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Introduction
L2 theory for shocks

A first application to asymptotic limits

Main setting
Motivations

The equation

Full compressible Euler system:

∂tρ+ div (ρu) = 0,

∂t(ρu) + div (ρu ⊗ u) +∇(ρθ) = 0,

∂t(ρ(
|u|2

2
+

3

2
θ)) + div ((

ρ|u|2

2
+

5

2
ρθ)u) = 0.

Isentropic gas dynamics:

∂tρ+ div (ρu) = 0,

∂t(ρu) + div (ρu ⊗ u) +∇ργ = 0.
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Introduction
L2 theory for shocks
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Main setting
Motivations

Main goal

We consider shocks, that it discontinuous, piecewise constant
solutions.

We restrict ourselves to the 1D case.

We are interested to the ”strong” stability of those special
solutions.

It is closely related to the study of asymptotic limits to shocks
(for instance, from Navier-Stokes to Euler).

Remark: We can consider more general systems than the
Euler case.
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Introduction
L2 theory for shocks
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Main setting
Motivations

A physical motivation

Shocks are fundamental solutions in physics. But, the
derivation of the macroscopic model is problematic for those
solutions (no local thermodynamical equilibrium for the
derivation from kinetic equations, for instance).

The difficulty come from the production of layers.

What happens if the system carries too much energy for the
stability of the layer ?
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Main setting
Motivations

Mathematical motivations

In 1D, Shocks corresponds to the solitons of the equation,
where solitons are defined as solutions which are invariant
through blow-ups.

In PDE, the stability of solitons is fundamental for the study
of the behavior of general solutions.

Parabolic equations (regularity): Kohn and nirenberg,
Caffarelli....
dispersive equations (blow-ups): Merle, Koenig...
Conservations laws: strong traces, well-posedness of solutions
and asymptotic limits: Bressan, Liu...

Remark: For conservation laws, it is based on L1 stability of
the shocks. well-posedness is proved only for small
perturbation of constant in BV !
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Relative entropy
Main result

Entropy

The system in play have entropies which are strictly convex with
respect to the conserved quantities.

Full Euler system:

U = (ρ, ρu, ρ|u|2/2 + ρθ), η(U) = ρ ln(ρ/θ3/2).

The Isentropic Euler system has also a convex entropy (which
is the physical energy):

U = (ρ, ρu), η(U) = ρu2/2 + ργ/(γ − 1).

To be an entropy means that any physical solutions verify:∫
η(U(t, x)) dx

is not increasing.
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Relative entropy

We define the relative entropy between two states U1,U2 ∈ V

η(U1|U2) = η(U1)− η(U2)− η′(U2)(U1 − U2).

If η is strictly convex then

η(U1|U2) ≈ |U1 − U2|2.

Dafermos- DiPerna (79’): If U2 is a Lipschitz solution and U1 is a
weak solution, then

d

dt

∫
R
η(U1|U2) dx ≤ C (U2)

∫
R
η(U1|U2) dx .

Especially, if at t = 0
∫

R η(U1|U2) dx ≈ ε2, then at t: ≈ eCtε2.
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Relative entropy
Main result

Strong stability L2

It implies a STRONG stability of Lipschitz solutions in L2.

Weak/strong uniqueness, Dafermos DiPerna, Lions, Brenier,
Feireisl....

Can be used for asymptotic limit and hydrodynamic. In other
context, see Yau (91’), Bardos Golse Levermore (91’),...

In this context, the consistence implies the convergence. The
nonlinearities are driven by the strong stability of the limit
function.
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Problem with shocks and L2 theory

The strong L2 stability property is NOT valid for shocks.

Example for Burgers:

∂tu + ∂xu
2 = 0.

Figure: Burgers
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Main result

Problem with shocks and L2 theory

The strong L2 stability property is NOT valid for shocks.

Example for Burgers:

∂tu + ∂xu
2 = 0.

An ε perturbation of a shock S at t = 0 will give an error
≈
√
εt at time t.

This is because it perturbs the SPEED of the shock.

However, the profile of the shock is still VERY stable (up to a
translation).
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The system case

Theorem

(Leger, V.) Consider (UL,UR , σ) a shock. Then there exist
constants C > 0, ε0 > 0 such that for any 0 < ε < ε0, and∫ ∞

0
|U0(x)− S(x)|2 dx ≤ ε,

there exists a Lipschitzian map x(t) such that for any 0 < t < T:∫ ∞

0
|U(t, x)− S(x − x(t))|2 dx ≤ Cε(1 + t),

|x(t)− σt| ≤ C
√
εt(1 + t).

For x < 0, S(x) = UL, for x > 0, S(x) = UR .
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Remarks

Provides a stability result in the class of bounded weak
solutions having a strong trace property. There is no smallness
conditions. We do not need the microstructure of the
solutions. The stability is driven by the entropy.

It is a strong L2 stability result up to a shift.
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Citations

L1 theory: Bressan, Liu....

DiPerna (79’): Uniqueness of shocks (but no stability).

Chen, Frid, Li (01’, 02, 04’): 3× 3 Euler with big amplitude.
Uniqueness, and asymptotic (in time) L2 stability.

Leger (08’): L2 stability for the scalar case.

Leger, V. (10’): system case with ε/ε4 restriction.
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The scalar case

The proof of Leger does NOT use the comparison principle.

It uses only ONE entropy.

We were able to extend the proof to the system case.

The additional difficulty was to work with several waves (the
scalar case has only one).
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A first application

Scalar case:
∂tUε + ∂xU

2
ε = ε∂xxUε.

For UL,UR , we define S(x) = UL if x < 0, and S(x) = UR if x > 0.

Alexis F. Vasseur University of Texas at Austin Collaborators: Kyudong Choi, Nicholas LegerRelative entropy applied to the stability of shocks for fluid mechanics



Introduction
L2 theory for shocks

A first application to asymptotic limits

The result

Theorem

(Choi, V.) There exists ε0 > 0, such that for any Uε solution to
the viscous Burgers equation with ε < ε0 and

‖(∂xU0)+‖L2 ≤ C ,

there exists X (t) Lipschitz such that for any time t > 0∫
η(Uε(t, x)|S0(x − X (t))) dx

≤
∫
η(U0(x)|S0(x)) dx + Cε(log+(1/ε) + 1)(1 + t).
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Case with small initial perturbation

If
∫
η(U0(x)|S(x)) dx ≤ Cε, Then we can study the layer

problem by scaling V (t, x) = U(εt, εx).

∂tV + ∂xV
2 = ∂xxV .

This problem has been extendedly studied (Ilin Oleinik (64’),
Osher and Ralston (82’), Goodman (89’), Jones Gardner and
Kapitula (93’), Freistuhler and Serre (96’), Kenig and Merle
(06’))

V converges to the layer Q(x − σt) up to a drift
(nondependent on time).

In this context, our result is weaker (the error is bigger than
ε).

But, in the case
∫
η(U0(x)|S(x)) dx >> ε, the layer study

collapse. (The layer can be destroyed). Still, we can obtain
the expected limit with a precise rate.
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Remarks:

Contrary to the layer study, the method does NOT use the
comparison principles.

It uses only one entropy.

Hypothesis are very general. Again, the convergence is driven
by the entropy.

The shift is still imposed by the hyperbolic part. We use some
dissipation from the hyperbolic part to control some viscous
smoothing of the profile. This provide the rate of convergence
in (almost ) ε.
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Future work

get asymptotic limits for systems.

study multi-D stability of 1-D shocks.

Get more structure on solutions of conservation laws with
large initial data (1D case).
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Thank you

THANK YOU !
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Idea of the proof

Let us consider the case of 1-shocks.

they corresponds to the family of slowest shocks (associated
to the smallest eigenvalue of A′).

but they are very powerful at blocking information flowing
from the right to left. (all eigenvalues of A′(UL) are bigger
than the speed of the shock).
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the drift (1)

The main difficulty is to construct the drift x(t).

By choosing x ′(t) we can change the fluxes of entropy (depending
on the “value” of U(t, x(t)) !).
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the drift (2)

We will solve an ODE with a discontinuous flux. We use
Fillipov flow.
Generically, the interface x(t) is stuck in a shock !

Figure: Drift
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Fixing the left side

The main idea is that it is enough to control the left part !

We choose x ′(t) such that:
- the left part strictly dissipates some entropy.
-The interface does not cruise faster than a 1-shock.

that way we can consider only 1-shock (only one wave as in
the scalar case).

Then the right part takes care of itself ! (based on a nice
algebraic structure discovered by DiPerna).
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sketch (1)

Figure: Proof
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sketch (2)

Figure: Proof
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Shocks and shock layers

Asymptotic limits to shocks involve the production of
LAYERS.

Figure: example of layer
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Shocks and shock layers

Asymptotic limits to shocks involve the production of
LAYERS.

The control of the layers usually involves smallness conditions:
Liu Zumbrun, Bressan (L1 theory)...
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Shocks and shock layers (2)

QUESTION:

Is the whole structure of the layer needed to perform
asymptotic limits ?

Would the entropy (relative entropy) be enough to drive the
convergence, whatever the fine structure in the layer ?

Do we have enough strong stability on shocks ?
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