
Stress-diffusive regularizations
of non-dissipative rate-type materials

Jan Burczak1,2, Josef Málek3, and Piotr Minakowski4,5

1Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warsaw,
Poland

2OxPDE, Mathematical Institute, University of Oxford, Andrew Wiles Building,
Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, United Kingdom

3Charles University, Faculty of Mathematics and Physics, Mathematical Institute,
Sokolovská 83, 186 75 Prague 8, Czech Republic

4Heidelberg University, Interdisciplinary Center for Scientific Computing, Im
Neuenheimer Feld 205, 69120 Heidelberg, Germany

5University of Warsaw, Institute of Applied Mathematics and Mechanics, Banacha 2,
02-097 Warsaw, Poland

February 6, 2017

To Tomáš Roubíček on the occasion of his 60th birthday.

Abstract

We consider non-dissipative (elastic) rate-type material models that are derived within the Gibbs-
potential-based thermodynamic framework. Since the absence of any dissipative mechanism in the
model prevents us from establishing even a local-in-time existence result in two spatial dimensions
for a spatially periodic problem, we propose two regularisations. For such regularized problems we
obtain well-posedness of the planar, spatially periodic problem. In contrast with existing results, we
prove ours for a regularizing term present solely in the evolution equation for the stress.

1 Introduction
Elastic materials are bodies that are not capable of producing entropy or, in a purely mechanical context,
of dissipating energy. Due to this characterization they are called non-dissipative materials.

Starting from this thermodynamic point of view and from the assumption that the mechanism in
which a material stores energy is encoded into the constitutive equation for the Gibbs potential, whereby
the Gibbs potential is a function of the Cauchy stress, Rajagopal and Srinivasa have in a series of papers
(see in particular [35, 36]) extended the framework of elasticity to rate-type materials; see Rajagopal
[32–34] for further details including the references and comments to earlier achievements, in particular to
the concept of hypoelasticity introduced in Truesdell [40]. Besides providing a new class of non-dissipative
bodies, the advantage of this approach lies in the fact that it only uses quantities defined in the current
configuration. Consequently it does not require introducing notions of a reference state or any type of
strain. Hence a fully Eulerian theory of elasticity is applicable, for example, to the processes concerning
biological matter where, due to the fact that cells are born and die, it is reasonable to consider only
quantities at a current time and at a given position.

This fully Eulerian Gibbs-potential-based thermodynamic approach has been further extended to
describe the response of visco-elastic materials, see Rajagopal and Srinivasa [36], or to model severe
plastic deformations of a crystalline solid treated as a material flow through an adjustable crystal lattice
space, see Kratochvíl et al. [22].
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Our original intention has been to develop a mathematical theory for initial and boundary-value
problems involving such a class of elastic (non-dissipative) models. To be more specific, restricting
ourselves to materials where the density is uniform and considering only isothermal processes, we wish
to analyse, in a d-dimensional domain Ω, the following set of partial differential equations (PDEs):

div v = 0, (1a)
∂v

∂t
+ (v · ∇)v +∇p = divS, (1b)

∂S

∂t
+ (v · ∇)S + SW −WS = D, (1c)

where v = (v1, . . . , vd) stands for the velocity, p for the spherical part of the Cauchy stress (the pressure),
S = (Sij)

d
i,j=1 for the deviatoric part of the Cauchy stress1 that is supposed to be symmetric (S = ST ),

D and W stand for the symmetric and antisymmetric parts of the velocity gradient, i.e. by definition
D = 1

2 (∇v + ∇vT ) and W = 1
2 (∇v − ∇vT ), respectively. The symbol (v · ∇) signifies the operator∑d

k=1 vk
∂
∂xk

.
In order to understand the basic mathematical features of (1), we eliminate the influence of the

boundary by assuming that Ω is a periodic cell and by considering v, p, S that are Ω−periodic. Since2

‖v(t)‖2L2 + ‖S(t)‖2L2 = ‖v(0)‖2L2 + ‖S(0)‖2L2 for all t ∈ [0, T ] (2)

and in addition3

(SW −WS) : S = 0, (3)

one may, at the first glance, pose a conjuncture that the existence theory for the Euler equation (obtained
formally by setting S = O in (1b)), as developed for example in Kato [19], can be successfully extended
to (1).

As indicated in the Appendix, this approach to developing local-in-time existence theory seems to be
inapplicable to (1) even in two spatial dimensions. Consequently we leave this conjecture as an interesting
open problem and propose to study two different regularisations obtained by adding the terms −ε∆ ∂

∂tS
or −ε∆S to (1c):

∂S

∂t
+ (v · ∇)S + SW −WS − ε∆ ∂

∂t
S = D or

∂S

∂t
+ (v · ∇)S + SW −WS − ε∆S = D.

For the first regularization, we observe that, instead of (2), one has

‖v(t)‖2L2 + ‖S(t)‖2L2 + ε‖∇S(t)‖22 = ‖v(0)‖2L2 + ‖S(0)‖2L2 + ε‖∇S(0)‖22 for all t ∈ [0, T ]. (4)

This information turns out to be strong enough for establishing the long-time existence and uniqueness
of a weak solution possessing certain higher regularity. We are not aware of any physical meaning of this
type of regularization.

The second, weaker regularization leads to

‖v(t)‖2L2 + ‖S(t)‖2L2 + 2ε

∫ t

0

‖∇S(t)‖22 dt = ‖v(0)‖2L2 + ‖S(0)‖2L2 for all t ∈ [0, T ], (5)

and it suffices for a short-time existence result or a global existence result for small initial data. A
physical justification for the diffusive regularizing term can be found in the literature. For example,
as was pointed out in [2–4], an Oldroyd–B type model with stress diffusion can be derived from a
Navier–Stokes–Fokker–Planck system arising in the kinetic theory of dilute polymeric fluids, where poly-
mer chains immersed in a barotropic, incompressible, isothermal, viscous Newtonian solvent, are idealized
as pairs of massless beads connected with Hookean springs. Moreover, non-dimensionalization leads to

1Divided by the constant density.
2The energy identity (2) is obtained by adding the result of scalar multiplication of (1b) by v to the result of scalar

multiplication of (1c) by S, see also Sections 3.1.1 and 4.3 for details.
3This feature has been successfully exploited in [27] for establishing the first global-in-time existence result for large

data with respect to rate-type visco-elastic fluid models in three-dimensions.
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the conclusion that the dissipation parameter ε takes the values in the interval (10−9, 10−7) and is thus
almost negligible.

Besides the goal to identify (1) as an interesting model of elasticity worthy of further mathematical
investigation, the aim of this paper is to show well-posedness for these two regularized problems.

The paper is organised as follows. We first recall, still in Section 1, the derivation of (1) based on a
Gibbs-potential-based thermodynamical framework. We also provide a brief overview regarding the PDE
analysis of rate-type visco-elastic models. Then, in Section 2 we formulate Theorem 1 and Theorem 2
concerning well-posedness of the regularized problems considered. We prove these results in subsequent
sections.

1.1 Gibbs-potential-based thermodynamic derivation of (1)
Let a body, considered at the current instant t, be identified with a bounded open set Ω ⊂ Rd. The
position of any particle at the current instant is denoted by x and its velocity by v. The mass density
of the material is denoted by % and the Cauchy stress by T . The governing balance equations for mass,
linear and angular momenta (in the absence of body forces) and energy (in the absence of heat sources)
as well as the formulation of the second law of thermodynamics take the following form:

%̇+ % divv = 0, (6a)
% v̇ = div T , T = T T , (6b)
% ε̇ = T : D − div q̃, (6c)

%ζ := %η̇ + div
(
q̃

θ

)
and ζ ≥ 0, (6d)

where the material time derivative of a scalar function z is given by ż = ∂
∂tz + (v · ∇)z (for a vector

and tensor-valued function, the same relation is applied to each component). In the above equations,
ε stands for the specific internal energy, q̃ for the heat flux vector, η for the specific entropy, θ for the
temperature and ζ for the specific rate of entropy production; here we tacitly assume that the entropy
flux is of the form q̃/θ.

We shall consider incompressible materials with uniform density, i.e.,

div v = trD = 0 and % is constant.

Decomposing the Cauchy stress as

T = −p̃I + T δ, where p̃ := −1

d
trT ,

and setting q := q̃/%, p := p̃/% and S := T δ/%, the governing system of equations (6a)-(6c) reduces to

divv = 0, v̇ = −∇p+ divS, ε̇ = S : D − div q. (7)

Next, let us introduce the specific Helmholtz free energy ψ and the specific rate of dissipation ξ
through

ψ := ε− θη, and ξ := θζ.

With this notation, the equations (6d) and (7)3 lead to the following equation for the rate of dissipation:

ξ = S : D − ψ̇ − ηθ̇ − q · ∇θ
θ

and ξ ≥ 0. (8)

Following the Gibbs-potential-based thermodynamic framework as developed by Rajagopal and Srini-
vasa in [36], we assume that the specific Gibbs potential, denoted by G, is a function of the temperature
θ and S, i.e.,

G(t, x) = G(θ(t, x),S(t, x)) or briefly G = G(θ,S) (9)
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We also require that the Helmholtz free energy, the internal energy and the entropy, considered as
functions of θ and S, satisfy

ψ(θ,S) = G(θ,S)− ∂G(θ,S)

∂S
: S,

ε(θ,S) = G(θ,S)− ∂G(θ,S)

∂S
: S − ∂G(θ,S)

∂θ
θ,

η(θ,S) = −∂G(θ,S)

∂θ
.

(10)

Inserting the first and third of these relations into (8), we obtain

ξ = S :

{
D +

∂2G

∂S2 Ṡ +
∂2G

∂S∂θ
θ̇

}
− q · ∇θ

θ
and ξ ≥ 0. (11)

In what follows, we restrict ourselves to isothermal processes. Then the equation (11) reduces to

ξ = S : D + S :
∂2G

∂S2 Ṡ and ξ ≥ 0. (12)

We thus arrive at a representation of thermodynamics associated with the specification of the Gibbs
potential (as given in (9)). The achieved form of (12) has, however, the following defficiency: while D
and S are both objective tensors, Ṡ and consequently (∂2G)/(∂S2) Ṡ are not objective tensors.

In [36], Rajagopal and Srinivasa propose two approaches to overcome this difficulty. While the second
one is more general and provides a possibility to include anisotropic responses, we shall recall the first
approach here, as it is the simplest way for completing the derivation of the system (1) considered.

Let us first consider a particular form of the Gibbs potential, namely G(S) = − 1
2 |S|

2. Then (12)
simplifies to

ξ = S : (D − Ṡ) and ξ ≥ 0. (13)

Using the orthogonality condition (3), we easily observe that (13) can be rewritten as

ξ = S : (D − Ṡ − SW + WS) and ξ ≥ 0. (14)

A remarkable difference between (13) and (14) is that the term Ṡ +SW −WS in (14) is objective while
Ṡ in (13) is not.

Requiring further that the dissipation rate ξ in (14) vanishes for arbitrary S, we obtain

Ṡ + SW −WS = D,

which is (1c). The other governing equations, namely (1a) and (1b), are stated in (7).

1.2 An overview of known results
As follows from the above derivation, there are no dissipative terms present in (1). Consequently, the
structure of the equation (1b) seems identical to the Euler equations with the external force divS.
Therefore, the results regarding the solvability of the Euler equation might be important in the context
of the analysis of our problem. Unfortunately, the available local-in-time existence and uniqueness results
for the Euler equation (see in particular [18,19,25,29,42]) do not seem to be applicable to (1) due to the
fact that the right-hand side of (1b) is not regular enough. The difficulties connected with this approach
are presented in Appendix.

Alternatively, one could follow a recent approach developed by DeLellis and Székelyhidi (see [12]
and [13]), based on the convex integration and Baire’s category principle, that provides the global-in-
time existence of (infinitely many) weak solutions to the Euler system for a subset of initial data that is
dense in L2(Ω)div, see in particular Wiedemann [41]. This result has been strengthened by Chiodaroli,
Feireisl and Kreml in [9] who considered the compressible Euler-Fourier system and proved that for
arbitrary smooth positive initial density and temperature there is a bounded initial velocity so that the
considered initial spatially-periodic problem admits infinitely many weak solutions that emanate from
this fix set of initial data and satisfy the first law of thermodynamics (conservation of energy). Such
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results are thus closely related not only to the original system (1) but also to its regularization by −ε∆S
studied in this paper.

Regarding available analytical studies concerning weak solutions to stress-diffusive models, it is worth
noting that all of them concern systems where the balance of linear momentum contains additional
diffusion of the type −∆v. More specifically, the existence of a global weak solution to the Oldroyd-
B model with stress diffusion was proved in two space dimensions by Barrett and Boyaval [3] (see
also Barrett and Süli [4] or Lukáčová-Medviďová et al. [28]). Regularity of solutions of the Oldroyd-
B equations in two spatial dimensions with spatial diffusion of the polymeric stress tensor have been
proved in Constantin and Kliegl [11], where the authors take advantage of the nonnegativity of the
polymeric stress matrix, which is preserved under diffusive evolution. Recently Chupin and Martin [10],
addressed the stationary Oldroyd-B model with a diffusive stress, from both an analytical and a numerical
perspective. The authors investigated, by means of numerical simulations, the behaviour of the model
with respect to vanishing diffusion, and concluded that solutions of the diffusive model converge to
solutions of the non-diffusive model at order 1 in the W 1,2 norm. Moreover, numerical stability of the
effect of including the stress-diffusive term into the classical Oldroyd-B constitutive equation has been
studied in [39].

Let us re-emphasize that in the references mentioned above the authors take advantage of the presence
of regularizing terms both in the momentum equation and in the evolution equation for S. In contrast,
our results require the regularization only in the equation for the stress.

For the sake of completeness, let us provide an overview of results concerning existence of solutions to
visco-elastic fluids models, in particular to the Oldroyd-B model. There are several classes of visco-elastic
fluid models that differ from our model by the presence of the dissipative term in the balance of linear
momentum (typically in the form −ν∆v), by the different form of the objective derivative and by the
presence of other terms.

To the authors’ knowledge, the first result on incompressible Oldroyd-B fluids was obtained by Guil-
lopé and Saut [17]. The result concerns local-in-time existence of regular solutions as well as existence
of global-in-time solutions for small initial data in a Hilbert framework. The main obstacle to obtaining
existence results in the large was the fact that, in general, there is no appropriate energy estimate for
such a non-Newtonian fluid. (As a review paper in this direction, we refer to Fernández-Cara, Guillén
and Ortega [15].) Despite this difficulty, Lions and Masmoudi established in [27] existence of global
weak solutions for a model with the Zaremba-Jaumann derivative. This seems to be one of the most
significant results in this area. The authors use essentially that additional energy estimates are available
for the Zaremba-Jaumann objective time derivative. The result by Lions and Masmoudi was generalised
by Bejaoui and Majdoub in [5], where the authors replaced the Laplacian term by div (f(D)) with a
tensorial function f , which is C1, monotone, coercive and enjoys a p-growth with p ≥ 2 in two dimensions
(p ≥ 5/2 for d = 3).

For well-posedness results in scaling-invariant Besov spaces, we refer to the work of Chemin and
Masmoudi [8], where they also provide certain blow-up criteria, both for two and three dimensions.
Further interesting results concerning the local well-posedness of the initial-boundary-value problem for
Oldroyd-type fluids have been obtained in several other studies, see Liu et al. [26] or Liu et al. [24].

Results for the compressible Oldroyd-B model are much scarcer. Lei [23] proved the local and global
existence of classical solutions for a compressible Oldroyd-B system in a torus with small initial data.
He also studied the incompressible limit problem and showed that compressible flows with well-prepared
initial data converge to incompressible ones when the Mach number converges to zero. Strong solutions
of three-dimensional flows of compressible Oldroyd-B fluids were studied in Fung and Zi [14]. Recently,
Barrett et al. [2] established long-time and large-data existence of weak solutions to compressible Oldroyd-
B fluids with stress diffusion.

All of the results mentioned above take advantage of the presence of the Newtonian stress tensor
in the balance of linear momentum and, consequently, of the boundedness of the velocity gradient in a
Lebesgue space (typically L2). Such a piece of information however does not follow from the first a-priori
estimates for the systems considered here.
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2 Main result
In what follows we set

T ∈ (0,∞) and Ω = (0, L1)× (0, L2) (Li ∈ (0,∞), i = 1, 2).

We will assume that all functions considered are spatially Ω-periodic and that their mean values
over Ω vanish. For spatially Ω-periodic functions, we employ standard notation for the function spaces
considered, see for example [16,31] for appropriate definitions of Ω-periodic function spaces.

2.1 Regularization by −ε∆ ∂
∂t
S: global-in-time existence

Let us first consider the system of partial differential equations model (1) regularized by adding the term
−ε∆ ∂

∂tS to the left-hand side of (1)3. Since we are unable to pass to the limit with ε→ 0, for the sake
of brevity we set ε = 1 in what follows.

The formulation of the problem is thus the following: for given Ω-periodic initial data v0,S0, find
v(x, t) : Ω × (0, T ) 7→ R2, p(x, t) : Ω× (0, T ) 7→ R, and S(x, t) : Ω × (0, T ) 7→ R2×2

sym that are Ω-periodic
and satisfy

div v = 0, (15a)
∂v

∂t
+ (v · ∇)v +∇p = divS, (15b)

∂S

∂t
+ (v · ∇)S + SW −WS −∆

∂

∂t
S = D, (15c)

v(x, 0) = v0, (15d)
S(x, 0) = S0. (15e)

Let us now specify our notion of a weak solution of (15). By 〈·, ·〉 we will denote the duality pairing
between (W 1,2

div )∗ and W 1,2
div for v or between (W 1,2)∗, W 1,2 for S.

Definition 1. We say that a couple (v,S) satisfying

v ∈ L2(0, T ;W 1,2
div ) ∩ C([0, T ];L2

div), S ∈ L2(0, T ;W 1,2) ∩ C([0, T ];L2),

∂v

∂t
∈ L2(0, T ; (W 1,2

div )?),
∂S

∂t
∈ L2(0, T ;L2)

is a weak solution to the problem (15) if for all Ω-periodic ϕ ∈ C∞(Ω× (−∞, T ])2 such that divϕ = 0
and ϕ(·, T ) = 0 and for all Ω-periodic Σ ∈ {C∞(Ω×(−∞, T ])2×2} with Σ(·, T ) = 0 the following integral
identities hold:∫ T

0

〈
∂v

∂t
,ϕ

〉
dt+

∫ T

0

∫
Ω

(v · ∇)v ·ϕ dxdt = −
∫ T

0

∫
Ω

S : D(ϕ) dxdt, (16a)∫ T

0

〈
∂S

∂t
,Σ

〉
dt+

∫ T

0

∫
Ω

(v · ∇)S : Σ dxdt+

∫ T

0

∫
Ω

SW : Σ−WS : Σ dxdt

= −
∫ T

0

〈
∂∇S
∂t

,∇Σ

〉
dt+

∫ T

0

∫
Ω

D : Σ dxdt,

(16b)

and, in addition, for all time independent, Ω-periodic and smooth ϕ and Σ

lim
t→0+

∫
Ω

v(t) ·ϕ =

∫
Ω

v0 ·ϕ, lim
t→0+

∫
Ω

S(t) : Σ =

∫
Ω

S0 : Σ.

Remark 1. Observe that for (16b) we need ∂∇S
∂t ∈ L2(0, T ; (W 1,2)?). But the assumption ∂S

∂t ∈
L2(0, T ;L2) automatically implies it, in our simple setting of periodic functions with zero means.
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Theorem 1 (Global-in-time existence and higher regularity). Let v0 ∈ W 1,2
div and S0 ∈ W 2,2 be Ω-

periodic. Then, there exists a global in time weak solution (v,S) to the problem (15). Moreover, the
initial condition is attained in the sense limt→0 ‖S(t)−S0‖W 3/2,2 = 0, limt→0 ‖v(t)−v0‖L2 = 0 and the
following higher regularity estimates hold:

‖v‖L∞(0,T ;W 1,2) + ‖S‖L∞(0,T ;W 2,2) + ‖S‖W 1,2(0,T ;W 1,2)

+

∥∥∥∥∂S∂t
∥∥∥∥
L2(0,T ;W 1,2)

+

∥∥∥∥∂v∂t
∥∥∥∥
L2(0,T ;(W 1,2

div)∗)

≤ C exp(C exp(T )),
(17)

where C = C (‖v0‖W 1,2 + ‖S0‖W 2,2). Furthermore, the weak solution satisfying (17) is uniquely deter-
mined by the initial data.

2.2 Regularization by −ε∆S: local-in-time or small data existence
For the second regularization of the system (1), obtained by adding −ε∆S to the left-hand side of (1)3,
we will be able to prove, for fixed ε > 0, a weaker existence result: we either restrict ourselves to a short
time interval or we establish a global in time existence result for small initial data.

We investigate the following problem4: for given Ω-periodic initial data v0,S0, find v(x, t) : Ω ×
(0, T ) 7→ R2, p(x, t) : Ω× (0, T ) 7→ R and S(x, t) : Ω× (0, T ) 7→ R2×2

sym that are Ω-periodic and satisfy

div v = 0, (18a)
∂v

∂t
+ (v · ∇)v +∇p = divS, (18b)

∂S

∂t
+ (v · ∇)S + SW −WS−∆S = D, (18c)

v(x, 0) = v0, (18d)
S(x, 0) = S0. (18e)

Let us now clarify what we mean by a weak solution to (18).

Definition 2. A couple (v,S) satisfying

v ∈ L2(0, T ;W 1,2
div ) ∩ C(0, T ;L2

div), S ∈ L2(0, T ;W 1,2) ∩ C(0, T ;L2),

∂v

∂t
∈ L2(0, T ; (W 1,2

div )?),
∂S

∂t
∈ L2(0, T ; (W 1,2)?)

is called a weak solution to the problem (18) if, for all Ω-periodic ϕ ∈ C∞(Ω × (−∞, T ])2 such that
divϕ = 0 and ϕ(·, T ) = 0 and for all Ω-periodic Σ ∈ {C∞(Ω × (−∞, T ])2×2} with Σ(·, T ) = 0, the
following integral identities hold:∫ T

0

〈
∂v

∂t
,ϕ

〉
dt+

∫ T

0

∫
Ω

(v · ∇)v ·ϕ dxdt = −
∫ T

0

∫
Ω

S : D(ϕ) dxdt, (19a)∫ T

0

〈
∂S

∂t
,Σ

〉
dt+

∫ T

0

∫
Ω

(v · ∇)S : Σ dxdt+

∫ T

0

∫
Ω

SW : Σ−WS : Σ dxdt

+

∫ T

0

∫
Ω

∇S : ∇Σ dxdt =

∫ T

0

∫
Ω

D : Σ dxdt,

(19b)

and for all time-independent, Ω-periodic and smooth ϕ and Σ

lim
t→0+

∫
Ω

v(t) ·ϕ =

∫
Ω

v0 ·ϕ, lim
t→0+

∫
Ω

S(t) : Σ =

∫
Ω

S0 : Σ.

The following existence result holds.
4Again, we set ε = 1 as taking the limit ε → 0 is beyond the scope of this paper.

7



Theorem 2 (Local-in-time existence/small-data global-in-time existence). There exists a c∗ > 0 (a
constant related to certain interpolations and embeddings) such that for any v0 ∈ W 1,2

div , S0 ∈ W 2,2

the problem (18) admits a weak solution (v,S) provided that for X(0) := ‖∇v0‖2L2 + ‖∇S0‖2L2 and
c0 := c∗max{1, ‖S0‖22} one of the following conditions holds:

(i) T < 1
c0X(0) ;

(ii) X(0) < c
− 1

2
0 .

The initial condition is attained in the sense limt→0 ‖S(t)−S0‖W 1,2 = 0 and limt→0 ‖v(t)− v0‖L2 = 0.
Moreover, this solution satisfies the following higher regularity estimates:

‖v‖2L∞(0,T ;L2) + ‖S‖2L∞(0,T ;L2) + ‖S‖2L2(0,T ;W 1,2) ≤ ‖v0‖2L2 + ‖S0‖2L2 , (20)

‖v‖2L∞(0,T ;W 1,2) + ‖S‖2L2(0,T ;W 2,2) ≤ C1, (21)

with C1 = CT
(

X(0)
1−c0TX(0)

)2

under hypothesis (i) and C1 = 2X(0)
1−c0X(0) under hypothesis (ii), as well as∥∥∥∥∂v∂t

∥∥∥∥
L2(0,T ;(W 1,2

div)∗)

≤ C((C1T )
1
2 + 1)[‖v0‖L2 + ‖S0‖L2 ], (22)

∥∥∥∥∂S∂t
∥∥∥∥2

L2(0,T ;L2)

≤ CC1(1 + C1 + T ). (23)

Furthermore, the weak solution to (18) satisfying (20)–(23) is uniquely determined by the initial data.

2.3 Logarithmic Sobolev inequality
The logarithmic Sobolev inequality plays a crucial role in our analysis for the derivation of a-priori
estimates. These kinds of critical Sobolev inequalities have been extensively studied in the context of the
Euler equations, see for example Kozono [20,21]. The special case, that we use here, was given by Brezis
and Gallouet [6] (see also Brezis and Wainger [7]), where the authors studied the nonlinear Schrödinger
equation.

Proposition 1. Let f ∈ W 2,2(Ω) and Ω ⊂ R2 with boundary satisfying the strong local Lipschitz
condition [1, 4.9]. Then the following Brezis–Gallouet inequality holds, see [6]:

‖f‖L∞ ≤ C
(

1 + ‖∇f‖L2

(
ln+(‖f‖W 2,2)

) 1
2

)
, (24)

where ln+(x) =

{
1 for x < e,

lnx for x ≥ e.

The inequality (24), for complex valued functions, was proved in [6]. For the sake of completeness,
we recall below the proof of (24). For a bounded domain Ω ⊂ R2 satisfying the strong local Lipschitz
condition, there is a bounded extension operator E from W 2,2(Ω) to W 2,2(R2), see [38, Chapter VI]. Let
us write Ef = f and let f̂ denote the Fourier transform of f . We have

‖(1 + |ξ|)f̂‖L2(R2) ≤ C‖f‖W 1,2(R2), (25)

‖(1 + |ξ|2)f̂‖L2(R2) ≤ C‖f‖W 2,2(R2), (26)

‖f‖L∞(R2) ≤ C‖f̂‖L1(R2). (27)
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Proof. (Proposition 1)

‖f̂‖L1(R2) =

∫
|ξ|<R

|f̂ |dξ +

∫
|ξ|≥R

|f̂ |dξ

=

∫
|ξ|<R

(1 + |ξ|)|f̂ | 1

1 + |ξ|
dξ +

∫
|ξ|≥R

(1 + |ξ|2)|f̂ | 1

1 + |ξ|2
dξ

≤

(∫
|ξ|<R

(1 + |ξ|)2|f̂ |2dξ

) 1
2
(∫
|ξ|<R

1

(1 + |ξ|)2
dξ

) 1
2

+

(∫
|ξ|≥R

(1 + |ξ|2)2|f̂ |2dξ

) 1
2
(∫
|ξ|≥R

1

(1 + |ξ|2)2
dξ

) 1
2

≤C‖f‖W 1,2(R2) (ln(e+R))
1
2 + C‖f‖W 2,2(R2)

1

1 +R
.

(28)

Inequality (28) holds for every R ≥ 0. We put R = ‖f‖W 2,2(R2) and by (27) we get

‖f‖L∞ ≤ C
(

1 + ‖f‖W 1,2

(
ln+(‖f‖W 2,2(R2))

) 1
2

)
.

Since f is a continuous extension of f , one obtains (24).

3 Proof of Theorem 1

3.1 A priori estimates
We first collect the a priori estimates related to the problem (15).

Proposition 2. Let v0 ∈ W 1,2
div and S0 ∈ W 2,2. For sufficiently smooth v and S satisfying (15) the

following bounds hold:

‖v‖L∞(0,T ;W 1,2) + ‖S‖L∞(0,T ;W 2,2) ≤ 2 exp [C (‖v0‖W 1,2 + ‖S0‖W 2,2) exp(T )] ,∥∥∥∥∂v∂t
∥∥∥∥
L2(0,T ;(W 1,2

div)∗)

≤ CT exp [C (‖v0‖W 1,2 + ‖S0‖W 2,2) exp(T )] ,

∫ T

0

∥∥∥∥∂S∂t
∥∥∥∥2

L2

+

∥∥∥∥∂∇S∂t
∥∥∥∥2

L2

dt ≤ C(‖v0‖L2) + C(‖S0‖W 1,2)T + CT
(

1 + C
(
ln+(CT )

) 1
2

)
.

3.1.1 First a priori estimate

Taking the scalar product of (15b) and v and integrating the result over Ω we obtain∫
Ω

1

2

∂|v|2

∂t
dx+

∫
Ω

1

2
v · ∇|v|2 dx+

∫
Ω

∇p · v dx =

∫
Ω

divS · v dx.

Integrating the last three terms by parts, using the assumption of Ω-periodicity and incorporating the
divergence free condition (15a), we conclude that

1

2

d

dt
‖v‖2L2 = −

∫
Ω

S : ∇v dx = −
∫

Ω

S : D dx, (29)

where we have also employed the symmetry of S.
Next, taking the scalar product of (15c) and S and integrating the result over Ω, we get∫

Ω

1

2

∂|S|2

∂t
dx+

∫
Ω

1

2
v · ∇|S|2 dx+

∫
Ω

(SW −WS) : S dx−
∫

Ω

∆
∂S

∂t
: S dx =

∫
Ω

D : S dx.

9



Performing integrations by parts in the second and the fourth terms (using the periodicity of functions
to eliminate the boundary integrals) and using (15a), we obtain

1

2

d

dt

∫
Ω

|S|2 dx+

∫
Ω

(SW −WS) : S dx+
1

2

d

dt

∫
Ω

|∇S|2 dx =

∫
Ω

D : S dx.

Since, due to symmetry of S (see also (3)),

(SW −WS) : S = 0, (30)

we conclude that
1

2

d

dt
‖S‖2L2 +

1

2

d

dt
‖∇S‖2L2 =

∫
Ω

D : S dx. (31)

Taking the sum of (29) and (31), noticing the mutual elimination of their right-hand sides and integrating
the result over time, we finally arrive at

‖v(t)‖2L2 + ‖S(t)‖2L2 + ‖∇S(t)‖2L2 = ‖v0‖2L2 + ‖S0‖2L2 + ‖∇S0‖2L2 =: C(1). (32)

3.1.2 Second a priori estimate

We take the scalar product of (15b) and −∆v, integrate the result over Ω, perform integration by parts
and deduce, using again the periodicity of Ω, that

1

2

d

dt
‖∇v‖2L2 +

∫
Ω

∇((v · ∇)v) : ∇v dx =

∫
Ω

∇(divS) : ∇v dx. (33)

Since div v = 0 implies that ∂v1
∂x1

= − ∂v2
∂x2

, the term
∫

Ω
∇((v · ∇)v) : ∇v dx vanishes (see [16] or [30] for

details). As a consequence, we conclude from (33) that

1

2

d

dt
‖∇v‖2L2 =

∫
Ω

∇(divS) : ∇v dx =

∫
Ω

∆S : D dx. (34)

Next, we take the scalar product of (15b) and ∆S and integrate over Ω. We obtain∫
Ω

∂S

∂t
: ∆S dx+

∫
Ω

(v · ∇)S : ∆S dx+

∫
Ω

(SW −WS) : ∆S dx−
∫

Ω

∆
∂S

∂t
: ∆S dx =

∫
Ω

D : ∆S dx,

which leads to
1

2

d

dt

∫
Ω

|∇S|2 dx+

∫
Ω

(∇v · ∇S) : ∇S dx−
∫

Ω

(SW −WS) : ∆S dx+
1

2

d

dt

∫
Ω

|∆S|2 dx = −
∫

Ω

D : ∆S dx,

where we have used the following identity (valid for v fulfilling div v = 0):∫
Ω

∇((v · ∇)S) : ∇S dx =

∫
Ω

(
∂vk
∂xl

∂Sij
∂xk

∂Sij
∂xl

+
1

2
v · ∇|∇S|2

)
dx =:

∫
Ω

(∇v · ∇S) : ∇S dx. (35)

Hence, we have

1

2

d

dt

(
‖∇S‖2L2 + ‖∆S‖2L2

)
+

∫
Ω

(∇v · ∇S) : ∇S dx+

∫
Ω

(WS − SW ) : ∆S dx = −
∫

Ω

D : ∆S dx. (36)

Summing (34) and (36) and taking advantage of the cancellation of their right-hand sides, we arrive at

d

dt

(
‖∇v‖2L2 + ‖∇S‖2L2 + ‖∆S‖2L2

)
= 2

∫
Ω

([∇v]∇S) : ∇S dx− 2

∫
Ω

(WS − SW ) : ∆S dx. (37)

As there seems to be no cancellation concerning the terms on the right-hand side of (37), the next step
consists in estimating them. For the first term we apply the embedding theorem, the Ladyzhenskaya
interpolation inequality ‖z‖4 ≤ c‖z‖1/22 ‖∇z‖

1/2
2 and (32):∫

Ω

|(∇v · ∇S) : ∇S|dx ≤ ‖∇v‖L2‖∇S‖2L4 ≤ c‖∇v‖L2‖∇S‖2‖∇(2)S‖2 ≤ C‖∇v‖L2‖∆S‖2

≤ C
(
‖∇v‖2L2 + ‖∆S‖2L2

)
.

(38)
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In order to treat the second term we use the logarithmic Sobolev inequality (24) in the following way:∫
Ω

(WS − SW ) : ∆S dx ≤ 2‖∇v‖L2‖S‖L∞‖∆S‖L2

≤ C‖∇v‖L2

(
1 + ‖∇S‖L2

(
ln+(‖S‖W 2,2)

) 1
2

)
‖∆S‖L2

≤ C‖∇v‖L2‖∆S‖L2 + C‖∇v‖L2‖∇S‖L2

(
ln+(‖∆S‖L2)

) 1
2 ‖∆S‖L2

≤ C
(
‖∇v‖2L2 + ‖∆S‖2L2

)
+ C‖∇v‖L2

(
ln+(‖∆S‖L2)

) 1
2 ‖∆S‖L2

≤ C
(
‖∇v‖2L2 + ‖∆S‖2L2

)
+ C ln+(‖∆S‖L2)‖∆S‖2L2 .

(39)

To summarize, using (37), (38) and (39), we deduce that

d

dt

(
‖∇v‖2L2 + ‖∇S‖2L2 + ‖∆S‖2L2

)
≤ C

(
‖∇v‖2L2 + ‖∆S‖2L2

)
+ C ln+(‖∆S‖L2)‖∆S‖2L2 . (40)

For simplicity, we increase the right-hand side of (40) by adding some positive terms and taking advantage
of the fact that ln+(x) ≥ 1 and obtain

d

dt

(
‖∇v‖2L2 + ‖∇S‖2L2 + ‖∆S‖2L2

)
≤ C

(
‖∇v‖2L2 + ‖∇S‖2L2 + ‖∆S‖2L2

) (
1 + ln+

(
‖∇v‖2L2 + ‖∇S‖2L2 + ‖∆S‖2L2

))
.

(41)

Let us denote Y = ‖∇v‖2L2 + ‖∇S‖2L2 + ‖∆S‖2L2 and rewrite (41) as

d

dt
Y ≤ Y + Y ln+ Y ≤ 2Y ln+ Y =⇒ d

dt
Ye ≤ 2Ye lnYe, (42)

where Ye =: e+ Y (ln e = 1). Consequently,

d

dt
ln(Ye) ≤ 2 lnYe =⇒ Ye(t) ≤ exp [ln(Ye(0)) exp(2t)] .

Recalling the definitions of Y and Ye, the last inequality implies that, for all t ∈ [0, T ],(
‖∇v‖2L2 + ‖∇S‖2L2 + ‖∆S‖2L2

)
(t) ≤ exp

[
ln(e+

(
‖∇v0‖2L2 + ‖∇S0‖2L2 + ‖∆S0‖2L2

)
) exp(2T )

]
. (43)

Finally, (43) and (32) imply that, for all t ∈ [0, T ],

(‖v‖W 1,2 + ‖S‖W 2,2) (t) ≤ 2 exp [C (‖v0‖W 1,2 + ‖S0‖W 2,2) exp(T )] ≡ C(2). (44)

3.1.3 A priori estimates for the time derivative of v and S

In order to gain compactness for v, S and ∇S, we estimate their time derivatives. First, note that (for
brevity, the space L2(0, T ;W 1,2

div ) is denoted by X in the following lines)∥∥∥∥∂v∂t
∥∥∥∥
X∗

= sup
‖ϕ‖X≤1

∣∣∣∣∣
∫ T

0

∫
Ω

∂v

∂t
·ϕ dx dt

∣∣∣∣∣
= sup
‖ϕ‖X≤1

∫ T

0

∫
Ω

|(v ⊗ v) : ∇ϕ|+ |S : ∇ϕ|dxdt

≤ sup
‖ϕ‖X≤1

[∫ T

0

‖v‖2L4‖∇ϕ‖L2 dt+

∫ T

0

‖S‖L2‖∇ϕ‖L2 dt

]

≤ sup
‖ϕ‖X≤1

C

[∫ T

0

‖v‖L2‖∇v‖L2‖∇ϕ‖L2 dt +

∫ T

0

‖S‖L2‖∇ϕ‖L2 dt

]
≤ CT 1

2

(
‖v‖L∞(0,T ;L2)‖∇v‖L∞(0,T ;L2) + ‖S‖L∞(0,T ;L2)

)
.

(45)
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Consequently, with help of (32) and (44), we obtain∥∥∥∥∂v∂t
∥∥∥∥
L2(0,T ;(W 1,2

div)∗)

≤ CT 1
2C(1)(1 + C(2)). (46)

In order to estimate ∂S
∂t , we take the scalar product of (15c) and ∂S

∂t and integrate the result over
(0, T )× Ω. This leads to∫ T

0

∫
Ω

∂S

∂t
:
∂S

∂t
dxdt+

∫ T

0

∫
Ω

(v · ∇)S :
∂S

∂t
dxdt+

∫ T

0

∫
Ω

(SW −WS) :
∂S

∂t
dx dt

−
∫ T

0

∫
Ω

∆
∂S

∂t
:
∂S

∂t
dxdt =

∫ T

0

∫
Ω

D :
∂S

∂t
dx dt.

Hence ∫ T

0

∥∥∥∥∂S∂t
∥∥∥∥2

L2

+

∥∥∥∥∂∇S∂t
∥∥∥∥2

L2

dt ≤
∫ T

0

∫
Ω

g

∣∣∣∣∂S∂t
∣∣∣∣ dxdt, (47)

where
g := |(v · ∇)S|+ |SW −WS|+ |D|.

Since, using (32) and (44),∫
Ω

|(v · ∇)S|2 dx ≤
∫

Ω

|v|2|∇S|2 dx ≤ ‖v‖2L4‖∇S‖2L4

≤ C‖v‖L2‖∇v‖L2‖S‖L2‖∇S‖L2 ≤ C2
(1)C

2
(2).

(48)

and further, with help of the logarithmic Sobolev inequality (24)∫
Ω

|SW −WS|2 dx ≤ 2

∫
Ω

|S|2|∇v|2 dx ≤ ‖S‖2L∞‖∇v|2L2

≤ C
(
1 + ‖∇S‖2L2 ln+(‖S‖W 2,2)

)
‖∇v|2L2 < +∞

(49)

due to (44) and finally ∫
Ω

|D|2 dx ≤ ‖v‖2W 1,2 ≤ C2
(2), (50)

we conclude that g is bounded in L2(Ω) uniformly w.r.t. time t ∈ [0, T ]. Consequently g is bounded
uniformly in L2(0, T ;L2(Ω)) and it then follows from (47), using Young’s inequality, that∫ T

0

∥∥∥∥∂S∂t
∥∥∥∥2

L2

+

∥∥∥∥∂∇S∂t
∥∥∥∥2

L2

dt ≤ C(3). (51)

Referring to (32), (44), (46), and (51) we observe that the assertions of Proposition 2 are thus proved.

3.2 Galerkin approximation
We prove Theorem 1 by means of a Galerkin approximation. Following a standard procedure we employ
orthonormal countable bases, (ωi)∞i=1 and (wi)∞i=1, of the spaces W

1,2
div and W 1,2, respectively. Let N ≥ 1

be fixed. The functions vN (x, t) =
∑N
i=1 c

N
i (t)ωi(x) and SN (x, t) =

∑N
i=1 d

N
i (t)wi(x) are called the Nth

Galerkin approximation, if (cN1 , . . . , c
N
N , d

N
1 , . . . , d

N
N ) solve the system of ordinary differential equations∫

Ω

∂vN

∂t
· ωi +

∫
Ω

((vN · ∇)vN ) · ωi = −
∫

Ω

SN : ∇ωi for all i = 1, . . . , N, (52a)∫
Ω

∂SN

∂t
: wj +

∫
Ω

(vN · ∇)SN : wj +

∫
Ω

(SNWN −WNSN ) : wj

+

∫
Ω

∇∂S
N

∂t
: ∇wj =

∫
Ω

DN : wj for all j = 1, . . . , N,

(52b)

cNi (0) =

∫
Ω

v0 · ωi, dNj (0) =

∫
Ω

S0 : wj , 1 ≤ i, j ≤ N, (52c)
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with the initial conditions vN (x, 0) = PNv v0(x), SN (x, 0) = PNS S0(x), where PNv and PNS are proper
orthogonal continuous projections.

The existence of continuous functions (cN1 , . . . , c
N
N , d

N
1 , . . . , d

N
N ), that solve (52), follows from the

classical Carathéodory theorem. The uniform estimates, that we state in the next section, enable us to
extend the solution onto the whole time interval [0, T ].

3.3 Limit N →∞
Recalling the energy estimates from Section 3.1, it is not difficult to see that the Nth Galerkin approxi-
mation satisfies, for N arbitrary, the following estimates:

‖vN‖L∞(0,T ;W 1,2) + ‖SN‖L∞(0,T ;W 2,2) ≤ C(Ω, T,v0,S0)∥∥∥∥∂vN∂t
∥∥∥∥
L2(0,T ;(W 1,2

div)∗)

≤ C(Ω, T,v0,S0),

∫ T

0

∥∥∥∥∥∂SN∂t
∥∥∥∥∥

2

L2

+

∥∥∥∥∥∂∇SN∂t

∥∥∥∥∥
2

L2

dt ≤ C(Ω, T,v0,S0).

Thanks to the above estimates that are uniform with respect to N , sequential weak or *-weak precom-
pactness of the function spaces involved, and thanks to the identification of the time derivative of a limit
function with the limit of the time derivative via the distributional formula for the time derivative, we
observe that for a selected (not relabelled) subsequence we have

vN ⇀∗ v in L∞(0, T ;W 1,2),

∂vN

∂t
⇀

∂v

∂t
in L2(0, T ; (W 1,2)∗),

SN ⇀∗ S in L∞(0, T ;W 2,2),

∂SN

∂t
⇀

∂S

∂t
in L2(0, T ; (W 1,2)).

(53)

Weak convergence suffices to take the limit in the linear terms in (52). Moreover, since

W 1,2 ↪→↪→ L4 ↪→ L2 = (L2)∗ ↪→ (W 1,2)∗

we get, thanks to the Aubin–Lions compactness lemma, see for example [37], the following strong con-
vergence results

SN −→ S in L2(0, T ;L4),

vN −→ v in L2(0, T ;L4).

This allows us to take limit in the nonlinear terms∫ T

0

∫
Ω

((SW −WS)− (SNWN −WNSN )) : Σ dxdt. (54)

To illustrate this, let us consider one term of (54):∫ T

0

∫
Ω

(SW − SNWN ) : Σ dx dt =

∫ T

0

∫
Ω

(SWN − SNWN − SWN + SW ) : Σ dxdt

=

∫ T

0

∫
Ω

(S − SN )WN : Σ dx dt+

∫ T

0

∫
Ω

S(W −WN ) : Σ dxdt

≤ ‖S − SN‖L2(L4)‖W ‖L2(L2)‖Σ‖L∞(L4) +

∫ T

0

∫
Ω

(W −WN ) : SΣ dxdt −→ 0.

A standard (similar) approach is used in order to take the limit in the convective terms. Consequently,
we can conclude that v, S satisfy (16a), (16b). Moreover, the uniform estimates mentioned above
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and the weak lower semicontinuity of respective norms imply the estimates for the functions v and S as
stated in Theorem 1. In addition, thanks to standard space-time interpolation of v in L2(0, T ;W 1,2) and
∂v
∂t in L2(0, T ; (W 1,2)∗) we obtain v ∈ C([0, T ];L2) (see for example [37]). Similarly, S ∈ C([0, T ];W 3/2,2).
Hence

lim
t→0+

‖v(t)− v(0)‖L2 and lim
t→0+

‖S(t)− S(0)‖W 3/2,2 . (55)

To verify the statements of Theorem 1 regarding the initial conditions, it thus remains to check that
v(0) = v0 and S(0) = S0. For this purpose, we multiply both equations in (52) by ψ ∈ C∞((−∞, T ])
satisfying ψ(T ) = 0 and integrate over the time interval (0, T ). Then, integration by parts with respect
to time leads to (i = 1, . . . , N),

−
∫ T

0

∫
Ω

vN · ωi ∂ψ
∂t
−
∫ T

0

∫
Ω

vN (0) · ωiψ(0) +

∫ T

0

∫
Ω

((vN · ∇)vN ) · ωiψ = −
∫ T

0

∫
Ω

SN : ∇ωiψ, (56a)

−
∫ T

0

∫
Ω

SN : wj
∂ψ

∂t
−
∫ T

0

∫
Ω

SN (0) : wjψ(0) +

∫ T

0

∫
Ω

(vN · ∇)SN : wjψ −
∫ T

0

∫
Ω

∇SN : ∇wj ∂ψ
∂t

−
∫ T

0

∫
Ω

∇SN (0) : ∇wjψ(0) +

∫ T

0

∫
Ω

(SNWN −WNSN ) : wjψ =

∫ T

0

∫
Ω

DN : wjψ

(56b)

Next, letting N → ∞ and referring to the completeness of (ωi)∞i=1 and (wi)∞i=1 in W 1,2
div and W 1,2,

respectively, we get, for smooth spatial test functions ϕ and Σ, the following identities:

−
∫ T

0

∫
Ω

v ·ϕ∂ψ
∂t
−
∫ T

0

∫
Ω

v0 ·ϕψ(0) +

∫ T

0

∫
Ω

((v · ∇)v) ·ϕψ = −
∫ T

0

∫
Ω

S : ∇ϕψ, (57a)

−
∫ T

0

∫
Ω

S : Σ
∂ψ

∂t
−
∫ T

0

∫
Ω

S0 : Σψ(0) +

∫ T

0

∫
Ω

(v · ∇)S : Σψ +

∫ T

0

∫
Ω

(SW −WS) : Σψ

−
∫ T

0

∫
Ω

∇S : ∇Σ
∂ψ

∂t
−
∫ T

0

∫
Ω

∇S0 : ∇Σψ(0) =

∫ T

0

∫
Ω

D : Σψ.

(57b)

Since by properties of a generalized derivative one has∫ T

0

〈
∂v

∂t
,ϕ

〉
ψ dt = −

∫ T

0

∫
Ω

v ·ϕ∂ψ
∂t
−
∫ T

0

∫
Ω

v(0) ·ϕψ(0), (58)∫ T

0

〈
∂S

∂t
,Σ

〉
dt = −

∫ T

0

∫
Ω

S : Σ
∂ψ

∂t
−
∫ T

0

∫
Ω

S(0) : Σψ(0), (59)

comparing (16a), (16b) with (57) and choosing ψ(0) 6= 0 we obtain∫
Ω

v(0) ·ϕdx =

∫
Ω

v0 ·ϕdx,

∫
Ω

S(0) : Σ dx =

∫
Ω

S0 : Σ dx.

Hence v(0) = v0, S(0) = S0 a.e. and by virtue of (55) we have

lim
t→0+

‖v(t)− v(0)‖L2 lim
t→0+

‖S(t)− S(0)‖W 3/2,2 .

We have thus proved that (v,S) is a weak solution to (15). The proof of uniqueness of the weak solution
fulfilling the established regularity results is standard. The proof of Theorem 1 is complete.

4 Proof of Theorem 2

4.1 A priori estimates
Proposition 3. Let v0 ∈ W 1,2

div , S0 ∈ W 2,2 and X(0) := ‖∇v0‖2L2 + ‖∇S0‖2L2 . For sufficiently smooth
v and S satisfying (18) assume that either T < 1

c0X(0) or 1 > c0X(0), where c0 := c∗max{1, ‖S0‖22} and
c∗ is an absolute constant related to certain interpolations and embeddings. Then

‖v‖2L∞(0,T ;L2) + ‖S‖2L∞(0,T ;L2) + ‖S‖2L2(0,T ;W 1,2) ≤ ‖v0‖2L2 + ‖S0‖2L2 , (60)
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‖v‖2L∞(0,T ;W 1,2) + ‖S‖2L2(0,T ;W 2,2) ≤ C1, (61)

where C1 = CT
(

X(0)
1−c0TX(0)

)2

under the hypothesis T < 1
c0X(0) and C1 = 2X(0)

1−c0X(0) under the hypothesis
1 > c0X(0). Moreover, ∥∥∥∥∂v∂t

∥∥∥∥
L2(0,T ;(W 1,2

div)∗)

≤ C((C1T )
1
2 + 1)[‖v0‖L2 + ‖S0‖L2 ], (62)

∫ T

0

∥∥∥∥∂S∂t
∥∥∥∥2

L2

dt ≤ CC1(1 + T + C1). (63)

Proof. The first energy estimate (60) is arrived at along the lines giving (32) for (15). The second energy
estimate yields (see Subsect. 3.1.2 for details)

1

2

d

dt
‖∇v‖2L2 =

∫
Ω

∆S : D dx, (64)

1

2

d

dt
‖∇S‖2L2 + ‖∆S‖2L2 =−

∫
Ω

([∇v]∇S) : ∇S dx+

∫
Ω

(WS − SW ) : ∆S dx−
∫

Ω

D : ∆S dx. (65)

The convective term is estimated by means of interpolation and Young’s inequalities as follows:∫
Ω

|(∇v · ∇S) : ∇S|dx ≤ ‖∇v‖L2‖∇S‖2L4 ≤ c‖∇v‖L2‖∇S‖L2‖∆S‖L2

≤ c‖∇v‖2L2‖∇S‖2L2 +
1

4
‖∆S‖2L2 .

(66)

To estimate the second term on the right-hand side of (65) we employ Agmon’s inequality (in 2d)
‖z‖L∞ ≤ c‖z‖1/2L2 ‖z‖1/2W 2,2 and obtain (using also (60))∫

Ω

(WS − SW ) : ∆S dx ≤ 2‖∇v‖L2‖S‖L∞‖∆S‖L2 ≤ c‖∇v‖L2‖S‖
1
2

L2‖S‖
1
2

W 2,2‖∆S‖L2

≤ c‖∇v‖L2‖S‖
1
2

L2‖∆S‖
3
2

L2 ≤
c∗
2
‖S0‖2L2‖∇v‖4L2 +

1

4
‖∆S‖2L2 .

(67)

Summing up (64) and (65), using (66) and (67), and setting c0 := c∗max{1, ‖S0‖22}, we conclude that

d

dt

(
‖∇v‖2L2 + ‖∇S‖2L2

)
+ ‖∆S‖2L2 ≤ c∗

(
‖S‖2L2‖∇v‖4L2 + ‖∇v‖2L2‖∇S‖2L2

)
≤ c0

(
‖∇v‖2L2 + ‖∇S‖2L2

)2
(68)

since ‖S‖L2 ≤ ‖S0‖L2 . If we set X :=
(
‖∇v‖2L2 + ‖∇S‖2L2

)
and Y := ‖∆S‖2L2 , then (68) takes the form

d
dtX + Y ≤ c0X2. Since

d

dt
X ≤ c0X2 =⇒ X(t) ≤ X(0)

1− c0tX(0)
and X(T ) +

∫ T

0

Y ≤ CT
(

X(0)

1− c0TX(0)

)2

,

we conclude that, for T < 1
c0X(0) ,

v ∈ L∞(0, T ;W 1,2), S ∈ L∞(0, T ;W 1,2) ∩ L2(0, T ;W 2,2),

which implies the first desired estimate under the assumption on the smallness of the time interval, i.e.
T < 1

c0X(0) .
Let us now justify the same estimate under the assumption that the initial data are small in the

relevant norms. Starting from the first inequality given in (68) and using the notation introduced above
and estimating ‖∇S‖2L2 by cY , we obtain d

dtX + Y ≤ c0X2Y , which leads to

d

dt
X + (1− c0X2)Y ≤ 0. (69)
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Assuming that 1 > δ > c0X
2(0) =

(
‖∇v0‖2L2 + ‖∇S0‖2L2

)2 and that X(t) is continuous in time, we
set

t∗ := inf{t > 0 : c0X
2(t) = δ}.

We will argue that t∗ cannot be finite. Indeed, assuming that t∗ ∈ (0,∞) and integrating (69) over
(0, t∗) (noting that t∗ is the first possible time where c0X2(·) = δ), we conclude that X(t∗) ≤ X(0).
Consequently, δ = c0X

2(t∗) ≤ c0X
2(0) < δ, which contradicts to the fact that t∗ is finite. Hence, using

again (69), we observe that, for any finite time t,

X(t) + (1− δ)
∫ t

0

Y ≤ X(0),

which gives (61). The value of the constant C1 follows from the choice of δ := 1+c0X
2(0)

2 .
It remains to estimate the time derivatives of v and S. Since the systems (15) and (18) differ only

in the stress evolution equation, the estimation (62) of ∂v∂t follows from (45) and (61).
In order to estimate ∂S

∂t , we take the scalar product of (18c) and ∂S
∂t and integrate the result over

(0, T )× Ω. This yields∫ T

0

∫
Ω

∂S

∂t
:
∂S

∂t
dxdt+

∫ T

0

∫
Ω

(v · ∇)S :
∂S

∂t
dxdt+

∫ T

0

∫
Ω

(SW −WS) :
∂S

∂t
dxdt

−
∫ T

0

∫
Ω

∆S :
∂S

∂t
dxdt =

∫ T

0

∫
Ω

D :
∂S

∂t
dxdt.

Hence ∫ T

0

∥∥∥∥∂S∂t
∥∥∥∥2

L2

dt ≤
∫ T

0

∫
Ω

g

∣∣∣∣∂S∂t
∣∣∣∣ dx dt, (70)

where
g := |(v · ∇)S|+ |SW −WS|+ |∆S|+ |D|.

Proceeding similarly as in Subsect. 3.1.3, it is possible to show that g is bounded in L2(0, T ;L2). Young’s
inequality thus implies (63).

4.2 Galerkin approximation
We proceed similarly as in the proof of Theorem 1 and apply the same Galerkin scheme. Here, the
functions vN (x, t) =

∑N
i=1 c

N
i (t)ωi(x) and SN (x, t) =

∑N
i=1 d

N
i (t)wi(x) solve the following system of

ordinary differential equations:∫
Ω

∂vN

∂t
· ωi +

∫
Ω

(vN · ∇)vN ) · ωi = −
∫

Ω

SN : ∇ωi for all i = 1, . . . , N, (71a)∫
Ω

∂SN

∂t
: wj +

∫
Ω

(vN · ∇)SN : wj +

∫
Ω

(SNWN −WNSN ) : wj

+

∫
Ω

∇SN : ∇wj =

∫
Ω

DN : wj for all j = 1, . . . , N,

(71b)

cNi (0) =

∫
Ω

v0ω
i, dNj (0) =

∫
Ω

S0w
j , 1 ≤ i, j ≤ N. (71c)

The existence of continuous functions (cN1 , . . . , c
N
N , d

N
1 , . . . , d

N
N ), that solve (71), follows from the

classical Caratheodory theorem.

4.3 Uniform estimates and Limit N →∞
At this juncture, we can “repeat” the a priori estimates established for the sufficiently regular solution
discussed in Subsect. 4.1. Similarly as in the proof of Theorem 1 we conclude corresponding weak and
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*-weak convergences for selected but not relabelled subsequences of {vN} and {SN}. Repeating the
arguments from Section 3.3 we also obtain the following strong convergence results:

vN −→ v in L2(0, T ;L4),

SN −→ S in L2(0, T ;L4).

Consequently, we can take the limit in all terms of the governing equations and conclude that v and S
satisfy (19a) and (19b).

Moreover, thanks to the space-time interpolation of v in L2(0, T ;W 1,2) and ∂v
∂t in L2(0, T ; (W 1,2)∗)

we obtain v ∈ C([0, T ];L2). Similarly, S ∈ C([0, T ];W 1,2). Hence

lim
t→0+

‖v(t)− v(0)‖L2 lim
t→0+

‖S(t)− S(0)‖W 1,2 . (72)

The procedure of checking the attainment of the initial conditions proceeds in a similar way as in
Section 3.3: we have to show that v(0) = v0 and S(0) = S0. To prove these, we multiply (71) by
ψ ∈ C∞([0, T ]) satisfying ψ(T ) = 0 and integrate over (0, t). Then we integrate by parts w.r.t. time and
take the limit N →∞ as in (56). Due to the completeness of the bases (ωi)∞i=1 and (wi)∞i=1 in W 1,2

div and
W 1,2, we get for smooth spatial test functions ϕ and Σ the following identities:

−
∫ T

0

∫
Ω

vϕ · ∂ψ
∂t
−
∫ T

0

∫
Ω

v0 ·ϕψ(0) +

∫ T

0

∫
Ω

((v · ∇)v) ·ϕψ = −
∫ T

0

∫
Ω

S : ∇ϕψ, (73a)

−
∫ T

0

∫
Ω

S : Σ
∂ψ

∂t
−
∫ T

0

∫
Ω

S0 : Σψ(0) +

∫ T

0

∫
Ω

(v · ∇)S : Σψ

+

∫ T

0

∫
Ω

(SW −WS) : Σψ +

∫ T

0

∫
Ω

∇S : ∇Σψ =

∫ T

0

∫
Ω

D : Σψ.

(73b)

Using the relations (58) and (59) and comparing (19a) and (19b) with (73), we conclude (by choosing
ψ(0) 6= 0) that ∫

Ω

v(0) ·ϕ dx =

∫
Ω

v0 ·ϕdx,

∫
Ω

S(0) : Σ dx =

∫
Ω

S0 : Σ dx.

Hence v(0) = v0, S(0) = S0 a.e. and owing to (72) we observe that

lim
t→0+

‖v(t)− v(0)‖L2 , lim
t→0+

‖S(t)− S(0)‖W 1,2 .

We have proved that (v,S) is a weak solution to (18) and have completed the proof of Theorem 2, since
the proof of uniqueness of the weak solution fulfilling the established regularity results is again standard.

Appendix - Main difficulty in proving well-posedness of (1)
Let us discuss the fundamental difficulties that obstruct the proof of local-in-time well-posedness of the
system (1). We are interested in solving the spatially periodic problem. We can treat the equation (1b)
as an Euler equation with the right-hand side divS. Therefore, we apply the strategy that was used
to show the local-in-time existence of a weak solution to the Euler equation, namely we perform first a
priori estimates and then the estimates for the third derivatives.

We take the scalar product of (1b) and the velocity v and integrate over (0, t)× Ω:∫ t

0

∫
Ω

∂v

∂t
· v dx dt+

∫ t

0

∫
Ω

(v · ∇)v · v dx dt+

∫ t

0

∫
Ω

∇p · v dxdt =

∫ t

0

∫
Ω

divS · v dx dt,

which leads to
1

2

∫ t

0

d

dt
‖v‖2L2 dt = −

∫ t

0

∫
Ω

S : ∇v dx dt = −
∫ t

0

∫
Ω

S : D dxdt. (74)

Further, we take the scalar product of (1c) by S and integrate over (0, t)× Ω:∫ t

0

∫
Ω

∂S

∂t
: S dxdt+

∫ t

0

∫
Ω

(v · ∇)S : S dx dt+

∫ t

0

∫
Ω

(SW −WS) : S dx dt =

∫ t

0

∫
Ω

D : S dxdt,
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which implies that
1

2

∫ T

0

d

dt
‖S‖2L2 dt =

∫ T

0

∫
Ω

D : S dxdt. (75)

We sum up (74) and (75) and obtain

‖v(t)‖2L2 + ‖S(t)‖2L2 = ‖v(0)‖2L2 + ‖S(0)‖2L2 for all t ∈ (0, T ). (76)

Equation (32) gives uniform a priori estimates on v and S in the following function spaces

v ∈ L∞(0, T ;L2), S ∈ L∞(0, T ;L2).

Note that unlike the Oldroyd-type models the first a-priori estimate does not give any bound on the
gradient of the velocity.

Next, we proceed to the estimates on the third spatial derivatives of v and S. We apply D3 to (1b)
and take the scalar product with D3v. After integration over (0, T )× Ω, we obtain∫ T

0

∫
Ω

D3 ∂v

∂t
·D3v dxdt+

∫ T

0

∫
Ω

D3((v · ∇)v) ·D3v dxdt

+

∫ T

0

∫
Ω

D3∇p ·D3v dxdt =

∫ T

0

∫
Ω

D3divS ·D3v dxdt,

1

2

∫ T

0

d

dt
‖D3v‖2L2 dt+

∫ T

0

∫
Ω

D3((v · ∇)v) ·D3v dxdt =

∫ T

0

∫
Ω

D3divS ·D3v dxdt.

Analogously, we apply D3 to (1c) and take the scalar product of the result with D3S. This, after
integration over (0, T )× Ω, leads to∫ T

0

∫
Ω

D3 ∂S

∂t
: D3S dxdt+

∫ T

0

∫
Ω

D3((v · ∇)S) : D3S dxdt

+

∫ T

0

∫
Ω

D3(SW −WS) : D3S dx dt =

∫ T

0

∫
Ω

D3D : D3S dxdt,

1

2

∫ T

0

d

dt
‖D3S‖2L2 dt+

∫ T

0

∫
Ω

D3((v · ∇)S) : D3S dxdt

+

∫ T

0

∫
Ω

D3(SW −WS) : D3S dx dt =

∫ T

0

∫
Ω

D3D : D3S dxdt.

The convective terms are estimated in the standard way. An important feature is the cancellation of
the highest order term, as in (35):∫ T

0

∫
Ω

D3((v · ∇)v) ·D3v dx dt ≤ C
∫ T

0

‖D3v‖3L2 dt,

∫ T

0

∫
Ω

D3((v · ∇)S) : D3S dxdt ≤ C
∫ T

0

‖D3v‖L2‖D3S‖2L2 dt.

The obstacle is the co-rotational term
∫ T

0

∫
Ω
D3(SW −WS) : D3S dx dt, or, more precisely, one of its

terms,
∫ T

0

∫
Ω

(SD3W −D3WS) : D3S dxdt, which contains fourth derivatives of the velocity. Even if we
restrict ourselves to planar flows, the difficulty persists. Indeed, in two dimensions we have

S =

(
S11 S12

S12 S22

)
, W =

1

2

(
∇v −∇vT

)
=

1

2

(
0 ∂v1

∂x2
− ∂v2

∂x1
∂v2
∂x1
− ∂v1

∂x2
0

)
=

1

2

(
0 −ω
ω 0

)
,

where ω = ∂v1
∂x2
− ∂v2

∂x1
. Hence, we get

SW =
1

2
ω

(
S12 −S11

S22 −S12

)
, WS =

1

2
ω

(
−S12 −S22

S11 S12

)
,
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SW −WS =
1

2
ω

(
2S12 S22 − S11

S22 − S11 −2S12

)
=:

1

2
ωS̃.

Consequently, the most difficult term takes the form

(SD3W −D3WS) : D3S =
1

2
(D3ω)S̃ : D3S.

Despite our efforts to incorporate the equation for ω and its third derivatives, or to use the stream
function, we were not able to control the last term by D3v and D3S.
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