem that the sequence {ψ̂m}m≥1 is equi-integrable
in L1

M(O × (0, T )). Thus, by noting that dµ := M dx dq dt defines a finite measure on

O × (0, T ), almost everywhere convergence of a (sub)sequence of {ψ̂m}m≥1 and its equi-
integrability finally imply, by Vitali’s Convergence Theorem (cf. Theorem 2.24 in [26]),

strong convergence of the (sub)sequence to ψ̂` in L1
M(O × (0, T )).

In Section 3 we embark on the proof of the main theorem, Theorem 1.1. In Subsection
3.1 we collect the necessary weak and strong convergence results that arise from the energy
estimates. In Subsection 3.2 we pass to the limit `→∞ in the truncation parameter ` in
the various approximating sequences, and in Subsection 3.3 we pass to the limit `→ +∞ in
the Kramers expression. The attainment of the initial conditions is verified in Subsection
3.4, while the identification of the weak limit of the viscous stress part SSSv of the Cauchy
stress tensor TTT is carried out in Subsection 3.5 by using the parabolic Lipschitz truncation
method of Kinnunen & Lewis [28], nontrivially adjusted to incompressible power-law type
fluid flow problems in Diening, Růžička & Wolf [18] in the case of a Dirichlet boundary
condition and in [15] to implicitly constituted models with a Navier boundary condition,
in conjunction with Chacon’s Biting Lemma.

1.1. Function spaces and assumptions on the data. We shall use standard notation
for Lebesgue, Sobolev and Bochner spaces. In order to distinguish between scalar-, vector-
and tensor-valued functions in a Banach space X we use the abbreviation

Xm := X × · · · ×X︸ ︷︷ ︸
m−times

.

Since we shall need to work with Maxwellian-weighted spaces, we define, for any measurable
set O ⊂ Rm, any nonnegative N ∈ C(O) and any r ∈ [1,∞), the weighted spaces

LrN(O) := {u ∈ Lrloc(O) :

∫
O

N(z) |u(z)|r dz <∞},

W 1,r
N (O) := {u ∈ W 1,r

loc (O) :

∫
O

N(z) (|∇zu(z)|r + |u(z)|r) dz <∞}.

Further, for any pair of functions u, v, with u ∈ Lr(O) and v ∈ Lr′(O), with 1/r+1/r′ = 1
and r, r′ ∈ [1,∞], we set

(u, v)O :=

∫
O

u(z) v(z) dz,

with analogous notation for vector- and tensor-valued functions. If O = Ω, then we shall
for simplicity omit the subscript Ω from the inner product (u, v)O. We define the following
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function spaces:

W 1,r
n := {v ∈ C∞(Ω)d : v · n = 0 on ∂Ω}

‖·‖W1,r(Ω)
,

W 1,r
n,div := {v ∈ C∞(Ω)d : v · n = 0 on ∂Ω, div v = 0 in Ω}

‖·‖W1,r(Ω)
,

W 1,r
0,div := {v ∈ C∞0 (Ω)d : div v = 0 in Ω}

‖·‖W1,r(Ω)
,

L2
0,div := W 1,2

n,div

‖·‖2
,

W−1,r′

0,div := (W 1,r
0,div)∗, W−1,r′

n,div := (W 1,r
n,div)∗.

We note that W 1,r
n , W 1,r

0,div and W 1,r
n,div are separable and reflexive Banach spaces for any

r ∈ (1,∞). The equivalent characterizations of these spaces in terms of weak/distributional
derivatives are known; we note in particular that since Ω has been assumed to be a Lipschitz
domain, the trace operator on ∂Ω is meaningful.

We end this subsection by introducing our assumptions on the data. First, we identify
the implicit relation (1.7) with a graph A ⊂ Rd×d

sym × Rd×d
sym, i.e.,

(SSS,DDD) ∈ A ⇐⇒ GGG(SSS,DDD) = 0.

Inspired by [15] we assume that, for some r ∈ (1,∞), A is a maximal monotone r-graph,
in the sense that A satisfies the following assumptions:

(A1) A includes the origin; i.e., (0,0) ∈ A;
(A2) A is a monotone graph; i.e.,

(SSS1 − SSS2) · (DDD1 −DDD2) ≥ 0 for all (DDD1,SSS1), (DDD2,SSS2) ∈ A;

(A3) A is a maximal monotone graph; i.e., for any (DDD,SSS) ∈ Rd×d
sym × Rd×d

sym,

if (S̄SS− SSS) · (D̄DD−DDD) ≥ 0 for all (D̄DD, S̄SS) ∈ A, then (DDD,SSS) ∈ A;

(A4) A is an r-graph; i.e., there exist positive constants C1, C2 such that

(1.20) SSS ·DDD ≥ C1(|DDD|r + |SSS|r′)− C2 for all (DDD,SSS) ∈ A.
We note here that the arguments in this paper can be extended to a more general

setting (cf. [14, 15]), where instead of | · |r and | · |r′ on the right-hand side of (1.20) one
has, respectively, a Young function Ψ(·) and its dual Ψ∗(·), and Orlicz and Orlicz–Sobolev
spaces throughout instead of Lebesgue spaces and classical Sobolev spaces; and where the
maximal monotone graphs are t and x dependent, i.e., the constitutive equation under
consideration is of the form GGG(t, x,SSS,DDD) = 0.

For the Maxwellian M , we assume in what follows that

(1.21) M ∈ C(D) ∩ C0,1
loc (D) ∩W 1,1

0 (D), M ≥ 0, M−1 ∈ Cloc(D).

Finally, we state our assumptions on the initial conditions. For the initial velocity v0 we
assume that

(1.22) v0 ∈ L2
0,div.
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For ψ̂0 := ψ0/M , where ψ0 is the initial value of the probability density function ψ, we
assume that

(1.23) ψ̂0 ≥ 0 a.e. in O, ψ̂0 ln ψ̂0 ∈ L1
M(O),

and in addition we require that

(1.24) %0 ∈ L∞(Ω), where %0(x) :=

∫
D

M(q)ψ̂0(x, q) dq.

1.2. The main result. For simplicity we only formulate here the result for homogeneous
Dirichlet boundary data for v. However, the same result holds also for Navier’s boundary
condition and the statement of the theorem is valid if one replaces the function spaces
W 1,r

0,div by W 1,r
n,div and also includes into the weak formulation (1.27) the boundary term

(1−λ)γ∗
λ

(v,w)∂Ω, see [15] for details. We shall not explicitly discuss the appropriate choice
of the function space containing the pressure p, as it is the same as in the papers by Diening
et al. [18] and Buĺıček et al. [15] in the case of a no-slip boundary condition and Navier’s
slip boundary condition, respectively. An interesting observation in the case of Navier’s
slip boundary condition is that the pressure can be shown to be an integrable function on
Ω× (0, T ) provided that the boundary ∂Ω is C1,1; see, [15] or the earlier studies [12], [13]
concerning different classes of incompressible fluid flow problems in which the presence of
an integrable pressure is essential. It is not known however if an identical result also holds
in the case of a no-slip boundary condition; in that case, the pressure is only known to be
a distribution with respect to t.

Theorem 1.1. Let K ∈ N be arbitrary, let Dj ⊂ Rd, for d ∈ {2, 3} and j = 1, . . . , K,
be bounded open balls centred at the origin in Rd, let Ω ⊂ Rd be a bounded open Lipschitz

domain, let r ∈ (1,∞) and suppose that f ∈ Lr′(0, T ;W−1,r′

0,div ). Assume that A, given by
GGG, is a maximal monotone r-graph satisfying in particular the assumptions (A1)–(A4),
the mapping B ∈ Rd×K 7→ A(B) ∈ Rd×K is linear and satisfies the pair of inequalities

(1.14), the Maxwellian M : D → R satisfies (1.21), and the initial data (v0, ψ̂0) satisfy

(1.22)–(1.24). Then, there exist (v,SSSv,SSSe, ψ̂) such that

v ∈ L∞(0, T ;L2
0,div(Ω)d) ∩ Lr(0, T ;W 1,r

0 (Ω)d) ∩W 1,r∗(0, T ;W−1,r∗

0,div ),

SSSv ∈ Lr
′
(0, T ;Lr

′
(Ω)d×d),

SSSe ∈ L2(0, T ;L2(Ω)d×d),

ψ̂ ∈ L∞(Q;L1
M(D)) ∩ L2(0, T ;W 1,1

M (O)), ψ̂ ≥ 0 a.e. in O × (0, T ),

Mψ̂ ∈ W 1,1(0, T ;W−1,1(O)),

ψ̂ ln ψ̂ ∈ L∞(0, T ;L1
M(O)),

(1.25)

where

(1.26) r∗ := min

{
r′, 2,

(d+ 2)r

d

}
.
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Moreover, (1.1) is satisfied in the following sense:∫ T

0

〈v,t,w〉 dt+

∫ T

0

(
− (v ⊗ v,∇w) + (SSSv,∇w)

)
dt

=

∫ T

0

(
− (SSSe,∇w) + 〈f ,w〉

)
dt for all w ∈ L∞(0, T ;W 1,∞

0,div),

(1.27)

where

(1.28) (SSSv(x, t),DDD(v(x, t))) ∈ A for a.e. (x, t) ∈ Q,
and SSSe is given by

SSSe(x, t) = k

K∑
j=1

∫
D

M∇qj ψ̂(x, q, t)⊗ qj dq

for a.e. (x, t) ∈ Q.

(1.29)

In addition the Fokker–Planck equation (1.16) is satisfied in the following sense:∫ T

0

[
〈(Mψ̂),t, ϕ〉 −

(
Mvψ̂,∇ϕ

)
O
−
(
Mψ̂(∇v)q,∇qϕ

)
O

]
dt

+

∫ T

0

[
(∇(Mψ̂),∇ϕ)O +

(
MA(∇qψ̂),∇qϕ

)
O

]
dt = 0

for all ϕ ∈ L∞(0, T ;W 1,∞(O)),

(1.30)

and the initial data are attained strongly in L2(Ω)d × L1
M(O), i.e.,

(1.31) lim
t→0+

‖v(·, t)− v0(·)‖2
2 + ‖ψ̂(·, t)− ψ̂0(·)‖L1

M (O) = 0.

Moreover, for all t ∈ (0, T ) the following energy inequality holds in a weak sense:

d

dt

(∫
O
kM ψ̂ ln ψ̂ dx dq + 1

2
‖v‖2

2

)
+ (SSSv,DDD(v)) + 4k

(
M∇

√
ψ̂,∇

√
ψ̂

)
O

+ 4k

(
MA(∇q

√
ψ̂ ),∇q

√
ψ̂

)
O
≤ 〈f ,v〉.

(1.32)

The purpose of the remaining sections is to provide a proof of this theorem by construct-

ing a sequence of approximating sequences for v and ψ̂ and passing to the respective limits
in these.

2. Approximate problem

In this section we introduce an approximate problem for which the analysis of existence
of solutions is relatively easy and can be performed by using the Galerkin method, a
generalized version of monotone operator theory, and suitable a priori entropy estimates.
In this section we mainly follow [15] for the theory on maximal monotone graphs, and the

papers [7, 8] for the relevant entropy estimates for the function ψ̂.
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In order to handle the momentum equation we truncate the convective term and SSSe.
More precisely, we introduce a smooth nonnegative function Γ ∈ D(−2, 2), such that
Γ(s) = 1 for all s ∈ [−1, 1] and for an arbitrary ` ∈ N we define Γ`(s) := Γ( s

`
). The

primitive function to Γ` is denoted by

T`(s) :=

∫ s

0

Γ`(r) dr.(2.1)

Next, the `-th approximation of SSSe is defined by

(2.2) SSS`e(x, t) := k
K∑
j=1

∫
D

M(q)∇qjT`(ψ̂(x, q, t))⊗ qj dq.

We note that by formal integration by parts, which can be made rigorous by using Lemma
3.1 in Section 3 of [7] on observing that the boundary term on ∂D vanishes since M = 0
on ∂D, we have that

(2.3) SSS`e(x, t) = −k
∫
D

[
KM(q)T`(ψ̂(x, q, t)) III +

K∑
j=1

T`(ψ̂(x, q, t))∇qjM(q)⊗ qj
]

dq.

We then define the `-approximation of (1.1) as follows:

(2.4) v`,t + div(Γ`(|v`|2)v` ⊗ v`)− divSSS`v = −∇p` + divSSS`e + f in Q,

with initial and boundary data given by (1.3)–(1.5) with v replaced by v` on the left-hand
sides of the equalities (1.3)–(1.5), and with the constitutive relation for SSS`v given by (1.7),
with DDD(v) replaced by DDD(v`). In order to preserve the energy identity under this truncation
process, we shall also modify (1.16). First, we set

(2.5) Λ`(s) := sΓ`(s),

and we then define the `-approximation of (1.16) as

(Mψ̂`),t + div
(
Mv`ψ̂`

)
+ divq

(
MΛ`(ψ̂

`)(∇v`)q
)
−4(Mψ̂`)

− divq A(M∇qψ̂`) = 0 in O × (0, T ),
(2.6)

supplemented by the Neumann boundary conditions corresponding to (1.17)–(1.18). In

order to avoid technical difficulties, we also truncate the initial condition for ψ̂` as follows:

(2.7) ψ̂`(x, q, 0) = T`(ψ̂0(x, q)).

For such an approximation, we formulate the main theorem of this subsection corre-
sponding to the case of homogeneous Dirichlet boundary condition for the velocity, i.e.,
the case λ = 0 in (1.5).

Theorem 2.1. Let K ∈ N be arbitrary, let Di ⊂ Rd, for d ∈ {2, 3} and i = 1, . . . , K,
be bounded open balls centred at the origin in Rd, let Ω ⊂ Rd be a bounded open Lipschitz

domain, let r ∈ (1,∞) and suppose that f ∈ Lr′(0, T ;W−1,r′

0,div ). Assume that A, given by GGG,

is a maximal monotone r-graph, the mapping A : B ∈ Rd×K 7→ A(B) ∈ Rd×K is linear and
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satisfies (1.14), the Maxwellian M : D → R satisfies (1.21), and the initial data (v0, ψ̂0)

satisfy (1.22)–(1.24). Then, for any ` ∈ N, there exist (v`,SSS`v,SSS
`
e, ψ̂

`) such that

v` ∈ L∞(0, T ;L2
0,div(Ω)d) ∩ Lr(0, T ;W 1,r

0 (Ω)d) ∩W 1,r′(0, T ;W−1,r′

0,div ),

SSS`v ∈ Lr
′
(0, T ;Lr

′
(Ω)d×d),

SSS`e ∈ L∞(0, T ;L∞(Ω)d×d),

ψ̂` ∈ L∞(Q;L1
M(D)) ∩ L2(0, T ;W 1,1

M (O)), ψ̂` ≥ 0 a.e. in O × (0, T ),

Mψ̂` ∈ W 1,1(0, T ;W−1,1(O)),

(2.8)

satisfying the following system of equations:∫ T

0

〈v`,t,w〉 dt+

∫ T

0

[
−(Γ`(|v`|2)v` ⊗ v`,∇w) + (SSS`v,∇w)

]
dt

=

∫ T

0

[
−(SSS`e,∇w) + 〈f ,w〉

]
dt for all w ∈ Lr(0, T ;W 1,r

0,div),

(2.9)

(2.10) (SSS`v(x, t),DDD(v`(x, t))) ∈ A for a.e. (x, t) ∈ Q,

SSS`e(x, t) = −k

(∫
D

KM(q)T`(ψ̂(x, q, t)) III−
K∑
j=1

T`(ψ̂(x, q, t))∇qjM(q)⊗ qj dq

)
,

for a.e. (x, t) ∈ Q,

(2.11)

∫ T

0

〈(Mψ̂`),t, ϕ〉 −
(
Mv`ψ̂`,∇ϕ

)
O
−
(
MΛ`(ψ̂

`)(∇v`)q,∇qϕ
)
O

dt

+

∫ T

0

(M∇ψ̂`,∇ϕ)O +
(
MA(∇qψ̂`),∇qϕ

)
O

dt = 0

for all ϕ ∈ L∞(0, T ;W 1,∞(O)),

(2.12)

attaining the initial conditions in the following sense:

(2.13) lim
t→0+

‖v`(·, t)− v0(·)‖2
2 + ‖ψ̂`(·, t)− T`(ψ̂0(·))‖L1

M (O) = 0,

satisfying, for all t ∈ (0, T ), the energy inequality∫
O
MG(ψ̂`(·, t)) dx dq + 1

2

∫
Ω

|v`(·, t)|2 dx

+ 4C1

∫ t

0

∫
O
M

∣∣∣∣∇x,q

√
ψ̂`
∣∣∣∣2 dx dq dτ +

∫ t

0

(SSS`v,DDD(v`)) dτ

≤
∫
O
MG(T`(ψ̂

`
0)) dx dq + 1

2

∫
Ω

|v0(·)|2 dx+

∫ t

0

〈f ,v`〉 dt,

(2.14)

where G is defined as
G(s) := s ln s+ e−1,
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and in particular the following uniform a priori estimate:

sup
t∈(0,T )

(
‖v`(·, t)‖2

2 + ‖ψ̂`(·, t) ln ψ̂`(·, t)‖L1
M (O) + ‖%`(·, t)‖∞

)
+

∫ T

0

(
‖v`‖r1,r + ‖SSS`v‖r

′

r′ + ‖
√
ψ̂`‖2

W 1,2
M (O)

+ ‖SSS`e‖2
2 + ‖∇%`‖2

2

)
dt

≤ C(k, r,Ω, D, T,f ,A,A,M,v0, ψ̂0),

(2.15)

where

(2.16) %`(x, t) :=

∫
D

M(q)ψ̂`(x, q, t) dq.

The rest of this section is devoted to the proof of Theorem 2.1. In order to simplify
the presentation we shall take without loss of generality the constant k in the Kramers

expression ((1.11) or, equivalently, (1.15)) to be 1, and we shall write v and ψ̂ instead of

v` and ψ̂`, and similarly for all other analogous quantities; the omitted superscript ` will
be reinstated later on in the paper when we consider the question of passing to the limit
`→∞.

2.1. Galerkin approximation. In this subsection we introduce a Galerkin approximation
of (2.9)–(2.12). First, we fix a sequence of functions {M̄m}m∈N ⊂ C0,1

0 (D) such that for
each m ∈ N the function M̄m satisfies (1.21), and for each compact set κ ⊂ D the following
holds:

(2.17) lim
m→∞

‖M̄m −M‖C(D)∩W 1,1
0 (D) + ‖(M̄m)−1 −M−1‖C(κ) = 0.

Then, we define an approximate Maxwellian Mm by

Mm := M̄m +
1

m
, for m = 1, 2, . . . .(2.18)

The Hilbert space W 1,2
0,div ∩W d+1,2(Ω)d, equipped with the inner product of W d+1,2(Ω)d is

compactly and densely imbedded in the Hilbert space L2
0,div(Ω)d. Hence, by the version

of the Hilbert–Schmidt Theorem stated in Lemma A.4 (with V = W 1,2
0,div ∩ W d+1,2(Ω)d

and H = L2
0,div(Ω)d and a(·, ·) taken to be the inner product of W d+1,2(Ω)d), there exists

a countable set {wi}i∈N (of eigenfunctions) in W 1,2
0,div ∩ W d+1,2(Ω)d whose linear span is

dense in L2
0,div(Ω)d, such that the wi, i = 1, 2, . . . , are orthogonal in the inner product of

W d+1,2(Ω)d and orthonormal in the inner product of L2(Ω)d. Similarly, for each m ∈ N
we find a countable set {ϕmi }i∈N (of eigenfunctions) in W 1,2(O) that are orthogonal in

W 1,2
Mm(O) and orthonormal in L2

Mm(O). Finally, we fix m,n ∈ N and look for (vm,n, ψ̂m,n)
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given by

vm,n(x, t) :=
m∑
i=1

cm,ni (t)wi(x),(2.19)

ψ̂m,n(x, q, t) :=
n∑
i=1

dm,ni (t)ϕmi (x, q),(2.20)

that solve

(vm,n,t ,wi)− (Γ`(|vm,n|2)vm,n ⊗ vm,n,∇wi) + (SSSm,nv ,∇wi)

= −(SSSm,ne ,∇wi) + 〈f ,wi〉 for all i = 1, . . . ,m and a.e. t ∈ (0, T ),
(2.21)

(Mmψ̂m,n,t , ϕmi )O −
(
Mmvm,nψ̂m,n,∇ϕmi

)
O
−
(
MΛ`(ψ̂

m,n)(∇vm,n)q,∇qϕmi
)
O

+ (Mm∇ψ̂m,n,∇ϕmi )O +
(
MmA(∇qψ̂m,n),∇qϕmi

)
O

= 0

for all i = 1 . . . , n and a.e. t ∈ (0, T ),

(2.22)

with initial data given by

vm,n(x, 0) = vm0 (x) :=
m∑
i=1

(v0,wi)wi(x),

ψ̂m,n(x, q, 0) = ψ̂m,n0 (x, q) :=
n∑
i=1

(T`(ψ̂
m
0 ), ϕi)O ϕ

m
i (x, q),

where

(2.23) ψ̂m0 := ψ̂0
M

Mm
.

Furthermore, we require that the expressions SSSm,ne and SSSm,nv appearing in the equations
(2.21) and (2.22) satisfy the following properties:

(2.24) (SSSm,nv ,DDD(vm,n)) ∈ A a.e. in Q,

SSSm,ne = −
∫
D

KMT`(ψ̂
m,n) III +

K∑
j=1

T`(ψ̂
m,n)∇qjM ⊗ qj dq,

a.e. in (x, t) ∈ Q.

(2.25)

The local in time existence of vm,n and ψ̂m,n for fixed m,n follows from Carathéodory’s
theory in the case when A can be rewritten as SSS = SSS∗(DDD), where SSS∗ is a continuous function.
For the more general setting when A gives only an implicit relation between SSS and DDD we
refer the interested reader to [15, 14]. Moreover, using the estimates established below we
can extend the solution onto the whole time interval (0, T ).
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2.2. n-independent a priori estimates. Our objective in this subsection is to derive
estimates that do not depend on n. To do so, we first note that, thanks to our assumptions
on M and Mm stated in (1.21) and (2.17) and because of the presence of the cut-off function
T` in (2.25), we have that

(2.26) |SSSm,ne | ≤ C`.

Next, we multiply the i-th equation in (2.21) by cm,ni (t) and sum with respect to i =
1, . . . ,m to deduce that (note that the convective term vanishes since div vm,n = 0)

(2.27)
1

2

d

dt
‖vm,n‖2

2 + (SSSm,nv ,DDD(vm,n)) = −(SSSm,ne ,DDD(vm,n)) + 〈f ,vm,n〉.

Hence, using (A4) and the Korn and Young inequalities, we find that

(2.28) sup
t∈(0,T )

‖vm,n‖2
2 +

∫ T

0

(
‖vm,n‖r1,r + ‖SSSm,nv ‖r

′

r′

)
dt ≤ C(M, `) + C(v0,f).

In particular, using the definition of vm,n and the orthogonality of the basis we get that

(2.29) sup
t∈(0,T ); i=1,...,m

|cm,ni (t)|+
∣∣∣∣dcm,ni (t)

dt

∣∣∣∣ ≤ C(m, `,v0,f ,M).

Similarly, multiplying the i-th equation in (2.22) by dm,ni (t) and summing with respect to
i = 1, . . . , n, we find (using again the property div vm,n = 0) that

1

2

d

dt
‖ψ̂m,n‖2

L2
Mm (O) + ‖∇ψ̂m,n‖2

L2
Mm (O)d + (MmA(∇qψ̂m,n),∇qψ̂m,n)O

=
(
MΛ`(ψ̂

m,n)(∇vm,n)q,∇qψ̂m,n
)
O
.

(2.30)

Next, noting the definitions of Λ` and Mm together with the Young and Hölder inequalities
we get that (

MΛ`(ψ̂
m,n)(∇vm,n)q,∇qψ̂m,n

)
Q
≤ 1

2
C1

∫
Q

Mm|∇qψ̂m,n|2 dx dq

+ C(`)‖∇vm,n‖2
∞‖ψ̂m,n‖2

L2
Mm (O).

(2.31)

Further, using the smoothness of the basis (note that W d+1,2 ↪→ W 1,∞) and the estimate
(2.29), we get that

‖∇vm,n‖∞ ≤ C(m, `).

Therefore, inserting (2.31) into (2.30) and using (1.14), we deduce that

d

dt
‖ψ̂m,n‖2

L2
Mm (O) +

∫
Q

Mm|∇x,qψ̂
m,n|2 dx dq ≤ C(`,m)‖ψ̂m,n‖2

L2
Mm (O).(2.32)

Thus, the application of Gronwall’s lemma, the fact that Mm ≥ 1
m

and the definition of

ψ̂m,n0 imply that

(2.33) sup
t∈(0,T )

‖ψ̂m,n‖2
L2(O) +

∫ T

0

‖ψ̂m,n‖2
W 1,2(O) dt ≤ C(`,m).
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In addition, since Mm is Lipschitz continuous, it is easy to deduce from (2.33) that

(2.34)

∫ T

0

‖Mmψ̂m,n‖2
W 1,2(O) dt ≤ C(`,m).

Finally, it follows from (2.29), (2.33) and (2.22) that∫ T

0

‖(Mmψ̂m,n),t‖2
W−1,2(O) dt ≤ C(m, `).(2.35)

2.3. The limit n → ∞. Here, we let n → ∞ in (2.21)–(2.25). Thus, from the n-
independent estimates (2.29), (2.33), (2.34), (2.35) and by using the Aubin–Lions Lemma
we see that there exist subsequences, which we do not relabel, such that

cm,ni ⇀∗ cni weak∗ in W 1,∞(0, T ),(2.36)

cm,ni → cni strongly in C[0, T ],(2.37)

vm,n → vm strongly in C(0, T ;W 1,r
0,div(Ω)d ∩W d+1,2(Ω)d),(2.38)

ψ̂m,n ⇀ ψ̂m weakly in L2(0, T ;W 1,2(O)),(2.39)

(Mmψ̂m,n),t ⇀ (Mmψ̂m),t weakly in L2(0, T ;W−1,2(O)),(2.40)

ψ̂m,n → ψ̂m strongly in L2(0, T ;L2(O)),(2.41)

SSSm,ne ⇀ SSSme weak∗ in L∞(0;T ;L∞(Ω)d×d),(2.42)

SSSm,nv ⇀ SSSmv weak∗ in L∞(0;T ;Lr
′
(Ω)d×d).(2.43)

In the light of these convergence results it is now standard to pass to the limit n→∞ in
(2.21)–(2.22) to deduce that

(vm,t ,wi)− (Γ`(|vm|2)vm ⊗ vm,∇wi) + (SSSmv ,∇wi)

= −(SSSme ,∇wi) + 〈f ,wi〉 for all i = 1, . . . ,m and a.e. t ∈ (0, T ),
(2.44)

〈Mmψ̂m,t , ϕ〉O −
(
Mmvmψ̂m,∇ϕ

)
O
−
(
MΛ`(ψ̂

m)(∇vm)q,∇qϕ
)
O

+ (Mm∇ψ̂m,∇ϕ)O +
(
MmA(∇qψ̂m),∇qϕ

)
O

= 0

for all ϕ ∈ W 1,2(O) and a.e. t ∈ (0, T ).

(2.45)

Moreover, it is obvious that vm(x, 0) = vm0 (x) and it is completely standard to show that

lim
t→0+

‖ψ̂m(·, t)− T`(ψ̂m0 (·))‖L2(O) = 0.

Finally, we also let n→∞ in (2.24) and (2.25). First, using (2.38) and (2.43) we see that

lim
n→∞

(SSSm,nv ,DDD(vm,n))Q = (SSSmv ,DDD(vm))Q.

Thus, having in addition (2.24), (2.38) and (2.43), we can use Lemma A.2 to deduce that

(2.46) (SSSmv ,DDD(vm)) ∈ A a.e. in Q.
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Then, using (2.41) and the Lebesgue Dominated Convergence Theorem, we can take the
limit in (2.25) and deduce that

SSSme = −
∫
D

[
KMT`(ψ̂

m) III +
K∑
j=1

T`(ψ̂
m)∇qjM ⊗ qj

]
dq a.e. in Q.(2.47)

2.4. Minimum principle for ψ̂m. In this subsection, we show rigorously that ψ̂m ≥ 0

a.e. in O × (0, T ). To do so, we set ϕ := (ψ̂m)− := min(0, ψ̂m) in (2.45) and derive by
using the fact that div vm = 0 and by a similar procedure as in (2.30)–(2.32), that

d

dt

∫
O
Mm((ψ̂m)−)2 dx dq +

∫
O
|∇x,q(ψ̂

m)−|2 dx dq

≤ C(m, `)

∫
O
Mm((ψ̂m)−)2 dx dq.

(2.48)

Since ψ̂m(0) = T`(ψ̂
m
0 ) ≥ 0, Gronwall’s inequality implies that (ψ̂m)− ≡ 0 in O × (0, T ).

Thus we deduce that

ψ̂m ≥ 0 a.e. in O × (0, T ).(2.49)

2.5. Uniform m-independent estimates. This subsection is devoted to deriving a priori
estimates that are independent of m. As a matter of fact, most of the estimates will also
be independent of `, and this will be clearly highlighted in the text. First, we set ϕ ≡ 1 in
(2.45). Thus, using (2.49) and (2.23) we deduce that∫

O
Mm(q) |ψ̂m(x, q, t)| dx dq =

∫
O
Mm(q) |T`(ψ̂m0 (x, q))| dx dq

≤
∫
O
Mm(q) |ψ̂m0 (x, q)| dx dq =

∫
O
M(q) |ψ̂0(x, q)| dx dq ≤ C.

(2.50)

Next, setting ϕ(x, q, t) := ϕ̄(x, t) in (2.45) and defining

(2.51) %m(x, t) :=

∫
D

Mm(q) ψ̂m(x, q, t) dq,

we see that

〈%m,t , ϕ̄〉 − (vm%m,∇ϕ̄) + (∇%m,∇ϕ̄) = 0

for all ϕ̄ ∈ W 1,2(Ω) and a.e. t ∈ (0, T ),
(2.52)

supplemented by the initial condition %m(·, 0) = %m0 , where

(2.53) 0 ≤ %m0 (x) :=

∫
D

Mm(q)T`(ψ̂
m
0 (x, q)) dq ≤

∫
D

M(q) ψ̂0(x, q) dq = %0(x).
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Consequently, since div vm = 0 we can use the maximum principle and (1.24) to deduce
that

‖%m‖L∞(Q) ≤ ‖%0‖∞ ≤ C,∫ T

0

‖∇%m‖2
2 dt ≤ 1

2
‖%0‖2

2 ≤ C.
(2.54)

Finally, to obtain m-independent estimates for the velocity field vm and for the x- and

q-gradients of ψ̂m, we set ϕ := ln(ψ̂m + δ) + 1 in (2.45), where δ > 0 is arbitrary. Note
that such a choice is legitimate. Hence, by defining

Gδ(s) := (s+ δ) ln(s+ δ) + e−1, G(s) := s ln s+ e−1,

Tδ,`(s) :=

∫ s

0

Λ`(t)

t+ δ
dt =

∫ s

0

tΓ`(t)

t+ δ
dt,

(note that Gδ ≥ 0, and Tδ,`
δ→0+→ T` in C([0,∞))), we obtain from equation (2.45) with

ϕ := ln(ψ̂m + δ) + 1 the following identity

d

dt

∫
O
MmGδ(ψ̂

m) dx dq −
(
Mm vm,∇Gδ(ψ̂

m)
)
O

+

(
Mm

ψ̂m + δ
∇ψ̂m,∇ψ̂m

)
O

+

(
Mm

ψ̂m + δ
A(∇qψ̂m),∇qψ̂m

)
O

=
(
M(∇vm)q,∇qTδ,`(ψ̂m)

)
O
.

(2.55)

We begin by observing that the second term on the left-hand side vanishes thanks to the
divergence-free constraint on vm. Next, integrating (2.55) with respect to time over (0, t)
and using the assumption (1.14), we get that∫

O
MmGδ(ψ̂

m(·, t)) dx dq + C1

∫ t

0

∫
O

Mm

ψ̂m + δ
|∇x,qψ̂

m|2 dx dq dτ

≤
∫
O
MmGδ(T`(ψ̂

m
0 ) dx dq +

∫ t

0

(
M(∇vm)q,∇qTδ,`(ψ̂m)

)
O

dτ.

(2.56)

Now we let δ → 0+ in (2.56). It is easy to identify the limit in the first term on the
left-hand side and the first term on the right-hand side. Moreover, using the Monotone
Convergence Theorem, we also easily identify the limit in the second term on the left-hand
side. We thus obtain∫

O
MmG(ψ̂m(·, t)) dx dq + 4C1

∫ t

0

∫
O
Mm

∣∣∣∣∇x,q

√
ψ̂m
∣∣∣∣2 dx dq dτ

≤
∫
O
MmG(T`(ψ̂

m
0 )) dx dq + lim sup

δ→0+

∫ t

0

(
M(∇vm)q,∇qTδ,`(ψ̂m)

)
O

dτ.

(2.57)

Finally, we focus on the last term on the right-hand side. Using integration by parts (the
boundary term vanishes using Lemma 3.1 in Section 3 of [7] again since M = 0 on ∂D),
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we find, on noting the property div vm = 0, that∫ t

0

(
M (∇vm)q,∇qTδ,`(ψ̂m)

)
O

dτ = −
∫ t

0

(
divq(M (∇vm)q), Tδ,`(ψ̂

m)
)
O

dτ

= −
K∑
j=1

∫ t

0

(
∇vm, Tδ,`(ψ̂m)∇qjM ⊗ qj)

)
O

dτ.

Thus, since Tδ,` converges to T` in C([0,∞)), we can easily pass to the limit in the last
integral in (2.57) to obtain∫

O
MmG(ψ̂m(·, t)) dx dq + 4C1

∫ t

0

∫
O
Mm

∣∣∣∣∇x,q

√
ψ̂m
∣∣∣∣2 dx dq dτ

≤
∫
O
MmG(T`(ψ̂

m
0 )) dx dq −

K∑
j=1

∫ t

0

(
∇vm, T`(ψ̂m)∇qjM ⊗ qj)

)
O

dτ.

(2.58)

Finally, we multiply the i-th equation in (2.44) by cmi (t) to deduce the following energy
identity (note that the convective term vanishes):

(2.59)
1

2

d

dt
‖vm‖2

2 + (SSSmv ,DDD(vm)) = −(SSSme ,∇vm) + 〈f ,vm〉.

Using div vm = 0 and the definition of SSSme (cf. (2.47)) we deduce that

(2.60) (SSSme ,∇vm) = −
K∑
j=1

(
∇vm, T`(ψ̂m)∇qjM ⊗ qj)

)
O
.

Hence, using this in (2.59), integrating over (0, t) and adding the result to (2.58), we get∫
O
MmG(ψ̂m(·, t)) dx dq + 1

2

∫
Ω

|vm(·, t)|2 dx

+ 4C1

∫ t

0

∫
O
Mm

∣∣∣∣∇x,q

√
ψ̂m
∣∣∣∣2 dx dq dτ +

∫ t

0

(SSSmv ,DDD(vm)) dτ

≤
∫
O
MmG(T`(ψ̂

m
0 )) dx dq + 1

2

∫
Ω

|vm0 (·)|2 dx+

∫ t

0

〈f ,vm〉 dt.

(2.61)

Thus, using the assumption (A4) and the Korn and Young inequalities, we arrive at the
following estimate that is uniform with respect to m:

sup
t∈(0,T )

(
‖vm(·, t)‖2

2 + ‖MmG(ψ̂m(·, t))‖L1(O)

)
+

∫ T

0

‖vm‖r1,r + ‖SSSmv ‖r
′

r′ + ‖
√
Mm∇x,q

√
ψ̂m‖2

L2(O)d(K+1) dt

≤ C

(
‖MmG(T`(ψ̂

m
0 ))‖L1(O) + ‖vm0 ‖2

2 +

∫ T

0

‖f‖r′
W−1,r′

0,div

dt

)
≤ C(1 + ‖MmG(T`(ψ̂

m
0 ))‖L1(O)) ≤ C(`).

(2.62)
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Standard interpolation inequalities and (2.62) then yield the estimate∫ T

0

‖vm‖
r(d+2)
d

r(d+2)
d

dt ≤ C(`).(2.63)

It is evident from the definition (2.47) of SSSme and from the assumption (1.21) that

(2.64) |SSSme | ≤ C`.

Consequently, thanks to the presence of Γ` in the convective term, it directly follows from
(2.62), (2.64) and (2.44) that

(2.65)

∫ T

0

‖vm,t ‖r
′

W−1,r
0,div

dt ≤ C(`).

2.6. The limit m → ∞. In this final subsection of Section 2 we let m → ∞ to establish
the existence of a weak solution stated in Theorem 2.1. First, using (2.62)–(2.65) and the
Aubin–Lions Lemma we deduce the existence of a subsequence that we do not relabel, and
(v,SSSv,SSSe), such that

vm ⇀∗ v weak∗ in L∞(0, T ;L2
0,div),(2.66)

vm ⇀ v weakly in Lr(0, T ;W 1,r
0,div),(2.67)

vm,t ⇀ v,t weakly in Lr
′
(0, T ;W−1,r′

0,div ),(2.68)

vm ⇀ v weakly in L
r(d+2)
d (0, T ;L

r(d+2)
d (Ω)d),(2.69)

vm → v strongly in L1(0, T ;L1(Ω)d),(2.70)

SSSmv ⇀ SSSv weakly in Lr
′
(0, T ;Lr

′
(Ω)d×d),(2.71)

SSSme ⇀∗ SSSe weak∗ in L∞(0, T ;L∞(Ω)d×d).(2.72)

With these convergence results it is then standard to let m→∞ in (2.44) to deduce (2.9).
Also, one can show the attainment of the initial condition for the velocity (2.13)1. In order
to prove that SSSv and DDD(v) fulfill (2.10), we assume for a moment that

(2.73) SSSme → SSS strongly in Lr
′
(0, T ;Lr

′
(Ω)d×d).

Then, integrating (2.59) with respect to t ∈ (0, T ), letting m → ∞, using the weak lower
semicontinuity of norm and combining (2.67) and (2.73) to identify the limit of the term
on the right-hand side of (2.59), we find that

(2.74) lim sup
m→∞

(SSSmv ,DDD(vm))Q ≤ 1
2
(‖v0‖2

2 − ‖v(T, ·)‖2
2)− (SSSe,DDD(v))Q +

∫ T

0

〈f ,v〉 dt.

By setting w := v in (2.9) and comparing the result with (2.74), we then obtain

(2.75) lim sup
m→∞

(SSSmv ,DDD(vm))Q ≤ (SSSv,DDD(v))Q.

Hence, by applying Lemma A.2 to the sequence (SSSmv ,DDD(vm)) we see that all assumptions
are satisfied and consequently (2.10) holds.
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Further, in order to identify all limits in (2.45) and also to show (2.73) we focus on the

convergence properties of ψ̂m. First, we define ψm := Mmψ̂m; using the definition of G we
then deduce from (2.62) and the inequality Mm ≤ C that

(2.76) sup
t∈(0,T )

∫
O
ψm(x, q, t) ln(1 + ψm(x, q, t)) dx dq ≤ C(`).

Since (2.76) implies the uniform equi-integrability of the sequence ψm, i.e.,

(2.77) ∀ ε > 0 ∃ δ > 0 ∀m ∈ N ∀U ⊂ Q×D : |U | ≤ δ =⇒
∫
U

ψm dx dq ≤ ε,

it directly follows from the characterization of weakly compact sets in L1 that there exists
a ψ ∈ L1(O × (0, T )) and a subsequence that we do not relabel such that

(2.78) ψm ⇀ ψ weakly in L1(O × (0, T )).

Since Mm converges to M uniformly in C(D), we directly deduce that

(2.79) ψ̂m ⇀ ψ̂ weakly in L1
loc(O × (0, T )).

Next, we show that there is a subsequence (again not relabelled) such that

(2.80) ψ̂m → ψ̂ a.e. in O × (0, T ).

Hence, let O0 ⊂ O0 ⊂ O be an arbitrary Lipschitz domain. It then follows from (2.62) and
from the properties of M and Mm that

(2.81) sup
t∈(0,T )

‖
√
ψ̂m(·, t)‖2

L2(O0) +

∫ T

0

‖
√
ψ̂m‖2

W 1,2(O0) dt ≤ C(O0).

Using standard interpolation inequalities we then deduce from (2.81) that

(2.82)

∫ T

0

∫
O0

|ψ̂m|
(K+1)d+2
d(K+1) dx dq dt =

∫ T

0

∫
O0

|
√
ψ̂m|

2((K+1)d+2)
d(K+1) dx dq dt ≤ C(Q0).

One can further interpolate using (2.81)–(2.82) and the Hölder inequality to obtain, for
any p ∈ [1, 2), that

∫ T

0

∫
O0

|∇x,qψ̂
m|p dx dq dt = C

∫ T

0

∫
O0

|∇x,q

√
ψ̂m|p|

√
ψ̂m|p dx dq dt

≤ C

(∫ T

0

∫
O0

|∇x,q

√
ψ̂m|2 dx dq dt

) p
2
(∫ T

0

∫
O0

|
√
ψ̂m|

2p
2−p dx dq dt

) 2−p
p

≤ C(O0)

(2.83)

provided that
2p

2− p
≤ 2((K + 1)d+ 2)

d(K + 1)
.
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Thus, by selecting the ‘optimal’ value p := (K+1)d+2
(K+1)d+1

that maximizes the power p on the

left-hand side of the last inequality, we finally obtain∫ T

0

∫
O0

|∇x,qψ̂
m|

(K+1)d+2
(K+1)d+1 dx dq dt ≤ C(O0).(2.84)

The final improvement, the integrability of ψm, will follow from the estimates on %m.
Indeed, it obviously follows from (2.51) and (2.54) that

(2.85) ‖ψm‖L∞(Q;L1(D)) ≤ C.

Thus, interpolating between this and (2.82) and using the properties of Mm, we see that
for any q1 ∈ (1,∞) there exists a q2 > 1 such that

(2.86) ‖ψ̂m‖Lq1 (Ω0×(0,T );Lq2 (D0)) ≤ C(O0),

where we have used the notation O0 := Ω0 ×D0. Consequently, using (2.63) and Hölder’s
inequality, there exists a δ > 0 such that

(2.87) ‖vmψ̂m‖L1+δ(O0×(0,T ))d ≤ C(O0).

Next, we use all of the above auxiliary estimates overO0 to deduce pointwise convergence

of ψ̂m by means of the Div-Curl Lemma (cf. Lemma A.1). To this end, for some α ∈ (0, 1
2
)

that will be specified later, we define two (1+d+Kd)-component vector fields (now vector
means vector in all variables x, q, t) as follows:

HHHm := (Mmψ̂m,Mmψ̂mvm +M∇xψ̂
m,MΛ`(ψ̂

m)vmq +Mm∇qψm),

QQQm := ((1 + ψ̂m)α, 0, . . . , 0︸ ︷︷ ︸
(d+Kd)−times

).

Consequently, using (2.63), (2.84) and (2.87), we deduce the existence of a subsequence
(not relabelled) such that

HHHm ⇀ HHH weakly in L1+δ(O0 × (0, T ))1+d+Kd,

QQQm ⇀ QQQ weakly in L
1
α (O0 × (0, T ))1+d+Kd,

where (we use uniform convergence of Mm and strong convergence of vm)

HHH := (Mψ̂,Mψ̂v +M∇xψ̂,MΛ`(ψ̂)vq +M∇qψ),

QQQ := ((1 + ψ̂)α, 0, . . . , 0).

It remains to check the assumptions of the Div-Curl Lemma. First, it follows from (2.45)
that

divt,x,qHHH
m = 0 in O0 × (0, T ).
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Moreover, we get by using (2.81) and the fact that α ∈ (0, 1
2
) that∫

O0×(0,T )

|∇t,x,qQQQ
m − (∇t,x,qQQQ

m)T |2 dx dq dt

≤ C

∫
O0×(0,T )

|∇x,q(1 + ψ̂m)α|2 dx dq dt

≤ C

∫
O0×(0,T )

|∇x,q

√
ψ̂m|2 dx dq dt ≤ C(O0).

(2.88)

Hence, the divergence of HHHm is precompact in W−1,2(O0 × (0, T )) and the curl of QQQm is
precompact in W−1,2(O0× (0, T )). Consequently, by choosing α < δ

1+δ
, we deduce that all

assumptions of the Div-Curl Lemma are satisfied, and therefore

(2.89) HHHm ·QQQm ⇀ HHH ·QQQ weakly in L1(O0 × (0, T )).

In particular, we have that

Mmψ̂m(1 + ψ̂m)α ⇀Mψ̂ (1 + ψ̂)α;

because of the uniform convergence of Mm to M this then implies that

(1 + ψ̂m)α+1 ⇀ (1 + ψ̂) (1 + ψ̂)α.

Thanks to the convexity of the function s ∈ [0,∞) 7→ sα+1 ∈ [0,∞) it follows that

(1 + ψ̂)1+α ≤ (1 + ψ̂) (1 + ψ̂)α, and therefore (1 + ψ̂)α ≤ (1 + ψ̂)α.

On the other hand, the function s ∈ [0,∞) 7→ sα ∈ [0,∞) is concave, and therefore we
immediately have that

(1 + ψ̂)α = (1 + ψ̂)α

and consequently, since the function s ∈ [0,∞) 7→ sα ∈ [0,∞) is strictly concave, thanks
to Theorem 10.20 in [24] there exists a subsequence (not relabelled) such that

ψ̂m → ψ̂ a.e. in O0 × (0, T ).(2.90)

Hence (by the uniform convergence of Mm to M)

ψm → ψ a.e. in O0 × (0, T ).(2.91)

Finally, we select a nondecreasing sequence of nested sets {Ok0}k∈N such that
⋃∞
k=1Ok0 = O

and for each k we deduce pointwise convergence on Ok0 . Thus, using a diagonal procedure,
we finally find a subsequence (that is, once again, not relabelled) such that (2.80) holds.

Hence, by combining (2.77) and (2.80) and recalling Vitali’s Convergence Theorem (cf.
Theorem 2.24 in [26]), we obtain that

ψm → ψ strongly in L1(0, T ;L1(O)).(2.92)
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Therefore, using Lebesgue’s Dominated Convergence Theorem (here we rely on the presence
of the truncation T`) we can let m→∞ in (2.47) to deduce that

SSSme → SSSe strongly in L1(0, T ;L1(Ω)d×d),(2.93)

where

SSSe = −
∫
D

[
KMT`(ψ̂) III +

K∑
j=1

T`(ψ̂)∇qjM ⊗ qj
]

dq a.e. in Q.(2.94)

Thus, by interpolating between (2.72) and (2.93), we find (2.73).
In the rest of this subsection, we focus on passing to the limit m→∞ in (2.45). First,

by interpolating between (2.54) and (2.92) we get that

ψm → ψ strongly in Lq(Q;L1(D)) for all q ∈ [1,∞).(2.95)

Next, for any measurable U ⊂ (Q×D) we use Hölder’s inequality to deduce that∫
U

Mm |∇x,qψ̂
m| dx dq dt = 2

∫
U

Mm |∇x,q

√
ψ̂m|

√
ψ̂m dx dq dt

≤ 2

(∫
U

Mm |∇x,q

√
ψ̂m|2 dx dq dt

) 1
2
(∫

U

ψm dx dq dt

) 1
2

(2.77),(2.62)

≤ Cε
1
2 ,(2.96)

provided that |U | ≤ δ. This then implies that we can extract a subsequence such that

Mm∇x,qψ̂
m ⇀M ∇x,qψ̂ weakly in L1(Q×O)d(K+1),(2.97)

where for the identification of the weak limit we used the fact that Mm converges uniformly

to M and ∇x,qψ̂
m converges locally in L1, which follows from (2.84). In addition, by noting

(2.95) it also follows from (2.62) that

√
Mm∇x,q

√
ψ̂m ⇀

√
M ∇x,q

√
ψ̂ weakly in L2(Q×O)d(K+1).(2.98)

By using the same procedure as in (2.96) we also see that∫
Q

(∫
D

Mm |∇x,qψ̂
m| dq

)2

dx dt

≤ C

∫
Q

‖
√
Mm∇x,q

√
ψ̂m‖2

L2(D)‖ψm‖2
L1(D) dx dt

(2.54),(2.62)

≤ C

(2.99)

and we can then strengthen (2.97) as follows:

Mm∇x,qψ̂
m ⇀M ∇x,qψ̂ weakly in L2(Q;L1(D)d(K+1)).(2.100)
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Finally, using (2.67), (2.69), (2.70) and (2.95) we deduce that, for all q ∈ [1, r(d+2)
d

),

Mm ψ̂mvm → ψv strongly in Lq(Q;L1(D)d(K+1)),(2.101)

Λ`(ψ̂
m)∇vm ⇀ Λ`(ψ̂)∇v weakly in Lr(Q×D)d×d.(2.102)

Consequently, using (2.45), and the convergence results (2.100)–(2.102) it follows that

(Mm ψ̂m),t ⇀ ψ,t weakly in L1(Q;W−1,1(D)d(K+1)).(2.103)

Thus, using the linearity of the mapping B ∈ Rd×K 7→ A(B) ∈ Rd×K it is easy to let
m→∞ in (2.45) to deduce (2.12). Moreover, one can also show (2.13)2 by using standard
arguments. Finally, to derive (2.15) and (2.14) we let m → ∞ in (2.54), (2.61) and
(2.62). To pass to the limit in all terms on the left-hand side, we use either weak lower
semicontinuity of norms or Fatou’s Lemma, and for the critical term on the right-hand side
of (2.62) we have that

‖MmG(T`(ψ̂
m
0 ))‖L1(O)

m→∞→ ‖M G(T`(ψ̂0))‖L1(O)

(1.23)

≤ C.

Thus, the proof of Theorem 2.1 is complete.

3. Proof of the main theorem

This final section is devoted to the proof of Theorem 1.1. We use the sequence of

approximate solutions (v`,SSS`v,SSS
`
e, ψ̂

`) constructed in Theorem 2.1 and let `→∞.

3.1. Weak/strong convergence results for v`. First, we recall the uniform estimate
(2.15) (from now, C signifies a generic positive constant that may depend on the data but
is independent of `)

sup
t∈(0,T )

(
‖v`(·, t)‖2

2 + ‖ψ̂`(·, t) ln ψ̂`(·, t)‖L1
M (O) + ‖%`(·, t)‖∞

)
+

∫ T

0

‖v`‖r1,r + ‖SSS`v‖r
′

r′ + ‖
√
ψ̂`‖2

W 1,2
M (O)

+ ‖SSS`e‖2
2 + ‖∇%`‖2

2 dt ≤ C,

(3.1)

where

(3.2) %`(x, t) :=

∫
D

M(q) ψ̂`(x, q, t) dq.

Next, using function space interpolation one can deduce from (3.1) that∫ T

0

‖v`‖
(d+2)r
d

(d+2)r
d

dt ≤ C.(3.3)

Hence, using (3.1), (3.3), the definition of r∗ and the identity (2.9), we have that∫ T

0

‖v`,t‖r
∗

W−1,r∗
0,div

dt ≤ C.(3.4)
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Consequently, using the uniform estimates above in conjunction with the Aubin–Lions
Lemma we deduce the existence of subsequences, which we do not relabel, and an associated
triple (v,SSSv,SSSe) such that

v` ⇀∗ v weak∗ in L∞(0, T ;L2
0,div),(3.5)

v` ⇀ v weakly in Lr(0, T ;W 1,r
0,div),(3.6)

v`,t ⇀ v,t weakly in Lr
∗
(0, T ;W−1,r∗

0,div ),(3.7)

v` ⇀ v weakly in L
r(d+2)
d (0, T ;L

r(d+2)
d (Ω)d),(3.8)

v` → v strongly in L1(0, T ;L1(Ω)d),(3.9)

SSS`v ⇀ SSSv weakly in Lr
′
(0, T ;Lr

′
(Ω)d×d),(3.10)

SSS`e ⇀ SSSe weakly in L2(0, T ;L2(Ω)d×d).(3.11)

Using the above convergence results and assuming that r > 2d
d+2

in order to handle the
convective term, it is now standard to let `→∞ in (2.9) to deduce (1.27). In the case of
a Newtonian fluid this would suffice to show (1.30) and identify SSSv and SSSe, i.e., to show
(1.29). However, in the case of a nonlinear constitutive law described by a graph A, we
need to show strong convergence of SSS`e to establish the validity of (1.28).

3.2. Weak/strong convergence results for ψ̂` and SSS`e. Here, we mimic the procedure

described in Subsection 2.6 and derive strong convergence results for ψ̂` that are necessary
for proving strong convergence of SSS`e. Since almost all steps are identical to those in
Subsection 2.6, we proceed here by omitting some of the details and refer to Subsection 2.6.
First, from (3.1), namely from the estimate

(3.12) sup
t∈(0,T )

∫
O
M(q) ψ̂`(x, q, t) ln(1 + ψ̂`(x, q, t)) dx dq ≤ C,

we deduce the uniform equi-integrability of the sequence ψ̂` (similarly to (2.77)), and the

existence of a ψ̂ ∈ L1
M(O × (0, T )) and of a subsequence that we do not relabel such that

(3.13) ψ̂` ⇀ ψ weakly in L1
M(O × (0, T )).

The next step is to show that for a subsequence, which we do not relabel, we have that

(3.14) ψ̂` → ψ̂ a.e. in O × (0, T ).

We proceed here in the same way as in Subsection 2.6 and use the fact that (3.1) is `-
independent. Hence, we let O0 ⊂ O0 ⊂ O be an arbitrary Lipschitz domain. Since M > δ
in O0 for some δ, we have that

(3.15) sup
t∈(0,T )

‖
√
ψ̂`(·, t)‖2

L2(O0) +

∫ T

0

‖
√
ψ̂`(·, t)‖2

W 1,2(O0) dt ≤ C(O0).
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Using standard interpolation inequalities we then deduce from (2.81) that

(3.16)

∫ T

0

∫
O0

|ψ̂`|
(K+1)d+2
d(K+1) dx dq dt ≤ C(Q0).

Hence, using the procedure described in Subsection 2.6 one can interpolate using this
estimate to deduce that ∫ T

0

∫
O0

|∇x,qψ̂
`|

(K+1)d+2
(K+1)d+1 dx dq dt ≤ C(O0)(3.17)

and also, using the fact that

(3.18) ‖ψ`‖L∞(Q;L1(D)) ≤ C,

we see that for any q1 ∈ (1,∞) there exists a q2 > 1 such that

(3.19) ‖ψ̂`‖Lq1 (Ω0×(0,T );Lq2 (D0)) ≤ C(O0),

where we have used the notation O0 := Ω0 × D0. Consequently, using (3.1), (3.19), the
definition of Λ`, the fact that D0 is bounded and Hölder’s inequality, there exists a δ > 0
such that

(3.20) ‖v`ψ̂`‖L1+δ(O0×(0,T ))d + ‖Λ`(ψ̂
`)(∇v`)q‖L1+δ(O0×(0,T ))Kd ≤ C(O0).

Next, similarly as before, we define

HHH` := (Mψ̂`,Mψ̂`v` +M∇xψ̂
`,MΛ`(ψ̂

`)v`q +M∇qψ̂`),

QQQ` := ((1 + ψ̂`)α, 0, . . . , 0︸ ︷︷ ︸
(d+Kd)−times

),

with some α > 0 such that α < δ
1+δ

. Consequently, using (3.1), (3.17) and (3.20), we
deduce the existence of subsequences, which we do not relabel, such that

HHH` ⇀ HHH weakly in L1+δ(O0 × (0, T ))1+d+Kd,

QQQ` ⇀ QQQ weakly in L
1
α (O0 × (0, T ))1+d+Kd,

where (by noting the strong convergence of v`)

HHH := (Mψ̂,Mψ̂v +M∇xψ̂,Mψ̂vq +M∇qψ̂),

QQQ := ((1 + ψ̂)α, 0, . . . , 0).

Thus, by applying the Div-Curl Lemma (cf. Lemma A.1 in the Appendix), all assumptions
of which are valid thanks to our choice of α and the above estimates (see Subsection 2.6
for details), we deduce that

(3.21) HHH` ·QQQ` ⇀ HHH ·QQQ weakly in L1(O0 × (0, T )).

In particular, we have that

ψ̂`(1 + ψ̂`)α ⇀ ψ̂ (1 + ψ̂)α,
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which then implies that

ψ̂` → ψ̂ a.e. in O0 × (0, T ).(3.22)

Next, we select a nondecreasing sequence of nested sets {Ok0}k∈N such that
⋃∞
k=1Ok0 = O

and for each k we deduce pointwise convergence on Ok0 . Thus, using a diagonal procedure,
we finally find a subsequence (that is, once again, not relabelled) such that (3.14) holds.

Hence, by combining (3.13) and (3.14), we obtain that

ψ̂m → ψ̂ strongly in L1(0, T ;L1
M(O)).(3.23)

Moreover, using (3.1) and standard function space interpolation, we also deduce that

ψ̂` → ψ̂ strongly in Lq(Q;L1
M(D)) for all q ∈ [1,∞).(3.24)

Having shown the uniform estimate (3.1) and the strong convergence (3.24) we can now
follow the argument in Subsection 2.6 to deduce the following convergence results:

∇x,qψ̂
` ⇀ ∇x,qψ̂ weakly in L1(0, T ;L1

M(O)d(K+1)),(3.25)

∇x,q

√
ψ̂` ⇀ ∇x,q

√
ψ̂ weakly in L2(0, T ;L2(O)d(K+1)),(3.26)

∇x,qψ̂
` ⇀ ∇x,qψ̂ weakly in L2(Q;L1

M(D)d(K+1)).(3.27)

Moreover, using the definition of Λ`, (3.1), (3.6) and (3.24) we deduce that

Λ`(ψ̂
`)∇v` ⇀ ψ̂∇v weakly in Lr(Q;L1

M(D)d×d).(3.28)

In addition, by combining (3.9) and (3.24) we see that, up to a subsequence, ψ̂`v` converges

to ψ̂v almost everywhere in Q × D. Thus, using the fact that v is independent of q,

the uniform equi-integrability of ψ̂`, which follows from (3.24) and the a priori bound

(3.1), it follows that the sequence ψ̂`v` is also uniformly equi-integrable, and then Vitali’s
Convergence Theorem (cf. Theorem 2.24 in [26]) directly implies that

ψ̂`v` → ψ̂v strongly in L1(Q;L1
M(D)d(K+1)) .

Finally, using this convergence result, (3.8) and (3.24) we observe that

ψ̂`v` → ψ̂v strongly in Lq(Q;L1
M(D)d(K+1)).(3.29)

Consequently, using the identity (2.12), the convergence results (3.27)–(3.29) and the
boundedness of D it follows that

(Mψ̂`),t ⇀Mψ̂,t weakly in L1(Q;W−1,1(D)d(K+1)).(3.30)

Thus, using the linearity of the mapping B ∈ Rd×K 7→ A(B) ∈ Rd×K it is easy to let
`→∞ in (2.12) to deduce (1.30).
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3.3. Convergence properties of SSS`e. In this subsection, we focus on (2.11) and let `→∞
to deduce (1.29). To this, using partial integration and the fact that M has zero trace, we
rewrite SSS`e as follows (see also Lemma 3.1 in Section 3 of [7]):

SSS`e(x, t) := −k

(∫
D

KM(q)T`(ψ̂
`(x, q, t)) III−

K∑
j=1

T`(ψ̂
`(x, q, t))∇qjM(q)⊗ qj dq

)

= k
K∑
j=1

∫
D

M ∇qjT`(ψ̂`(x, q, t))⊗ qj dq.

(3.31)

Thus, we can now apply (3.24) and (3.25) and let ` → ∞ in (3.31) to deduce (1.29). In
what follows, we prove the strong convergence of SSS`e, which is needed for proving (1.28).
Hence, by recalling the definition of SSSe, we have that

SSS`e(x, t)− SSSe(x, t) := k
K∑
j=1

∫
D

M ∇qj(T`(ψ̂`(x, q, t))− ψ̂(x, q, t))⊗ qj dq.(3.32)

Let Ω0 ⊂ Ω0 ⊂ Ω be an arbitrary Lipschitz domain. We then have that

∫ T

0

∫
Ω

|SSS`e(x, t)− SSSe(x, t)| dx dt

=

∫ T

0

∫
Ω\Ω0

|SSS`e(x, t)− SSSe(x, t)| dx dt+

∫ T

0

∫
Ω0

|SSS`e(x, t)− SSSe(x, t)| dx dt

≤ C|Ω \ Ω0|
1
2 +

∫ T

0

∫
Ω0

|SSS`e(x, t)− SSSe(x, t)| dx dt,

(3.33)

where in the transition to the right-hand side of the last inequality we have used Hölder’s
inequality and the a priori estimate (3.1). Similarly, let D0 ⊂ D0 ⊂ D be an arbitrary
Lipschitz domain. We can then decompose SSS`e − SSSe as follows:

SSS`e(x, t)− SSSe(x, t) := k

K∑
j=1

∫
D\D0

M ∇qj(T`(ψ̂`(x, q, t))− ψ̂(x, q, t))⊗ qj dq

+ k
K∑
j=1

∫
D0

M ∇qj(T`(ψ̂`(x, q, t))− ψ̂(x, q, t))⊗ qj dq.

(3.34)
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Consequently, by inserting this decomposition into (3.33) and using the fact that D is
bounded, we deduce that∫ T

0

∫
Ω

|SSS`e(x, t)− SSSe(x, t)| dx dt

≤ C|Ω \ Ω0|
1
2 + C

∫ T

0

∫
Ω0

∫
D\D0

M (|∇qψ̂`(x, q, t)|+ |∇qψ̂(x, q, t)|) dq dx dt

+ k

∫ T

0

∫
Ω0

∣∣∣∣∣
K∑
j=1

∫
D0

M ∇qj(T`(ψ̂`(x, q, t))− ψ̂(x, q, t))⊗ qj dq

∣∣∣∣∣ dx dt.

(3.35)

Finally, in the last term we use an integration by parts (we emphasize that the boundary
term does not vanish here) to get

K∑
j=1

∫
D0

M ∇qj(T`(ψ̂`(x, q, t))− ψ̂(x, q, t))⊗ qj dq

= −
∫
D0

KM(q)(T`(ψ̂
`(x, q, t))− ψ̂(x, q, t)) III dq

−
K∑
j=1

∫
D0

(T`(ψ̂
`(x, q, t))− ψ̂(x, q, t))∇qjM(q)⊗ qj dq

+
K∑
j=1

∫
∂D0

j
M (T`(ψ̂

`(x, q, t))− ψ̂(x, q, t))nj ⊗ qj dS(qj).

(3.36)

Thus, by inserting this into (3.35), denoting O0 := Ω0 ×D0 and using the fact that D is
bounded we deduce that∫ T

0

∫
Ω

|SSS`e(x, t)− SSSe(x, t)| dx dt

≤ C|Ω \ Ω0|
1
2 + C

∫ T

0

∫
Ω0

∫
D\D0

M (|∇qψ̂`(x, q, t)|+ |∇qψ̂(x, q, t)|) dq dx dt

+ C

∫ T

0

∫
O0

|T`(ψ̂`(x, q, t))− ψ̂(x, q, t)| (|∇qM(q)|+M(q)) dq dx dt

+ C

∫ T

0

∫
∂O0

M(q) |T`(ψ̂`(x, q, t))− ψ̂(x, q, t)| dS.

(3.37)

Next, we specify our choice of Ω0 and D0. First, for any ε > 0 we choose a Lipschitz
subdomain Ω0 of Ω such that C|Ω \Ω0| ≤ 1

2
ε. Similarly, from the weak convergence result

(3.25) we deduce uniform equi-integrability of the sequence {M∇qψ̂`}`∈N , which implies
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that for any ε > 0 there is δ > 0 such that if |D \D0| ≤ δ then

C

∫ T

0

∫
Ω0

∫
D\D0

M(|∇qψ̂`(x, q, t)|+ |∇qψ̂(x, q, t)|) dq dx dt ≤ 1
2
ε.

Hence, for given ε > 0 we find δ > 0 and a Lipschitz subdomain D0 of D such that
|D \D0| ≤ δ and with this choice and by using the assumption (1.21) on the Maxwellian,
which implies that |∇qM |+M ≤ C(D0) inD0, the inequality (3.37) reduces to the following
(from now on O0 is fixed):∫ T

0

∫
Ω

|SSS`e(x, t)− SSSe(x, t)| dx dt

≤ C(D0)

∫ T

0

∫
O0

|T`(ψ̂`(x, q, t))− ψ̂(x, q, t)| dq dx dt

+ C(D0)

∫ T

0

∫
∂O0

|T`(ψ̂`(x, q, t))− ψ̂(x, q, t)| dS(x, q) dt+ ε.

(3.38)

Thus, using (3.23), the uniform convergence of T` and the fact that M−1 is bounded in D0

(which is a consequence of (1.21)), we find that

(3.39) lim
`→∞

∫ T

0

∫
O0

|T`(ψ̂`(x, q, t))− ψ̂(x, q, t)| dq dx dt = 0.

In order to pass to the limit in the boundary integral, we first recall that (3.17) implies
that

ψ̂` ⇀ ψ̂ weakly in L
(K+1)d+2
(K+1)d+1 (0, T ;W 1,

(K+1)d+2
(K+1)d+1 (O0)).

Hence, by using function space interpolation and the strong convergence (3.24), we deduce,
for any 0 < γ ≤ 1, that

ψ̂` → ψ̂ strongly in L
(K+1)d+2
(K+1)d+1 (0, T ;W 1−γ, (K+1)d+2

(K+1)d+1 (O0)).

Finally, the Trace Theorem (see, for example, [1]) immediately gives

ψ̂` → ψ̂ strongly in L1(0, T ;L1(∂O0)),

and consequently

(3.40) lim
`→∞

∫ T

0

∫
∂O0

|T`(ψ̂`(x, q, t))− ψ̂(x, q, t)| dS(x, q) dt = 0.

Hence, inserting (3.39) and (3.40) into (3.38) we have that

lim sup
`→∞

∫ T

0

∫
Ω

|SSS`e(x, t)− SSSe(x, t)| dx dt ≤ ε.(3.41)

Since ε was an arbitrary positive real number, it follows from (3.41) and (3.11) that

(3.42) SSS`e → SSSe strongly in Lq(0, T ;Lq(Ω)d×d) for all q ∈ [1, 2),
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which completes the proof of the strong convergence of the sequence SSS`e as `→∞.

3.4. Attainment of the initial conditions. Here we focus on the proof of (1.31). We
note that the standard procedure for showing the attainment of the initial conditions, i.e.,

arguing separately for v0 and ψ̂0, would work only in the case of r ≥ 2. In order to
also cover the case of 1 < r ≤ 2 we must proceed more carefully and the proof below
is therefore based on the energy inequality for the complete system. First, we recall the
standard procedure for proving attainment of the initial data in a weak sense. To this end,
we first set w(x, t) := χ[0,t]u(x) in (2.9), where u ∈ W 1,∞

0,div is arbitrary, to deduce that

(v`(t),u) +

∫ t

0

[
− (Γ`(|v`|2)v` ⊗ v`,∇u) + (SSS`v,∇u)

]
dτ

=

∫ t

0

[
− (SSS`e,∇u) + 〈f ,u〉

]
dτ + (v0,u).

(3.43)

Consequently, letting `→∞ in (3.43) and using the convergence properties established in
the preceding subsections we deduce that, for almost all t ∈ (0, T ),

(v(t),u) +

∫ t

0

[−(v ⊗ v,∇u) + (SSSv,∇u)] dτ =

∫ t

0

[−(SSSe,∇u) + 〈f ,u〉] dτ + (v0,u).

(3.44)

Hence, we see that after a possible redefinition of v on a set of measure zero, the identity
(3.44) holds for all t ∈ (0, T ). It then directly follows that

lim
t→0+

(v(t),u) = (v0,u) for all u ∈ W 1,∞
0,div,

and consequently, thanks to (1.25), we deduce that

v(t)
t→0+
⇀ v0 weakly in L2(Ω)d.(3.45)

Similarly, setting ϕ(x, q, t) := χ[0,t]φ(x, q) in (2.12), where φ ∈ W 1,∞(O) is arbitrary, we
deduce that

(Mψ̂`(t), φ)O −
∫ t

0

[(
Mv`ψ̂`,∇φ

)
O
−
(
MΛ`(ψ̂

`)(∇v`)q,∇qφ
)
O

]
dτ

+

∫ t

0

[
(M∇ψ̂`,∇φ)O +

(
MA(∇qψ̂`),∇qφ

)
O

]
dτ = (MT`(ψ̂0), φ)O.

(3.46)

Hence, letting ` → ∞ and using the above convergence results we deduce that, for all

t ∈ (0, T ) (after a possible redefinition of ψ̂ on a set of zero measure), we have that

(Mψ̂(t), φ)O −
∫ t

0

[(
Mvψ̂,∇φ

)
O
−
(
Mψ̂(∇v)q,∇qφ

)
O

]
dτ

+

∫ t

0

[
(M∇ψ̂,∇φ)O +

(
MA(∇qψ̂),∇qφ

)
O

]
dτ = (Mψ̂0, φ)O.

(3.47)
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As a direct consequence of (3.47) we then have that

lim
t→0+

(Mψ̂(t), φ)O = (Mψ̂0, φ)O for all φ ∈ W 1,∞(O).(3.48)

Next, we invoke (1.25)6, which implies that the family {Mψ̂(t)} is uniformly equi-integrable
and, therefore, that it has a weakly convergent subsequence in L1(O). By the uniqueness
of the weak limit we then deduce from (3.48) that

ψ̂(t)
t→0+
⇀ ψ̂0 weakly in L1

M(O).(3.49)

Our next objective is to show that the weak convergence results (3.45) and (3.49) can
be strengthened to (1.31). To do so, we first let `→∞ in (2.14); neglecting the integrals
on the left-hand side that are nonnegative and using the above weak convergence results
we deduce, for all t ∈ (0, T ), that∫

O
M G(ψ̂(·, t)) dx dq + 1

2

∫
Ω

|v(·, t)|2 dx

≤
∫
O
M G(ψ̂0) dx dq + 1

2

∫
Ω

|v0(·)|2 dx+

∫ t

0

〈f ,v〉 dt.
(3.50)

Recall here that G(s) := s ln s + e−1 is a nonnegative strictly convex continuous function
on (0,∞). Hence, from (3.50) we have that

lim sup
t→0+

[∫
O
M G(ψ̂(·, t)) dx dq + 1

2
‖v(t)‖2

2

]
≤
∫
O
M G(ψ̂0) dx dq + 1

2
‖v0‖2

2 .(3.51)

On the other hand, using the weak convergence results (3.45) and (3.49) and the convexity
of G, we see that also

lim inf
t→0+

[∫
O
M G(ψ̂(·, t)) dx dq + 1

2
‖v(t)‖2

2

]
≥
∫
O
M G(ψ̂0) dx dq + 1

2
‖v0‖2

2(3.52)

and consequently

lim
t→0+

[∫
O
M G(ψ̂(·, t)) dx dq + 1

2
‖v(t)‖2

2

]
=

∫
O
M G(ψ̂0) dx dq + 1

2
‖v0‖2

2.(3.53)

Next, we split the information coming from (3.53). Assume (for contradiction) that

lim sup
t→0+

‖v(t)‖2
2 > ‖v0‖2

2.(3.54)

It then follows from (3.53) that

lim inf
t→0+

∫
O
M G(ψ̂(·, t)) dx dq <

∫
O
M G(ψ̂0) dx dq.(3.55)

However, using the convexity of G, we also have that

lim inf
t→0+

∫
O
M G(ψ̂(·, t)) dx dq ≥

∫
O
M G(ψ̂0) dx dq,(3.56)
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which is a contradiction. Thus we obtain that

lim
t→0+

‖v(t)‖2
2 = ‖v0‖2

2, lim
t→0+

∫
O
M G(ψ̂(·, t)) dx dq =

∫
O
M G(ψ̂0) dx dq.(3.57)

Consequently, combining (3.45) and (3.57) we deduce the first part of (1.31). Similarly,
since G is strictly convex, it follows from (3.49) and (3.57) that

Mψ̂(·, t) t→0+→ Mψ̂0(·) almost everywhere in O.
Thus, on combining this with (3.49) we immediately arrive at the second part of (1.31).

3.5. Identification of SSSv. Here, we finally prove (1.28). Since we have already established
the strong convergence of SSS`e and v` we are in a position to apply the method of parabolic
Lipschitz truncation developed in [18]. Indeed, following the arguments of [18, Section 4]
we deduce2 that there is a subsequence that we do not relabel such that

(3.58) lim
`→∞

∫
Q

∣∣(SSS`v − SSS∗(DDD(v))) ·DDD(v` − v)
∣∣α dx dt = 0

for any α ∈ (0, 1). Here, we have denoted by SSS∗ a (measurable) selection mapping such
that for any DDD we have (SSS∗(DDD),DDD) ∈ A. In particular, it follows (for a subsequence) from
(3.58) that

(3.59) (SSS`v − SSS∗(DDD(v))) ·DDD(v` − v)→ 0 almost everywhere in Q.

Moreover, using (3.1) we see that

(3.60)

∫
Q

∣∣(SSS`v − SSS∗(DDD(v))) ·DDD(v` − v)
∣∣ dx dt ≤ C.

Thus, we can apply Chacon’s Biting Lemma A.3 to find a nondecreasing countable sequence
of measurable sets Q1 ⊂ · · · ⊂ Qk ⊂ Qk+1 ⊂ · · · ⊂ Q such that

(3.61) lim
k→∞
|Q \Qk| → 0

and such that for any k there is a subsequence such that

(3.62) (SSS`v − SSS∗(DDD(v))) ·DDD(v` − v) converges weakly in L1(Qk).

Hence, using the characterization of weakly convergent sequences in L1, the monotonicity
of A and the pointwise convergence result (3.59) we deduce that

(3.63) (SSS`v − SSS∗(DDD(v))) ·DDD(v` − v)→ 0 strongly in L1(Qk).

Now, using (3.6) and (3.10), we deduce from (3.63) that

(3.64) lim
`→∞

(SSS`v,DDD(v`))Qk = (SSSv,DDD(v))Qk .

Therefore, by applying Lemma A.2 we see that (SSSv,DDD(v)) ∈ A almost everywhere in Qk.
Finally, using a diagonal procedure and (3.61) we arrive at (1.28), which completes the
proof of Theorem 1.1.

2In the case of a Navier boundary condition we refer the reader to [15].
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4. Conclusions

We have established long-time large-data existence of weak solutions to a general class
of kinetic models of homogeneous incompressible dilute polymers, the main new feature of
the model being the presence of a general implicit constitutive equation relating the vis-
cous part SSSv of the Cauchy stress and the symmetric part DDD of the velocity gradient. We
have considered implicit relations that generate maximal monotone (possibly multivalued)
graphs, and the corresponding rate of dissipation was characterized by the sum of a Young
function and its conjugate depending on DDD and SSSv, respectively. The elastic properties
of the flow, characterizing the response of polymer macromolecules in the viscous solvent,
have been modelled by the elastic part SSSe of the Cauchy stress tensor, whose divergence
appears on the right-hand side of the momentum equation, and which is defined by the
Kramers expression involving the probability density function, associated with the random
motion of the polymer molecules in the solvent. The probability density function satisfies
a Fokker–Planck equation, which is nonlinearly coupled to the momentum equation. A
possible extension of the analysis presented here would be to admit a nonhomoheneous
solvent, with variable density. In the case of a coupled Navier–Stokes–Fokker–Planck sys-
tem with variable density and density-dependent dynamic viscosity and drag coefficients
the existence of global weak solutions was shown in the recent paper [9]. The main theo-
retical hurdle in extending the results of [9] to nonhomogeneous fluid flow models, where
instead of a linear relationship between SSSv and DDD these quantities are related through an
implicit relationship, is that currently the parabolic Lipschitz truncation method of Dien-
ing, Růžička & Wolf [18] and Buĺıček, Gwiazda, Málek & Świerczewska-Gwiazda [15] is
not available for such models.
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Appendix A. Auxiliary tools

For the reader’s convenience we recall here some of the technical tools that were required
in the paper.

Lemma A.1 (Div-Curl Lemma [24]). Suppose that D ⊂ RN is a bounded open Lipschitz
domain and N ∈ N≥2. Let, for any real number s > 1, W−1,s(D) and W−1,s(D;RN×N) de-

note the duals of the Sobolev spaces W
1, s
s−1

0 (D) and W
1, s
s−1

0 (D;RN×N), respectively. Assume
that

Hn → H weakly in Lp(D;RN),
Qn → Q weakly in Lq(D;RN),

}
where 1

p
+ 1

q
= 1

r
< 1. Suppose also that there exists a real number s > 1 such that

div Hn ≡ ∇ ·Hn is precompact in W−1,s(D), and
curl Qn ≡

(
∇Qn − (∇Qn)T

)
is precompact in W−1,s(D;RN×N).

}
Then,

Hn ·Qn → H ·Q weakly in Lr(D).

Lemma A.2 (Lemma 2.5 in [15]). Let A be a maximal monotone r-graph and suppose
that U ⊂ Q is a bounded measurable set. Assume that there exist sequences {SSSn}n∈N and
{DDDn}n∈N such that

(A.1) (SSSn,DDDn) ∈ A a.e. in U

and

SSSn ⇀ SSS weakly in Lr
′
(U)d×d,

DDDn ⇀ DDD weakly in Lr(U)d×d.

If in addition

(A.2) lim sup
n→∞

(SSSn,DDDn)U ≤ (SSS,DDD)U ,

then

(A.3) (SSS,DDD) ∈ A a.e. in U.

Lemma A.3 (Chacon’s Biting Lemma, see [2]). Let Ω be a bounded domain in Rd and let
{vn}n∈N be a bounded sequence in L1(Ω). Then there exists a nonincreasing sequence of
measurable subsets Ej ⊂ Ω with |Ej| such that {vn}n∈N is pre-compact in the weak topology
of L1(Ω \ Ej), for each j ∈ N.

Lemma A.4 (Lemmas 15 and 16 in [25]). Let H and V be separable infinite-dimensional
Hilbert spaces, with V ↪→ H and V = H in the norm of H. Let a : V × V → R be a
nonzero, symmetric, bounded and coercive bilinear form. Then, there exist sequences of
real numbers {λn}n∈N and unit H-norm members {en}n∈N of V , which solve the eigenvalue
problem: Find λ ∈ R and e ∈ H \ {0} such that

(A.4) a(e, v) = λ〈e, v〉H ∀ v ∈ V.
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The λn, which can be assumed to be in increasing order with respect to n, are positive,
bounded from below away from 0, and limn→∞ λn =∞.

Additionally, the en form an H-orthonormal system whose H-closed span is H and the
rescaling en/

√
λn gives rise to an a-orthonormal system whose a-closed span is V , so we

have

(A.5) h =
∞∑
n=1

〈h, en〉Hen and ||h||2H =
∞∑
n=1

〈h, en〉2H ∀h ∈ H

and

(A.6) v =
∞∑
n=1

a

(
v,

en√
λn

)
en√
λn

and ||v||2a =
∞∑
n=1

a

(
v,

en√
λn

)2

∀ v ∈ V ;

further,

(A.7) h ∈ H and
∞∑
n=1

λn〈h, en〉2H <∞ ⇐⇒ h ∈ V.

Proof. The proofs of the stated results can be partially found in textbooks on functional
analysis (see, for example, Theorem VI.15 in Reed & Simon [38] or Section 4.2 in Zeidler
[41]). A version of the proof for the special case in which V and H are standard Sobolev
spaces is contained in Section IX.8 of Brezis [10]; using the abstract results in Chapter VI
of [10], the result in Section IX.8 of [10] can be easily adapted to the setting of the present
theorem. For a detailed proof we refer to Lemmas 15 and 16 in the, extend, arXiv version
of the paper [25]. �
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83, 186 75 Praha 8, Czech Republic

E-mail address: mbul8060@karlin.mff.cuni.cz

Mathematical Institute, Faculty of Mathematics and Physics, Charles University, Sokolovská
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