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Abstract This paper presents a methodology for computing upper and lower
bounds for both the algebraic and total errors in the context of the conforming fi-
nite element discretization of the Poisson model problem and an arbitrary iterative
algebraic solver. The derived bounds do not contain any unspecified constants and
allow estimating the local distribution of both errors over the computational do-
main. Combining these bounds, we also obtain guaranteed upper and lower bounds
on the discretization error. This allows to propose novel mathematically justified
stopping criteria for iterative algebraic solvers ensuring that the algebraic error
will lie below the discretization one. Our upper algebraic and total error bounds
are based on locally reconstructed fluxes in H(div,⌦), whereas the lower algebraic
and total error bounds rely on locally constructed H1

0

(⌦)-liftings of the algebraic
and total residuals. We prove global and local e�ciency of the upper bound on
the total error and its robustness with respect to the approximation polynomial
degree. Relationships to the previously published estimates on the algebraic er-
ror are discussed. Theoretical results are illustrated on numerical experiments for
higher-order finite element approximations and the preconditioned conjugate gra-
dient method. They in particular witness that the proposed methodology yields a
tight estimate on the local distribution of the algebraic and total errors over the
computational domain and illustrate the associate cost.
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Institute of Computer Science, Czech Academy of Sciences, Pod Vodárenskou věž́ı 2, 182 07
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1 Introduction

Most a posteriori error analyses of numerical approximations of partial di↵eren-
tial equations still assume that the discretized algebraic problem is solved exactly.
This is an unrealistic assumption that cannot be satisfied in large scale numerical
computations. There is, fortunately, a growing body of work avoiding it, based on
di↵erent approaches, see, e.g., [19,5,8,49,60,47,54,11,31,34,7,53,2,24], the refer-
ences given in the survey [3, Section 4], and in the monograph [38, Chapter 12].
Despite this development, a rigorous, mathematically justified, cheap, and accu-
rate estimation of the discretization and algebraic errors that would allow for their
comparison in practical computations is not, in our opinion, a fully solved problem.
On the algebraic side, such comparison should include localization of the algebraic
error. Since the algebraic computation aims at approximating the inverse of the
discrete operator with respect to the given right-hand side, the algebraic error
is of global nature and its distribution over the computational domain can be
very di↵erent from the distribution of the discretization error; see, e.g., [45] and
the references therein. To point out challenges that any approach that aims at
mathematically rigorous incorporation of the algebraic error into a posteriori er-
ror analysis must consider, we now discuss several ways of how the algebraic error
in numerical PDEs is estimated.

The conjugate gradient (CG) method minimizes the energy norm of the alge-
braic error over the Krylov subspaces associated with a symmetric positive definite
matrix A and the initial residual; see, e.g., [32], [36, Section 2.2]. The estimates
for the error of the CG approximations are widely studied; see, e.g., [28,12,55,41],
and the references given there. The estimates can be associated with the relation-
ship of CG to the Gauss quadrature; see, e.g., [36, Section 3.5]. We will briefly
discuss the upper bound based on the Gauss–Radau quadrature; see [17,28,30,42]
and called in [2, p. A1548] “[t]he only guaranteed upper bound for the A-norm
of the CG error”. Considering a preassigned node �, 0 < � < �

min

(A), where
�
min

(A) is the smallest eigenvalue of the matrix A, the Gauss–Radau quadrature
gives indeed, assuming exact arithmetic, an upper bound on the energy norm of
the algebraic error. In [2, Section 4.2] the Poincaré inequality adaptive approach
for bounding �

min

(A) from below and setting the value of � is proposed.
Numerically, however, the situation is very subtle. In short, if 0 < � ⌧ �

min

(A),
then the Gauss–Radau quadrature bound may largely overestimate the actual
error. On the other hand, for � very close to �

min

(A), which can make the upper
bound tight, it might be impossible to compute the upper bound to a su�cient
accuracy because of numerical instabilities. The derivation of the estimate includes
(implicitly or explicitly) inversion of the matrix �I � Ti, where I stands for the
identity matrix and Ti is the Jacobi matrix associated with the ith CG iteration.
For � very close to �

min

(A)  �
min

(Ti), and, at the same time, �
min

(Ti) very
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close to �
min

(A), the matrix �I � Ti may become close to numerically singular.
It should be emphasized that the numerical di�culty may not be immediately
visible from the final formulas giving the bound; see, e.g., [42]. The numerical
stability analysis provided in [30] explained that although the estimates based
on the relationship of CG with the Gauss–Radau quadrature can be very useful,
they cannot be considered generally applicable guaranteed and computable upper
bounds for the energy norm of the algebraic error. The meaning of the terms
guaranteed and computable is within numerical linear algebra restricted only to
the cases where the results are justified for all possible input data by a rigorous
numerical stability analysis.

Multigrid or, more general, multilevel computations can serve as a second ex-
ample. Here a standard assumption for a posteriori bounds on the algebraic error,
which might require further substantial analysis, is that the algebraic problem on
the coarsest grid is solved exactly; see, e.g., [5,54]. Moreover, the literature known
to the authors does not provide computable upper bounds on the algebraic and
the total errors. This topic has recently been addressed in [46]. Alternatively, in
the multilevel context the a priori arguments are often used; see the discussion in
Section 3.3.

A remarkable early concept relating the algebraic and discretization errors
is represented by the Cascadic Conjugate Gradient method; see [19,52]. In [19],
the algebraic error is estimated assuming the superlinear convergence behavior
of the CG method in the subsequent iterations, and using several heuristics and
empirically chosen parameters. The analysis of [52] relies on the upper bound for
the CG method based on Chebyshev polynomials that is typically not descriptive,
and its refined version based on composite polynomials may not hold in finite
precision computations; see [27]. The CG iterations can exhibit locally the so-
called staircase behavior (see [36, Chapter 5]) that makes the analysis di�cult.

The general a posteriori error estimation framework of [51] provides a guaran-
teed upper bound on the total error independent of the algebraic solver. However,
the estimates do not generally allow to distinguish and compare the parts of the
error corresponding to di↵erent sources and seem not suitable for constructing
stopping criteria for iterative solvers.

The widely used residual-based error estimators (see, e.g., [54,6,2] and the
references in [58]) provide upper bounds on the total error (and possibly on its
components) with unspecified generic constants that can be of large value. The pro-
posed practical stopping criteria and algorithms then require an empirical choice
of these constants. A review of these and other approaches can be found in the
survey [3]; see also the discussion in the Introduction of [34].

The presented paper elaborates further on the ideas used in [34] for finite
volume discretizations, and a more general framework in [24]; see also their ap-
plication to discontinuous Galerkin finite element discretizations in [21]. Here we
consider the conforming finite element setting and derive an upper bound on the
total error that will be proved locally e�cient and polynomial-degree-robust in the
spirit of [9,25]. All results account for the presence of the algebraic error of an arbi-
trary iterative solver. The paper newly presents a guaranteed upper bound on the
algebraic error and thoroughly discusses its relationship to formulas derived purely
algebraically. Fast and reliable numerical computations using iterative algebraic
solvers rely on meaningful stopping criteria. The stopping criteria from [34,24] are
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modified here in order to avoid a possible early stopping that could invalidate the
computed results.

The paper is organized as follows. The di↵usion model problem considered
in the paper and the notation are described in Section 2. In Section 3 we discuss
known results on estimating the algebraic error using algebraic worst-case bounds,
a priori arguments, and techniques using additional iteration steps of the algebraic
solver. Section 4 gives, following previously published results, an upper and a lower
bound on the total error. In Section 5 we derive new upper and lower bounds on
the algebraic error and discuss the relationship of the upper bound to the bounds
presented in Section 3. Section 6 is devoted to estimates of the discretization error

and to discussion of the stopping criteria. We also derive there new mathemati-
cally justified stopping criteria balancing the algebraic and discretization errors.
We finally illustrate the obtained results numerically in Section 7 and give a con-
cluding discussion in Section 8. We provide the details on the quasi-equilibrated
flux reconstruction in Appendix A. The proofs of the global and local e�ciency of
the presented upper bound on the total error are given in Appendix B.

2 Setting and notation

Let ⌦ ⇢ Rd, d = 2, 3, be a polygonal (polyhedral) domain (open, bounded, and
connected set). We consider the Poisson model problem: find u : ⌦ ! R such that

�r· (ru) = f in ⌦, u = 0 on @⌦, (2.1)

that can be equivalently written as the system of two first order equations for the
scalar-valued potential u and the vector-valued function called flux � ⌘ �ru,



r I
0 r·

� 

u
�

�

=



0
f

�

in ⌦, u = 0 on @⌦.

Assuming f 2 L2(⌦), the weak form of the model problem (2.1) is as follows: find
u 2 V ⌘ H1

0

(⌦) such that

(ru,rv) = (f, v) 8v 2 V, (2.2)

where H1

0

(⌦) denotes the standard Hilbert space of L2(⌦) functions whose weak
derivatives are in L2(⌦) and with trace vanishing on @⌦. For v, w 2 L2(⌦), (v, w)
stands for

R

⌦ v(x)w(x) dx (and similarly in the vector-valued case). Hereafter k · k
denotes the L2 norm, kwk ⌘ (w,w)1/2, w 2 L2(⌦). Owing to (2.2), the flux � is
in the space H(div,⌦) of the functions in [L2(⌦)]d with the weak divergence in
L2(⌦); see, e.g., [16, Section 6.13].

Let Th be a simplicial mesh of ⌦. We suppose that the mesh is conforming in
the sense that, for two distinct elements of Th, their intersection is either an empty
set or a common `-dimensional face, 0  `  d � 1. We denote a generic element
of Th by K and its diameter by hK . We denote by Pp(K), p � 0, the space of pth
order polynomial functions on an element K and by Pp(Th) the broken polynomial
space spanned by vh|K 2 Pp(K) for all K 2 Th.

Let
Vh ⌘

�

vh 2 Pp (Th) \ C(⌦) | vh = 0 on @⌦
 

⇢ H1

0

(⌦)
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be the usual finite element space of continuous, piecewise pth order polynomial
functions, p � 1. The discrete formulation corresponding to the problem (2.2)
reads: find uh 2 Vh such that

(ruh,rvh) = (f, vh) 8vh 2 Vh. (2.3)

The (exact) solution uh of (2.3) satisfies the Galerkin orthogonality

(r(uh � u),rvh) = 0 8vh 2 Vh. (2.4)

Let  j 2 Vh, j = 1, . . . , N , denote a basis of Vh,  = { 
1

, . . . , N}. Employing
these functions in (2.3) gives rise to the system of linear algebraic equations

AU = F, (2.5)

where uh =
PN

j=1

Uj j =  U, U = [Uj ] is the vector of unknowns, the system ma-
trix A = [Aj`] is symmetric and positive definite, Aj` = (r `,r j), j, ` = 1, . . . , N ,
and the right-hand side vector F = [Fj ] is given by Fj = (f, j), j = 1, . . . , N .
Within this model problem setting, we consider an iterative algebraic solver ap-
proximating the exact solution U of (2.5). At the i-th step, i = 0, 1, 2, . . ., we obtain
the approximation Ui = [Ui

j ] and the algebraic residual vector Ri = [Ri
j ] with

Ri ⌘ F� AUi. (2.6)

By uih we denote the approximation to the solution u of (2.2) determined by the

coe�cient vector Ui, uih ⌘
PN

j=1

Ui
j j =  Ui. We also rewrite (2.6) in a functional

setting. For this purpose, let a function rih 2 L2(⌦) be a representation of the
algebraic residual vector Ri satisfying

(rih, j) = Ri
j , j = 1, . . . , N. (2.7)

Two examples are given in Section 5.1 below. Then (2.6) can be rewritten as

(rih, j) = (f, j)� (ruih,r j) 8j = 1, . . . , N (2.8)

and, together with (2.3), it also implies

(rih, vh) = (f, vh)� (ruih,rvh) = (r(uh � uih),rvh) 8vh 2 Vh. (2.9)

This representation will play the key role in the construction of the estimators
below as it allows to bound from above the energy norm of the algebraic error. A
function satisfying (2.7) was used for error estimation also in [5]. The construction
proposed in Section 5.1 below is di↵erent and computationally less costly.

The total error between the exact solution u and the approximate solution uih
is measured in the energy norm kr(u� uih)k. Analogously, the algebraic energy
norm of the error uh � uih is

kr(uh � uih)k = kU � UikA =
⇣

(U � Ui),A(U � Ui)
⌘

1/2

= (A�1Ri,Ri)1/2 = kRikA�1 ,

where (V,U) denotes the standard inner product of the vectors U and V,
kVk ⌘ (V,V)1/2 stands for the Euclidean norm of the vector V, and kAk is the
induced spectral norm of the matrix A.
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3 Algebraic bounds

This section presents some well-known algebraic bounds, with a few comments
towards the conjugate gradient method and multilevel methods.

3.1 The L2 (Euclidean) norm residual bound

The simplest algebraic error upper bound consists in

kr(uh � uih)k = kRikA�1  kA�1k1/2 · kRik. (3.1)

For a symmetric positive definite matrix, the norm kA�1k is given by the reciprocal
of the smallest eigenvalue of the matrix A. It is clear that for A ill-conditioned, the
bound (3.1) can significantly overestimate the algebraic error. Note that equality
is attained for a vector Ri collinear with the eigenvector corresponding to the
smallest eigenvalue of A.

Even this simplest worst-case bound may not be easy to compute. The smallest
eigenvalue of A is typically not available, and, if it is close to zero, then the cost
of its reliable and accurate approximation may not be negligible; see, e.g., [39,40].
We derive easily computable L2 norm residual bounds in Section 5.2 below, based
on the residual representation rih in (2.7); see the estimates (5.3), (5.4), and (5.8).

3.2 Bounds using additional algebraic iterations

The following simple idea was to our knowledge first presented for algebraic error
estimates in [30, pp. 262–263] for the CG method; see also [55,41]. For estimating
the total error it was then used in [34] and in [24], where an arbitrary algebraic
solver was considered.

The triangle inequality gives, at the cost of ⌫ > 0 additional iterations,

kU � UikA  kUi+⌫ � UikA + kU � Ui+⌫kA = kUi+⌫ � UikA + kRi+⌫kA�1 . (3.2)

Assuming that for a given parameter � > 0, the choice of ⌫ ensures

kA�1k1/2 · kRi+⌫k  �kUi+⌫ � UikA, (3.3)

we have, using (3.1), an easily computable upper bound

kU � UikA  (1 + �)kUi+⌫ � UikA. (3.4)

Moreover,

kUi+⌫ � UikA  kU � UikA + kU � Ui+⌫kA  kU � UikA + �kUi+⌫ � UikA,

so that, assuming that 0 < � < 1, we get the lower bound

(1� �)kUi+⌫ � UikA  kU � UikA. (3.5)

Here (3.4) and (3.5) show that the accuracy of the estimate kUi+⌫ � UikA is con-
trolled by the user-specified parameter �.
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We must, however, take into account the following principal issue. If

kU � Ui+⌫kA = kRi+⌫kA�1 ⌧ kA�1k1/2 · kRi+⌫k,

the value of ⌫ satisfying (3.3) can be very large. In the worst case, the value of ⌫
can be even comparable with the size of the problem. Such situation is highly
improbable in practical problems where preconditioning is used in order to get a
reasonable convergence behavior. Still, for a given parameter �, the smallest ⌫

1

,
respectively ⌫

2

, satisfying

kRi+⌫1kA�1  �kUi+⌫1 �UikA resp. kA�1k1/2 ·kRi+⌫2k  �kUi+⌫2 �UikA, (3.6)

where both sides of the inequalities depend on ⌫
1

respectively ⌫
2

, can significantly
di↵er with ⌫

1

⌧ ⌫
2

. Section 7.1 below presents a numerical illustration.
Estimating the algebraic error in the CG method in [30, pp. 262-263] considered

performing ⌫ additional iterations and using the relation

kU � Uik2A = kUi+⌫ � Uik2A + kU � Ui+⌫k2A = kUi+⌫ � Uik2A + kRi+⌫k2A�1 (3.7)

that is based on the global A-orthogonality of the CG direction vectors. The detailed
rounding error analysis (see [55, (4.9)], [56, (3.7)] with the reference to the origi-
nal paper [32]) leads to the following mathematical (exact arithmetic) equivalent
of (3.7)

kU � Uik2A = (µCG,i,⌫
alg

)2 + kRi+⌫k2A�1 . (3.8)

This relation can be derived assuming only local orthogonality that is well-preserved
also in finite precision CG computations as a consequence of enforcing numerically
the orthogonality among the consecutive direction vectors and residuals. Therefore
(3.8) holds, apart from a small inaccuracy proportional to machine precision, also
for the computed quantities. The same, however, has not been proved for (3.7).

In [55,56], it was shown how to compute µCG,i,⌫
alg

at a negligible cost directly
from the coe�cients in the CG recurrences; see also [29], [41, Section 5.3]. The
resulting lower bound

µCG,i,⌫
alg

 kU � UikA (3.9)

holds until the ratio kU �UikA/kU �U0kA becomes close to the machine precision
(for details see [55, Section 10]), and it is tight providing that the actual energy
norm of the error decreases reasonably fast. Analogously to (3.3), assuming (non-
trivially) that for a given parameter � > 0, the number ⌫ > 0 of additional iteration
steps is such that

kA�1k · kRi+⌫k2  �2(µCG,i,⌫
alg

)2,

then µCG,i,⌫
alg

gives (neglecting the terms proportional to machine precision)

(µCG,i,⌫
alg

)2  kU � Uik2A  (1 + �2) (µCG,i,⌫
alg

)2. (3.10)

In conclusion, the general bounds in (3.4) and (3.5) do not require any ad-
ditional assumptions. Their value can be determined directly from the computed
quantities Ui,Ui+⌫ . The bounds for the CG method in (3.10) can be evaluated
at almost no cost, but their validity for numerically computed approximations
Ui,Ui+⌫ had to be proved using a careful numerical stability analysis. As a re-
ward, which is based on the particular properties of the CG method, we get an
improved accuracy of the bounds, with the factor characterizing the gap between
the lower and the upper bound reduced from (1 + �)/(1� �) in (3.4)–(3.5) to
p

1 + �2 in (3.10).
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3.3 A priori arguments in multilevel methods

Convergence of multilevel methods is typically proved using the a priori contrac-
tion argument

kU � Ui+1kA  �kU � UikA,
where 0 < � < 1. Then the triangle inequality immediately gives the algebraic
error bound

kU � UikA  1
1� �

kUi+1 � UikA.

Though such bounds with a priori determined constant � can be useful (see, e.g.,
[7, (2.17)–(2.18)] and the references therein), we believe, as discussed in the intro-
duction, that a posteriori bounds such as that of [5] or its unknown-constant-free
improvement in [46] are preferable.

4 Estimating the total error

We give in this section computable upper and lower bounds on the total error. The
upper bound based on flux reconstruction following [18,10,34,24,25] is derived in
a form where the component associated with the algebraic error actually turns
out to give its upper bound; see Section 5. The lower bound on the total error is
given in Section 4.4 using conforming residual reconstruction. We will frequently
use the following representation of the energy norm of the total error

kr(u� uih)k = sup
v2V, krvk=1

(r(u� uih),rv). (4.1)

4.1 Concept of the flux reconstructions

The motivation for our approach is to mimic the continuous world, where (us-
ing (4.1), (2.2), the Green theorem, and the Cauchy–Schwarz inequality),

kr(u� uih)k = inf
d2H(div,⌦),r·d=f

sup
v2V, krvk=1

{(f �r·d, v)� (ruih + d,rv)}

= inf
d2H(div,⌦),r·d=f

kruih + dk;

the equality occurs for d = � = �ru. We also wish to use an upper bound on the
algebraic error based on the representation rih. This allows to relate the algebraic
and discretization error components.

Practically, a reconstructed flux is a piecewise polynomial function in the Ravi-
art–Thomas–Nédélec subspace Vh of the infinite-dimensional space H(div,⌦). It
is constructed in an inexpensive local way, around each node of the mesh Th, and
it satisfies, on each iteration step i � 1,

r·di
h = fh � rih. (4.2)

Here fh is a piecewise polynomial approximation of the source term f satisfying

(f � fh, 1)K = 0 8K 2 Th. (4.3)

The precise definition of the space Vh and the detailed construction of di
h follow-

ing [24, Section 6.2.4] are given in Appendix A.
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4.2 Upper bound using the L2 norm of the algebraic residual representation

Similarly to Section 3.1, to illustrate the ideas, we first present a simple upper
bound on the total error following [34, Section 7.1]. It typically yields a large over-
estimation. It follows from (4.1), the weak formulation (2.2), the construction (4.2),
and the Green theorem that

kr(u� uih)k = sup
v2V, krvk=1

n

(f � fh, v) + (rih, v)� (ruih + di
h,rv)

o

. (4.4)

Using (4.3) and the Poincaré inequality on the mesh elements,

(f � fh, v)  ⌘
osc

krvk, ⌘
osc

⌘

0

@

X

K2Th

⌘2
osc,K

1

A

1/2

, ⌘
osc,K ⌘ hK

⇡
kf � fhkK ;

(4.5)
see, e.g., [24, p. A1767]. The Friedrichs inequality states that there exists a generic
constant 0 < C

F

 1 such that

kvk  C
F

h⌦krvk 8v 2 V, (4.6)

where h⌦ denotes the diameter of the domain ⌦. The value of C
F

can be bounded1

using, e.g., [50, Chapter 18]. Thus, from the Cauchy–Schwarz inequality and from
(4.6),

(rih, v)  krihkkvk  krihkCF

h⌦krvk, (4.7)

(ruih + di
h,rv)  kruih + di

hkkrvk. (4.8)

Then (4.4) immediately gives the upper bound on the total error

kr(u� uih)k  ⌘
osc

+ C
F

h⌦krihk+ kruih + di
hk. (4.9)

The part ⌘
osc

measures the oscillations in the right-hand side f and it is often
negligible in comparison to the discretization error. The part C

F

h⌦krihk in (4.9)
bounds the algebraic error; see (5.3) below. Finally, we will associate the last
term kruih + di

hk with estimating the discretization error as in [24].

4.3 Upper bound using additional algebraic iterations

Following [24], the idea of using ⌫ > 0 additional iterations described in Section 3.2
can be analogously applied here to substantially improve the bound (4.9).

Given the computed approximation uih, we construct the algebraic residual rep-
resentation rih satisfying (2.7) and a reconstructed flux di

h 2 Vh satisfying (4.2).
After ⌫ > 0 additional iterations of the algebraic solver, giving the approxima-
tion ui+⌫

h , we construct ri+⌫
h satisfying (2.7) with i replaced by i+ ⌫ and a recon-

structed flux di+⌫
h 2 Vh satisfying r·di+⌫

h = fh � ri+⌫
h . Thus,

rih = �r·di
h + fh = �r·di

h +r·di+⌫
h + ri+⌫

h (4.10)

1 For example, for a square domain ⌦ ⇢ R2 we can take C
F

= 1/(2⇡), corresponding to the
smallest eigenvalue of the Laplace operator; see, e.g., [50, relation (18.48) on p. 196]
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and we have as above

kr(u� uih)k = sup
v2V, krvk=1

{(f � fh, v) + (di
h � di+⌫

h ,rv)

+(ri+⌫
h , v)� (ruih + di

h,rv)},

which immediately leads to, cf. [24, Theorem 3.6]:

Theorem 1 (Upper bound on the total error) Let u be the weak solution given

by (2.2) and let uih 2 Vh be its approximation given at the ith algebraic solver iteration

with the corresponding algebraic residual representation rih given by (2.8). Let a recon-

structed flux di
h 2 Vh satisfy (4.2). Consider ⌫ > 0 additional algebraic iterations,

resulting in ri+⌫
h and di+⌫

h . Then

kr(u� uih)k  ⌘i,⌫
total

⌘ ⌘
osc

+ kdi+⌫
h � di

hk+ C
F

h⌦kri+⌫
h k+ kruih + di

hk,

where the data oscillation term ⌘
osc

is given by (4.5) and C
F

h⌦ is the constant from

the Friedrichs inequality (4.6).

Remark 1 The statement of Theorem 1 deserves several comments that point out
to the results presented later in the text. We typically choose ⌫ in concordance with
the theoretical justification (global e�ciency) of Theorem 7 below; see also (7.3c) in
the numerical experiments. Local e�ciency of ⌘i,⌫

total

is proved in Appendix B for i

and ⌫ based on local stopping criteria. Note that the sum kdi+⌫
h �di

hk+C
F

h⌦kri+⌫
h k

gives an upper bound on the algebraic error (see Theorem 3 below), whereas the
term kruih +di

hk can be associated, at least in the case of a small algebraic error,
with the discretization error; see the further results in Section 6 and Section 7.4.

4.4 Lower bound

Following the ideas in [4, Section 5.1], [51, Section 4.1.1], or [25, Section 3.3], we
bound the total error kr(u�uih)k from below using the solution of local conforming
finite element problems.

Let Vh denote the set of mesh vertices with subsets V int

h for interior vertices
and Vext

h for boundary ones. Let  a 2 P
1

(Th) \H1(⌦) stand for the hat function
associated with a vertex a 2 Vh (i.e.,  a(a) = 1,  a(a0) = 0 for a 6= a

0 2 Vh).
We denote by Ta the union of elements sharing the vertex a 2 Vh and by !a the
corresponding open subdomain.

For each vertex a 2 Vh, consider the infinite-dimensional space H1

⇤ (!a)

H1

⇤ (!a) ⌘
⇢

v 2 H1(!a); (v, 1)!a = 0 a 2 V int

h ,
v 2 H1(!a); v = 0 on @!a \ @⌦ a 2 Vext

h .
(4.11)

For the functions from the space H1

⇤ (!a) the following Poincaré–Friedrichs-type
inequalities hold: there exists a positive constant C

PF,!a , depending on the shape
of the elements of the patch Ta but not on their diameters, and a positive constant
C
cont,PF,!a ⌘ 1 +C

PF,!ah!akr ak1,!a (see, e.g., [25, inequality (3.29)]) such that

kvk!a  C
PF,!ah!akrvk!a 8v 2 H1

⇤ (!a), (4.12)

kr( av)k  C
cont,PF,!akrvk!a 8v 2 H1

⇤ (!a). (4.13)
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For convex patches Ta around the interior vertices a we have C
PF,!a = 1/⇡; see,

e.g., [48]. For nonconvex patches we refer to [25,57] and the references therein.
For a shape-regular mesh h!akr ak1,!a = O(1) (see, e.g., [15, relation (3.1.43) on
p. 124]), giving C

cont,PF,!a = O(1); see the discussion in [25, Remark 3.24].
For each vertex a 2 Vh, let W a

h be a finite-dimensional subspace of H1

⇤ (!a).
The simplest choice, which we use in numerical experiments in Section 7.4, is
W a

h ⌘ Pp (Ta) \H1

⇤ (!a). We then have the following bound:

Theorem 2 (Lower bound on the total error) Let u be the weak solution given

by (2.2) and let uih 2 Vh be its approximation given at the ith algebraic solver iteration

with the corresponding algebraic residual representation rih given by (2.8). For each

vertex a 2 Vh, let mh,a 2 W a
h be the solution of

(rmh,a,rvh)!a = (f, avh)!a � (ruih,r( avh))!a 8vh 2 W a
h .

Set mh ⌘
P

a2Vh
 amh,a 2 V . Then

kr(u� uih)k � µi
total

⌘

P

a2Vh
krmh,ak2!a

krmhk
.

Proof Since mh 2 V by construction, we have from (4.1)

kr(u� uih)k = sup
v2V, krvk=1

(r(u� uih),rv)

� 1
krmhk

(r(u� uih),rmh)

=
1

krmhk
X

a2Vh

(r(u� uih),r( amh,a))!a

=
1

krmhk
X

a2Vh

{(f, amh,a)!a � (ruih,r( amh,a))!a}

=
1

krmhk
X

a2Vh

krmh,ak2!a
,

where we have used the fact that  amh,a 2 H1

0

(!a) for all vertices a 2 Vh and the
definition of mh,a. ut

Remark 2 The bound µi
total

can further be localized using (4.13) as

µi
total

�

n

P

a2Vh
krmh,ak2!a

o

1/2

(d+ 1)1/2C
cont,PF

,

where C
cont,PF

⌘ maxa2Vh
C
cont,PF,!a . Denoting by VK the vertices of an element

K and using the fact that each simplex has (d+1) vertices, this can be seen from

krmhk2 =
X

K2Th

�

�

�

�

X

a2VK

(r( amh,a))|K

�

�

�

�

2

K

 (d+ 1)
X

K2Th

X

a2VK

kr( amh,a)k2K

= (d+ 1)
X

a2Vh

kr( amh,a)k2!a
 (d+ 1)C2

cont,PF

X

a2Vh

krmh,ak2!a
.
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5 Estimating the algebraic error

We will now derive upper bounds on the algebraic error with the help of the
representation of the algebraic residual rih satisfying (2.7) and of the flux recon-
struction di

h of Section A. We will make links to the bounds of Section 3 derived
purely algebraically and to the total error bounds of the previous section. Sec-
tion 5.4 recalls the lower bounds on the algebraic error of Section 3 and proposes
a (function-based) construction of a lower bound analogously to Section 4.4.

5.1 Representation of the algebraic residual

We first propose two piecewise polynomial representations of the algebraic residual
rih satisfying (2.7).

The choice rih 2 Vh = Pp(Th)\H1

0

(⌦) given by (2.7) requires solving the linear
algebraic system with the global mass matrix

GCi = Ri, Gj` ⌘ ( `, j), j, ` = 1, . . . , N. (5.1)

Then rih =  Ci =  G�1Ri. This representation of the algebraic residual has been
considered in [5, Section 4], where it is called the discrete residual.

Equation (5.1) represents a global problem of the same size as (2.5). In order to
avoid performing a global solve, we introduce a piecewise discontinuous polynomial
representation rih 2 Pp(Th) using mutually independent local problems. For the
ease of notation, the construction below is described for the Lagrangian basis
of Vh. Denote by nj the number of mesh elements forming the support of the basis
function  j , j = 1, . . . , N . Then, for each element K 2 Th, define rih|K 2 Pp(K),
rih|@⌦ = 0, such that

(rih, j)K = Ri
j/nj for  j nonvanishing on K. (5.2)

Summing (5.2) over all elements K 2 Th, we see that (2.7) indeed holds. Denoting
by Ri

K the vector on the right-hand side of (5.2) and by GK the local mass matrix

(GK)j` ⌘ ( `, j)K for  `, j nonvanishing on K,

we have
rih|K =  |K(G�1

K Ri
K) 8K 2 Th.

Construction (5.2) requires solving the system of the size 1

2

(p+1)(p+2) separately
on each element K 2 Th.

5.2 Bound using the L2 norm of the residual representation

Similarly to (4.1), using (2.9) and (4.7), the energy norm of the algebraic error
satisfies

kr(uh � uih)k = sup
vh2Vh,krvhk=1

(r(uh � uih),rvh) = sup
vh2Vh, krvhk=1

(rih, vh)

 C
F

h⌦krihk.
(5.3)
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We first discuss the bound (5.3) for the representation rih constructed globally
using (5.1). The discussion shows the relationship of (5.3) to the algebraic worst-
case bounds of Section 3.1 and the role of the Friedrichs inequality constant C

F

h⌦ .
In the case (5.1),

krihk
2 = ( G�1Ri, G�1Ri) = (G�1Ri)TG(G�1Ri) = (Ri)TG�1Ri = kRik2G�1 ,

and therefore

kr(uh � uih)k = kU � UikA = kRikA�1  C
F

h⌦kRikG�1 . (5.4)

An analogous estimate for the finite volume method is given in [34, Section 7.1],
where it was observed in numerical experiments that this estimate can significantly
overestimate the algebraic error. We note that

kRik2A�1 = (Ri,A�1Ri) = (G�1/2Ri,G1/2A�1G1/2G�1/2Ri)

 kG1/2A�1G1/2k · kG�1/2Rik2 = kG1/2A�1G1/2k · kRik2G�1 .
(5.5)

Because (5.4) holds also for the special choice of Ri giving the equality in (5.5)
(when G�1/2Ri is collinear with the eigenvector of G1/2A�1G1/2 corresponding to
its largest eigenvalue), we have

kG1/2A�1G1/2k  (C
F

h⌦)2. (5.6)

This means that the reciprocal of the squared Friedrichs inequality constant
(C

F

h⌦)�2 (and through that the related smallest eigenvalue of the continuous
operator; see, e.g., [50, Section 18]) gives a computable lower bound on the small-
est eigenvalue of the (preconditioned) matrix G�1/2AG�1/2 (cf. also [33], [2, Sec-
tion 4.2]),

1
(C

F

h⌦)2
 min

�2sp(G�1/2AG�1/2
)

�. (5.7)

The local construction (5.2) leads to

kr(uh � uih)k  C
F

h⌦

 

X

K2Th

krihk
2

K

!

1/2

= C
F

h⌦

 

X

K2Th

kRi
Kk2G�1

K

!

1/2

. (5.8)

There holds

kr(uh � uih)k  C
F

h⌦kRikG�1  C
F

h⌦

 

X

K2Th

kRi
Kk2G�1

K

!

1/2

, (5.9)

i.e., the bound (5.8) is weaker than the bound (5.4). The second inequality in (5.9)
can be proved, e.g., using the results well-established in the domain decomposi-
tion methods; see, e.g., [20, Section 7.8]. A purely algebraic proof is given in [44,
Section 5.2].
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5.3 Upper bound using additional algebraic iterations

Analogously to Sections 3.2 and 4.3, we can bound the algebraic error using ⌫
additional iteration steps. From (2.9), (4.10), and the Green theorem, for vh 2 Vh,

(r(uh � uih),rvh) = (rih, vh) = (di
h � di+⌫

h ,rvh) + (ri+⌫
h , vh). (5.10)

Thus the following upper bound on the algebraic error immediately follows from
(5.3):

Theorem 3 (Upper bound on the algebraic error) Let the assumptions of The-

orem 1 be satisfied. Then

kr(uh � uih)k  ⌘i,⌫
alg

⌘ kdi+⌫
h � di

hk+ C
F

h⌦kri+⌫
h k.

Remark 3 The upper bound of Theorem 3 on the algebraic error allows evalua-
tion of the local indicators ⌘i,⌫

alg,K ⌘ kdi+⌫
h � di

hkK + C
F

h⌦kri+⌫
h kK for the mesh

elements K 2 Th, with subsequently using these indicators for estimating the local

distribution of the algebraic error kr(uh � uih)kK . This can indeed be very useful
in localization of the significant components of the algebraic error over the dis-
cretization domain ⌦, which represents an important problem; see [45] and the
numerical illustrations in Section 7.2.

In order to show the relationship between (5.10) and (3.2), we note that, us-
ing (2.9),

(di
h � di+⌫

h ,rvh) = (rih � ri+⌫
h , vh) = (r(ui+⌫

h � uih),rvh),

so that

kUi+⌫ � UikA = sup
vh2Vh, krvhk=1

(r(ui+⌫
h � uih),rvh)  kdi+⌫

h � di
hk.

Employing also (5.3) for i+⌫ in place of i, the upper bound of Theorem 3 appears
weaker than the algebraic bound (3.2),

kU � UikA  kUi+⌫ � UikA + kRi+⌫kA�1  kdi+⌫
h � di

hk+ kRi+⌫kA�1 .

The fluxes di
h (and di+⌫

h ) are, however, essential for bounding the total error in
Theorem 1 and, importantly, the algebraic estimator in Theorem 1 indeed bounds
the algebraic error as we see from Theorem 3.

5.4 Lower bound

As seen in Section 3.2 (see (3.3)–(3.5)), a lower bound on the algebraic error is
given by

(1� �)kUi+⌫ � UikA  kU � UikA
whenever C

F

h⌦kri+⌫
h k  �kUi+⌫ � UikA with a parameter 0 < � < 1. For the CG

method, the estimator µCG,i,⌫
alg

of (3.9) should be used instead. Alternatively, we
can construct (cf. [46, Theorem 5.2]) a lower bound using homogeneous Dirichlet
problems on patches !a, a 2 Vh, (or larger subdomains of ⌦):
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Theorem 4 (Lower bound on the algebraic error) Let the assumptions of The-

orem 2 be satisfied. For each vertex a 2 Vh, let mh,a 2 Vh \ H1

0

(!a) be the solution

of

(rmh,a,rvh)!a = (f, vh)!a � (ruih,rvh)!a 8vh 2 Vh \H1

0

(!a).

Set mh ⌘
P

a2Vh
mh,a 2 Vh. Then

kr(uh � uih)k � µi
alg

⌘

P

a2Vh
krmh,ak2!a

krmhk
.

Proof Using (5.3) and the fact that mh 2 Vh,

kr(uh � uih)k � 1
krmhk

(r(uh � uih),rmh) =

P

a2Vh
krmh,ak2!a

krmhk
. ut

6 Estimating the discretization error and construction of stopping criteria

A posteriori estimation of the discretization error kr(u�uh)k is rather complicated
as both u and uh are unknown. The standard approaches proposed in literature are
based on additional assumptions or properly justified heuristics on the algebraic
error. Using

kr(u� uih)k
2 = kr(u� uh)k

2 + kr(uh � uih)k
2 (6.1)

that follows from the Galerkin orthogonality (2.4) and the results of the two pre-
vious sections, we give upper and lower bounds on the discretization error. We
then propose global and local stopping criteria for a linear algebraic solver. In
distinction with the previous works [34, Section 6.1] or [24, Section 3.3], the new
stopping criteria guarantee that the iterations will not be stopped prematurely.

6.1 Lower bound

The first result follows easily from (6.1) and from the bounds of Theorems 2 and 3:

Theorem 5 (Lower bound on the discretization error) Let the assumptions of

Theorems 2 and 3 hold. Let µi
total

> ⌘i,⌫
alg

. Then

kr(u� uh)k � µi,⌫
discr

⌘


⇣

µi
total

⌘

2

�
⇣

⌘i,⌫
alg

⌘

2

�

1/2

.

In practice the assumption µi
total

> ⌘i,⌫
alg

may not be satisfied in the iterations where

kr(uh � uih)k ⇡ kr(u � uih)k. The accuracy of the bound in Theorem 5 becomes

good from the point where ⌘i,⌫
alg

gets small enough; see Section 7.4 for numerical
illustrations.
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6.2 Upper bound

One can similarly combine the upper bound on the total error of Theorem 1 and
the lower bound on the algebraic error of Theorem 4 (note that ⌘i,⌫

total

� µi
alg

):

Theorem 6 (Upper bound on the discretization error) Let the assumptions of

Theorems 1 and 4 hold. Then

kr(u� uh)k  ⌘i,⌫
discr

⌘


⇣

⌘i,⌫
total

⌘

2

�
⇣

µi
alg

⌘

2

�

1/2

.

When the CG method is used for solving the algebraic system (2.5), µCG,i,⌫
alg

of

(3.9) is suggested to be used instead of µi
alg

above.

6.3 Stopping criteria balancing the error components

Stopping criteria for algebraic iterative solvers typically aim at stopping the itera-
tions when the algebraic error does not substantially contribute to the total error.
Using the (global) energy norm, it seems natural to require that

kr(uh � uih)k  �
alg

kr(u� uh)k , (6.2a)

where �
alg

> 0 is a prescribed tolerance. As mentioned above, the spatial distribu-
tion of the discretization error and of the algebraic error can be very di↵erent from
each other and the criterion (6.2a) may not be descriptive; see [45]. Therefore one
may rather require that

kr(uh � uih)k!a  �
alg,!a

kr(u� uh)k!a 8a 2 Vh. (6.2b)

The stopping criteria proposed in [34, Section 6.1] or [24, Section 3.3] replaced
kr(uh � uih)k and kr(u � uh)k above by their computable estimates of the form

(in the present setting) ⌘i,⌫
alg

and kruih + di
hk. Such criteria seem to work well in

practice and allow to prove e�ciency of the total error bound (see also Theorem 7
below), but they do not guarantee (6.2a) and there is a danger that the algebraic
iterations can be stopped prematurely.

Using the upper bound on the algebraic error ⌘i,⌫
alg

of Theorem 3 and the lower

bound on the discretization error µi,⌫
discr

of Theorem 5, we propose the stopping
criterion

⌘i,⌫
alg

 �
alg

µi,⌫
discr

(6.3)

that guarantees balancing the error components while implying the validity of
(6.2a). Note that (6.3) is equivalent to requesting

⌘i,⌫
alg

 e�
alg

µi
total

with e�
alg

⌘ �
alg

/(1 + �2
alg

)1/2 < 1.

Following [34, equation (6.3)] or [24, equations (3.13)–(3.15)] a local stopping

criterion that mimics (6.2b) can be set as

kdi+⌫
h � di

hk!a + C
F

h⌦kri+⌫
h k!a  e�alg,!a

krmh,ak!a

C
cont,PF,!a

8a 2 Vh. (6.4)
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Unfortunately, the error estimator of Theorem 3 is not guaranteed to locally bound
the algebraic error from above, so that (6.2b) may not be, in general, satisfied.
Nevertheless, the criterion (6.4) is su�cient to prove the local e�ciency of the
total error estimator ⌘i,⌫

total

(see Theorem 8 in Appendix B below) and it seems to
ensure the local balance of the algebraic and discretization errors; see numerical
experiments in Section 7.5.

7 Numerical illustrations

Fig. 1 Left: solution (7.1) of the peak problem. Right: solution (7.2) of the L-shape problem.

For numerical illustration we use two Poisson test problems that were consid-
ered, e.g., in [37,1].

Peak problem The model problem (2.1) with the square domain ⌦ ⌘ (0, 1)⇥ (0, 1)
and the right-hand side f chosen so that the solution u is given by

u(x, y) = x(x� 1)y(y � 1) exp
⇣

�100 (x� 0.5)2 � 100 (y � 0.117)2
⌘

, (7.1)

illustrated in Figure 1 (left). In the experiments, we discretize the problem on an
adaptively refined mesh with 3 463 nodes using the piecewise quadratic polynomi-
als. The corresponding algebraic system has 13 633 unknowns.

L-shape problem We take ⌦ ⌘ (�1, 1)⇥ (�1, 1) \ [0, 1]⇥ [�1, 0] and solve

��u = 0 in ⌦, u = uD on @⌦,

where the (inhomogeneous) Dirichlet boundary condition uD is chosen so that the
solution u is in polar coordinates (r, ✓) given by

u(r, ✓) = r2/3 sin

✓

2
3
✓

◆

, (7.2)

illustrated in Figure 1 (right). The extension of our estimates to uD 6= 0 is pos-
sible following [22]. In particular, the flux reconstruction of Appendix A and the
upper bound of Theorem 3 for the algebraic error remain unchanged. In the upper
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bound (4.9) and in Theorem 1, an additional term corresponding to the approxi-
mation of uD by a piecewise polynomial function is added. This term is neglected
in the experiments. We discretize the problem on an adaptively refined mesh with
628 nodes using the piecewise cubic polynomials. The corresponding algebraic
system has here 5 098 unknowns.

The experiments are performed in Matlab R2014b with Partial Di↵erential
Equation Toolbox. We use our implementation of arbitrary degree conforming fi-
nite element method and of Raviart–Thomas–Nédélec spaces. We set p0 = p, i.e.,
the reconstructed fluxes di

h are of the same order as the FEM approximation uih.
The algebraic system (2.5) is solved using the CG method preconditioned by the
incomplete Cholesky decomposition with zero fill-in (Matlab ichol command) and
starting with the zero initial guess. The exact solutions of the algebraic systems
are approximated using the build-in Matlab “backslash” direct solver; in the per-
formed numerical experiments, the algebraic error in this approximate solution
is negligible. We point out that the experiments do not aim at the precondition-
ing tuned to the problem, but at demonstrating fairly the issues that might be
encountered in practical use of the presented bounds.

The initial (uniform) meshes are generated using the Matlab Delaunay trian-
gulation (initmesh command). For generating the sequence of adaptively refined
meshes we, for the reproducibility of the results, refine according to the actual dis-
tribution of the discretization error, i.e., we compute (up to a quadrature error that
is in the given experiments negligible) the discretization error kr(u�uh)kK on each
element of the triangulation (recall that uh is for the purpose of the experiments
su�ciently accurately approximated using the direct solution of the algebraic sys-
tem). We mark the smallest subset of elements that contributes to the squared
energy norm of the discretization error by at least 25%. This requires ordering the
elements according to the error size, which is in practice usually avoided, e.g., by
proceeding as in [23, Section 5.2] or [54, pp. 10–11]. The refinement of the mesh
uses the newest-vertex-bisection algorithm implemented in the Matlab refinemesh

command.

7.1 Algebraic error: the cost of the additional iterations

We first compare the cost of the upper bounds on the algebraic error of Sections 3.2
and 5.3 in terms of the number ⌫ of the additional algebraic iterations. For the
given tolerance �

rem

= 1, 0.5, 0.1, we identify ⌫
1

, ⌫
2

, and ⌫
3

as the smallest values
satisfying

kRi+⌫1kA�1  �
rem

kUi+⌫1 � UikA, (7.3a)

kA�1k1/2 · kRi+⌫2k  �
rem

kUi+⌫2 � UikA, (7.3b)

C
F

h⌦kri+⌫3

h k  �
rem

kdi+⌫3

h � di
hk, (7.3c)

for each iteration step i. The number of additional iterations ⌫
1

of (7.3a) is always
smaller than ⌫

2

, ⌫
3

. We recall, however, that kRi+⌫1kA�1 = kU � Ui+⌫1kA is not
available in practice. The criterion (7.3b) corresponds to the worst-case algebraic
bound for kRi+⌫2kA�1 described in Section 3.1; see (3.6). For the purpose of the
present study we (tightly) approximate the norm kA�1k using the Matlab eigs

command estimating the smallest eigenvalue of A. Finally, the criterion (7.3c)
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Fig. 2 Peak problem: PCG convergence and the values of ⌫
1

, ⌫
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, ⌫
3

determined by (7.3) for
di↵erent choices of �

rem

.

corresponds to the computable upper bound of Theorem 3 on the algebraic error
based on the flux reconstruction.

In the experiments (see Figures 2 and 3) we observe relatively large values of
⌫
2

and ⌫
3

, with ⌫
2

 ⌫
3

. The large value of ⌫
3

indicates a possible nonnegligible
cost of the upper bound of Theorem 3 (and also of the upper bound of Theorem 1
on the total error). The comparison with ⌫

1

reveals that there may be a room
for further improvements. However, as demonstrated below, for the cost of the
additional ⌫

3

iterations, we get in our experiments upper bounds for the total
and algebraic errors with very favorable e↵ectivity indices and, in particular, a
remarkably accurate information on the local distribution of these errors.

We also comment on the di↵erence between the upper bound on the algebraic
error (5.8) corresponding to the locally constructed representation of the algebraic
residual and the bound (5.4) corresponding to the global construction of rih; see
the inequality (5.9). In our numerical experiments, the relative overestimation

�

P

K2Th
kRi

Kk2
G�1

K

�

1/2 � kRikG�1

kRikG�1

is below 18% (peak problem), respectively below 12% (L-shape problem).

7.2 Algebraic error: e↵ectivity indices and localization

In this section we study how far the upper bounds on the algebraic error are from
the actual error. For the ease of notation, let, corresponding to the bounds of
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Fig. 3 L-shape problem: PCG convergence and the values of ⌫
1

, ⌫
2

, ⌫
3

determined by (7.3)
for di↵erent choices of �

rem

.

Sections 3.2 and 5.3,

⌘i,⌫1

alg,1 ⌘ kUi+⌫1 � UikA + kRi+⌫1kA�1 , (7.4a)

⌘i,⌫2

alg,2 ⌘ kUi+⌫2 � UikA + kA�1k1/2 · kRi+⌫2k, (7.4b)

⌘i,⌫3

alg,3 ⌘ kdi+⌫3

h � di
hk+ C

F

h⌦kri+⌫3

h k. (7.4c)

Here ⌫
1

, ⌫
2

, and ⌫
3

are determined by (7.3). For these bounds, the e↵ectivity
indices

Ii
e↵

(⌘i,⌫•
alg,•) ⌘

⌘i,⌫•
alg,•

kU � UikA
(7.5)

are given in Figures 4–6. They confirm our expectation (see (3.4) and (3.5)) that
Ii
e↵

(⌘i,⌫•
alg,•) ⇡ 1 + �

rem

, so that, for the cost of ⌫• additional iterations, we get the
estimates with the e�ciency controlled by the parameter �

rem

. In Figure 5, we
give additionally the e↵ectivity index

Ii
e↵

(µCG,i,⌫
alg

) ⌘
µCG,i,⌫
alg

kU � UikA

that illustrates the e�ciency of the lower bound µCG,i,⌫
alg

(see (3.9)) from [55,56],
with the values of ⌫ fixed for the peak and the L-shape problems to ⌫ = 5, 10 and
2, 5 respectively. We note that Ii

e↵

(µCG,i,⌫
alg

) strongly depends on the decrease of
the energy norm of the algebraic error between the iteration steps i and i+⌫. With
a more powerful preconditioner resulting in a faster PCG convergence, analogous
results will be achieved for much smaller number of additional algebraic iterations.
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Fig. 7 Peak problem, iteration i = 137: elementwise distribution of the algebraic error
kr(uh � ui

h)kK and the local algebraic error indicators kdi+⌫
h �di

hkK +C
F

h⌦kri+⌫h kK . The
value of ⌫, ⌫ = 48, is determined by (7.3c) with �

rem

= 0.5.

Algebraic error ∥∇(uh − ui
h
)∥K

2

4

6

8

×10-5 Local error indicators, γrem = 0.5

2

4

6

8

10
×10-5

Fig. 8 L-shape problem, iteration i = 39: elementwise distribution of the algebraic error
kr(uh � ui

h)kK and the local algebraic error indicators kdi+⌫
h �di

hkK +C
F

h⌦kri+⌫h kK . The
value of ⌫, ⌫ = 18, is determined by (7.3c) with �

rem

= 0.5.

As discussed in Remark 3, the flux-reconstruction-based upper bound of The-
orem 3 allows evaluating the local indicators kdi+⌫

h � di
hkK + C

F

h⌦kri+⌫
h kK and

estimating the local distribution of the algebraic error kr(uh�uih)kK . As we can see
in Figures 7 and 8, the local indicators provide a remarkably accurate description
of the local distribution of the algebraic error. We observed similarly good results
also in other iteration steps, choices of �

rem

= 0.1, 1, and other test problems.
Please note that the algebraic error can be localized in parts of the discretization
domain ⌦ where the discretization error can be small, see [45] and Figures 10
and 11 below. We point out that the algebraic error does not equilibrate over the
domain using the adaptive mesh refinement.

7.3 Bounding and localizing the total error

We now illustrate the upper bound ⌘i,⌫
total

of Theorem 1. Figure 9 depicts the
total error kr(u � uih)k, the upper bound, and the error indicators kruih + di

hk,
kdi+⌫

h � di
hk, and C

F

h⌦kri+⌫
h k. We observe that ⌘i,⌫

total

tightly follows the actual
value of the error. The parameter �

rem

in (7.3c) is set to 0.5.
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Fig. 11 L-shape problem: elementwise distribution of the total error kr(u� ui
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In Figures 10 and 11 we give the comparison of the local distribution of the
total error kr(u � uih)kK and the sum ⌘

osc,K + kdi+⌫
h � di

hkK + C
F

h⌦kri+⌫
h kK +

kruih + di
hkK of the local indicators. Here the iteration step i and the number ⌫

of additional iterations are set as the smallest values determined by the conditions
(B.3a)–(B.3b) as described in Appendix B with �

alg

= �
rem

= 0.5.

7.4 Estimating the discretization error

We illustrate the discretization error bounds of Section 6. In Figures 12 and 13 we
plot these bounds together with the estimator kruih+di

hk that we have identified
with the discretization error in Theorem 1. As in the previous experiments, the
number ⌫ of additional iterations is determined by (7.3c) with �

rem

= 0.5.
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Estimating the discretization error via Theorems 5 and 6 is naturally inaccurate
in the iterations where the energy norm of the total error is mostly dominated by
the algebraic error; cf. upper left parts of Figures 2 and 3. When the algebraic
error drops below the discretization error, our upper and lower bounds get close
to each other and provide a tight estimate for the discretization error.

In all performed experiments with the Poisson model problem (here we present
just a small sample), we have observed that kruih + di

hk > kr(u � uh)k, i.e., the
estimate kruih + di

hk gave an upper bound on the actual discretization error.
However, an extrapolation from these observations can lead to false statements.
As demonstrated below in Section 7.6 on the test problem with inhomogeneous
di↵usion tensor, the component associated with the discretization error drops, in
some iterations, below the energy norm of the discretization error. This emphasizes
a need for guaranteed bounds on the errors and a need for mathematically justified
stopping criteria that ensure balancing the error components as in (6.2).

7.5 Local stopping criteria and the spatial distribution of errors

We use the L-shape problem to illustrate that the local stopping criterion (6.4) pre-
vents the algebraic error from dominating locally, as it can happen under the global
criteria; cf. the numerical experiments of [45]. We consider the approximation u47

h
determined by the global stopping criterion (6.3) with �

alg

⌘ 0.5 (the value of
⌫ = 20 is determined by (7.3c) with �

rem

⌘ 0.5), and the approximation u79

h satisfy-

ing the proposed local stopping criterion (6.4) with e�
alg,!a

⌘ �
alg,!a

/(1+�2
alg,!a

)1/2,
�
alg,!a

⌘ �
alg

, 8a 2 Vh (the number ⌫ = 20 of the additional algebraic iterations is
here determined by (B.8a) with �

rem,K ⌘ �
rem

, 8K 2 Th).
Figure 14 depicts the di↵erences u � u47

h , u � u79

h and uh � u47

h , uh � u79

h that
visualize the total and algebraic errors respectively. We note that the algebraic
part uh � u47

h substantially a↵ects the shape of u� u47

h in most of the domain ⌦.
This is not the case for u� u79

h as |u(x)� uh(x)| � 10�7 in most of the domain ⌦.

7.6 Numerical results for a problem with inhomogeneous di↵usion tensor

In order to further demonstrate a possible use of the presented methodology for
obtaining the bounds on the total error and its components, we consider also the
test problem with inhomogeneous di↵usion tensor proposed in [43, Section 5.3]
(based on the formulas published in [35]),

�r · (Sru) = 0 in ⌦ ⌘ (�1, 1)⇥ (�1, 1), u = uD on @⌦, (7.6)

where the domain ⌦ is divided into four subdomains ⌦i corresponding to the axis
quadrants numbered counterclockwise. The di↵usion tensor S is a piecewise con-
stant multiple of the identity matrix, S|⌦i

⌘ siI, with s
1

= s
3

⇡ 161.4, s
2

= s
4

= 1.
These values and the Dirichlet boundary condition uD are used such that the so-
lution u of (7.6) exhibits a singularity at the origin, u 2 H1.1�✏(⌦), 8✏ > 0. We
discretize the problem using piecewise a�ne functions on adaptively refined mesh
with 8040 nodes. The adaptive mesh refinement and the setting for iterative al-
gebraic solver are analogous to those described above for peak and L-shape test
problems. The stopping criteria are given by (B.3) with with �

alg

= �
rem

= 0.5.
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Fig. 14 L-shape problem: the di↵erence u� u47

h counting for the total error of the approxi-
mation u47

h determined by the global stopping criterion (6.3) (upper left), its analogy u� u79

h

for the approximation u79

h determined by the local stopping criterion (6.4) (upper right), the
algebraic part uh � u47

h (bottom left), and its analogy uh � u79

h (bottom right). Vertical axes
are scaled by 10�5, 10�5, 10�5, and 10�9, respectively.

The left part of Figure 15 gives, analogously to Figure 9, the energy norm of the
total error kS1/2r(u� uih)k, its upper bound ⌘i,⌫

total

of Theorem 1 modified for the

test problem (7.6), and the corresponding error indicators kS1/2ruih + S�1/2di
hk,

kS�1/2(di+⌫
h � di

h)k, and C
F

h⌦c
�1/2
S kri+⌫

h k. Here cS denotes a uniform lower bound
on the smallest eigenvalue of S in ⌦; in the considered test problem, cS = 1. In
this experiment, we can in some iterations observe

kS1/2ruih + S�1/2di
hk < kS1/2r(u� uh)k,

i.e. the indicator kS1/2ruih + S�1/2di
hk associated with the discretization error

kS1/2r(u� uh)k does not provide, in general, its upper bound; cf. the discussion
in Sections 6.3 and 7.4. The right part of Figure 15 depicts the e↵ectivity indices

⌘i,⌫
total

kS1/2r(u� uih)k
,

kS�1/2(di+⌫
h � di

h)k+ C
F

h⌦c
�1/2
S kri+⌫

h k
kS1/2r(uh � uih)k

(7.7)

of the upper bounds on the total and algebraic errors, respectively. We can see a
similar behavior as for the Laplace operator; cf. Figure 9. Figure 16 gives, analo-
gously to Figures 7–8, the local distribution of the algebraic error and the corre-
sponding local error indicators. The local indicators provide again a very accurate
description of the local distribution of the algebraic error; however, the evalua-
tion of the error estimators is very costly because of ⌫ = 50 additional algebraic
iterations.
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error indicators kS1/2rui
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Fig. 16 Problem with inhomogeneous di↵usion tensor, iteration i = 50: elementwise dis-
tribution of the algebraic error kS1/2r(uh � ui

h)kK and the local algebraic error indicators

kS�1/2(di+⌫
h �di

h)kK +C
F

h⌦c
�1/2
S kri+⌫h kK . The value of ⌫, ⌫ = 50, is determined by (7.3c)

with �
rem

= 0.5.

8 Conclusions and open questions

We have exposed in this paper in detail the methodology of H(div,⌦)-conforming
flux and H1

0

(⌦)-conforming residual reconstructions for estimating total, algebraic,
and discretization errors for finite element discretizations and iterative algebraic
solvers. The proposed upper and lower bounds are guaranteed and they contain
no undetermined constants. We have used them for proposing stopping criteria
for algebraic solvers that balance the algebraic and discretization errors and avoid
stopping the algebraic iterations prematurely. As demonstrated on the model prob-
lems, they can practically localize very well the distribution of all errors and they
can also avoid a possible local dominance of the algebraic error. The results provide
a rigorous background for error estimators that can be extended to various prob-
lems and discretization techniques, including nonlinearity; see [24] for nonlinear
problems and [59,13] for unsteady nonlinear problems in an industrial application.
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One part of the cost to be paid consists in a possibly nonnegligible amount of
additional algebraic iterations that need to be performed. We have studied and
reported this cost on two model examples in a rather unfavorable setting without a
powerful preconditioner that would ensure very fast convergence and decrease this
part of the cost to minimum. We believe that the presented methodology can be
useful for many practical problems. Nevertheless, finding less costly alternatives
within the presented framework is highly desirable and it represents one of our
active research directions.

Acknowledgment. The authors wish to thank Ivana Pultarová, in particular for
pointing out to us the inequality (5.9) including its proof. The authors are also
grateful to anonymous referees for their numerous helpful comments.

A Details of the flux reconstruction

In this appendix we present the construction of the flux di
h. It follows [24, Section 6.2.4] (see

also [18,10]) with the di↵erence in the construction of the algebraic residual representation rih
satisfying (2.7), which allows to bound the algebraic error in Theorem 3.

For K 2 Th, let RTNp0 (K) ⌘ [Pp0 (K)]d+xPp0 (K) be the Raviart–Thomas–Nédélec finite

element space of order p0 � 0. We set

RTN�1

p0 (Th) ⌘
n

vh 2 [L2(⌦)]d,vh|K 2 RTNp0 (K) 8K 2 Th
o

and RTNp0 (Th) ⌘ RTN�1

p0 (Th)\H(div,⌦). We use a similar notation for these spaces on var-

ious patches. Let RTNN,0
p0 (Ta) be the subspace of RTNp0 (Ta) with zero normal flux through

the boundary @!a for a 2 V int

h and through @!a\@⌦ for a 2 Vext

h (corresponding to a homo-
geneous Neumann condition). Let P⇤

p0 (Ta) be spanned by piecewise p0th order polynomials on

Ta, with zero mean on Ta when a 2 V int

h .
For all vertices a 2 Vh, we first solve the following mixed finite element problems on the

patches Ta: find di
h,a 2 RTNN,0

p0 (Ta) and qh,a 2 P⇤
p0 (Ta), p

0 = p or p0 = p+ 1, such that

(di
h,a,vh)!a � (qh,a,r·vh)!a = �( arui

h,vh)!a , (A.1a)

(r·di
h,a,�h)!a = (fh a �rui

h ·r a,�h)!a � (rih a,�h)!a (A.1b)

for all (vh,�h) 2 RTNN,0
p0 (Ta)⇥ P⇤

p0 (Ta). Then we set

di
h ⌘

X

a2Vh

di
h,a. (A.1c)

We typically choose fh to be the L2(⌦)-orthogonal projection of f onto the space of the
piecewise polynomials of degree p0, and rih 2 Pp(Th); see Section 5.1. Since  a 2 Vh, (2.8)
gives the Neumann compatibility condition of the problem (A.1a)–(A.1b),

(rui
h,r a)!a = (f, a)!a � (rih, a)!a .

Consequently, we can in (A.1b) take all test functions �h 2 Pp0 (Ta), which allows to show that

di
h given by (A.1) satisfies (4.2), i.e., that r·di

h = fh � rih holds. Indeed, let K 2 Th and let
vh 2 Pp0 (K) be fixed. Since

P

a2Vh
 a|K = 1 and

P

a2Vh
r a|K = 0 ( a form a partition of

unity on K), we infer

(r·di
h, vh)K =

X

a2Vh

(r·di
h,a, vh)K =

X

a2Vh

⇥

(fh a �rui
h ·r a, vh)K � (rih a, vh)K

⇤

= (fh, vh)K � (rih, vh)K ,
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and (4.2) is proved as fh � rih 2 Pp0 (Th).

We now briefly comment on the algorithmic construction of di
h in (A.1). Denote by by �a

the basis of RTNN,0
p0 (Ta), and by eXa the basis of P⇤

p0 (Ta), Then we construct di
h as

di
h =

X

a2Vh

�aD
i
a,

where D
i
a forms the part of the vector Di

a solving the algebraic form of (A.1a)–(A.1b)

KaD
i
a = Ei

a, Ka =

"

Ka �eKa
�

eKa
�T

0

#

, Di
a =

"

D
i
a

Di
a

#

. (A.2)

Here
�

Ka
�

kj
= (�j , �k)!a and

�

eKa
�

k`
= (e�` , r·�k)!a with �j ,�k 2 �a, e�` 2 eXa. The

right-hand side vector is given as

Ei
a = Ea,f � Ea,ui

h
� Ea,rih

=

"

0

Ea,f

#

�
"

Ea,ui
h

Ea,ui
h

#

�
"

0

Ea,rih

#

,

where

(Ea,ui
h
)k = ( arui

h,�k)!a , �k 2 �a,

(Ea,f )` = (f a, e�`)!a , (Ea,ui
h
)` = (rui

h ·r a, e�`)!a , (Ea,rih
)` = (rih a, e�`)!a , e�` 2 eXa.

Since ui
h =  Ui, where, recall,  is the basis of Vh, we have ui

h|!a =  aUi
a for  a ⇢  a subset

of basis functions that are nonvanishing on !a and Ui
a the associated entries of Ui. Then

Ea,ui
h
= Ea, aU

i
a, Ea, a =

"

Ea, a

Ea, a

#

,

�

Ea, a

�

kj
= ( ar j ,�k)!a ,

�

Ea, a

�

`j
= (r j ·r a, e�`)!a ,

where  j 2  a, �k 2 �a, e�` 2 eXa. Similarly, denoting by Xa the basis of Pp(Ta), we have for

the coe�cient vector bRi
a such that rih|!a = Xa

bRi
a,

Ea,rih
= Ea,Xa

bRi
a, Ea,Xa =



0
Ea,Xa

�

,
�

Ea,Xa

�

`j
= (�j a, e�`)!a ,

where �j 2 Xa, e�` 2 eXa. Consequently, the vector Di
a can be assembled as

Di
a = K�1

a Ea,f �
�

K�1

a Ea, a

�

Ui
a �

�

K�1

a Ea,Xa

�

bRi
a. (A.3)

This means that we can solve the system with Ka only once with multiple right-hand sides
[Ea,f ,Ea, a ,Ea,Xa ] prior the start of the iterative solution of (2.5) and, at any iteration i, get the

local coe�cients D
i
a of the flux reconstruction di

h simply by matrix-vector multiplication and
summing the vectors. This is particularly appealing when the error estimator is evaluated many
times (e.g. when many iterations of the algebraic solver are performed). Note that assembling
Ka, Ea,f , Ea, a , Ea, a , a 2 Vh, and solving the systems corresponding to (A.3) can be done
in parallel (indeed, the individual patch problems (A.2) are mutually independent). Also, this
can be done independently of assembling the system (2.5).

B E�ciency of the total error bound

We prove in this appendix the global and local e�ciency of the upper bound of Theorem 1,
which follows and extends the results in [24,25,46]. To simplify the presentation, we require that
the source term f is piecewise polynomial, f 2 Pp0�1

(Th). Consequently, we choose fh = f ,
and the oscillation term vanishes, ⌘

osc

= 0.
The following lemma extends [14, Theorem 3.1] and [9, p. 1191] (see also [25, Lemma 3.12])

to the inexact algebraic solver case considered in this paper. Recall the spaceH1

⇤(!a) introduced
in (4.11).
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Lemma 1 Let a 2 Vh and let ma 2 H1

⇤(!a) be the solution of

(rma,rv)!a = (f, av)!a
�
�

rui
h,r( av)

�

!a
�
�

rih, av
�

!a
8v 2 H1

⇤(!a). (B.1)

Then there holds

krmak!a  C
cont,PF,!a

⇣

kr(u� ui
h)k!a + kdi+⌫

h � di
hk!a

⌘

+ C
PF,!ah!akr

i+⌫
h k!a .

Proof From (B.1) and since, for v 2 H1

⇤(!a),  av 2 H1

0

(!a), we have, employing (2.2),

(rma,rv)!a =
�

r(u� ui
h),r( av)

�

!a
�
�

rih, av
�

!a
.

The Cauchy–Schwarz inequality and the bound (4.13) give

�

r(u� ui
h),r( av)

�

!a
 kr(u� ui

h)k!aCcont,PF,!akrvk!a .

Using (4.10), the Cauchy–Schwarz inequality, and (4.12),

�

rih, av
�

!a
=
�

r·di+⌫
h �r·di

h + ri+⌫h , av
�

!a

=
�

� di+⌫
h + di

h,r( av)
�

!a
+
�

ri+⌫h , av
�

!a

 kdi+⌫
h � di

hk!aCcont,PF,!akrvk!a + kri+⌫h k!ak ak1,!akvk!a

 kdi+⌫
h � di

hk!aCcont,PF,!akrvk!a + kri+⌫h k!aCPF,!ah!akrvk!a .

Finally, using
krmak!a = sup

v2H1
⇤(!a),krvk=1

(rma,rv)!a

and combining the above results yields the desired bound. ut

The following crucial result has been shown in [9, Theorem 7] (see also [25, Corollary 3.16])
in the two-dimensional case. The three-dimensional proof is in [26, Corollary 3.3].

Lemma 2 Let di
h,a be given by (A.1) with p0 = p+ 1 and let ma be given by (B.1). Let

f 2 Pp(Th). Then there exists a constant C
st,!a > 0 depending only on the shape of elements

of the patch Ta but not on their diameters such that

k arui
h + di

h,ak!a  C
st,!akrmak!a . (B.2)

The constant C
st,!a is not computable. It can, however, be bounded from above considering

a finite-dimensional subspace of H1

⇤(!a) and solving the discrete version of the problem (B.1);
see [25, Lemma 3.23]. Hereafter we denote

C
cont,PF

⌘ max
a2Vh

C
cont,PF,!a , C

PF

⌘ max
a2Vh

C
PF,!a , C

st

⌘ max
a2Vh

C
st,!a .

We now state the main result on the global e�ciency of the estimators of Theorem 1, both
for the global stopping criteria in the sense of [34,24] and for the secure stopping criterion in
the sense of (6.3), relying on the estimator µi

total

of Theorem 2:

Theorem 7 (Global e�ciency) Let the estimators of Theorem 1 satisfy the global stopping
criteria

C
F

h⌦kri+⌫h k  �
rem

kdi+⌫
h � di

hk, (B.3a)

kdi+⌫
h � di

hk  �
alg

krui
h + di

hk (B.3b)

with positive parameters �
rem

, �
alg

such that

�
alg

C
st

 

C
cont,PF

+ �
rem

C
PF

maxa2Vh
h!a

C
F

h⌦

!


1

2(d+ 1)
. (B.4)
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Alternatively, instead of (B.3)–(B.4), let

C
F

h⌦kri+⌫h k  �
rem

kdi+⌫
h � di

hk, (B.5a)

kdi+⌫
h � di

hk 
�
alg

(1 + �2
alg

)1/2
µi
total

(B.5b)

without any requirement on �
rem

, �
alg

, supposing only

C
PF

maxa2Vh
h!a

C
F

h⌦
 C

cont,PF

that is typically satisfied, apart possibly the coarsest meshes. Let the assumptions of Lemma 2
hold. Then the upper bound of Theorem 1 is globally e�cient,

⌘i,⌫
total

 C
glob. e↵.

kr(u� ui
h)k

with the global e�ciency constant

C
glob. e↵.

⌘ (1 + �
alg

+ �
alg

�
rem

)2(d+ 1)C
st

C
cont,PF

.

Recall that VK stands for the vertices of the element K and that the functions mh,a are
specified in Theorem 2. Then the local version of Theorem 7 proving the local e�ciency under
the local stopping criteria is as follows:

Theorem 8 (Local e�ciency) Let, for an element K 2 Th, the estimators of Theorem 1
satisfy the local stopping criteria

C
F

h⌦kri+⌫h kK0  �
rem,Kkdi+⌫

h � di
hkK0 8K0 2 Th such that K0 \K 6= ;, (B.6a)

kdi+⌫
h � di

hk!a  �
alg,Kkrui

h + di
hkK 8a 2 VK (B.6b)

with positive parameters �
rem,K , �

alg,K such that

�
alg,KC

st

✓

C
cont,PF

+ �
rem,K

C
PF

maxa2VK
h!a

C
F

h⌦

◆


1

2(d+ 1)
. (B.7)

Alternatively, instead of (B.6)–(B.7), let, for all a 2 VK ,

C
F

h⌦kri+⌫h k!a  �
rem,Kkdi+⌫

h � di
hk!a , (B.8a)

kdi+⌫
h � di

hk!a 
�
alg,K

(1 + �2
alg,K)1/2

krmh,ak!a

C
cont,PF,!a

, (B.8b)

without any requirement on �
rem,K , �

alg,K , supposing only

C
PF

maxa2VK
h!a

C
F

h⌦
 C

cont,PF

that is typically satisfied, apart possibly the coarsest meshes. Let the assumptions of Lemma 2
hold. Then we have the local e�ciency of the upper bound,

kdi+⌫
h � di

hkK + C
F

h⌦kri+⌫h kK + krui
h + di

hkK  C
loc. e↵.,K

X

a2VK

kr(u� ui
h)k!a

with the local e�ciency constant

C
loc. e↵.,K ⌘ (1 + �

alg,K + �
alg,K�rem,K)2C

st

C
cont,PF

.
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Proof (of Theorem 7) From the flux construction (A.1) of di
h, using (B.2),

krui
h + di

hk
2 =

X

K2Th

�

�

�

X

a2VK

( arui
h + di

h,a)
�

�

�

2

K

 (d+ 1)
X

K2Th

X

a2VK

k arui
h + di

h,ak
2

K = (d+ 1)
X

a2Vh

k arui
h + di

h,ak
2

!a

 (d+ 1)C2

st

X

a2Vh

krmak2!a
,

as any element K 2 Th has d+ 1 vertices. From Lemma 1, we have



X

a2Vh

krmak2!a

�

1/2




X

a2Vh

C2

cont,PF,!a
kr(u� ui

h)k
2

!a

�

1/2

+



X

a2Vh

C2

cont,PF,!a
kdi+⌫

h � di
hk

2

!a

�

1/2

+



X

a2Vh

C2

PF,!a
(h!a )

2kri+⌫h k2!a

�

1/2

.

Therefore, using
h

P

a2Vh
kzk2!a

i

1/2
= (d+ 1)1/2kzk,

krui
h + di

hk  (d+ 1)C
st

C
cont,PF

kr(u� ui
h)k

+ (d+ 1)C
st

C
cont,PF

kdi+⌫
h � di

hk + (d+ 1)C
st

C
PF

max
a2Vh

h!akr
i+⌫
h k. (B.9)

From the stopping criteria (B.3),

krui
h + di

hk  (d+ 1)C
st

C
cont,PF

kr(u� ui
h)k

+ (d+ 1)�
alg

C
st

 

C
cont,PF

+ �
rem

C
PF

maxa2Vh
h!a

C
F

h⌦

!

krui
h + di

hk,

and from (B.4),
krui

h + di
hk  2(d+ 1)C

st

C
cont,PF

kr(u� ui
h)k.

Finally, we get the assertion for the stopping criteria (B.3),

⌘i,⌫
total

= kdi+⌫
h � di

hk+ C
F

h⌦kri+⌫h k+ krui
h + di

hk

 (1 + �
alg

+ �
alg

�
rem

)krui
h + di

hk  C
glob. e↵.

kr(u� ui
h)k.

The e�ciency under the stopping criteria (B.5) actually does not request any restrictive
assumptions of the form (B.4). Using (B.5b) and the bound of Theorem 2,

kdi+⌫
h � di

hk 
�
alg

(1 + �2
alg

)1/2
kr(u� ui

h)k.

Now a combination with (B.9) and (B.5a) gives

krui
h + di

hk  (d+ 1)C
st

C
cont,PF

kr(u� ui
h)k

+ (d+ 1)
�
alg

(1 + �2
alg

)1/2
C

st

 

C
cont,PF

+ �
rem

C
PF

maxa2Vh
h!a

C
F

h⌦

!

kr(u� ui
h)k,

so that the assertion for the stopping criteria (B.5) follows with the constant

(d+ 1)C
st

 

C
cont,PF

+
�
alg

(1+�2
alg

)1/2
C

cont,PF

+ �
rem

�
alg

(1+�2
alg

)1/2

C
PF

maxa2Vh
h!a

C
F

h⌦

!

 (1 + �
alg

+ �
alg

�
rem

)(d+ 1)C
st

C
cont,PF


C

glob. e↵.

2
.

ut
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Proof (of Theorem 8) For the proof of the local e�ciency, we first note that

krui
h + di

hkK 
X

a2VK

k arui
h + di

h,ak!a 
X

a2VK

C
st,!akrmak!a .

From Lemma 1,

krui
h + di

hkK  C
st

C
cont,PF

X

a2VK

kr(u� ui
h)k!a

+ C
st

C
cont,PF

X

a2VK

kdi+⌫
h � di

hk!a + C
st

C
PF

max
a2VK

h!a

X

a2VK

kri+⌫h k!a . (B.10)

Thus, under the stopping criteria (B.6),

krui
h + di

hkK  C
st

C
cont,PF

X

a2VK

kr(u� ui
h)k!a

+ (d+ 1)C
st

�
alg,K

✓

C
cont,PF

+ �
rem,K

C
PF

maxa2VK
h!a

C
F

h⌦

◆

krui
h + di

hkK .

From (B.7), we further obtain

krui
h + di

hkK  2C
st

C
cont,PF

X

a2VK

kr(u� ui
h)k!a ,

so that finally

kdi+⌫
h � di

hkK + C
F

h⌦kri+⌫h kK + krui
h + di

hkK
 (1 + �

alg,K + �
alg,K�rem,K)krui

h + di
hk

 C
loc. e↵.,K

X

a2VK

kr(u� ui
h)k!a .

Let ema 2 H1

⇤(!a) be the solution of

(rema,rv)!a = (f, av)!a
�
�

rui
h,r( av)

�

!a
8v 2 H1

⇤(!a),

in the continuous counterpart to mh,a of Theorem 2 and similarly to (B.1). The fact that mh,a

is a projection of ema from H1

⇤(!a) onto W a
h gives krmh,ak!a  kremak!a . Proceeding as in the

proof of Lemma 1 with rih = 0, we get the inequality kremak!a  C
cont,PF,!akr(u� ui

h)k!a ,
so that

krmh,ak!a  C
cont,PF,!akr(u� ui

h)k!a .

Thus, under the secure local stopping criterion (B.8b), we obtain

kdi+⌫
h � di

hk!a 
�
alg,K

(1 + �2
alg,K)1/2

kr(u� ui
h)k!a ,

and, employing (B.10) and (B.8a),

krui
h + di

hkK  C
st

C
cont,PF

X

a2VK

kr(u� ui
h)k!a

+ C
st

�
alg,K

(1 + �2
alg,K)1/2

✓

C
cont,PF

+ �
rem,K

C
PF

maxa2VK
h!a

C
F

h⌦

◆

X

a2VK

kr(u� ui
h)k!a .

The claim in this case thus follows from

C
st

 

C
cont,PF

+
�
alg,K

(1+�2
alg,K)1/2

C
cont,PF

+ �
rem,K

�
alg,K

(1+�2
alg,K)1/2

C
PF

maxa2VK
h!a

C
F

h⌦

!

 (1 + �
alg,K + �

alg,K�rem,K)C
st

C
cont,PF


C

loc. e↵.,K

2
.

ut
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13. C. Cancès, I. S. Pop, and M. Vohraĺık, An a posteriori error estimate for vertex-
centered finite volume discretizations of immiscible incompressible two-phase flow, Math.
Comp., 83 (2014), pp. 153–188.

14. C. Carstensen and S. A. Funken, Fully reliable localized error control in the FEM,
SIAM J. Sci. Comput., 21 (1999/00), pp. 1465–1484.

15. P. G. Ciarlet, The finite element method for elliptic problems, vol. 40 of Classics in Ap-
plied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA, 2002. Reprint of the 1978 original [North-Holland, Amsterdam].

16. , Linear and nonlinear functional analysis with applications, Society for Industrial
and Applied Mathematics, Philadelphia, PA, 2013.

17. G. Dahlquist, G. H. Golub, and S. G. Nash, Bounds for the error in linear systems, in
Semi-infinite programming (Proc. Workshop, Bad Honnef, 1978), vol. 15 of Lecture Notes
in Control and Information Sci., Springer, Berlin, 1979, pp. 154–172.

18. P. Destuynder and B. Métivet, Explicit error bounds in a conforming finite element
method, Math. Comp., 68 (1999), pp. 1379–1396.

19. P. Deuflhard, Cascadic conjugate gradient methods for elliptic partial di↵erential equa-
tions: algorithm and numerical results, in Domain decomposition methods in scientific and
engineering computing (University Park, PA, 1993), vol. 180 of Contemp. Math., American
Mathematical Society, Providence, RI, 1994, pp. 29–42.

20. V. Dolean, P. Jolivet, and F. Nataf, An Introduction to Domain Decomposition Meth-
ods : Algorithms, Theory, and Parallel Implementation, Other Titles in Applied Mathe-
matics, SIAM, Philadelphia, 2015.

21. V. Dolejš́ı, I. Šebestová, and M. Vohraĺık, Algebraic and discretization error estima-
tion by equilibrated fluxes for discontinuous Galerkin methods on nonmatching grids, J.
Sci. Comput., 64 (2015), pp. 1–34.
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