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Abstract

We study a generalization of the Navier-Stokes-Fourier system for an incompressible fluid where
the deviatoric part of the Cauchy stress tensor is related to the symmetric part of the velocity
gradient via a maximal monotone 2-graph that is continuously parametrized by the temperature.
As such, the considered fluid may go through transitions between three of the following regimes:
it can flow as a Bingham fluid for a specific value of the temperature, while it can behave as the
Navier-Stokes fluid for another value of the temperature or, for yet another temperature, it can
respond as the Euler fluid until a certain activation initiates the response of the Navier-Stokes
fluid. At the same time, we regard a generalized threshold slip on the boundary that also may
go through various regimes continuously with the temperature. All material coefficients like the
dynamic viscosity, friction or activation coefficients are assumed to be temperature-dependent. We
establish the large-data and long-time existence of weak solutions, applying the L∞-truncation
technique to approximate the velocity field.
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1 Introduction

We study internal unsteady flows of an incompressible heat-conducting fluid in three-dimensional
bounded domains. The balance equations governing such flows are completed by implicit constitutive
relations that characterize rheological properties of the fluid and boundary conditions. The main result
of our work is the large-data and long-time existence analysis for the considered class of problems.

Formulation of the problem. Let Ω ⊂ R3 be a bounded domain and [0, T ) be the time interval
for a given T > 0. Denote Q := [0, T ) × Ω and Γ := [0, T ) × ∂Ω for brevity. Balance equations for
flows of an incompressible heat-conducting fluid, representing the balance of its linear momentum, the
constraint of incompressibility and the balance of energy read

∂tv + div(v ⊗ v)− divS +∇p = b in Q, (1)

div v = 0 in Q, (2)

∂tE + div((E + p)v − Sv − κ(e)∇e) = b · v in Q. (3)
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Here, v : Q→ R3 represents the velocity field, p : Q→ R is the pressure, S : Q→ R3×3
sym the deviatoric

part of the Cauchy stress1, b : Q→ R3 the external body forces, Dv the symmetric part of the velocity
gradient, i.e. Dv = 1/2(∇v +∇Tv), and E is the sum of the kinetic and the internal energy e, that is

E =
|v|2

2
+ e.

We assume throughout the whole paper that e is proportional to the temperature and work with e
rather than with the temperature. Hence, the coefficient κ(e) stands for the heat conductivity2. The
balance of internal energy takes form

∂te+ div(ev)− div(κ(e)∇e) = S ·Dv in Q. (4)

There are several forms of the balance of energy. They are equivalent for regular enough functions,
but may differ within the context of merely integrable functions: some of them hold for larger class
of functions than others. This feature can be successfully exploited; see Feireisl [14], Feireisl and
Málek [15] or Buĺıček et al. [6] for more details.

Unfortunately, we cannot find a solution satisfying (4) for reasons of lacking compactness of its
right-hand side in L1 and therefore we will deal with a more amiable balance of total energy (3) (see [6]
for a corresponding discussion). So long as we have a smooth solution and the equations (1) and (2)
hold, the balance of energies (3) and (4) are actually equivalent. Inasmuch as we deal merely with
weak solutions here, this equivalence cannot in general be verified. However, we still require (4) to be
satisfied at least as an inequality (in the weak sense; see (21))

∂te+ div(ev)− div(κ(e)∇e) ≥ S ·Dv in Q. (5)

We assume that the boundary is impermeable and require that there is no heat flux across the boundary,
i.e.

v · n = 0 on Γ, (6)

κ(e)∇e · n = 0 on Γ, (7)

where n stands for the outward unit normal vector to Ω. For given v0 : Ω→ R3 and e0 : Ω→ R, the
initial conditions are

v(0) = v0 in Ω, (8)

e(0) = e0 in Ω. (9)

To close the system, we have yet to provide a constitutive relation involving S and −(Sn)τ along the
boundary, denoting

zτ := z − (z · n)n for z : ∂Ω→ R3,

which is a key component of our work. We consider these relations to be not expressible as single-valued
functions. Starting with the Cauchy stress, an immense advantage of the resulting implicit character
lies in enabling us to include quite a general kind of rheology for the investigated fluid. Our model
is able to capture the response of a Bingham fluid, Newtonian response and activated Euler fluids.
Most importantly, it is capable of a continuous transition between these regimes solely by changing the
temperature: the quantities S, Dv and e are related to each other by means of a maximal monotone

1That is, denoting T the Cauchy stress, S = T − 1/3(TrT )I = T − pI with I being the identity tensor.
2Customarily, heat flux q̃(θ) is described by the Fourier law q̃(θ) = κ̃(θ)∇θ and then κ̃ is called heat conductivity.

Since we consider θ 7→ e(θ) to be a diffeomorphism (in general we have e(θ) = c(θ)θ, where c(θ) is known as heat capacity),
we can find κ(·) such that κ̃(θ)∇θ = κ(e(θ))∇e(θ). Therefore, we still call κ(e) heat conductivity in this paper. For the
same reason, in our contemplation we often refer to various temperature-dependent coefficients albeit we always handle
functions of the internal energy only. Our reason is an arguably better intuition behind a temperature-dependent entity.
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Figure 1: Practically speaking, we consider these three cases and continuous transitions between them.
Note that the slope of the slanted part may differ for different values of e.

2-graph parametrised by e (see e.g. [3, 9]). More precisely, the triplet (S,Dv, e) is connected through
the condition (S,Dv, e) ∈ A ⊂ R3×3 × R3×3 × R a.e. in Q, where A is defined through

(S,Dv, e) ∈ A ⇐⇒ 2ν(e)
(|Dv| − τ1(e))+

|Dv|
Dv =

(|S| − τ2(e))+

|S|
S. (10)

Function ν(e) represents the shear viscosity and τ1(e), τ2(e) play the role of two activations3. Behaviour
of the fluid is Newtonian whenever τ1(e) = τ2(e) = 0. Considering τ1(e) = 0 and τ2(e) > 0, the fluid
responds as the Bingham fluid and τ2(e) is referred to as the yield stress. On the other hand, once
τ1(e) > 0 and τ2(e) = 0, the fluid behaves as the Euler fluid until the shear rate τ1(e) is reached. In
order to eliminate the case when both τ1 and τ2 are positive, we impose an additional condition4

τ1(e)τ2(e) = 0 for all e ∈ R. (11)

For an easy non-trivial example that satisfies this as well as all other required properties given later in
Assumption 1, we can take τ1(e) := max{0,min{1, e− 1}} and τ2(e) := max{0,min{1, 1− e}}.

Should one of the activating coefficients tend to infinity for a certain temperature, we would obtain
the limit cases in the form of the inviscid fluid (τ1 →∞) or the rigid body motion (τ2 →∞), neither
of which is covered in our analysis.

Regarding the boundary conditions, numerous measurements (see below) have documented that not
only non-Newtonian, but also Newtonian fluids can evince, in some situations, the so-called stick-slip
boundary condition. That is, the fluid adheres to the boundary until a certain critical value σ > 0 of
the wall shear stress is reached, at which moment the Navier slip occurs. Denoting

s := −(Sn)τ on Γ,

the corresponding formula thus reads

γvτ =
(|s| − σ)+

|s|
s on Γ, (12)

for some friction coefficient γ > 0. Not surprisingly, the critical value σ and also γ should depend on
the temperature; see [25]. Many empirical models have been introduced over the years in pursuit of
capturing this dependence; see e.g. [19] and references therein for models describing non-Newtonian
fluids, in particular for polymer melts. In [24], the authors study the stick-slip boundary condition
for Newtonian fluids. However, these models are usually not only very complicated, but also they

3The required properties, like non-negativity and boundedness, are all summarized in Assumption 1 on p. 7.
4Hence for any fixed e, we are always in the situation Dv = Dv(S) or S = S(Dv); see also Figure 1.
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often do not follow the real response of the fluid very precisely. We believe that the model introduced
in our study is considerably simpler and yet more accurate, since the temperature-dependence is
inherently imbedded in the activation-coefficient function. Moreover, due to the symmetric character
of our boundary condition (see (13)), the dual activation coefficient is able to describe the opposite
threshold-slip case, i.e. the perfect-slip–slip situation.

Similarly to the above constitutive relation (10), the quantities s, vτ and e are coupled by means of
a maximal monotone 2-graph parametrized by e. The triplet (s,vτ , e) satisfies the boundary condition
if and only if (s,vτ , e) ∈ B ⊂ R3 ×R3 ×R a.e. on Γ, where graph B is defined via the implicit relation
(cf. (12))

(s,vτ , e) ∈ B ⇐⇒ γ(e)
(|vτ | − σ1(e))+

|vτ |
vτ =

(|s| − σ2(e))+

|s|
s. (13)

Function γ(e) represents the friction coefficient and functions σ1(e), σ2(e) are another two activation
coefficients. If σ1(e) = σ2(e) = 0, the Navier slip occurs. The case when only one of σ1(e), σ2(e) is
equal to zero represents threshold-slip boundary conditions: whenever σ1(e) = 0 and σ2(e) > 0, we
observe the stick-slip boundary condition, while one calls the boundary condition perfect-slip–slip when
σ1(e) > 0 and σ2(e) = 0. We assume that no other cases occur (cf. (11)), i.e.

σ1(e)σ2(e) = 0 for all e ∈ R. (14)

Two limit cases that we are not able to incorporate are the genuine perfect slip (σ1 → ∞) and the
no-slip (σ2 →∞) boundary conditions. On the other hand, even if we treated a case trivial with respect
to (11), i.e. S = 2ν(e)Dv, it is in general not known how to construct an integrable pressure when the
no-slip boundary condition is considered (see [16]). Hence we cannot say that our theory would miss
an already solved case, for we always go to great pains to end up with an integrable pressure.

Result. Having introduced the model in its entirety, our mission is to develop the long-time and large-
data existence theory. Relations (1)–(9) describe general flows of an incompressible heat-conducting
fluid and its specific behavior is characterized by the relations (10) and (13), determining the actual
response of the fluid inside the domain (graph A) and its interaction with the boundary (graph B).
A possible presence of the temperature-dependent activation criteria is included via the coefficient
functions τ1(e), τ2(e), σ1(e) and σ2(e). These specify the flow regime as well as the behaviour on the
boundary and also control the transition between the different states of the fluid.

We postpone the exact formulation of the existence result to Theorem 2 on p. 7, also because it
uses specific notation that we want to introduce first. Suffice it to say that we are able to find a global
weak solution, i.e. functions of certain regularity satisfying the balance equations in the form of integral
identities or an inequality in the case of the relaxed balance of internal energy (5).

Discussion. The idea of implicit constitutive relations was introduced by Rajagopal in [22] and
then thoroughly investigated by Buĺıček et al. in [8, 9] for general maximal monotone graphs (see
also Málek [21]), albeit without the heat effects. In [3], Buĺıček and Málek developed the existence
theory for the stick-slip condition (i.e. (12)) but still within the purview of isothermal processes
only. Recently, the same authors in [2] did enrich their original model with the heat conduction
and a temperature-dependent viscosity. In our work, we consider this system further expanded, i.e.
four thresholds are present in our model: τ1, τ2, σ1 and σ2, so that we can activate S,Dv, s or vτ ,
respectively. In addition, we take into account the temperature-dependent friction γ and viscosity ν.

There are a number of works studying the temperature-dependent responses of fluid-like materials.
Concerning our relation (10) given by graph A, it confers a unique possibility to trace the transfer
from the yield stress (τ1(e) = 0 and τ2(e) > 0) through the Newtonian response (τ1(e) = τ2(e) = 0)
up to the inviscid/Euler regime, where the flow remains inviscid if |Dv| ≤ τ1. Quite remarkably,
such temperature-driven viscous/inviscid transitions are not purely academic considerations but they
are corroborated by experiments. In particular, one can encounter them in studies dealing with the
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boundary layers in the flow of almost inviscid fluids (see [12] or [23]) or with flows of the superfluids, i.e.
fluids that remain inviscid up to a certain temperature, above which the structure of the flow changes
drastically; see [10]. Furthermore, some fluids remain inviscid in the full range of experimentally
observed data – then we may set τ1 extremely large (that is, beyond the range of experimental devices)
to cover also such situations. Proceeding with the limit τ1 → ∞ (if allowed) might also suggest a
way of including possible solutions to Euler equations without the pathological behaviour of those
constructed in [11] and [13].

As far as (13) is concerned, we point out the slip regime of the flow of polymer melts which is
demonstrably temperature-dependent. It is studied and described in detail for example in [19], where
two mechanisms of slip are explained: the flow-induced chain detachment/desorption (weak slip)
and the chain disentanglement (strong slip). Several models are also listed and referred to in [19].
For example, in [25], there are presented experimental results focusing on molecular characteristics
(especially on molecular weight) and temperature dependence of the stick-slip transition in a capillary
flow and general features of high-stress rheology of a series of linear high-density polyethylene (HDPE)
resins. The experiments are taken at different temperatures within the range 160–200 ◦C and HDPEs
considered are of the molecular weights Mw = 130 500− 316 600. They describe the low-temperature
anomaly, i.e. a situation in which the polymers deviate from the expected behaviour at the temperature
of 160 ◦C. This phenomenon might arise from a flow-induced ordered phase along the wall at such
lower temperatures when the wall shear stress reaches a certain critical value. Such a mesophase would
introduce a local chain orientation at the PE/wall interface, so that it is then easier for the tethered
chains to disentangle from the free chains. In other words, the interfacial chains need not be stretched
(shear deformed) as much as when they are in the isotropic liquid phase, and the stick-slip transition
would only require a lower critical stress. This serves as an example of a transition where the activation
is dependent on the temperature. However, modifying the die wall condition allowed for an interesting
observation – instead of a smooth metallic wall, a rippled surface was used such that the melt in the
thread valleys was stagnant and a PE/PE interface was achieved. For lower-molecular-weight resins,
this PE/PE interface at the slip boundary apparently eliminates the mesophase formation and restores
the normal features of the stick-slip transition, which means that the temperature anomaly at 160 ◦C
completely disappears in the threaded die. The authors study also other nonstandard behaviour of the
HDPEs, as well as different temperature ranges, which are considered e.g. in [26]. Moreover, as studied
in [24], the threshold slip occurs also in flows of Newtonian fluids, although it is not as remarkable as
in the non-Newtonian case. But it is yet another viable example on the use of graph B all the same.
For more information about various activations we want to draw attention to On Classification of
Fluids with Activation. Part 1: Incompressible Fluids, a paper currently in preparation authored by
J. Blechta, J. Málek and K. R. Rajagopal.

Another advantage of temperature-dependent parameters is that the resulting structure allows to
describe a hysteresis-like loop driven by changes in the temperature, which is one of the motivations
for the use of the implicit theory. Note that in Figure 2, one can see an example of such an application
of such a model (as well as a prototypic example of such an hysteresis-like loop).

Finally, we would like to emphasize that although this paper and its results deal only with non-
linearities that can be described by maximal monotone 2-graphs, we are convinced that similarly to [6],
that served as the starting point for studying the complex mathematical theory for heat-conducting
fluids in [7], the present paper will play the same role in the studies for more complex fluids with even
more general classes of activaton criteria.

Paper arrangement. In the following section, notation is established and assumptions on coefficients
are posited. Section 3 contains the precise statement of our existence result. In section 4, coercivity
and monotonicity of graphs A and B are shown, approximate graphs Ak and Bk are introduced and the
fact that they do approximate the original graphs is proved. Section 5 then provides the actual proof
of Theorem 2. The paper is concluded by Appendix where one can find a proof of an auxiliary lemma.
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Figure 2: An example of the hysteresis-like loop driven purely by the temperature change described by
graph A. Three most important situations are captured in the picture. Each dash style represents one
constant value of the temperature – the corresponding curve describes the behaviour of the fluid and
its slope is ruled by the viscosity ν(e) at that temperature. The horizontal line where the styles alter
indicates the continuous temperature change.

2 Preliminaries

For 0 < t < T we write Qt := [0, t) × Ω and Γt := [0, t) × ∂Ω. As the introduction has given away
already, we use simply Q and Γ for QT and ΓT , respectively. Continuous and compact embedding of
two normed spaces is denoted by ↪→ and ↪→↪→, respectively. No explicit distinction between spaces of
scalar- and vector-valued functions will be made. Confusion should never come to pass as we employ
small boldfaced letters to denote vectors and bold capitals for tensors. The same applies also to traces
of Sobolev functions, which we denote like the original functions. Only when in need, we use Tr for
the trace. For 1 ≤ r ≤ ∞ we denote (Lr(Ω), ‖·‖r) and (W 1,r(Ω), ‖·‖1,r) the corresponding Lebesgue
and Sobolev spaces. In particular, when an integral norm does not specify over which set it is taken,
always Ω is implicitly considered. For a Banach space X, the relevant Bochner space is designated by
Lr(0, T ;X). When r > 1, we set

W 1,r
n (Ω) :=

{
f ∈W 1,r(Ω)

∣∣ Trf · n = 0 on ∂Ω
}
,

W−1,r(Ω) :=
(
W 1, r

r−1 (Ω)
)∗
,

W−1,r
n (Ω) :=

(
W

1, r
r−1

n (Ω)
)∗
,

W 1,r
n,div(Ω) :=

{
f ∈W 1,r

n (Ω)
∣∣ div f = 0 in Ω

}
,

C([0, T ];X) := {f ∈ L∞(0, T ;X)
∣∣ [0, T ] 3 tn → t⇒ f(tn)→ f(t) strongly in X},

Cw([0, T ];X) := {f ∈ L∞(0, T ;X)
∣∣ [0, T ] 3 tn → t⇒ f(tn)→ f(t) weakly in X},

C1
c (Ω) :=

{
f ∈ C1(Ω)

∣∣ f is compactly supported in Ω
}
.

Sometimes, we will want to emphasize that certain regularity holds up to a given number, save this
number, in the following way (see [20] for the origin of the notation, even though here we thus define
only sets of functions without any ambition to norm them):

Lr)(0, T ;W 1,r)(Ω)) :=
⋂

1≤s<r
Ls(0, T ;W 1,s(Ω)),

and analogously the other way round, as in

L(r(0, T ;W−1,(r(Ω)) :=
⋃
s>r

Ls(0, T ;W−1,s(Ω)),
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or in estimates (see e.g. (39), (41) or (45)). The positive and negative parts of a real-valued function f
are denoted f+ := max{f, 0} and f− := min{f, 0}, respectively. With M(0, T ) we denote the space of
Radon measures on (0, T ). The symbol · stands for the scalar product of vectors or tensors, or simply
for the product of fractions, depending on the context, and ⊗ signifies the tensor product. Generic
constants are denoted by C.

The external body forces b are for the sake of convenience supposed to be zero, i.e.

b := 0.

We close this preparatory section with requirements that we enforce upon the e-dependent coefficients
in the definitions of graphs A (10) and B (13) and on the coefficient of heat conductivity κ (see the
introductory section for our motivation thereof):

Assumption 1 The coefficients ν, γ, κ, τ1, τ2, σ1 and σ2 are assumed to be continuous functions for
which there exist c0, c1, c2 > 0 such that

0 ≤ τ1(s), τ2(s), σ1(s), σ2(s) ≤ c0, (15)

c1 ≤ ν(s), γ(s), κ(s) ≤ c2, (16)

0 = τ1(s)τ2(s) = σ1(s)σ2(s), (17)

for all s ∈ R.

Indeed, there seems to be no logical reason for these coefficients to be defined outside of R+. We
incorporate the possibility just for technical reasons because at the very first approximate level it may
not be true that the internal energy is non-negative—the minimum principle begins to hold only after
the first passing to limit (see [6])—and then we might conceivably deal with ill-defined arguments.
Provided that we were presented with coefficients defined for non-negative values only, we would simply
extend them by a constant to be defined everywhere.

3 The result

Below we state the essence of this paper – the existence theorem for our system. To get some idea
regarding the professed regularity of individual quantities, see the uniform estimate (45) and a rough
sketch of its proof on p. 14.

Theorem 2 Let T > 0, Ω ⊂ R3 have a C1,1 boundary and Assumption 1 stand valid. Consider initial
conditions v0 ∈ L2

n,div(Ω) and e0 ∈ L1(Ω), e0 ≥ c3 a.e. in Ω for a certain positive constant c3 > 0.
Then there exists a weak solution to the system given by equations (1)–(3), (5)–(9), (10) and (13), i.e.
a quintuplet (v, p,S, s, e) fulfilling

v ∈ Cw([0, T ];L2(Ω)) ∩ L2(0, T ;W 1,2
n,div(Ω)),

∂tv ∈ L
5
3 (0, T ;W

−1, 5
3

n (Ω)),

p ∈ L
5
3 (Q),

S ∈ L2(Q),

s ∈ L2(Γ),

e ∈ L∞(0, T ;L1(Ω)) ∩ L
5
4

)(0, T ;W 1, 5
4

)(Ω)),

e ≥ c3 a.e. in Q,

∂te ∈M(0, T ;W−1, 10
9

)(Ω)),

∂tE ∈ L
10
9

)(0, T ;W−1, 10
9

)(Ω)), (18)
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having denoted E := |v|2
2 + e. These functions satisfy for a.e. t ∈ (0, T ), all w ∈ W

1, 5
2

n (Ω) and
u ∈W 1,∞(Ω) the weak formulation

〈∂tv,w〉+

∫
Ω

(
S − pI − v ⊗ v

)
· ∇w dx+

∫
∂Ω

s ·w dS = 0, (19)

〈∂tE, u〉+

∫
Ω

(
Sv − (E + p)v + κ(e)∇e

)
· ∇u dx+

∫
∂Ω

s · vu dS = 0, (20)

where (S,Dv, e) and (s,vτ , e) satisfy (10) and (13), respectively.
In addition, we have the inequality

〈∂te, u〉+

∫
Ω

(
−ev + κ(e)∇e

)
· ∇u dx ≥

∫
Ω

(S ·Dv)u dx, (21)

satisfied in the sense of measures for every non-negative u ∈W 1,∞(Ω).
The initial data are being attained in the form

lim
t→0+

‖v(t)− v0‖2 + ess lim
t→0+

‖e(t)− e0‖1 = 0. (22)

As a sidenote, our proof would work just fine for any b ∈ L2(0, T ;W−1,2
n (Ω)); one would only

change regularity (18) to ∂tE ∈ L1(0, T ;W−1, 10
9

)(Ω)).

4 Properties and approximations of the implicit relations

Listing the qualities of graphs A and B crucial in the proof of Theorem 2, let us begin with an easy
observation about their coercivity and monotonicity. Since the situation for B is by its definition quite
analogous to that of A, we will explicitly deal only with the latter:

Lemma 3 Let graph A be of the form (10) and Assumption 1 hold. Then there exist α, β > 0 such
that

S ·D ≥ α(|S|2 + |D|2)− β, (23)

(S − S′) · (D −D′) ≥ 0, (24)

for any (S,D, e), (S′,D′, e) ∈ A.

Proof. Let us first consider τ1(e) = 0, i.e.

D =
1

2ν(e)
· (|S| − τ2(e))+

|S|
S.

Then, from (15) and (16),

S ·D =
|S|

2ν(e)
(|S| − τ2(e))+ ≥ 1

2ν(e)

(
(|S| − τ2(e))+

)2 ≥ 1

2c2

(
(|S| − c0)+

)2 ≥ 1

2c2

(
|S|2

4
− c2

0

)
.

Since also

|D|2 =
1

(2ν(e))2

(
(|S| − τ2(e))+

)2
,

we obtain simultaneously
S ·D ≥ 2ν(e)|D|2 ≥ 2c1|D|2,

yielding (23) in the case τ1(e) = 0.
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As for (24), the mapping

A 7−→ (|A| − τ2(e))+

|A|
A, A ∈ R3×3,

is monotone and ν(e) > 0, whence

(S − S′) · (D −D′) =
1

2ν(e)
(S − S′) ·

(
(|S| − τ2(e))+

|S|
S − (|S′| − τ2(e))+

|S′|
S′
)
≥ 0.

Should τ1(e) > 0, then τ2(e) = 0 by (17) and we would proceed completely analogously.

Identifying weak limits of non-linear quantities in the proof of Theorem 2, we will need the following
convergence lemma, whose version without the internal energy has become quite standard (see [9]). In
our case, the addition of a compact sequence (ek)k makes the situation somewhat trickier, however.
Although stated for A, the statement is equally valid also for B.

Lemma 4 Let A be of the form (10) and U ⊂ Q be measurable. Consider sequences (Sk)k, (Dk)k
and (ek)k of measurable functions on U , satisfying

(Sk,Dk, ek) ∈ A a.e. in U for all k ∈ N,
Sk → S weakly in L2(U),

Dk →D weakly in L2(U),

ek → e a.e. in U,

lim sup
k→∞

∫
U
Sk ·Dk ≤

∫
U
S ·D.

Then (S,D, e) ∈ A a.e. in U and Sk ·Dk → S ·D weakly in L1(U).

Proof. This is a non-trivial modification of the convergence lemma given in [9] with the first foray
into the temperature-dependent territory in [2]. The proof to Lemma 4 can be found in Appendix,
p. 22.

When proving Theorem 2, our starting point (one of them, actually; see the following section) is
modifying graphs A and B to make them functional graphs as follows: Let k ∈ N. Graph A will be
approximated by Ak ⊂ R3×3 × R3×3 × R, defined through

(S,D, e) ∈ Ak ⇐⇒ S = min
{
k + 2ν(e),

2ν(e)(|D| − τ1(e))+ + τ2(e)

|D|

}
D. (25)

where (S,D, e) ∈ R3×3 × R3×3 × R. Note that in this approximation, S has become a continuous
function of (D, e) and we define

Sk(D, e) := S.

Graph B will be modified quite analogously in
{

0 ≤ |vτ | < σ2(e)/k
}

by means of Bk ⊂ R3×R3×R,
where

(s,vτ , e) ∈ Bk ⇐⇒ s = min
{
k + γ(e),

γ(e)(|vτ | − σ1(e))+ + σ2(e)

|vτ |

}
vτ

for (s,vτ , e) ∈ R3 × R3 × R. Let us set

sk(vτ , e) := s.

Both graphs Ak and Bk are still monotone and coercive, uniformly in k. We state this observation
again for Ak only, the situation with Bk being completely analogous:

9



Figure 3: Intuition behind A and Ak for τ2(e) > 0 and τ1(e) > 0, respectively. Ak is dashed.

Lemma 5 Let Assumption 1 hold. Then there exist α, β > 0 such that for all k ∈ N and arbitrary
(S,D, e), (S′,D′, e) ∈ Ak it holds that

S ·D ≥ α(|S|2 + |D|2)− β,

(S − S′) · (D −D′) ≥ 0.

Proof. This is obvious from definition (25).

The approximated graphs prevent us from a straightforward employment of Lemma 4. Therefore
we will need a slight modification of the result:

Lemma 6 Let U ⊂ Q be measurable, A be defined by (10) and Ak be of the form (25) for any k ∈ N.
Consider sequences (Sk)k, (Dk)k and (ek)k of measurable functions on U , satisfying

(Sk,Dk, ek) ∈ Ak a.e. in U for all k ∈ N,
Sk → S weakly in L2(U), (26)

Dk →D weakly in L2(U),

ek → e a.e. in U,

lim sup
k→∞

∫
U
Sk ·Dk ≤

∫
U
S ·D. (27)

Then (S,D, e) ∈ A a.e. in U and Sk ·Dk → S ·D weakly in L1(U).

Proof. This claim follows from Lemma 4, once we show that the approximated graphs Ak converge, in
a sense, uniformly to A. For k ∈ N, consider the projection

Pk = (PkS ,PkD,Pke ) : Ak −→ A,

defined for (A,B, s) ∈ Ak via

Pk(A,B, s) :=


(
A,

1

2ν(s)
· (|A| − τ2(s))+

|A|
A, s

)
if 0 ≤ |A| < τ2(s) +

2ν(s)τ2(s)

k
,(

A,B, s
)

else.

(28)

10



Figure 4: Insight behind Pk for τ2(e) > 0 and τ1(e) > 0, respectively. Pk(Ak) is dashed.

From definitions (25) and (28) it follows that∣∣PkD(A,B, s)−B
∣∣ ≤ 2τ2(s)

k
.

As a result, for every (A,B, s) ∈ Ak it holds due to Assumption 1 that∥∥Pk(A,B, s)− (A,B, s)
∥∥
R3×3×R3×3×R ≤

C

k
, (29)

uniformly in k > 0. Let us denote D
k

:= PkD(Sk,Dk, ek). The functions (D
k
)k are measurable on U

since Pk is continuous due to Assumption 1. The properties (26)–(29) thus enable us to infer

(Sk,D
k
, ek) ∈ A a.e. in U for all k ∈ N,
Sk → S weakly in L2(U),

D
k →D weakly in L2(U),

ek → e a.e. in U,

lim sup
k→∞

∫
U
Sk ·Dk ≤

∫
U
S ·D.

Now both statements of the lemma follow from the already proven Lemma 4. The weak convergence in

L1(U) is easily justified by Dk −D
k → 0 strongly in L∞(U).

Remark 7 Lemma 6 holds completely analogously also for graph B and its approximations Bk.

5 Proof of Theorem 2

The existence theorem is proved by means of a suitable approximation scheme indexed by parameter
k ∈ N with which we will pass to infinity.

Firstly, the convective term is truncated so that the velocity field could be used as a test function
in the balance of linear momentum, i.e. w := v in (19). For this purpose, let Φ ∈ C1([0,∞)) be a
non-increasing function such that Φ(x) = 1 if x ≤ 1, Φ(x) = 0 if x ≥ 2 and Φ(x) ∈ (0, 1) otherwise,
with |Φ′(x)| ≤ 2. For k ∈ N then define

Φk(x) := Φ(k−1x).

11



Secondly, as foreshadowed already, the implicit relations given by A and B will be replaced by Ak
and Bk, respectively. Consequently, we will be enabled to use the standard Carathéodory theory
to construct some stepping-stone solutions, since instead of the relatively complicated S and s in
the original problem, we will deal with explicitly given Sk(Dv, e) and sk(vτ , e) := −(Sk(Dv, e)n)τ ,
respectively. Thirdly, due to the approximation’s ability to take the velocity as a test function in the
balance of linear momentum, there is no need for inequality (5) as the balance of total energy (3) is
equivalent to the balance of internal energy (4).

Recalling also our assumption to neglect the external forces, the original system will ergo be for
k ∈ N approached by

∂tv + div((v ⊗ v)Φk(|v|))− divSk(Dv, e) +∇p = 0 in Q, (30)

div v = 0 in Q, (31)

∂te+ div(ev − κ(e)∇e) = Sk(Dv, e) ·Dv in Q, (32)

v · n = 0 on Γ, (33)

vτ = sk(vτ , e) on Γ, (34)

κ(e)∇e · n = 0 on Γ, (35)

v(0) = v0 in Ω, (36)

e(0) = e0 in Ω. (37)

That the above system possesses a weak solution can be expressed as follows:

Lemma 8 Let assumptions of Theorem 2 be met. Then for every k ∈ N there exists a weak solution
to the approximated problem (30)–(37), i.e. a triplet (vk, ek, pk) such that

vk ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;W 1,2
n,div(Ω)), (38)

∂tv
k ∈ L2(0, T ;W−1,2

n (Ω)),

pk ∈ L2(Q),

ek ∈ L∞(0, T ;L1(Ω)) ∩ L
5
4

)(0, T ;W 1, 5
4

)(Ω)), (39)

ek ≥ c3 a.e. in QT , (40)

∂te
k ∈ L1(0, T ;W−1, 10

9
)(Ω)), (41)

satisfying for a.e. t ∈ (0, T ), all w ∈W 1,2
n (Ω) and u ∈W 1,∞(Ω) the weak formulation

〈∂tvk,w〉+

∫
Ω

(
Sk − pkI − (vk ⊗ vk)Φk(|vk|)

)
· ∇w dx+

∫
∂Ω

sk ·w dS = 0, (42)

〈∂tek, u〉+

∫
Ω

(
−ekvk + κ(ek)∇ek

)
· ∇u dx =

∫
Ω

(Sk ·Dvk)u dx, (43)

abbreviating Sk := Sk(Dvk, ek) and sk := sk(vkτ , e
k). In addition, the internal energy satisfies for a.e.

t ∈ (0, T ) and any non-negative u ∈W 1,∞(Ω)∫
Ω

√
ek(t)u dx−

∫
Ω

√
e0 u dx+

∫
Qt

(
−
√
ek vk +

κ(ek)∇ek

2
√
ek

)
· ∇u dx dt ≥ 0. (44)

The initial conditions are attained through

lim
t→0+

‖vk(t)− v0‖2 + ess lim
t→0+

‖ek(t)− e0‖1 = 0.

Furthermore, we have the estimate

ess sup
t∈(0,T )

(
‖vk(t)‖22 + ‖ek(t)‖1

)
+

∫ T

0

(
‖vk‖21,2 + ‖ek‖

5
4

)

1, 5
4

)
+ ‖pk‖

5
3
5
3

+ ‖Sk‖22
)
dt+

∫
Γ
|sk|2 dS dt ≤ C.

(45)

where C is independent of k.
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Remark 9 Notice that Lemma 8 implies straightaway∫ T

0

(
‖vk‖

10
3
10
3

+ ‖ek‖
5
3

)
5
3

)
+ ‖∂tvk‖

5
3

W
−1, 53
n

+ ‖∂tek‖
W−1, 109 )

)
dt+

∫
Γ
|vk|

8
3 dS dt ≤ C, (46)

with C independent of k.

Proof of Remark 9. The first two terms follow from the embeddings

L∞(0, T ;L2(Ω)) ∩ L2(0, T ;W 1,2(Ω)) ↪→ L
10
3 (0, T ;L

10
3 (Ω)),

L∞(0, T ;L1(Ω)) ∩ L
5
4

)(0, T ;W 1, 5
4

)(Ω)) ↪→ L
5
3

)(0, T ;L
5
3

)(Ω)),

respectively. For the boundary term we add also the trace theorem via∫
∂Ω
|vk|

8
3 dS ≤ C‖vk‖

8
3
3
4
,2
≤ C‖vk‖

2
3
2 ‖v

k‖21,2.

The bounds on the time derivatives follow from the weak formulations (42) and (43), respectively,
estimate (45) and the already proven part of (46).

Notes on the proof of Lemma 8. Towards proving Lemma 8, the problem (30)–(37) would be approxi-
mated even further by a quasicompressible system with a parameter ε > 0; our plan being to take the
limit ε→ 0+. Specifically, the solenoidal condition (31) is replaced by the Neumann problem for the
pressure, so that the approximation could be symbolically described as

div v = 0 in Q


div v = ε∆p in Q,

∇p · n = 0 on Γ,∫
Ω
p(x) dx = 0 in (0, T ).

(47)

The quasicompressible approximation helps us construct an integrable pressure and once we have a
solution thereof, the limit pass ε→ 0+ to (30)–(37) is achieved by means of ε-uniform estimates. These
are available thanks to the Helmholtz decomposition of the space W 1,2

n (Ω) (which does not apply to
W 1,2

0 (Ω), for instance). A solution to the quasicompressible approximation can be found by dint of a
two-level Galerkin space discretization. This is necessary e.g. for reasons of warranting the minimum
principle for the internal energy (40).

Due to its having been done in [6] for a similar situation, we will skip the proof. Compared to the
proof of our main Theorem 2, the differences between the proof of Lemma 8 and its counterpart in [6]
are practically aesthetic only: Firstly, e-dependent coefficients, whose convergence is easily deduced
by compactness of the internal energy both in Q and on Γ, and Assumption 1 so that they add no
additional difficulty whatsoever. Secondly, presence of Ak and Bk and necessity for convergence of
pertinent non-linear terms are equally simple by means of Minty’s trick (recall both Ak and Bk are
continuous and Lemma 5 guarantees monotonicity).

However, not wanting to rest upon the blackbox of [6] completely, let us, at least informally, derive
inequality (44) and the uniform estimate (45) here: The inequality (44) plays only an auxiliary role
for the attainment of the initial value of the internal energy. If we could test the balance of internal
energy (43) with the function

u(t, x) :=
u

2
√
ek
χ(0,t),

where χ(0,t) is the characteristic function of the interval (0, t) and u ∈ W 1,∞(Ω) is arbitrary yet
non-negative, we would end up with

13



∫
Ω

√
ek(t)u dx−

∫
Ω

√
e0 u dx+

∫
Qt

(
−
√
ek vk +

κ(ek)∇ek

2
√
ek

)
· ∇u dx dt

=

∫
Qt

(Sk ·Dvk

2
√
ek

+
κ(ek)|∇ek|2

4ek
√
ek

)
u dx dt ≥ 0. (48)

Indeed, this is possible only formally, since with such a choice we no longer have u(t) ∈ W 1,∞(Ω),
as required in (43). This problem, however, can be overcome in multiple ways, e.g. by testing the
equation at the level of sufficiently regular approximations and then showing that the inequality (48),
being already well-defined under the properties (38)–(40), is stable under passing to limit. We will
corroborate this stability for the final limit k →∞ when justifying attainment of the initial internal
energy on p. 21, which will also edify about stability leading to (44) in the first place.

Concerning the estimate (45), for a fixed k ∈ N, the velocity field vk remains an admissible test
function in the balance of linear momentum (42). Hence the energy equality in the balance of linear
momentum holds, and when combined with coercivity from Lemma 5 and Korn’s inequality, we deduce

ess sup
t∈(0,T )

‖vk(t)‖22 +

∫ T

0

(
‖vk‖21,2 + ‖Sk‖22

)
dt+

∫
Γ
|sk|2 dS dt ≤ C. (49)

For the estimate on the pressure, we consider an auxiliary problem

−∆h = |pk|−
1
3 pk − 1

|Ω|

∫
Ω
|pk|−

1
3 pk dx in Q,

∇h · n = 0 on Γ,∫
Ω
h dx = 0 in (0, T ).

Since the elliptic theory for Neumann’s problem (here we need the C1,1 boundary of Ω; see e.g. [18])
yields the bound

‖∇h‖1, 5
2
≤ C‖pk‖ 5

3

with C influenced by Ω only, and (47) guarantees

−
∫
Q
pkI · ∇2h dx dt =

∫ T

0
‖pk‖

5
3
5
3

dt,

we take w := ∇h ∈W 1,2
n (Ω) in (42) and hence (after some computation, exploiting particularly mutual

orthogonality of w and ∂tv
k) derive ∫ T

0
‖pk‖

5
3
5
3

dt ≤ C.

Estimates for equations with the right-hand side in L1 yield the rest: in (43), let us first take u := 1
and then u := (ek)λ for −1 < λ < 0. The second choice of the test function yields∫

Q

|∇ek|2

(ek)1−λ ≤
C

λ+ 1

and thence altogether we can deduce

ess sup
t∈(0,T )

‖ek(t)‖1 +

∫ T

0
‖ek‖

5
4

)

1, 5
4

)
dt ≤ C.

See [6] for details.

Having already proved the additional estimate (46), the real work has to be done only in the final
limit, i.e. k →∞, which is exactly what the proof of Theorem 2 is all about.

14



Proof of Theorem 2. Uniform estimates (45) and (46) combined with the Banach-Alaoglu, the Eberlein-
Šmulian and the Aubin-Lions theorems allow us to assume that as k →∞, the following convergences
take place:

vk → v weakly in L2(0, T ;W 1,2
n,div(Ω)), (50)

vk → v weakly∗ in L∞(0, T ;L2(Ω)), (51)

vk → v strongly in L
10
3

)(Q), (52)

∂tv
k → ∂tv weakly in L

5
3 (0, T ;W

−1, 5
3

n (Ω)), (53)

pk → p weakly in L
5
3 (Q),

ek → e weakly in L
5
4

)(0, T ;W 1, 5
4

)(Ω)), (54)

ek → e strongly in L
5
3

)(Q), (55)

ek → e a.e. in Q, (56)

∂te
k → ∂te weakly in M(0, T ;W−1, 10

9
)), (57)

Sk → S weakly in L2(Q), (58)

sk → s weakly in L2(Γ). (59)

We are also able to derive compactness of the traces of vk and ek, namely that they satisfy

vk → v strongly in L2(Γ), (60)

ek → e strongly in L1(Γ). (61)

Indeed, the strong convergences (52) and (55), interpolation and the trace theorem imply

L2(0, T ;W 1,2
n (Ω)) ∩W 1, 5

3 (0, T ;W
−1, 5

3
n (Ω)) ↪→↪→ L2(0, T ;W

1),2
n (Ω)) ↪→ L2(Γ),

L
5
4

)(0, T ;W 1, 5
4

)(Ω)) ∩W 1,1(0, T ;W−1, 10
9

)(Ω)) ↪→↪→ L1(0, T ;Wα, 5
4 (Ω)) ↪→ L1(Γ)

for any α ∈ (4/5, 1) as the first embedding on the second line holds for any 0 < α < 1, while the second
one only for α > 4/5. All in all, (60) and (61) are thus justified. Notice also that (40), (45), (56) and
Fatou’s lemma imply

e ∈ L∞(0, T ;L1(Ω)).

Weak formulation. The above convergences make passing from (42) to (19) trivial. The situation
in (43) is quite the opposite and we are unable to pass to the limit in its current form. Therefore we
replace the equation for the internal energy ek with that for the total energy

Ek :=
|vk|2

2
+ ek.

To this end, let u ∈ W 1,∞(Ω) and in (42) take w := vku ∈ W 1,2
n (Ω). Adding the resulting identity

to (43), for a.e. t ∈ (0, T ) we obtain

〈∂tEk, u〉+

∫
Ω

(
Skvk − (Ek + pk)vk + κ(ek)∇ek

)
· ∇u dx+

∫
∂Ω

sk · vku dS + fk(u) = 0, (62)

where, using div vk = 0,

fk(u) =

∫
Ω

(
|vk|2

2
vk · ∇u− (vk ⊗ vk)Φk(|vk|) · (u∇vk + vk ⊗∇u)

)
dx
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=

∫
Ω

(
|vk|2

2
vk · ∇u− uvk · ∇

(∫ |vk|

0
sΦk(s) ds

)
− Φk(|vk|)|vk|2vk · ∇u

)
dx

=

∫
Ω

(
|vk|2

2
vk · ∇u+

(∫ |vk|

0
sΦk(s) ds

)
vk · ∇u− Φk(|vk|)|vk|2vk · ∇u

)
dx

=

∫
Ω

(∫ |vk|

0
s(Φk(s)− 1) ds+ (1− Φk(|vk|))|vk|2

)
vk · ∇u dx

and we notice ∫ T

0
|fk(u)| dt→ 0 (63)

for k →∞ and actually every u ∈ L(10(0, T ;W 1,(10(Ω)) due to (52) and the fact that Φk ↗ 1. Taking
into consideration (50)–(59), it is hence easy to pass from (62) to (20). Note that the estimates (45)
and (46) yield

sup
k

(∥∥Skvk − (Ek + pk)vk + κ(ek)∇ek
∥∥
L

10
9 )(Q)

+ ‖sk · vk‖
L

10
9 (Γ)

)
<∞, (64)

so that unlike (57), for the total energy we can suppose by (62), (63) and (64),

∂tE
k → ∂tE weakly in L

10
9

)(0, T ;W−1, 10
9

)(Ω)),

yielding (18).

Threshold conditions. Next we will show validity of (10) and (13), i.e. practically that the weak
limit of a non-linear function is this non-linear function of the weak limit of its argument. For this sake
we employ Lemma 6. Regarding (13), all prerequisites of the convergence lemma are met, including
the lim sup condition (27) due to the compactness of traces. Hence (s,vτ , e) ∈ B a.e. on Γ on account
of (59)–(61).

Towards the other inclusion, i.e. (S,Dv, e) ∈ A a.e. in Q, the crucial lim sup condition is still to
be proved: ∫

Ej

S ·Dv ≥ lim sup
k→∞

∫
Ej

Sk ·Dvk, (65)

for some measurable Ej ⊂ Q, j ∈ N, satisfying lim
j→∞

|Q \ Ej | = 0. The procedure to achieve this end is

based on the L∞-truncation method [1, 17], as we cannot take w := v in the weak formulation (19).
Its deployment necessitates the pressure decomposition first.

Pressure decomposition. Although we have a uniform 5/3-integrability result for the pressure
in (45), this is not yet satisfactory. For the ensuing L∞-truncation method we need the pressure to be
at least L2(Q) or, on the other hand, Sobolev in Ω, albeit with an exponent of integrability less than
5/3. In this paragraph we will show that we can split

pk = pk1 + pk2

with pk1 ∈ L2(Q) and pk2 ∈ L
5
4 (0, T ;W 1, 5

4 (Ω)); with the respective bounds in both cases uniform in k
(for this step we need a C1,1 boundary of Ω), implying that we can assume

pk1 → p1 weakly in L2(Q), (66)

pk2 → p2 weakly in L
5
4 (0, T ;W 1, 5

4 (Ω)), (67)
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with p1 + p2 = p. We will only sketch the procedure as the detailed version is to be found in [4] and
the very origin lies in [7].

According to (42), for any ϕ ∈W 2,2(Ω) such that ∇ϕ · n = 0 at ∂Ω and a.e. t ∈ (0, T ), we have∫
Ω
pk∆ϕdx =

∫
Ω

(
Sk − (vk ⊗ vk)Φk(|vk|)

)
· ∇2ϕdx+

∫
∂Ω

sk · ∇ϕdS = 0.

Let the partial pressure pk1 be for a.e. t ∈ (0, T ) given as the unique weak solution to∫
Ω
pk1∆ϕdx =

∫
Ω
Sk · ∇2ϕdx+

∫
∂Ω

sk · ∇ϕdS,

∇pk1 · n = 0 on ∂Ω,∫
Ω
pk1 = 0,

and pk2 := pk − pk1 so that pk2 satisfies for a.e. t ∈ (0, T )

−
∫

Ω
∇pk2 · ∇ϕdx =

∫
Ω

div
(
(vk ⊗ vk)Φk(|vk|)

)
· ∇ϕdx,

in both cases for all ϕ ∈W 2,2(Ω) such that ∇ϕ ·n = 0 at ∂Ω. The elliptic theory then makes it possible
to derive k-uniform bounds leading to (66) and (67) (note that the sequence

(
div((vk⊗vk)Φk(|vk|))

)
k

is bounded in L
5
4 (Q)).

Now we can bound (∂tv
k)k in L2(0, T ;W−1,2

n (Ω)) + L
5
4 (Q): Let w ∈ L2(0, T ;W 1,2

n (Ω)) ∩ L5(Q).
Weak formulation (42) and the above pressure decomposition yield ∂tv

k = ∂tv
k
1 + ∂tv

k
2, where

〈∂tvk1,w〉 :=

∫
Ω

(
Sk − pk1I

)
· ∇w dx+

∫
∂Ω

sk ·w dS,

〈∂tvk2,w〉 :=

∫
Ω

(
div(vk ⊗ vk)Φk(|vk|) +∇pk2

)
·w dx,

so that, due also in part to estimate (45),∫ T

0

∣∣〈∂tvk1,w〉∣∣ ≤ C‖w‖L2(W 1,2
n )

,∫ T

0

∣∣〈∂tvk2,w〉∣∣ ≤ C‖w‖L5(Q),

uniformly in k. As such, one may suppose

∂tv
k → ∂tv weakly in L2(0, T ;W−1,2

n (Ω)) + L
5
4 (Q). (68)

Preliminary definitions. Let N ∈ N be arbitrary, yet fixed, and consider the functions

Ik := |pk1|2 + |∇vk|2 + |∇v|2 + |Sk|2 + |S|2 + 1,

where S ∈ L2(Q) be such that

2ν(e)
(|Dv| − τ1(e))+

|Dv|
Dv =

(
|S| − τ2(e)

)+
|S|

S. (69)

Note that thus defined, S is not uniquely determined in {Dv = 0} ∩ {τ2(e) > 0}. Therefore we simply
set S := 0 in {Dv = 0}. Next, we define sets

Qki := {N i < |vk − v| ≤ N i+1}, i = 1, . . . , N.
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Since Qki are mutually disjoint, for all k we have

N∑
i=1

∫
Qk

i

Ik ≤ sup
k

∫
Q
Ik ≤ C,

so that for every k there is ik ∈ {1, . . . , N} such that∫
Qk

ik

Ik ≤ C

N
. (70)

Finally, set
λk := N ik .

L∞-truncation itself. Due to the results (66)–(68), we can test in the weak formulation (42) with
the truncated velocity difference

wk :=

vk − v if |vk − v| ≤ λk,

λk
vk − v

|vk − v|
if |vk − v| > λk.

From (52) and (60), it follows that

wk → 0 strongly in L∞)(Q) and L∞)(Γ),

which in conjunction with |∇wk| ≤ 2|∇(vk − v)| and convergence (50) lets us also assume

wk → 0 weakly in L2(0, T ;W 1,2
n (Ω)). (71)

Finally, referring to [5, Sec. 2.3], we only mention the last crucial property of wk, namely

lim inf
k→∞

∫ T

0
〈∂tvk,wk〉 dt ≥ 0.

Using wk as a test function in (42) hence yields

lim sup
k→∞

∫
Q

(
Sk ·Dwk − pk1 divwk

)
= lim sup

k→∞

[
−
∫ T

0
〈∂tvk,wk〉 −

∫
Q

(
div(vk ⊗ vk)Φk(|vk|) ·wk +∇pk2 ·wk

)
−
∫

Γ
sk ·wk

]
≤ 0.

Due to

| divwk| ≤

0 in {|vk − v| ≤ λk},
2λk(|∇vk|+ |∇v|)

|vk − v|
in {|vk − v| > λk}

and (71), we observe

lim sup
k→∞

∫
Q

(Sk − S) ·Dwk ≤ lim sup
k→∞

∫
{|vk−v|>λk}

2λk

|vk − v|
|pk1|(|∇vk|+ |∇v|).
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The last estimate and Young’s inequality imply

lim sup
k→∞

∫
{|vk−v|≤λk}

(Sk − S) · (Dvk −Dv)

= lim sup
k→∞

(∫
Q

(Sk − S) ·Dwk −
∫
{|vk−v|>λk}

(Sk − S) ·Dwk
)

≤ C · lim sup
k→∞

∫
{|vk−v|>λk}

λk

|vk − v|
Ik

= C · lim sup
k→∞

(∫
{N ik+1≥|vk−v|>N ik}

N ik

|vk − v|
Ik +

∫
{|vk−v|>N ik+1}

N ik

|vk − v|
Ik
)

≤ C · lim sup
k→∞

(∫
Qk

ik

Ik +
1

N ik

∫
Q
Ik
)

≤ C

N
,

(72)

the last step being asured by (70), with C > 0 independent of k or N .

Checking the lim sup condition. First we show Zk := (Sk − S) · (Dvk −Dv) becomes almost
non-negative for k →∞, i.e.

(Zk)− → 0 strongly in L1(Q), (73)

where we recall (Zk)− := min{Zk, 0}. Recalling furthermore our condensed notation Sk = Sk(Dvk, ek)
and monotonicity of Sk(·, ek) due to Lemma 5, we have a.e. in Q

Zk = (Sk − Sk(Dv, ek)) · (Dvk −Dv) + (Sk(Dv, ek)− S) · (Dvk −Dv)

≥ (Sk(Dv, ek)− S) · (Dvk −Dv).

We will show

(Sk(Dv, ek)− S) · (Dvk −Dv)→ 0 strongly in L1(Q), (74)

which implies (73). Let us write Q = {|Dv| = 0} ∪ {|Dv| > 0}. This decomposition makes it easy
to see that thanks to definitions of Sk and S, i.e. (25) and (69), respectively, and the fact that (ek)k
converges pointwise by (56), we have

Sk(Dv, ek)→ S a.e. in Q.

Next, again owing to (25), (69) and Assumption 1 we also observe∣∣Sk(Dv, ek)− S
∣∣ ≤ C|Dv|,

a.e. in Q independently of k. The dominated convergence theorem (mind that sequence (Dvk −Dv)k
is bounded in L2(Q) from (50)) hence yields (74).

Next we combine results (72) and (73), deducing

lim sup
k→∞

∫
{|vk−v|≤λk}

∣∣Zk∣∣ ≤ C

N
. (75)

Hölder’s and Chebyshev’s inequalities therefore entail∫
Q

√∣∣Zk∣∣ ≤ ∫
{|vk−v|≤λk}

√∣∣Zk∣∣+

∫
{|vk−v|>λk}

√∣∣Zk∣∣
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≤
√
|Q|
√∫

{|vk−v|≤λk}

∣∣Zk∣∣+ C
√∣∣{|vk − v| > N}

∣∣
≤ C

(√∫
{|vk−v|≤λk}

∣∣Zk∣∣+
1

N

)
,

producing, by means of (75),

lim sup
k→∞

∫
Q

√∣∣Zk∣∣ ≤ C√
N
,

for every N ∈ N, allowing us to assume

Zk → 0 a.e. in Q.

Now, let δ > 0 be arbitrary. Egoroff’s theorem implies

Zk → 0 strongly in L1(E)

for some measurable E ⊂ Q with |Q \ E| < δ. It means, recalling convergences (50) and (58) in the
process,

0 = lim
k→∞

∫
E
Zk = lim

k→∞

∫
E

(Sk − S) · (Dvk −Dv) = lim
k→∞

∫
E
Sk ·Dvk −

∫
E
S ·Dv.

Hence it is enough to take a sequence δj → 0, corresponding Ej ⊂ Q and we obtain in particular (65).

Internal energy inequality. In order to show (21) by passing to limit in (43), it suffices to prove,
due to convergences (52) and (54)–(57),

lim inf
k→∞

∫
Q

[
(Sk ·Dvk)u

]
≥
∫
Q

[
(S ·Dv)u

]
, (76)

for every non-negative u ∈ C([0, T ];W 1,∞). But this is easy, since (Sk ·Dvk)u ≥ 0 and (S ·Dv)u is
summable in Q: Let ε > 0 be arbitrary. Then there is δ > 0 such that for any measurable E ⊂ Q,
|Q \ E| < δ, we have ∫

Q\E

[
(S ·Dv)u

]
≤ ε.

Take the corresponding E in Lemma 6. Then

lim inf
k→∞

∫
Q

[
(Sk ·Dvk)u

]
≥ lim inf

k→∞

∫
E

[
(Sk ·Dvk)u

]
=

∫
E

[
(S ·Dv)u

]
≥
∫
Q

[
(S ·Dv)u

]
− ε,

implying (76).

Initial condition for the velocity. Attainment of the initial condition (22) for the velocity is
shown in a standard way; see e.g. [4, Sec. 5.4]. We will reproduce it here mutatis mutandis just for the
sake of reader’s convenience.

Let ζ ∈ C1
c ([0, T )) such that ζ(0) = −1. Multiply equation (19) with ζ and integrate it over (0, T ).

On account of the regularity results implied by (50), (51) and (53), we have v ∈ Cw([0, T ];L2(Ω)) and

for all w ∈W 1, 5
2

n (Ω) we have∫
Ω
v(0) ·w dx =

∫
Q

(
v ·wζ ′ − (S − pI − v ⊗ v) · ∇wζ

)
dx dt−

∫
Γ
s ·wζ dS dt. (77)
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Doing the same thing in the approximated equation (42) yield∫
Ω
v0 ·w dx =

∫
Q

(
vk ·wζ ′ −

(
Sk − pkI − (vk ⊗ vk)Φk(|vk|)

)
· ∇wζ

)
dx dt−

∫
Γ
sk ·wζ dS dt.

Taking k →∞, using the properties (50)–(59) and comparing the result with (77) yields∫
Ω

(
v0 − v(0)

)
·w dx = 0, (78)

so that v(0) = v0 due to arbitrariness of w.
Next we will show that

vk(t)→ v(t) weakly in L2(Ω) for all t ∈ (0, T ). (79)

Let t ∈ (0, T ), then sequence (vk(t))k is bounded in L2(Ω) and we may assume that for a subsequence

vkn(t)→ v weakly in L2(Ω).

Consider (42) for an arbitrary w ∈ W 1, 5
2

n (Ω) and multiply it with χ(0,t), the characteristic function
of (0, t). Then∫

Ω
vkn(t) ·w dx−

∫
Ω
v0 ·w dx

=

∫
Qt

(
pknI + (vkn ⊗ vkn)Φkn(|vkn |)− Skn

)
· ∇w dx dt−

∫
Γt

skn ·w dS dt,

which tends for n→∞ to∫
Ω
v ·w dx−

∫
Ω
v0 ·w dx =

∫
Qt

(
pI + v ⊗ v − S

)
· ∇w dx dt−

∫
Γt

s ·w dS dt

=

∫
Ω
v(t) ·w dx−

∫
Ω
v0 ·w dx,

by the weak formulation (19). Therefore v = v(t) and (79) holds true in the end.
Regarding the strong convergence to the initial value in L2(Ω), in the weak formulation (42) we

can take w = vk and multiply the equation by χ(0,t) for any t ∈ (0, T ), obtaining

‖vk(t)‖22 − ‖v0‖22 = −
∫
Qt

Sk ·Dvk dx dt−
∫

Γt

sk · vkτ dS dt ≤ 0,

by virtue of coercivity of Ak and Bk from Lemma 5.
Recalling v ∈ Cw([0, T ];L2(Ω)), v(0) = v0 and then adding (79) with the lower semicontinuity of

the norm finally yields

lim
t→0+

‖v(t)− v0‖22 = lim
t→0+

‖v(t)‖22 − ‖v0‖22 ≤ lim
t→0+

lim inf
k→∞

‖vk(t)‖22 − ‖v0‖22 ≤ 0. (80)

Initial condition for the internal energy. First we note that (18) implies

E ∈ C([0, T ];W−1, 10
9

)(Ω)),

and using the same procedure as towards (78), we could deduce

E(0) =
|v0|2

2
+ e0.
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The already proven (80) therefore yields

lim
t→0+

∫
Ω
e(t) dx =

∫
Ω
e0 dx. (81)

Now we finally recall the inequality (44). From the convergence results (51)–(58) it follows that for a.e.
t ∈ (0, T ) and any non-negative u ∈W 1,∞(Ω), we have∫

Ω

√
e(t)u dx−

∫
Ω

√
e0 u dx+

∫
Qt

(
−
√
ev +

κ(e)∇e
2
√
e

)
· ∇u dx dt ≥ 0.

This inequality patently implies

ess lim inf
t→0+

∫
Ω

√
e(t)u dx ≥

∫
Ω

√
e0 u dx,

for any non-negative u ∈ W 1,∞(Ω), whence also for any non-negative u ∈ L2(Ω) by the density
argument, so that

ess lim inf
t→0+

∫
Ω

√
e(t)
√
e0 dx ≥

∫
Ω
e0 dx. (82)

Since e(t)− e0 =
(√

e(t) +
√
e0

)(√
e(t)−√e0

)
, combining ultimately (81) with (82) produces

‖e(t)− e0‖21 ≤ ‖
√
e(t) +

√
e0‖22‖

√
e(t)−

√
e0‖22 ≤ C

∫
Ω

(
e(t) + e0 − 2

√
e(t)
√
e0

)
dx→ 0

in the essential sense for t→ 0+.

6 Appendix

This section is dedicated for the postponed proof of Lemma 4.

Lemma 4 Let A be of the form (10) and U ⊂ Q be measurable. Consider sequences (Sk)k, (Dk)k
and (ek)k of measurable functions on U , satisfying

(Sk,Dk, ek) ∈ A a.e. in U for all k ∈ N, (83)

Sk → S weakly in L2(U), (84)

Dk →D weakly in L2(U), (85)

ek → e a.e. in U, (86)

lim sup
k→∞

∫
U
Sk ·Dk ≤

∫
U
S ·D. (87)

Then (S,D, e) ∈ A a.e. in U and Sk ·Dk → S ·D weakly in L1(U).

Proof. Let A,B ∈ L2(U) be arbitrary. Denote

U1 := {τ1(e) = 0},
U2 := {τ1(e) > 0}

and recall

(A,B, e) ∈ A ⇐⇒


B = B(A) =

1

2ν(e)
· (|A| − τ2(e))+

|A|
A in U1,

A = A(B) = 2ν(e) · (|B| − τ1(e))+

|B|
B in U2.
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Our first aim is therefore to show

D =
1

2ν(e)
· (|S| − τ2(e))+

|S|
S in U1,

S = 2ν(e) · (|D| − τ1(e))+

|D|
D in U2.

(88)

The technical hindrance in our situation is that U1 6= {τ1(ek) = 0}, i.e. U2 6= {τ1(ek) > 0} in general.
However, due to compactness of (ek)k and the tractable behavior of the function ν(·) (see Assumption 1),
we are able to solve the problem using practically Minty’s method based on monotonicity.

Since both B(A) and A(B) are monotone and ν(·) ≥ c1 > 0 by assumption (16), we have

Ik1 := (Sk −A) ·
(

1

2ν(ek)
· (|Sk| − τ2(e))+

|Sk|
Sk − 1

2ν(ek)
· (|A| − τ2(e))+

|A|
A

)
≥ 0 in U1, (89)

Ik2 := (Dk −B) ·
(

2ν(ek) · (|Dk| − τ1(e))+

|Dk|
Dk − 2ν(ek) · (|B| − τ1(e))+

|B|
B

)
≥ 0 in U2. (90)

Condition (83) allows us to expand Ik1 and Ik2 as

Ik1 = (Sk −A) ·
(

1

2ν(ek)
· (|Sk| − τ2(e))+

|Sk|
Sk − 1

2ν(ek)
· (|Sk| − τ2(ek))+

|Sk|
Sk
)

+ (Sk −A) ·
(

(|Dk| − τ1(ek))+

|Dk|
Dk −Dk

)
+ (Sk −A) ·

(
Dk − 1

2ν(ek)
· (|A| − τ2(e))+

|A|
A

)
=: Jk1 + Jk2 + Jk3

and

Ik2 = (Dk −B) ·
(

2ν(ek) · (|Dk| − τ1(e))+

|Dk|
Dk − 2ν(ek) · (|Dk| − τ1(ek))+

|Dk|
Dk

)
+ (Dk −B) ·

(
(|Sk| − τ2(ek))+

|Sk|
Sk − Sk

)
+ (Dk −B) ·

(
Sk − 2ν(ek) · (|B| − τ1(e))+

|B|
B

)
=: Jk4 + Jk5 + Jk6 .

From definitions (89) and (90) it therefore follows that

0 ≤
∫
U1

Ik1 +

∫
U2

Ik2 =

∫
U1

Jk1 +

∫
U1

Jk2 +

∫
U1

Jk3 +

∫
U2

Jk4 +

∫
U2

Jk5 +

∫
U2

Jk6 . (91)

Let us now show

lim
k→∞

(∫
U1

Jk1 +

∫
U1

Jk2 +

∫
U2

Jk4 +

∫
U2

Jk5

)
= 0. (92)

Since the function fa(x) := (a− x)+ is a 1–Lipschitz mapping for any a ∈ R, we deduce∣∣∣(|Sk| − τ2(e))+ − (|Sk| − τ2(ek))+
∣∣∣ ≤ |τ2(e)− τ2(ek)|,

which, due to the continuity of τ2 and the pointwise convergence (86), implies

(|Sk| − τ2(e))+ − (|Sk| − τ2(ek))+ → 0 strongly in L∞)(U),

entailing

Jk1 → 0 strongly in L1(U1), (93)
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owing to (84), Hölder’s inequality and Assumption 1, controlling the viscosity ν. Similarly, in U1 we
have ∣∣∣∣(|Dk| − τ1(ek))+

|Dk|
Dk −Dk

∣∣∣∣ =

∣∣∣∣(|Dk| − τ1(ek))+

|Dk|
Dk − (|Dk| − τ1(e))+

|Dk|
Dk

∣∣∣∣
=
∣∣∣(|Dk| − τ1(ek))+ − (|Dk| − τ1(e))+

∣∣∣
≤ |τ1(ek)− τ1(e)|,

whence

(|Dk| − τ1(ek))+

|Dk|
Dk −Dk → 0 strongly in L∞)(U1),

implying this time

Jk2 → 0 strongly in L1(U1), (94)

for the same reason as in (93). As for Jk4 and Jk5 , these terms we can treat in the very analogous
fashion, thus proving (92). If we plug this result back into (91), we obtain

0 ≤ lim sup
k→∞

(∫
U1

Jk3 +

∫
U2

Jk6

)
= lim sup

k→∞

[∫
U1

(Sk −A) ·
(
Dk − 1

2ν(ek)
· (|A| − τ2(e))+

|A|
A

)

+

∫
U2

(Dk −B) ·
(
Sk − 2ν(ek) · (|B| − τ1(e))+

|B|
B

)]
. (95)

We have yet to replace ν(ek) with ν(e) on the right hand side, which is easy, given that boundedness
of ν from below yields ∣∣∣∣( 1

ν(e)
− 1

ν(ek)

)
· (|A| − τ2(e))+

|A|
A

∣∣∣∣2 ≤ C|A|2
and |A|2 is in L1 so that we may use the dominated convergence theorem (mind the continuity of ν)
to get (

1

ν(e)
− 1

ν(ek)

)
· (|A| − τ2(e))+

|A|
A→ 0 strongly in L2(U) (96)

and likewise (
ν(e)− ν(ek)

)
· (|B| − τ1(e))+

|B|
B → 0 strongly in L2(U). (97)

Using (96) and (97) in (95), we can further estimate

0 ≤ lim sup
k→∞

[∫
U1

(Sk −A) ·
(
Dk − 1

2ν(e)
· (|A| − τ2(e))+

|A|
A

)

+

∫
U2

(Dk −B) ·
(
Sk − 2ν(e) · (|B| − τ1(e))+

|B|
B

)]
. (98)

Finally, recalling our assumptions (84), (85), (87) and exploiting U2 = U \ U1, we pass to limit in (98),
thence

0 ≤
∫
U1

(S −A) ·
(
D − 1

2ν(e)
· (|A| − τ2(e))+

|A|
A

)
+

∫
U2

(D −B) ·
(
S − 2ν(e) · (|B| − τ1(e))+

|B|
B

)
.

(99)
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Now we take A := S ± εC for ε > 0 and an arbitrary C ∈ L2(U), and B := D. Like in the standard
Minty method, after ε→ 0+ we deduce

0 =

∫
U1

C ·
(
D − 1

2ν(e)
· (|S| − τ2(e))+

|S|
S

)
,

which implies, due to the arbitrary nature of C,

D =
1

2ν(e)
· (|S| − τ2(e))+

|S|
S in U1.

Similarly, if we in (99) set A := S and B := D ± εC, we infer

S = 2ν(e) · (|D| − τ1(e))+

|D|
D in U2,

i.e. (88), in other words (S,D, e) ∈ A.
Towards the second part of the lemma, namely

Sk ·Dk → S ·D weakly in L1(U), (100)

let us set A := S and B := D in (89) and (90), respectively. Since this choice makes the right-hand
side of (99) vanish, the procedure between (91) and (99) implies

lim
k→∞

(∫
U1

Ik1 +

∫
U2

Ik2

)
= 0.

Due to non-negativity of Ik1 and Ik2 we therefore obtain Ik1 → 0 strongly in L1(U1), and since
Jk3 = Ik1 − Jk1 − Jk2 and the right-hand side converges to zero strongly in L1(U1) due to (93) and (94),
we acquire

Jk3 = (Sk − S) ·
(
Dk − 1

2ν(ek)
· (|S| − τ2(e))+

|S|
S

)
→ 0 strongly in L1(U1).

By (96), we may replace ν(ek) with ν(e) in the above convergence, turning the resulting term into D
by (88). But this tells us nothing less than

(Sk − S) · (Dk −D)→ 0 strongly in L1(U1).

Completely analogously, from Jk6 = Ik2 − Jk4 − Jk5 , we can obtain the above convergence also in L1(U2),
i.e. in the end

(Sk − S) · (Dk −D)→ 0 strongly in L1(U).

Now exploiting the assumed weak convergences (84) and (85) yields (100), considering

Sk ·Dk = (Sk − S) · (Dk −D) + S · (Dk −D) + Sk ·D → S ·D weakly in L1(U).
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