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Abstract

We consider the stationary compressible Navier–Stokes system supplemented with general inho-
mogeneous boundary conditions. Assuming the pressure to be given by the standard hard sphere
EOS we show existence of weak solutions for arbitrarily large boundary data.
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1 Introduction

The boundary behavior of fluids influences essentially the motion inside their natural physical domain.
Basically all real world applications in fluid mechanics contain boundary conditions as the main factor
determining the behavior of the fluid. We consider the problem of identifying the stationary motion of
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a compressible viscous fluid driven by general in/out flux boundary conditions. Specifically, the mass
density % = %(x) and the velocity u = u(x) of the fluid satisfy the Navier–Stokes system,

divx(%u) = 0, (1.1)

divx(%u⊗ u) +∇xp(%) = divxS(∇xu), (1.2)

S(∇xu) = µ
(
∇xu +∇t

xu
)

+ λdivxuI, µ > 0, λ ≥ 0, (1.3)

in Ω ⊂ RN , N = 2, 3, where p = p(%) is the barotropic pressure. We consider rather general boundary
conditions,

u|∂Ω = uB, %|Γin
= %B, (1.4)

where
Γin =

{
x ∈ ∂Ω

∣∣∣ uB · n < 0
}

, Γout =
{

x ∈ ∂Ω
∣∣∣ uB · n > 0

}
. (1.5)

We concentrate on the inflow/outflow phenomena, we have therefore deliberately omitted the con-
tribution of external forces %f . Nevertheless, all results of this paper remain valid also in the presence
of external forces.

Investigation and better insight to the equations in this setting is important for many real world
applications. In fact this is a natural and basic abstract setting for flows in pipelines, wind tunnels,
turbines to name a few concrete examples. In spite of this fact the problem resists to all attempts of its
solution for decades. To the best of our knowledge, this is the first work ever treating this system for
large boundary data.

Indeed, the only results available in setting (1.1-1.5) are those on existence of strong solutions for
small boundary data perturbations of an equilibrium state or of a specific given flow in a particular
geometry (as e.g. the Poiseuille flow in a cylinder) in isentropic regime, see e.g. Plotnikov, Ruban,
Sokolowski [19], Mucha, Piasecki [14], Piasecki [17], Piasecki and Pokorny [18] among others. The only
available results on existence of weak solutions for large flows treat system (1.1-1.3) with large external
force at the right hand side of equation (1.2) and with homogenous Dirichlet boundary condtion for
velocity (u|∂Ω = 0) or with Navier slip boundary conditions (u ·n|∂Ω=0, (S(∇xu)n)×n|∂Ω = 0). For the
examples of latter relevant results, see Lions [13], Brezina, Novotny [2], Frehse, Steinhauer, Weigant [9],
Plotnikov, Sokolowski [22], Jiang, Zhou [12] among others.

Our goal is to establish the existence of a weak solution [%,u] to problem (1.1–1.5) for general large
boundary data %B, uB. Our approach is based on two physically grounded hypotheses:

• Molecular hypothesis (hard sphere model). The specific volume of the fluid is bounded below
away from zero. Equivalently, the fluid density cannot exceed a limit value % > 0. Accordingly,
the pressure p = p(%) satisfies

lim
%→%

p(%) = ∞. (1.6)

• Positive compressibility. The pressure p = p(%) is a non-decreasing function of the density,
more precisely

p ∈ C[0, %) ∩ C1(0, %), p(0) = 0, p′(%) ≥ 0 for % ≥ 0. (1.7)
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The reader may consult Carnahan and Starling [3] for the physical background of hypotheses (1.6), (1.7).
Although apparently satisfied by any real fluid, condition (1.6) eliminates the more standard equations
of state p(%) = a%γ used for the isentropic gases.

Clearly, the fact that the density is a priori expected to be confined to a bounded interval [0, %]
facilitates the analysis. On the other hand the presence of non zero boundary data makes the analysis
more difficult. The proper construction of solutions in this setting is far from being obvious. We use
a method relying on a suitable elliptic regularization based on adding artificial diffusion terms to both
continuity and momentum equations, along with nonlinear flux-type boundary conditions for density.
Note that the more standard approximation based on solving directly the transport equation (1.1),
see e.g. Plotnikov, Ruban, Sokolowski [19], [20], [21] is unlikely to work for the large data problems.
The proof contains a construction of a suitable extension of the boundary velocity field in the class of
functions with positive divergence that may be of independent interest. Compactness of the family of
approximate solutions is established by means of compensated compactness combined with the monotone
operator theory in the spirit of Lions’ work [13].

The paper is organized in the following way. In Section 2, we introduce the concept of weak solution
to problem (1.1–1.5) and state our main result (Theorem 2.1 and Remark 2.3). Section 3 contains
preliminary material concerning extension of vector fields given on ∂Ω. The approximate solutions are
constructed in Section 4. After having established the necessary uniform bounds in Section 5, the limit
in the family of approximate solutions is performed in Section 7.

2 Main result

In order to avoid additional technicalities, we suppose the Ω ⊂ RN , N = 2, 3 is a bounded simply
connected domain with a boundary of class C2,1. The boundary data satisfy

uB ∈ C2(∂Ω; RN), %B ∈ C(∂Ω). (2.1)

We say that [%,u] is a weak solution of problem (1.1–1.4) if:

•
% ∈ L∞(Ω), 0 ≤ % < % a.a. in Ω, u ∈ W 1,2(Ω; RN), u|∂Ω = uB;

• the integral identity

−
∫

Ω

%u · ∇xϕ dx +

∫
∂Ω

%BuB · nϕ dSx = 0

holds for any ϕ ∈ C1(Ω), ϕ|Γout = 0;

• p(%) ∈ L2(Ω), and the integral identity∫
Ω

[(%u⊗ u) : ∇xϕ + p(%)divxϕ] dx =

∫
Ω

S(∇xu) : ∇xϕ dx

holds for any ϕ ∈ C1
c (Ω; RN).
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Our main result is the following theorem.

Theorem 2.1. Let Ω ⊂ RN , N = 2, 3 be a bounded simply connected domain of class C2,1. Let the
boundary data uB, %B satisfy (2.1), and

0 < min %B ≤ max %B < %,

∫
∂Ω

uB · n dSx ≥ 0. (2.2)

Let the pressure satisfy hypotheses (1.6), (1.7).
Then problem (1.1–1.4) possesses at least one weak solution [%,u].

Remark 2.2. Hypothesis ∫
Ω

uB · n dx ≥ 0

is not optimal in view of the available small data results, see e.g. Plotnikov, Ruban, Sokolowski [20].
On the other hand, it implies Γout 6= ∅ whenever Γin 6= ∅. It is easy to see that the problem is not
solvable if Γout = ∅ unless Γin = ∅. In the latter case, the total mass of the fluid∫

Ω

% dx = M

must be prescribed to avoid the trivial solution % = 0, see [4]. In general, as the density is bounded
above by %, the problem may not be solvable for arbitrary %B if∫

Ω

uB · n dx < 0.

Remark 2.3. For the sake of simplicity, we treat the case of smooth boundary with smooth boundary
data. The method can be easily adapted to more complex geometries as the case of a bounded cylinder
handled in [18]. More precisely, a direct inspection of the proof presented in the remaining part of this
paper yields the conclusion of Theorem 2.1 provided Ω is a bounded Lipschitz domain, the boundary
∂Ω of which consists of a finite number of components of class C2,1, specifically,

∂Ω =
(
∪I

i=1Γi,in

)
∪

(
∪J

j=1Γj,out

)
∪ Γ0,

where Γi,in, Γj,out, Γ0 are of class C2,1, Γi,in, Γj,out are mutually disjoint, Γi,in, Γj,out simply connected,
such that

uB · n < 0 on Γi,in, uB · n > 0 on Γj,out, i = 1, . . . , I, j = 1, . . . , J, uB · n = 0 on Γ0.

Remark 2.4. For the sake of simplicity, the action of external forces is omitted in (1.2). However
Theorem 2.1 remains valid if a driving force %f , f ∈ L∞(Ω) is added to (1.2). The proof requires only
minor modifications.
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3 Preliminaries

Without loss of generality, we will assume that Γin 6= ∅; whence, in accordance with hypothesis (2.2),
Γin 6= ∂Ω and Γout 6= ∅. The reader may consult [4], for the discussion of the problem with tangential
boundary data uB.

3.1 Renormalization

Lemma 3.1. Suppose that Ω ⊂ RN is a bounded simply connected domain of class C2,1,

uB ∈ W 2− 1
q
,q(∂Ω; RN) for some q > N, Γin 6= ∂Ω.

Then there exists ũB ∈ W 1,∞(RN \ Ω; RN) such that

divxũB = 0, ũB|Γin
= uB|Γin

, ũB · n|∂Ω\Γin
≥ 0.

Proof. As Ω \ Γin is a non-empty open subset of ∂Ω. We can extend the field uB outside Γin in such a
way that

uB · n|∂Ω\Γin
≥ 0,

∫
∂Ω

uB · n dSx = 0.

The existence of the solenoidal extension ũB is then standard, see [10, Chapter IX, Section IX.4]. More
precisely, we construct the field ũB in the class W 2,q and use the Sobolev embedding W 2,q ↪→ W 1,∞.

Consider now the flow generated by the field −ũB, where ũB is the extension of the boundary data
constructed in Lemma 3.1,

X′(t,x0) = −ũB(X(t,x0)), X(0) = x0 ∈ ∂Ω. (3.1)

Let

Ω̃δ =
{

x ∈ RN \ Ω
∣∣∣ x ∈ X(τ,x0) for a certain 0 < τ < δ, x0 ∈ ∂Ω, ∪0<t≤τX(t,x0) ⊂ RN \ Ω

}
As solutions of (3.1) depend continuously on the initial data, the set Ω̃δ is open. Moreover, as Γin 6= ∅,
we have Ω̃δ 6= ∅. In addition, if x ∈ Ω̃δ, x = X(τ,x0), then x0 ∈ Γin and we may extend the boundary
data %B to Ω̃δ setting %̃B(X(τ, x0)) = %B(x0). Accordingly, as ũB is solenoidal,

divx(%̃BũB) = 0 in Ω̃δ, %̃B|Γin
= %B. (3.2)

Lemma 3.2. Suppose that Ω ⊂ RN is a bounded simply connected domain of class C2,1,

uB ∈ W 2− 1
q
,q(∂Ω; RN) for some q > N, Γin 6= ∂Ω.
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Let [%,u], u|∂Ω = uB be a weak solution to the problem

divx(%u) = 0 in Ω, %|Γin
= %B,

specifically
% ∈ L∞(Ω), u ∈ W 1,2(Ω; RN),

−
∫

Ω

%u · ∇xϕ dx +

∫
∂Ω

%BuB · nϕ dSx = 0

for any ϕ ∈ C1(Ω), ϕ|Γout = 0.
Then [%,u] is also a renormalized solution, meaning

−
∫

Ω

b(%)u · ∇xϕ dx +

∫
Ω

ϕ (b′(%)%− b(%)) divxu dx +

∫
∂Ω

b(%B)uB · nϕ dSx = 0 (3.3)

for any ϕ ∈ C1(Ω), ϕ|Γout = 0, and any continuously differentiable b.

Proof. We may extend [%,u] as [%̃B, ũB] in Ω∪Γin∪Ω̃δ so that the extended functions satisfy the equation
of continuity in the domain Bδ = Ω ∪ Γin ∪ Ω̃δ.

Next, we use the regularization procedure due to DiPerna and Lions [5] applying convolution with a
family of regularizing kernels obtaining

divx([%]ε[u]ε) = Rε in Bε,δ =
{

x ∈ Bδ

∣∣∣ dist[x, ∂Bδ] > ε
}

, Rε → 0 in L2(Bδ) as ε → 0 (3.4)

for the regularized functions [%]ε, [u]ε.
Multiplying equation (3.4) on b′([%]ε), we get

divx(b([%]ε)[u]ε) + (b′([%]ε)[%]ε − b([%]ε)) divxu = b′([%]ε)Rε

or

−
∫

Bδ

b([%]ε)[u]ε · ∇xϕ dx +

∫
Bδ

ϕ (b′([%]ε)[%]ε − b([%]ε)) divx[u]ε dx =

∫
Bδ

ϕb′([%]ε)Rε

for any ϕ ∈ C1
c (Bδ). Thus, letting ε → 0 we get

−
∫

Bδ

b(%)u · ∇xϕ dx +

∫
Bδ

ϕ (b′(%)%− b(%)) divxu dx = 0

for any ϕ ∈ C1
c (Bδ).

Seeing that % = %̃B, u = ũB are continuous on Ω̃δ, we deduce that

−
∫

Bδ

b(%)u · ∇xϕ dx +

∫
Bδ

ϕ (b′(%)%− b(%)) divxu dx +

∫
∂Bδ

b(%̃B)ũB · nϕ dSx = 0

for any ϕ ∈ C1(Bδ), ϕ|Γout = 0. Finally, we let δ → 0 to obtain the desired conclusion.

6



3.2 Extension of the boundary velocity inside Ω

Our goal is to find a suitable extension of the boundary field uB into Ω so that a suitable norm of this
extension is “small”. Such a result is intimately related to the so-called Leray’s inequality in the context
of incompressible fluids, see e.g. Galdi [10]. We start with an auxiliary result.

Lemma 3.3. Let Ω ⊂ RN , N = 2, 3 be a bounded simply connected domain of class C2+ν. Let K > 0
and ε > 0 be given.

Then there exists a vector field V ∈ C2(Ω; RN) enjoying the following properties:∫
∂Ω

V · n dSx = K, (3.5)

divxV ≥ 0 in Ω, (3.6)

‖V‖L4(Ω) < ε. (3.7)

Let dΩ(x) denote the distance of x ∈ Ω to ∂Ω. As Ω is of class C2+ν , there is an open neighborhood
U of ∂Ω in Ω such that dΩ belongs to the same class, see e.g. Foote [8]. Moreover, for any x ∈ U there
exists a unique point xB = xB(x) ∈ ∂Ω such that dΩ(x) = |x − xB|. Next, as Ω is bounded simply
connected, there exists a non-empty open subset C ⊂ ∂Ω such that the set{

x ∈ U
∣∣∣ xB(x) ∈ C

}
is convex.

Finally, as the boundary distance function of convex domains are superharmonic, see e.g. Armitage and
Kuran [1], we may infer that that there exists a non-empty open connected subset B ⊂ C ⊂ ∂Ω such
that

∆xdΩ(x) ≤ 0 whenever x ∈ U , xB(x) ∈ B. (3.8)

We consider a function Λ ∈ C2(∂Ω) such that

Λ ∈ C2
c (B), Λ ≥ 0,

∫
∂Ω

Λ dSx =

∫
∂Ω

Λn · n dSx = K.

Thus our ultimate goal is to extend the vector field Λn inside Ω with a small L4-norm. To this end, we
set

V(x) = −Λ(xB(x))hδ(dΩ(x))∇xdΩ(x), x ∈ Ω.

The function hδ is chosen in such a way that

hδ ∈ C∞
c [0,∞), h′ ≤ 0, h(0) = 1, h(y) = 0 whenever y ≥ δ.

In particular, taking δ > 0 small enough, hδ(dΩ(x)) = 0 for x ∈ Ω \ U .
It is easy to check that V = Λn on ∂Ω and as such satisfies (3.5). Moreover, taking δ = δ(K) > 0

small enough we achieve (3.7). Finally, we compute

divxV(x) = −Λ(xB(x))h′δ(dΩ(x))|∇xdΩ(x)|2 − Λ(xB(x))hδ(dΩ(x))∆xdΩ(x)

− hδ(dΩ(x))∇x(Λ(xB(x))) · ∇xdΩ(x) ≥ −hδ(dΩ(x))∇x(Λ(xB(x))) · ∇xdΩ(x).
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As the function Λ(xB(x)) is constant on each segment [x, xB(x)] and ∇xdΩ(x) is parallel to this segment,
we get

∇x(Λ(xB(x))) · ∇xdΩ(x) = 0

and (3.6) follows.
We are ready to establish the main result of the present section.

Proposition 3.4. Suppose that Ω ⊂ RN is a bounded simply connected domain of class C2,1,

uB ∈ W 2− 1
q
,q(∂Ω; RN) for some q > N, Γin 6= ∂Ω.

Then, given ω > 0, uB can be extended as a function in W 1,∞(Ω; RN) such that

divxuB ≥ 0 a.a. in Ω.∫
Ω

|v · ∇xv · uB| dx ≤ ω‖∇xv‖2
L2(Ω;RN×N ) for any v ∈ W 1,2

0 (Ω; RN). (3.9)

Proof. It is well known that the result holds if the total flux over the boundary vanishes, meaning∫
∂Ω

uB · n dSx = 0.

In such a case, the desired extension can be constructed to be solenoidal divxuB = 0, see Finn [7], Hopf
[11], Galdi [10].

If ∫
∂Ω

uB · n dSx = K > 0

we may write uB = uB −V + V, where V is the vector field constructed in Lemma 3.3. Seeing that∫
∂Ω

(uB −V) · n dSx = 0

we may apply to above mentioned result to extend uB−V. The desired inequality (3.9) is then achieved
by adjusting V to satisfy (3.7) with a sufficiently small ε > 0.

4 Approximate problems

Our goal is to construct solutions the existence of which is claimed in Theorem 2.1. To this end, we
adopt the approximation scheme based on pressure regularization and adding artificial viscosity terms
to both (1.1) and (1.2). Although the scheme is fairly similar to that used in [4] for the tangential
velocity uB, the presence of the in/out flux boundary terms requires a non trivial modification of some
arguments presented in [4]. The approximate problems read:

−δ∆x% + δ% + divx(T (%)u) = 0, (4.1)
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(−δ∇x% + T (%)u) · n|∂Ω =

{
T (%B)uB · n if uB · n ≤ 0,
T (%)uB · n if uB · n > 0

(4.2)

divx(T (%)u⊗ u) +∇xpε,δ(%) = divxS(∇xu) + δ∆x(%u)− δ%u (4.3)

u|∂Ω = uB, (4.4)

with positive parameters ε > 0, δ > 0, where we have denoted

T (%) =


0 if % ≤ 0,
% if 0 ≤ % ≤ %
% if % ≥ %

 , pε,δ(%) = pε(%) +
√

δ%,

pε(%) =

{
p(%) if 0 ≤ % ≤ %− ε,
p(%− ε) + p′(%− ε)(%− % + ε).

}

4.1 Solvability of the approximate problems

We adopt the nowadays standard procedure based on computing the approximate density % in terms of
u in (4.1), (4.2) and applying a fixed point argument. We start by recalling the weak formulation of
(4.1), (4.2),∫

Ω

[δ∇x% · ∇xϕ + δ%ϕ− T (%)u · ∇xϕ] dx = −
∫

Γin

T (%B)uB · nϕdSx −
∫

Γout

T (%)uB · nϕdSx (4.5)

for any ϕ ∈ W 1,2(Ω).

Lemma 4.1. Suppose that u ∈ W 1,2(Ω) complies with the boundary conditions (4.4). Let %1, %2 ∈
W 1,2(Ω) be two functions satisfying∫

Ω

[δ∇x%1 · ∇xϕ + δ%1ϕ− T (%1)u · ∇xϕ] dx ≥ −
∫

Γin

T (%B)uB · nϕdSx −
∫

Γout

T (%1)uB · nϕdSx (4.6)

for any ϕ ∈ W 1,2(Ω), ϕ ≥ 0,∫
Ω

[δ∇x%2 · ∇xϕ + δ%2ϕ− T (%2)u · ∇xϕ] dx ≤ −
∫

Γin

T (%B)uB · nϕdSx −
∫

Γout

T (%2)uB · nϕdSx (4.7)

for any ϕ ∈ W 1,2(Ω), ϕ ≥ 0, respectively.
Then

%1 ≥ %2 a.a. in Ω.

Corollary 4.2. For a given u ∈ W 1,2(Ω), problem (4.5) admits at most one solution % ∈ W 1,2(Ω). Any
solution % ∈ W 1,2(Ω) of (4.5) satisfies % ≥ 0.
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Proof. Let Φ : R → R be twice continuously differentiable convex function such that Φ′(Z) = −1 if
Z ≤ −1, Φ(Z) = 0 if Z ≥ 0. Accordingly, ϕ = −Φ′(%1 − %2) ≥ 0 can be used as a test function in (4.6),
(4.7), respectively to obtain

δ

∫
Ω

[
Φ′′(%1 − %2)|∇x(%1 − %2)|2 + (%1 − %2)Φ

′(%1 − %2)
]

dx

≤ −
∫

Γout

(T (%1)− T (%2)) Φ′(%1 − %2)uB · ndSx +

∫
Ω

(T (%1)− T (%2))u · ∇x(%1 − %2)Φ
′′(%1 − %2) dx

Seeing that (i) Φ is convex, (ii) (T (%1)− T (%2))Φ
′(%1 − %2) ≥ 0, uB · n ≥ 0 on Γout, we deduce that

δ

∫
Ω

(%1 − %2)Φ
′(%1 − %2) dx

≤
∫

Ω

(T (%1)− T (%2)) u · ∇x(%1 − %2)Φ
′′(%1 − %2) dx

Finally, we have∫
Ω

(T (%1)− T (%2)) u · ∇x(%1 − %2)Φ
′′(%1 − %2) dx ≤

∫
Ω

|u · ∇x(%1 − %2)| |%1 − %2|Φ′′(%1 − %2) dx

Consequently, approximating [Z]− = max{−Z, 0} by a family of convex functions Φ we obtain the
desired conclusion ∫

Ω

[%1 − %2]
− dx = 0.

Seeing that existence of a solution % = %[u] to problem (4.1), (4.2) for a given u ∈ W 1,2(Ω) can
be established by the classical method of monotone operators, see e.g. Nittka [15], we may define an
operator

u 7→ %[u]

where % is the unique solution of (4.1), (4.2). In addition, the standard elliptic regularity estimates imply
that % ∈ W 2,2(Ω), in particular, (4.1) holds a.a. in Ω and the boundary conditions (4.2) are satisfied in
the sense of traces. Under these circumstances, the existence of approximate solutions [%,u] to problem
(4.1–4.4) can be shown in a similar way as in [16, Chapter 4].

5 Uniform bounds for the approximate problems

As our ultimate goal is to establish convergence of the sequence of approximate solutions, uniform bounds
independent of the parameters ε, δ must be established. In the following text we use the notation

a
<∼ b for a ≤ cb,
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where c is a constant independent of the approximation parameters. Similarly, we define a
>∼ b, and

a ≈ b whenever a
<∼ b and a ≥ b. In accordance with Proposition 3.4, we suppose that the field uB is

defined on the whole domain Ω and enjoys the following properties:

uB ∈ W 1,∞(Ω; RN), (5.1)

divxuB ≥ 0 a.a. in Ω, (5.2)∫
Ω

|v · ∇xv · uB| dx ≤ ω‖∇xv‖2
L2(Ω;RN×N ) for any v ∈ W 1,2

0 (Ω; RN), (5.3)

for a given ω > 0 specified below.
Taking u− uB ∈ W 1,2

0 (Ω; RN) as a test function in (4.3), we obtain∫
Ω

[T (%)u⊗ u : ∇x(u− uB) + pε,δ(%)divxu] dx

=

∫
Ω

[S(∇xu) : ∇x(u− uB) + pε,δ(%)divxuB + δ∇x(%u) : ∇x(u− uB) + δ%u · (u− uB)] dx

(5.4)

We proceed via several steps:

• By virtue of Poincaré’s inequality and hypothesis (5.2),∫
Ω

S(∇xu) : ∇x(u− uB) + pε,δ(%)divxuB dx

≥
∫

Ω

S(∇xu−∇xuB) : ∇x(u− uB) dx +

∫
Ω

S(∇xuB) : ∇x(u− uB) dx

>∼ ‖u− uB‖2
W 1,2(Ω;RN ) − ‖∇xuB‖2

L2(Ω;RN×N )

>∼ ‖u‖2
W 1,2(Ω;RN ) − 2‖uB‖2

W 1,2(Ω;RN )

(5.5)

• Next, we recall the renormalized form of (4.1), namely,

δG′′(%)|∇x%|2 + δG′(%)%− δdivx(G′(%)∇x%) + divx(H(%)u) + [G′(%)T (%)−H(%)] divxu = 0, (5.6)

where
H ′(%) = G′(%)T ′(%).

We choose G = Gε,δ such that

G′′
ε,δ(%) =

p′ε,δ(%)

T (%)
or G′

ε,δ(%)T (%)−Hε,δ(%) = pε,δ(%). (5.7)

Consequently, we may use relation (5.6) to express the pressure term in (5.4):∫
Ω

pε,δ(%)divxu dx

= −δ

∫
Ω

[
G′′

ε,δ(%)|∇x%|2 + %G′
ε,δ(%)

]
dx +

∫
∂Ω

[
δG′

ε,δ(%)∇x% · n−Hε,δ(%)uB · n
]

dSx.
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Furthermore, in view of the boundary conditions (4.2),∫
∂Ω

[
δG′

ε,δ(%)∇x% · n−Hε,δ(%)uB · n
]

dSx∫
Γin

[
δG′

ε,δ(%)∇x% · n−Hε,δ(%)uB · n
]

dSx +

∫
Γout

[
δG′

ε,δ(%)∇x% · n−Hε,δ(%)uB · n
]

dSx

= −
∫

Γin

(
pε,δ(%)−G′

ε,δ(%)T (%B)
)
|uB · n|dSx −

∫
Γout

Hε,δ(%)uB · n dSx.

Thus we conclude that

−
∫

Ω

pε,δ(%)divxu dx = δ

∫
Ω

[
G′′

ε,δ(%)|∇x%|2 + %G′
ε,δ(%)

]
dx

+

∫
Γin

(
pε,δ(%)−G′

ε,δ(%)T (%B)
)
|uB · n|dSx +

∫
Γout

Hε,δ(%)uB · n dSx.
(5.8)

• Next, ∫
Ω

T (%)u⊗ u : ∇x(u− uB) dx

=

∫
Ω

T (%)u⊗ (u− uB) : ∇x(u− uB) dx +

∫
Ω

T (%)u⊗ uB : ∇x(u− uB) dx

=

∫
Ω

T (%)u · 1

2
∇x|u− uB|2 dx +

∫
Ω

T (%)uB ⊗ uB : ∇x(u− uB) dx

+

∫
Ω

T (%)(u− uB)⊗ uB : ∇x(u− uB) dx,

where, in accordance with (5.1),∣∣∣∣∫
Ω

T (%)uB ⊗ uB : ∇x(u− uB) dx

∣∣∣∣
≤ %‖uB‖2

L4(Ω;RN )‖∇x(u− uB)‖L2(Ω;RN×N )
<∼ ‖∇x(u− uB)‖L2(Ω;RN×N ).

(5.9)

Using equation (4.1) we compute∫
Ω

T (%)u · 1

2
∇x|u− uB|2 dx = −1

2

∫
Ω

|u− uB|2divx(T (%)u) dx

=
1

2

∫
Ω

|u− uB|2 (−δ∆x% + δ%) dx

= δ

∫
Ω

∇x% ·
1

2
∇x|u− uB|2 dx +

1

2

∫
Ω

δ%|u− uB|2 dx

12



On the other hand, computing the remaining integral on the right-hand side of (5.4), we get∫
Ω

δ∇x(%u) : ∇x(u− uB) + δ%u · (u− uB) dx

=

∫
Ω

δ∇x(%(u− uB)) : ∇x(u− uB) + δ%(u− uB) · (u− uB) dx

+

∫
Ω

δ∇x(%uB) : ∇x(u− uB) + δ%uB · (u− uB) dx

=

∫
Ω

δ%
[
|∇x(u− uB)|2 + |u− uB|2

]
dx + δ

∫
Ω

∇x% ·
1

2
∇x|u− uB|2 dx

+

∫
Ω

δ∇x(%uB) : ∇x(u− uB) + δ%uB · (u− uB) dx.

Consequently,∫
Ω

δ∇x(%u) : ∇x(u− uB) + δ%u · (u− uB) dx−
∫

Ω

T (%)u · 1

2
∇x|u− uB|2 dx

=

∫
Ω

δ%

[
|∇x(u− uB)|2 +

1

2
|u− uB|2

]
dx

+

∫
Ω

δ∇x(%uB) : ∇x(u− uB) + δ%uB · (u− uB) dx.

(5.10)

Summing up (5.5–5.9) and going back to (5.4) we may infer that

‖u‖2
W 1,2(Ω;RN ) + δ

∫
Ω

[
G′′

ε,δ(%)|∇x%|2 + %G′
ε,δ(%)

]
dx + δ

∫
Ω

%

[
|∇x(u− uB)|2 +

1

2
|u− uB|2

]
dx

+

∫
Γin

(
pε,δ(%)−G′

ε,δ(%)T (%B)
)
|uB · n|dSx +

∫
Γout

Hε,δ(%)uB · n dSx

<∼ 1 + δ

∫
Ω

[∇x(%uB) : ∇x(u− uB) + %uB · (u− uB)] dx +

∫
Ω

|(uB − u)⊗ uB : ∇x(uB − u)| dx.

(5.11)

Now, observe that(
pε,δ(%)−G′

ε,δ(%)T (%B)
)′

= p′ε,δ(%)−G′′
ε,δ(%)T (%B) = p′ε,δ(%)

(
1− T (%B)

T (%)

)
;

whence the function % 7→ pε,δ(%)−G′
ε,δ(%)T (%B) attains its minimum at % = %B therefore

pε,δ(%)−G′
ε,δ(%)T (%B) ≥ pε,δ(%B)−G′

ε,δ(%B)T (%B) = −Hε,δ(%B). (5.12)

Finally, the integral ∫
Ω

|(uB − u)⊗ uB : ∇x(uB − u)| dx

13



is controlled by the left-hand side of (5.11) if ω > 0 in (5.3) has been chosen small enough. We conclude
that

‖u‖2
W 1,2(Ω;RN ) + δ

∫
Ω

[
G′′

ε,δ(%)|∇x%|2 + %G′
ε,δ(%)

]
dx ≤ c (5.13)

where the constant is independent of ε and δ.

6 Limit ε → 0

The first step in the limit passage is to let ε → 0 in the pressure regularization to recover the pressure
pδ(%) = p(%) +

√
δ% in the momentum equation along with the uniform bounds on the density

0 ≤ % < % a.a. in Ω.

Denote [%ε,uε] the solutions of the approximate problem (4.1–4.4) for a fixed δ > 0. As δ > 0 is kept
fixed, the standard elliptic estimates imply

‖%ε‖W 2,2(Ω) ≤ c
(
δ, ‖uε‖W 1,2(Ω;RN )

)
.

In particular, as N = 2, 3, we get
%ε → % in C(Ω), % ≥ 0, (6.1)

passing to a suitable subsequence as the case may be.
The crucial observation is that the limit density satisfies

0 ≤ % < % a.a. in Ω. (6.2)

Indeed take

FZ(%) = min

{
1;

2

%− Z
[%− Z]+

}
, where 0 < Z < % is chosen so that G′

ε,δ(Z) ≥ 1.

By virtue of (5.13), we get∫
Ω

FZ(%ε) dx ≤ 1

G′
ε,δ(Z)

∫
{%ε≥Z}

G′
ε,δ(Z) dx ≤ 1

ZG′
ε,δ(Z)

∫
{%ε≥Z}

%εG
′
ε,δ(%ε) dx.

In view of the uniform bounds (5.13), letting ε → 0 yields∫
Ω

FZ(%) dx ≤ c

ZG′(Z)
, where G′′(%) =

p′(%)

T (%)
.

As G is convex, we have G′(Z) →∞ for Z → % and (6.2) follows.
Finally, we claim that the pressure is bounded in suitable spaces. It follows from the approximate

momentum equation (4.3) and the estimate (6.2) that

‖∇xpε,δ(%ε)‖W−1,2(Ω;RN ) ≤ c(δ). (6.3)
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In addition, as
∫

Ω
%εG

′
ε,δ(%ε) dx is uniformly bounded, we deduce that

‖pε,δ(%ε)‖L1(Ω) ≤ c(δ). (6.4)

Thus, in accordance with Nečas’ lemma (see e.g. [6, Lemma 10.10]), we may suppose

pε(%ε) → p(%) weakly in L2(Ω),

where, in view of (6.1), (6.2),
p(%) = p(%).

Letting ε → 0 in (4.2–4.4) we obtain the following system of equations:

−δ∆x% + δ% + divx(%u) = 0, (6.5)

(−δ∇x% + %u) · n|∂Ω =

{
%BuB · n if uB · n ≤ 0,
%uB · n if uB · n > 0

(6.6)

divx(%u⊗ u) +∇xp(%) +
√

δ∇x% = divxS(∇xu) + δ∆x(%u)− δ%u (6.7)

u|∂Ω = uB, (6.8)

with positive parameter δ > 0.

7 Limit δ → 0

Let [%δ,uδ] be the approximate solutions of system (6.5–6.8) for δ > 0. Our ultimate goal is to pass to
the limit δ → 0.

7.1 Limit in the field equations

By virtue of the uniform bounds (5.13), we get

δ3/2‖∇x%δ‖2
L2(Ω;RN×N ) ≤ c, and 0 ≤ %δ < % a.a. in Ω. (7.1)

Consequently, in view of (6.2) and compactness of the embedding

W 1,2(Ω) ↪→↪→ Lq(Ω), 1 ≤ q < 6 if N = 3, 1 ≤ q arbitrary finite if N = 2,

it is easy to perform the limit δ → 0 in the approximate equation of continuity

−
∫

Ω

%δuδ · ∇xϕ dx +

∫
Γin

ϕ%BuB · n dSx = −δ

∫
Ω

ϕ%δ dx− δ

∫
Ω

∇x%δ · ∇xϕ dx (7.2)

to obtain

−
∫

Ω

%u · ∇xϕ dx +

∫
Γin

ϕ%BuB · n dSx = 0 (7.3)
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for any
ϕ ∈ C∞

c (Ω), ϕ|Γout = 0.

In addition, by virtue of Lemma 3.2, equation (7.16) is satisfied also in the renormalized form, in
particular,

−
∫

Ω

% log(%)u · ∇xϕ dx +

∫
Ω

%divxuϕ dx +

∫
Γin

ϕ%B log(%B)uB · n dSx = 0. (7.4)

for any
ϕ ∈ C∞

c (Ω), ϕ|Γout = 0.

Our final observation is that

1

|Ω|

∫
Ω

%δ dx → 1

|Ω|

∫
Ω

% dx < %. (7.5)

Indeed, as %δ ≤ %, we would get

1

|Ω|

∫
Ω

% dx = % ⇒ %δ → % (strongly) in Lq(Ω) for any 1 ≤ q < ∞,

in particular,

−
∫

Ω

%u · ∇xϕ dx +

∫
Γin

ϕ%BuB · n dSx = 0

for any
ϕ ∈ C∞

c (Ω), ϕ|Γout = 0

yielding
%B = % on Γin

in contrast with (2.2).
In order to pass to the limit in the momentum equation (6.7) we need uniform estimates on the

pressure. To this end, we multiply (6.7) by B[%δ],

divxB[%δ] = %δ −
1

|Ω|

∫
Ω

%δ dx,

where B is the so-called Bogovskii operator, see e.g. Galdi [10, Chapter 3]. As B vanishes on ∂Ω, we
may integrate by parts obtaining∫

Ω

(
p(%δ) +

√
δ%δ

)
%δ dx =

∫
Ω

(
p(%δ) +

√
δ%δ

) Mδ

|Ω|
dx−

∫
Ω

%δuδ ⊗ uδ : ∇xB[%δ] dx

+

∫
Ω

S(∇xuδ) : ∇xB[%δ] dx + δ

∫
Ω

∇x(%δuδ) · ∇xB[%δ] dx− δ

∫
Ω

%δuδ ·B[%δ] dx,

(7.6)

16



where we have set

Mδ =

∫
Ω

%δ dx.

Since the Bogovskii operator B : Lq(Ω) 7→ W 1,q
0 (Ω), 1 < q < ∞, is bounded, we may use the uniform

bounds (5.13), (7.1) to find that ∫
Ω

p(%δ)%δ dx ≤ c +

∫
Ω

p(%δ)
Mδ

|Ω|
dx.

Next, by virtue of (7.5) there exists λ > 1 such that

lim sup
δ→0

λ
Mδ

|Ω|
< %.

Consequently,∫
Ω

p(%δ)%δ dx ≤ c +

∫
Ω

p(%δ)
Mδ

|Ω|
dx

≤ c +

∫
{%δ≤λ

Mδ
|Ω| }

p(%δ)
Mδ

|Ω|
dx +

∫
{%δ>λ

Mδ
|Ω| }

p(%δ)
Mδ

|Ω|
≤ c + Mδp

(
λ

Mδ

|Ω|

)
+

1

λ

∫
Ω

%δp(%δ) dx;

whence ∫
Ω

%δp(%δ) dx ≤ c. (7.7)

Having established the bound (7.7), we may repeat the same procedure with the multiplier B[pα(%δ)],
where α > 0 will be fixed below. Similarly to (7.6), we have∫

Ω

(
p(%δ) +

√
δ%δ

)
pα(%δ) dx =

1

|Ω|

∫
Ω

(
p(%δ) +

√
δ%δ

)
dx

∫
Ω

pα(%δ) dx

−
∫

Ω

%δuδ ⊗ uδ : ∇xB[pα(%δ)] dx +

∫
Ω

S(∇xuδ) : ∇xB[pα(%δ)] dx

+ δ

∫
Ω

∇x(%δuδ) · ∇xB[pα(%δ)] dx− δ

∫
Ω

%δuδ ·B[pα(%δ)] dx.

(7.8)

By virtue of (7.7),
‖pα(%δ)‖L

1
α (Ω)

≤ c(α) for any 0 < α ≤ 1,

therefore all integrals on the right-hand side of (7.8) remain bounded uniformly for δ → 0 for a suitably
small α > 0. Accordingly

‖p(%δ)‖Lα+1(Ω) ≤ c for a certain α > 0, (7.9)

and
p(%δ) → p(%) weakly in Lα+1(Ω). (7.10)

Letting δ → 0 we may infer that∫
Ω

[
%u⊗ u : ∇xϕ + p(%)divxϕ

]
dx =

∫
Ω

S(∇xu) : ∇xϕ dx (7.11)

for any ϕ ∈ C1
c (Ω).
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7.2 Compactness of the pressure

To complete the proof of Theorem 2.1, we have to show that

p(%) = p(%). (7.12)

We evoke the nowadays standard method based on the weak continuity of the effective viscous flux
developed by Lions [13]. Specifically, we show that

lim
δ→0

∫
Ω

p(%δ)%δ dx =

∫
Ω

p(%)% dx. (7.13)

Relation (7.13) implies strong convergence of %δ,

%δ → % a.a. in Ω (up to a subsequence)

if p′(%) > 0 for all % ∈ (0, %) or
p(%δ) → p(%) weakly in Lα+1(Ω).

Obviously, this yields (7.12) in both cases.
We start with the renormalized version of the approximate equation of continuity (5.6) :

δH ′′(%δ)|∇x%δ|2 + δH ′(%δ)%δ − δdivx(H ′(%δ)∇x%δ) + divx(H(%δ)uδ) + [H ′(%δ)%δ −H(%δ)] divxuδ = 0.

In particular, for H(%) ≡ L(%) = % log(%) we get

δ log(%δ)%δ − δdivx(L′(%δ)∇x%δ) + divx(%δ log(%δ)uδ) + %δdivxuδ ≤ 0. (7.14)

Passing to the weak formulation we obtain

−
∫

Ω

%δ log(%δ)uδ · ∇xϕ dx +

∫
Ω

%δdivxuδϕ dx

+

∫
Γin

ϕ%δ log(%δ)uB · n dSx − δ

∫
Γin

ϕL′(%δ)∇x%δ · n dSx

≤ 0 + o(δ)

(7.15)

for any
ϕ ∈ C∞

c (Ω), ϕ ≥ 0, ϕ|Γout = 0.

Finally, we use the boundary conditions (4.2) obtaining

−
∫

Ω

%δ log(%δ)uδ · ∇xϕ dx +

∫
Ω

%δdivxuδϕ dx

+

∫
Γin

ϕL(%δ)uB · n dSx +

∫
Γin

ϕL′(%δ)(%B − %δ)uB · n dSx

≤ 0 + o(δ)

(7.16)
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for any
ϕ ∈ C∞

c (Ω), ϕ ≥ 0, ϕ|Γout = 0.

Subtracting (7.4) from (7.16) we get∫
Ω

% log(%)u · ∇xϕ dx−
∫

Ω

%δ log(%δ)uδ · ∇xϕ dx +

∫
Ω

%δdivxuδϕ dx−
∫

Ω

%divxuϕ dx

+

∫
Γin

ϕ [L(%B)− L′(%δ)(%B − %δ)− L(%δ)] |uB · n| dSx ≤ 0 + o(δ)

for any
ϕ ∈ C∞

c (Ω), ϕ ≥ 0, ϕ|Γout = 0.

As L is convex, we deduce∫
Ω

% log(%)u · ∇xϕ dx−
∫

Ω

%δ log(%δ)uδ · ∇xϕ dx +

∫
Ω

%δdivxuδϕ dx−
∫

Ω

%divxuϕ dx ≤ 0 + o(δ);

whence letting δ → 0,∫
Ω

[
% log(%)− % log(%)

]
u · ∇xϕ dx +

∫
Ω

%divxuϕ dx−
∫

Ω

%divxuϕ dx ≤ 0 (7.17)

for any
ϕ ∈ C∞

c (Ω), ϕ ≥ 0, ϕ|Γout = 0.

Since the boundary ∂Ω is of class C2, there is h > 0 such that the map (t, x0) 7→ x0 + tn(x0) is a
diffeomorphisme from (0, h)× ∂Ω onto U−(∂Ω) ≡ {x ∈ Ω | 0 < dist(x, ∂Ω) < h}. We first extend uB to
U−(∂Ω) by setting u(x0 − tn(x0)) = uB(x0), and then to Ω by setting

ũB(x) = uB(x)w(dist(x, ∂Ω)),

where w ∈ C[0,∞), 0 ≤ w ≤ 1, w(s) = 1 if s ∈ [0, h/2], w(s) = 0 if s ≥ h. In particular, if x0 ∈ Γout,
then

ũB(x) · ∇xdist(x, ∂Ω) < 0, if x ∈ U−(∂Ω). (7.18)

Consider a family of Lipschitz test functions in Ω,

ϕε(x) =

{
1 if dist(x, Γout) > ε
1
ε
dist(x, Γout) if dist(x, Γout) ≤ ε

By Lebesgue theorem,∫
Ω

[
% log(%)− % log(%)

]
(u− ũB) · ∇xϕε dx → 0 as ε → 0,
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while, in accordance with (7.18),

lim inf
ε→0

∫
Ω

[
% log(%)− % log(%)

]
ũB · ∇xϕε dx ≥ 0.

Thus, using ϕε as a test function in (7.17) and performing the limit ε → 0, we conclude that∫
Ω

[
%divxu− %divxu

]
dx ≤ 0. (7.19)

The next step is to multiply the approximate momentum equation (6.7) on

ϕ∇x∆−1
x [ϕ%δ], ϕ ∈ C∞

c (Ω).

where ∆−1
x denotes the inverse of the Laplacian on R3, specifically a pseudodifferential operator with

Fouries symbol − 1
|ξ|2 . After a bit tedious but straightforward computation we obtain∫

RN

ϕ2p(%δ)%δ dx−
∫

RN

ϕS(∇xuδ) : ∇x∆−1
x ∇x[ϕ%δ] dx

+

∫
RN

ϕ(%δuδ ⊗ uδ) : ∇x∆−1
x ∇x[ϕ%δ] dx = −

∫
RN

(
(%δuδ ⊗ uδ) · ∇xϕ

)
· ∇x∆−1

x [ϕ%δ] dx

−
∫

RN

(
S(∇xuδ) · ∇xϕ

)
· ∇x∆−1

x [ϕ%δ] dx−
∫

RN

p(%δ)∇xϕ · ∇x∆−1
x [ϕ%δ] dx

−
√

δ

∫
RN

%δ∇xϕ · ∇x∆−1
x [ϕ%δ] dx−

√
δ

∫
RN

ϕ2%2
δ dx

δ

∫
RN

∇xϕ · ∇x(%u) · ∇x∆−1
x [ϕ%δ] dx + δ

∫
RN

%δuδϕ∇x∆−1
x [ϕ%δ] dx

−δ

∫
RN

ϕ∇x(%u) : ∇x∆−1
x [ϕ%δ] dx.

(7.20)

Now, similarly, consider
ϕ∇x∆−1

x [ϕ%]

as a test function in the limit equation (7.11):∫
RN

ϕ2p(%)% dx−
∫

RN

ϕS(∇xu) : ∇x∆−1
x ∇x[ϕ%] dx

+

∫
RN

ϕ(%u⊗ u) : ∇x∆−1
x ∇x[ϕ%] dx = −

∫
RN

(%u⊗ u) · ∇xϕ · ∇x∆−1
x [ϕ%] dx

−
∫

RN

S(∇xu) · ∇xϕ · ∇x∆−1
x [ϕ%] dx−

∫
RN

p(%)∇xϕ · ∇x∆−1
x [ϕ%] dx.

(7.21)
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Observe that (i) all δ-dependent term in (7.20) vanish in the asymptotic limit δ → 0, (ii) in view of
the compactification effect ∇x∆−1

x : Lq → W 1,q
loc , all integrals on the right-hand side of (7.20) converge

to their counterparts in (7.21). Therefore we have shown∫
RN

ϕ2p(%δ)%δ dx−
∫

RN

ϕS(∇xuδ) : ∇x∆−1
x ∇x[ϕ%δ] dx +

∫
RN

ϕ(%δuδ ⊗ uδ) : ∇x∆−1
x ∇x[ϕ%δ] dx

→∫
RN

ϕ2p(%)% dx−
∫

RN

ϕS(∇xu) : ∇x∆−1
x ∇x[ϕ%] dx +

∫
RN

ϕ(%u⊗ u) : ∇x∆−1
x ∇x[ϕ%] dx

(7.22)

as δ → 0.
Now we have∫

RN

ϕ(%δuδ ⊗ uδ) : ∇x∆−1
x ∇x[ϕ%δ] dx =

∫
RN

N∑
j=1

ϕuj
δ

N∑
i=1

(
%δu

i
δ∂xi

∆−1
x [∂xj

(ϕ%δ)]
)

dx,

where, in accordance with

divx(%δuδ) = δ∆x%δ − δ%δ ∈ precomact subset of W−1,2(Ω).

Moreover, as curl[∇x∆−1
x [∂xj

(ϕ%δ)] = 0, we may apply the celebrated Div-Curl lemma of Murat and
Tartar [23] to conclude that∫

RN

ϕ(%δuδ ⊗ uδ) : ∇x∆−1
x ∇x[ϕ%δ] dx →

∫
RN

ϕ(%u⊗ u) : ∇x∆−1
x ∇x[ϕ%] dx.

Thus relation (7.22) reduces to∫
RN

ϕ2p(%δ)%δ dx−
∫

RN

ϕS(∇xuδ) : ∇x∆−1
x ∇x[ϕ%δ] dx

→∫
RN

ϕ2p(%)% dx−
∫

RN

ϕS(∇xu) : ∇x∆−1
x ∇x[ϕ%] dx

(7.23)

as δ → 0.
Finally, we check that

lim
δ→0

∫
RN

ϕS(∇xuδ) : ∇x∆−1
x ∇x[ϕ%δ] dx−

∫
RN

ϕS(∇xu) : ∇x∆−1
x ∇x[ϕ%] dx

= lim
δ→0

∫
RN

∇x∆−1
x ∇x[ϕS(∇xuδ)]ϕ%δ dx−

∫
RN

∇x∆−1
x ∇x[ϕS(∇xu)]ϕ% dx

= (λ + 2µ)

∫
RN

ϕ2divxuδ%δ dx− (λ + 2µ)

∫
RN

ϕ2divxu% dx;
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whence, in combination with (7.23),∫
RN

ϕ2
[
p(%)%− p(%)%

]
dx = (λ + 2µ)

∫
RN

ϕ2
[
divxu%− divxu%

]
dx. (7.24)

Thus, using (7.19), we deduce that∫
Ω

[
p(%)%− p(%)%

]
dx ≤ 0.

As p is non-decreasing, the standard Minty’s trick yields the desired conclusion (7.12). Theorem 2.1 has
been proved.
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