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Abstract. Gauss quadrature can be naturally generalized to approximate quasi-definite linear
functionals, where the interconnections with (formal) orthogonal polynomials, Padé approximants,
(complex) Jacobi matrices and Lanczos algorithm are analogous to those in the positive definite case.
In this paper we show that existence of the n-weight (complex) Gauss quadrature corresponds to
performing successfully the first n steps of the Lanczos algorithm for generating the biorthogonal
bases of the two associated Krylov subspaces. We also prove that the Jordan decomposition of the
(complex) Jacobi matrix can be explicitly expressed in terms of the Gauss quadrature nodes and
weights and the associated orthogonal polynomials. Since the output of the Lanczos algorithm can
be made real whenever the input is real, it can be shown that the value of the Gauss quadrature is
a real number whenever all relevant moments of the quasi-definite linear functional are real.
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1. Introduction. We first briefly recall basic results on quasi-definite linear
functionals and orthogonal polynomials; for more details we refer to [21] and the
references given there.

Let L be a linear functional on the space P of polynomials with generally complex
coefficients, L : P → C. The functional L is fully determined by its values on
monomials, called moments,

L(x`) = m`, ` = 0, 1, . . . ,

with the associated Hankel determinants

∆j =

∣∣∣∣∣∣∣∣∣
m0 m1 . . . mj

m1 m2 . . . mj+1

...
...

. . .
...

mj mj+1 . . . m2j

∣∣∣∣∣∣∣∣∣ , j = 0, 1, . . . . (1.1)

In this paper we are interested in quasi-definite linear functionals.
Definition 1.1. A linear functional L for which the first k + 1 Hankel deter-

minants are nonzero, i.e., ∆j 6= 0 for j = 0, 1, . . . , k, is called quasi-definite on the
space of polynomials Pk of degree at most k.

A quasi-definite linear functional can be associated with a sequence of orthogonal
polynomials uniquely determined up to multiplicative constants.

∗Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Praha 8, Czech
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Definition 1.2. Polynomials p0, p1, . . . satisfying the conditions
1. deg(pj) = j (pj is of degree j),
2. L(pi pj) = 0, i < j,
3. L(p2j ) 6= 0,

form a sequence of orthogonal polynomials with respect to the linear functional L.
Orthogonal polynomials such that L(p2j ) = 1 are known as orthonormal polynomials.

Theorem 1.3 ([4, Chapter I, Theorem 3.1], [18, Chapter VII, Theorem 1]). A
sequence {pj}kj=0 of orthogonal polynomials with respect to L exists if and only if L
is quasi-definite on Pk.

A sequence of orthogonal polynomials p0, p1, . . . satisfies the three-term recur-
rence relation of the form

δjpj(x) = (x− αj−1)pj−1(x)− γj−1pj−2(x), for j = 1, 2, . . . , (1.2)

where we set γ0 = 0, p−1(x) = 0, p0(x) = c (c is a given complex number different
from zero), and

αj−1 =
L(xp2j−1)

L(p2j−1)
, δj =

L(xpj−1pj)

L(p2j )
, γj−1 =

L(xpj−2pj−1)

L(p2j−2)
,

(see [24, Theorem 3.2.1], [4, p. 19], [2, Theorem 2.4]). If the first n + 1 polynomials
p0, p1, . . . , pn exist, then all δ1, . . . , δn and γ1, . . . , γn−1 are different from zero. The
recurrence (1.2) for the first n+ 1 polynomials can be written in the matrix form

x


p0(x)
p1(x)

...
pn−1(x)

 = Tn


p0(x)
p1(x)

...
pn−1(x)

+ δn


0
0
...

pn(x)

 , (1.3)

where Tn is the irreducible tridiagonal complex matrix

Tn =


α0 δ1

γ1 α1
. . .

. . .
. . . δn−1

γn−1 αn−1

 .
We say that Tn is determined by the first 2n moments of L. The (2n+ 1)st moment
m2n present in (1.1) for j = n affects only the value of δn. Its value must assure that
∆n 6= 0; otherwise L(p2n) = 0 and therefore pn is not orthogonal polynomial with
respect to L.

A linear functional quasi-definite on Pn determines a family of irreducible tridiag-
onal matrices that are diagonally similar where this diagonal similarity is equivalent
to rescaling the sequence of orthogonal polynomials. It is worth noting that any irre-
ducible tridiagonal matrix is diagonally similar to a symmetric irreducible tridiagonal
matrix, called complex Jacobi matrix. The properties of complex Jacobi matrices are
summarized in [21, Section 4]. Here we recall the following result that is valid for
any tridiagonal matrix Tn associated with a sequence (1.3) of orthogonal polynomials
determined by a quasi-definite linear functional (see [21, Section 5]).

Theorem 1.4 (Moment Matching Property). Let L be a quasi-definite linear
functional on Pn and let Tn be given by (1.3). Then

L(xi) = m0 e
T
1 (Tn)i e1, i = 0, . . . , 2n− 1.
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On the other hand, as shown in [4, Chapter I, Theorem 4.4], in the survey [19,
Theorem 2.14] and firstly for the positive definite case by Favard in [5], if we consider
any sequence of polynomials satisfying

djpj(x) = (x− aj−1)pj−1(x)− cj−1pj−2(x), j = 1, 2, . . . , (1.4)

where

p−1(x) = 0, p0(x) = c, c0 = 0, aj , dj , cj , c ∈ C, dj , cj , c 6= 0,

then there exists a quasi-definite linear functional L such that p0, p1, . . . , are orthog-
onal polynomials with respect to L. In other words, providing that c, dj , cj 6= 0,
polynomials generated by (1.4) are always orthogonal polynomials. In addition, they
are orthonormal if and only if cj = dj and p0 is such that L(p20) = 1.

This also means that for any irreducible tridiagonal matrix Tn, there exists a linear
functional L quasi-definite on Pn−1 such that Tn is determined by the first 2nmoments
of L. As shown, e.g, in [1, proof of Theorem 2.3], two irreducible tridiagonal matrices

Tn and T̂n are determined by the first 2n moments of the same linear functional if
and only if they are diagonally similar, i.e., if Tn = D−1T̂nD, where D is an invertible
diagonal matrix. Or, equivalently, if and only if

αi = α̂i, i = 0, . . . , n− 1, (1.5)

and

δi γi = δ̂i γ̂i, i = 1, . . . , n− 1, (1.6)

where the elements of T̂n are marked with a hat.
The paper examines the interconnection between the n-weight complex Gauss

quadrature and the first n steps of the Lanczos algorithm for generating the biorthog-
onal bases of the two associated Krylov subspaces. It is organized as follows. In
Section 2 we derive the Lanczos algorithm for generating biorthonormal bases for the
spaces

span{v, Av, . . . , An−1v} and span{w, A∗w, . . . , (A∗)n−1w}

from the well-known Stieltjes procedure for generating orthonormal polynomials with
respect to the linear functional

L(f) = w∗f(A)v. (1.7)

If n is the maximal number of steps in the Lanczos algorithm that can be performed
without breakdown, then there exists no complex Gauss quadrature in the sense
of [21] for approximating the functional (1.7) with more than n weights. This is
shown in Section 3. Section 4 shows that the rows of the matrix W−1 in the Jordan
decomposition Jn = W ΛW−1 of the complex Jacobi matrix Jn can be expressed as a
linear combination of some particular generalized eigenvectors of Jn. The coefficients
in these linear combinations are the Gauss quadrature weights. In Section 5 quasi-
definite functionals with real moments are considered. Then the value of the Gauss
quadrature is a real number. Using a proper scaling one can achieve that the Lanczos
algorithm involves only real number computations.
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Throughout the paper we deal with mathematical relationship between quantities
that are determined exactly. Since the effects of rounding errors to computations using
short recurrences are substantial, the results of this paper cannot be applied, without a
thorough analysis, to finite precision computations. Such analysis is out of the scope of
this paper. As in the positive definite case, however, understanding of the relationship
assuming exact computation is a prerequisite for any further investigation.

2. Orthogonal polynomials and the Lanczos algorithm. Let A be a square
complex matrix and let v be a complex vector of the corresponding dimension. The
nth Krylov subspace generated by A and v is defined by

Kn(A,v) = span{v, Av, . . . , An−1v},

or, equivalently,

Kn(A,v) = {p(A)v : p ∈ Pn−1},

where Pn−1 is the subspace of (all) polynomials of degree at most n − 1. The basic
facts about Krylov subspaces had been formulated by Gantmacher in 1934; see [6]. In
particular, there exists a uniquely defined integer d = d(A,v), called the grade of v
with respect to A, so that the vectors v, . . . , Ad−1v are linearly independent and the
vectors v, . . . , Ad−1v, Adv are linearly dependent. Clearly there exists a polynomial
pd(λ) of degree d, called the minimal polynomial of v with respect to A, such that
pd(A)v = 0. The other facts about Krylov subspaces can be found elsewhere; see, e.g,
[17, Section 2.2].

For the given complex matrix A and v 6= 0,w 6= 0 complex vectors, consider the
linear functional on the space of polynomials

L(p) = w∗p(A)v. (2.1)

Since for any polynomial p we get

p(A)∗ = p̄(A∗),

with p̄ the polynomial whose coefficients are the conjugates of the coefficients of p,
given p, q ∈ Pn−1 we have

L(pq) = w∗q(A)p(A)v = ŵ∗v̂,

with v̂ = p(A)v ∈ Kn(A,v) and ŵ = q̄(A∗)w ∈ Kn(A∗,w).
Theorem 2.1. The linear functional L defined by (2.1) determines a sequence

of orthogonal polynomials p0, . . . , pn−1 if and only if there exist bases v0, . . . ,vn−1 of
Kn(A,v) and w0 . . . ,wn−1 of Kn(A∗,w) satisfying the biorthogonality condition

w∗
i vj = 0 for i 6= j, and w∗

i vi 6= 0, i, j = 0, . . . , n− 1. (2.2)

Proof. Given polynomials p0, . . . , pn−1 orthogonal with respect to L, the vectors
vj = pj(A)v (i = 0, . . . , n − 1) form the basis for Kn(A,v), vectors wi = p̄i(A

∗)w
form the basis for Kn(A∗,w), and

w∗
i vj = L(pipj), i, j = 0, . . . , n− 1,
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Algorithm 2.2 (Stieltjes Procedure).
Input: linear functional L quasi-definite on Pn−1.
Output: polynomials p̃0, . . . , p̃n−1 orthonormal with respect to L.

Initialize: p̃−1 = 0, β0 =
√
m0 =

√
L(x0), p̃0 = 1/β0.

For j = 1, 2, . . . , n− 1

αj−1 = L(xp̃2j−1(x)),

p̂j(x) = (x− αj−1)p̃j−1(x)− βj−1p̃j−2(x),

βj =
√
L(p̂2j ),

p̃j(x) = p̂j(x)/βj ,

end.

satisfy the biorthogonality condition (2.2). On the other hand, let vj = pj(A)v and
wi = q̄i(A

∗)w satisfy

w∗
i vj = 0 for i 6= j, and w∗

i vi 6= 0, i, j = 0, . . . , n− 1,

and pj and qi are polynomials of degree j and i respectively. It means that the
polynomial pi is orthogonal to the polynomials q0, q1, . . . , qi−1, and therefore also to
polynomials p0, p1, . . . , pi−1. The polynomial pi is not orthogonal to qi, and thus
L(p2i ) 6= 0.

We denote p̃0, . . . , p̃n−1 the sequence of orthonormal polynomials with respect to
L. They satisfy the three-term recurrence relation

βj p̃j(x) = (x− αj−1)p̃j−1(x)− βj−1p̃j−2(x), j = 1, 2, . . . , n− 1, (2.3)

with p̃−1 = 0, p̃0 = 1/
√
m0, and

αj−1 = L(xp̃2j−1), βj−1 = L(xp̃j−2p̃j−1). (2.4)

Note that βj =
√
L(p̂2j ), with

p̂j(x) = (x− αj−1)p̃j−1(x)− βj−1p̃j−2(x). (2.5)

Algorithm 2.2 generates the sequence of the first n orthonormal polynomials p̃j ,
j = 0, . . . , n− 1, using the formulas (2.3) and (2.4). In order to avoid ambiguity, we
take always the principal value of the complex square root, i.e., we consider arg(

√
c) ∈

(−π/2, π/2]. For positive definite functionals this algorithm is known as the Stieltjes
procedure [23]. Then the coefficients βj , j = 1, . . . , n−1, are positive. The monograph
by Gautschi [8] can serve as a valuable source of related results as well as of historical
information.

The Lanczos algorithm (see [15] and [16]) gives the matrix formulation of the
Stieltjes procedure. Indeed, with

vj = p̃j(A)v, wj = ¯̃pj(A
∗)w, j = 0, . . . , n− 1,
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Algorithm 2.3 (Lanczos algorithm).
Input: complex matrix A, two complex vectors v,w such that w∗v 6= 0.
Output: vectors v0, . . . ,vn−1 that span Kn(A,v) and vectors w0, . . . ,wn−1 that span
Kn(A∗,w), satisfying the biorthogonality conditions (2.2).

Initialize: v−1 = w−1 = 0, β0 =
√
w∗v

v0 = v/β0, w0 = w/β̄0.

For j = 1, 2, . . . , n− 1

αj−1 = w∗
j−1Avj−1,

v̂j = Avj−1 − αj−1vj−1 − βj−1vj−2,

ŵj = A∗wj−1 − ᾱj−1wj−1 − β̄j−1wj−2,

βj =
√
ŵ∗
j v̂j ,

if βj = 0 then stop,

vj = v̂j/βj ,

wj = ŵj/β̄j ,

end.

we have

αj−1 = L(xp̃2j−1) = w∗p̃j−1(A)Ap̃j−1(A)v = w∗
j−1Avj−1,

for j = 1, . . . , n− 1. Since β2
j = L(p̂2j (x)) with the polynomial p̂j defined by (2.5), we

get

βj =
√
w∗p̂j(A)p̂j(A)v =

√
ŵ∗
j v̂j , j = 1, . . . , n− 1.

The vectors v0, . . . ,vn−1 satisfy the three-term recurrence relation (2.3)

βjvj = (A− αj−1)vj−1 − βj−1vj−2, for j = 1, . . . , n− 1.

Since wj = ¯̃pj(A
∗)w,

β̄jwj = (A∗ − ᾱj−1)wj−1 − β̄j−1wj−2, for j = 1, . . . , n− 1.

The resulting form of the Lanczos algorithm is given as Algorithm 2.3. The matrices
Vn = [v0, . . . ,vn−1] and Wn = [w0, . . . ,wn−1] satisfy

AVn = VnJn + v̂ne
T
n ,

A∗Wn = WnJ
∗
n + ŵne

T
n ,

with en the nth vector of the canonical basis, Jn the Jacobi matrix associated with
the polynomials p̃0, . . . , p̃n−1,

Jn =


α0 β1

β1 α1
. . .

. . .
. . . βn−1

βn−1 αn−1

 ,
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and αn−1, v̂n, ŵn are to be computed at the step n of the Lanczos algorithm1. The
biorthogonality conditions (2.2) then give

W ∗
nVn = In,

W ∗
nAVn = Jn,

where In is the identity matrix of dimension n. Algorithm 2.3 can be seen as a restric-
tion of A to the Krylov subspace Kn(A,v) with the subsequent projection orthogonal
to Kn(A∗,w). The reduced operator on Kn(A,v) then can be expressed via the Jacobi
matrix Jn. We say that Lanczos algorithm 2.3 is based on orthonormal polynomials.
Obviously, any other scaling of orthogonal polynomials can be used, i.e., the Lanczos
algorithm can be based on any sequence of orthogonal polynomials associated to the
linear functional (2.1). For further discussion on the Lanczos algorithm see, e.g., [17,
Sections 2.4.1 and 2.4.2].

Recall that if L is quasi-definite on Pn−1, then βj =
√
L(p̂2j ) must be different

from zero for j = 1, . . . , n − 1. Therefore no breakdown can occur in the first n − 1
steps of the Lanczos algorithm. There is a breakdown at the step n if and only if
βn = 0. This can happen in two cases:

1. one of the vectors v̂n and ŵn is the zero vector,
2. v̂n 6= 0 and ŵn 6= 0, but ŵ∗

nv̂n = 0.
In the first case either Kn(A,v) is A-invariant or Kn(A∗,w) is A∗-invariant. This
is known as lucky breakdown (or benign breakdown) because the computation of an
invariant subspace is often a desirable result; see, e.g., [20, Section 5] and [9, Section
10.5.5]. The second case is known as serious breakdown; for an analysis we refer to
[22], [14, p. 34], [20, Section 7], and [11, 12]. The previous development is summarized
in the following Theorem, cf. also [3, 20].

Theorem 2.4. Let A ∈ CN×N , v ∈ CN and w ∈ CN be the input for the Lanczos
algorithm, let mk = w∗Akv, and let ∆k be the corresponding Hankel determinants
(1.1) for k = 0, 1, . . .. There are no breakdowns at the first n− 1 steps of the Lanczos
algorithm if and only if

n−1∏
k=0

∆k 6= 0. (2.6)

There is a breakdown at the subsequent step n if and only if, in addition to (2.6),
∆n = 0. In other words, the Lanczos algorithm has a breakdown at the step n if and
only if the linear functional (2.1) is quasi-definite on Pn−1, but not on Pn.

If the matrix A is Hermitian, v = w 6= 0, and d = d(A,v) is the grade of v with
respect to A, then the moments of L defined by (2.1) are real and L is a positive-
definite linear functional on Pd−1, i.e., the corresponding Hankel determinants ∆j ,
j = 0, . . . , d − 1, are positive; see [21, Section 2] and the references given there.
Obviously, ∆d = 0. The bilinear form L(pq) is a discrete inner product on Pd−1 and
there exists the positive non-decreasing distribution function µ supported on the real
axis having finitely many points of increase such that

L(p) =

∫
R
p(x)dµ(x), for p ∈ P2d−1,

1The coefficient αn−1 present in Jn, and the vectors v̂n and ŵn are well defined even in the case
of breakdown at the step n.
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which is the Stieltjes representation of the functional L.

3. Gauss quadrature and the Lanczos algorithm. We start this Section by
recalling the definition of matrix function; see, e.g., [13]. A function f is defined on
the spectrum of the given matrix A if for every eigenvalue λi of A there exist f (j)(λi)
for j = 0, 1, . . . , si− 1, where si is the order of the largest Jordan block of A in which
λi appears. Let Λ be a Jordan block of A of the size s corresponding to the eigenvalue
λ. The matrix function f(Λ) is then defined as

f(Λ) =



f(λ) f ′(λ)
1!

f(2)(λ)
2! . . . f(s−1)(λ)

(s−1)!

0 f(λ) f ′(λ)
1! . . . f(s−2)(λ)

(s−2)!

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . f ′(λ)
1!

0 . . . . . . 0 f(λ)


.

Denoting

A = Wdiag(Λ1, . . . ,Λν)W−1

the Jordan decomposition of A, the matrix function f(A) is defined by

f(A) = Wdiag(f(Λ1), . . . , f(Λν))W−1.

Given a linear functional L on the space of sufficiently smooth functions, consider
the quadrature of the form (see [21, Section 7])

L(f) ≈
∑̀
i=1

si−1∑
j=0

ωi,j f
(j)(λi), n = s1 + · · · + s`, (3.1)

with ωi,j the weights, λi the nodes, and si the multiplicity of the node λi. Notice
that the number of different nodes in (3.1) is equal to `, and ` can be less than n.
If we count the multiplicities, then the number of nodes is equal to n, that is also
the number of weights in (3.1). In order to avoid ambiguity, we refer to (3.1) as the
n-weight quadrature, instead of the n-point or n-node quadrature as is usually done.
For any choice of (different) nodes λi, i = 1, . . . , `, and their multiplicities si, such
that s1 + · · · + s` = n, it is possible to achieve that the quadrature (3.1) is exact for
any f from Pn−1. As shown in the proof of Theorem 7.1 in [21], it is necessary and
sufficient to take

ωi,j = L(hi,j), (3.2)

where hi,j are polynomials from Pn−1 such that

h
(t)
i,j (λk) = 1 for λk = λi and t = j,

h
(t)
i,j (λk) = 0 for λk 6= λi or t 6= j,

with k = 1, 2, . . . , `, and t = 0, 1, . . . , si − 1. In this case we say that the quadrature
(3.1) is interpolatory, since it can be obtained by applying the linear functional L to
the generalized (Hermite) interpolating polynomial for the function f at the nodes λi
of the multiplicities si.

We refer to (3.1) as the (complex) Gauss quadrature if and only if the following
three properties are satisfied.
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• G1: n-weight Gauss quadrature attains the maximal algebraic degree of ex-
actness 2n− 1, i.e., it is exact for all polynomials of degree at most 2n− 1.
• G2: n-weight Gauss quadrature is well-defined and it is unique. Moreover,

Gauss quadratures with a smaller number of weights also exist and they are
unique.

• G3: Gauss quadrature of a function f can be written as the quadratic form
m0 e

T
1 f(Jn)e1, where Jn is the complex Jacobi matrix containing the coeffi-

cients from the three-term recurrence relation for orthonormal polynomials
associated with L; m0 = L(x0).

We will further use the word “complex” in the name of the quadrature only when it is
necessary to emphasize the difference with respect to the standard Gauss quadrature.
The following theorem is proved in [21, Section 7].

Theorem 3.1. Let L be a linear functional on P. There exists the n-weight
quadrature (3.1) having properties G1, G2 and G3 if and only if L is quasi-definite
on Pn.

The nodes λi, i = 1, . . . , `, of the n-weight Gauss quadrature, and their multiplic-
ities si, s1 + · · · + s` = n, are such that

ϕn(x) = (x− λ1)s1(x− λ2)s2 . . . (x− λ`)s`

is the nth degree monic orthogonal polynomial with respect to L. The weights of the
n-weight Gauss quadrature are given by (3.2).

If the quasi-definite linear functional on Pn is given by (2.1), then the associated
Jacobi matrix can be constructed by performing n steps of the Algorithm 2.3; see
Section 2. Keeping in mind the property G3, for this kind of linear functionals we
can say that the Lanczos algorithm is a matrix formulation of the Gauss quadrature.

Moreover, we can say the same for any linear functional L quasi-definite on Pn.
In order to construct the n-weight Gauss quadrature for approximating L, one needs
only the first 2n moments mk of L, k = 0, . . . , 2n− 1. In general, there always exist
a square matrix A and vectors v and w such that

w∗Akv = mk, k = 0, . . . , 2n− 1.

Indeed, let A ∈ C2n×2n and w ∈ C2n be such that the matrix

B = [w, A∗w, . . . , (A∗)2n−1w]

is nonsigular, and construct the vector v as the solution of the linear system

B∗v = m, m = [m0,m1, . . . ,m2n−1]T .

Then the first 2n moments of L and the first 2n moments of the functional L̃(f) =
w∗f(A)v are equal. This means that the n-weight Gauss quadrature for L can be
identified with m0e

T
1 f(Jn)e1, where Jn is the Jacobi matrix obtained in the step n of

the Algorithm 2.3 with the input A, v and w.
Notice that the matrix Jn from the previous two paragraphs (that requires quasi-

definiteness of L on Pn−1) is well defined even in the case of the breakdown at the
step n of the Lanczos algorithm. If L is not quasi-definite on Pn, then, however, the
quadrature rule L(f) ≈ m0e

T
1 f(Jn)e1 is not the Gauss quadrature since its degree of

exactness is larger then 2n− 1, i.e.,

L(xk) = m0e
T
1 J

k
ne1, k = 0, . . . , j,

where j ≥ 2n; see [21, Sections 7 and 8].
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4. Jordan decomposition of complex Jacobi matrices. Let Jn be an ar-
bitrary n × n complex Jacobi matrix. Then there exists a linear functional L quasi-
definite on Pn such that Jn contains the coefficients from the three-term recurrence
relation for orthonormal polynomials p̃j , j = 0, . . . , n, associated with L. Jn is a
non-derogatory matrix (see, e.g., [21, Section 4]), i.e., it has ` distinct eigenvalues
λ1, . . . , λ`, all having the geometric multiplicity 1. We write its Jordan decomposition
as

Jn = Wdiag(Λ1, . . . ,Λ`)W
−1, (4.1)

where Λi is the Jordan block of dimension si associated with the eigenvalue λi, i =
1, . . . , `. For any t = 1, . . . , n there is exactly one integer i between 1 and `, and
exactly one integer j between 0 and si−1, such that t = s1 + . . . + si−1 + j+ 1 (here,
for i = 0, s0 ≡ 0). In other words, fixed t uniquely determines i and j, and vice versa,
fixed i and j uniquely determine t. The t-th column wt(i,j) of W can be written as
(see, e.g., [21, Proposition 4.4])

wt(i,j) =
1

j!


0j

p̃
(j)
j (λi)

...

p̃
(j)
n−1(λi)

 , (4.2)

where 0j is the zero vector of length j. The next theorem gives the explicit formula
for the rows of W−1.

Theorem 4.1. Let Jn = Wdiag(Λ1, . . . ,Λ`)W
−1 be the Jordan decomposition of

an n×n complex Jacobi matrix Jn. Let L be the quasi-definite linear functional on Pn
such that Jn contains the coefficients from the three-term recurrence relation for the
orthonormal polynomials p̃0, . . . , p̃n with respect to L, and let

∑`
i=1

∑si−1
j=0 ωi,j f

(j)(λi)

be the Gauss quadrature for L defined by (3.1) and (3.2). Then the r-th row vTr(i,j) of

W−1,

vTr(i,j) = eTr(i,j)W
−1, r = s1 + · · ·+ si−1 + j + 1 (s0 ≡ 0 for i = 1),

has the following representation

vr(i,j) =

si−1∑
ν=j

ν!ωi,ν wt(i,ν−j), (4.3)

with wt(i,ν−j) defined by (4.2).
Proof. Let V be the n × n matrix with the rows vr(i,j), r = 1, . . . , n, given by

(4.3). We will show that WV = In, i.e., V = W−1. Denote the k-th row of W by aTk ,
and the m-th column of V by bm and prove that

aTk bm = L(p̃k−1p̃m−1).

By (4.2) the q-th element of ak is

ak,q =
p̃
(j)
k−1(λi)

j!
, q = s0 + s1 + . . .+ si−1 + j + 1,
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where for k − 1 < j we have p̃
(j)
k−1(λi) = 0. Using (4.3), the q-th element of bm is

bm,q =

si−1∑
ν=j

ν!ωi,ν
p̃
(ν−j)
m−1 (λi)

(ν − j)!
= j!

si−1∑
ν=j

(
ν

j

)
ωi,ν p̃

(ν−j)
m−1 (λi).

Thus we get by rearranging the order of summations

n∑
q=1

ak,qbm,q =

n∑
q=1

si−1∑
ν=j

(
ν

j

)
ωi,ν p̃

(ν−j)
m−1 (λi)p̃

(j)
k−1(λi)

=
∑̀
i=1

si−1∑
j=0

ωi,j

j∑
u=0

(
j

u

)
p̃
(j−u)
m−1 (λi)p̃

(u)
k−1(λi)

=
∑̀
i=1

si−1∑
j=0

ωi,j(p̃m−1p̃k−1)(j)(λi) = L(p̃k−1p̃m−1),

which gives the result.
Remark 4.2. The fact that a Jacobi matrix Jn is symmetric is associated with

the requirement WV = In and the orthogonal polynomials p̃j, j = 0, . . . , n being
orthonormal. The previous development can be easily modified for the Jordan decom-
position Tn = Wdiag(Λ1, . . . ,Λ`)W

−1 of an arbitrary irreducible tridiagonal matrix
Tn. The representation (4.2) of the columns of W will then use the orthogonal poly-
nomials pj satisfying the three-term recurrence relation with the coefficients given by
Tn (see, e.g., [21, Proposition 4.4]),

wt(i,j) =
1

j!


0j

p
(j)
j (λi)

...

p
(j)
n−1(λi)

 . (4.4)

The matrix V with the rows defined by (4.3) satisfies

WV = diag(L(p20), . . . ,L(p2n−1)),

i.e.,

W−1 = V diag(1/L(p20), . . . , 1/L(p2n−1)).

The rows of W−1 can then be written as

vr(i,j) =

si−1∑
ν=j

ν!ωi,ν w̃t(i,ν−j), (4.5)

where

w̃t(i,j) =
1

j!


0j

p
(j)
j (λi)/L(p2j )

...

p
(j)
n−1(λi)/L(p2n−1)

 . (4.6)
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5. Gauss quadrature for a linear functional with real moments. Let us
focus now on the n-weight Gauss quadrature Gn for approximating a real-valued linear
functional L on the space of sufficiently smooth real-valued functions. At first glance,
the idea of approximating such a functional by the quadrature with complex nodes
and weights does not seem attractive. We will show that the value of Gn(f), for
suitable f , is always a real number.

Theorem 5.1. Let L be a quasi-definite linear functional on Pn whose moments
m0, . . . ,m2n−1 are real, and let Gn be the associated Gauss quadrature

Gn(f) =
∑̀
i=1

si−1∑
j=0

ωi,j f
(j)(λi).

Then the following holds:
1. The nodes λi, i = 1, . . . , ` are real or appear in complex conjugate pairs, i.e.,

for any λi /∈ R with multiplicity si there is a node λm = λi with the same
multiplicity.

2. For any λi ∈ R we have ωi,j ∈ R, j = 0, . . . , si − 1. If λi /∈ R and λm = λi,
then ωm,j = ωi,j for j = 0, . . . , si − 1.

3. If f is a real-valued function satisfying f (j)(λ̄i) = f (j)(λi) for i = 1, . . . , ` and
j = 0, . . . , si − 1, then Gn(f) is a real number.

Proof. The monic orthogonal polynomials π0, π1, . . . , πn associated with L satisfy

πj(x) = (x− αj−1)πj−1(x)− ηj−1πj−2(x), j = 1, 2, . . . , n,

with α0 = m1/m0, π−1(x) = 0, π0(x) = 1, and

αj−1 =
L(xπ2

j−1)

L(π2
j−1)

, ηj−1 =
L(π2

j−1)

L(π2
j−2)

, j = 2, . . . , n .

The moments of L are real, which implies that αj−1, ηj−1 ∈ R for j = 2, . . . , n, and
the polynomials πj , j = 0, . . . , n have (only) real coefficients. Thus we proved the
first statement of the Theorem. The tridiagonal matrix Tn associated with π0, . . . , πn
is a real matrix. Under the assumptions made on f , the matrix f(B) is real for any
real matrix B; see [13, Remark 1.9]. Hence Gn(f) is a real number since

Gn(f) = m0e
T
1 f(Jn)e1 = m0e

T
1 f(Tn)e1;

see property G3 and Theorem 1.4.
We will prove the statement 2 by induction on j, using the Jordan decomposition

Tn = Wdiag(Λ1, . . . ,Λ`)W
−1 and expressions (4.4), (4.5), and (4.6). If λi is not real,

then there exists the eigenvalue λm = λi, with sm = si. Since πk(x̄) = πk(x) for
k = 0, . . . , n, then

wt(i,j) = wu(m,j), w̃t(i,j) = w̃u(m,j), j = 0, . . . , si − 1.

Fix j = si − 1 = sm − 1 as the base case of the inductive proof. Then, expression
(4.5) gives

(vr(i,si−1))
T = (si − 1)!ωi,si−1(w̃t(i,0))

T ,

(vq(m,sm−1))
T = (si − 1)!ωm,sm−1(w̃t(i,0))

∗.
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Using (vr(i,si−1))
Twr(i,si−1) = 1 and (vq(m,sm−1))

Twr(i,si−1) = 1 with the two previ-
ous equations, it follows that

1

ωi,si−1
= (si − 1)! (w̃t(i,0))

Twr(i,si−1) and
1

ωm,sm−1
= (si − 1)! (w̃t(i,0))Twr(i,si−1) .

Hence, ωi,si−1 = ωm,sm−1, which finishes the initial step. Let us fix j between 0 and
si − 2 and let ωi,k = ωm,k, k = j + 1, . . . , si − 1, be the inductive assumptions. Then,
(vt(i,j))

Twt(i,j) = 1 and (4.5) give

si−1∑
ν=j

ν!ωi,ν (w̃r(i,ν−j))
Twt(i,j) = 1.

The first summand on the left-hand side of the previous equation can be written as

j!ωi,j (w̃r(i,0))
Twt(i,j) = 1−

si−1∑
ν=j+1

ν!ωi,ν (w̃r(i,ν−j))
Twt(i,j)

= 1−
si−1∑
ν=j+1

ν!ωm,ν (w̃q(m,ν−j))T wu(m,j)

= j!ωm,j (w̃q(m,0))Twu(m,j)

= j!ωm,j (w̃r(i,0))
Twt(i,j).

Therefore, ωi,j = ωm,j for j = 0, . . . , si − 1.
If λi ∈ R, then an analogous induction gives ωi,j ∈ R, j = 0, . . . , si − 1. Notice

that, in this case, the vectors wt(i,j) and w̃t(i,j) are real.
Among all tridiagonal matrices determined by the first 2n real moments of the

given linear functional L quasi-definite on Pn, there must be a real matrix (see Section
1). By (1.5) we conclude that all tridiagonal matrices determined by real moments
have real numbers on the main diagonal. By (1.6), the elements at the super-diagonal
of the corresponding Jacobi matrix (that is complex symmetric) are either real or pure
imaginary. They are all real if and only if the linear functional L is positive definite
on Pn; see, e.g., [19, Theorem 2.14].

We now apply the previous discussion to the Lanczos algorithm with a real input.
Obviously, the moments of the linear functional L defined by (2.1) are real. The
output after n steps of the Lanczos algorithm is real if and only if the algorithm is
based on orthogonal polynomials satisfying the three-term recurrence relation with
real coefficients. Since Algorithm 2.3 is based on orthonormal polynomials, it cannot
result in a real output after n steps unless the functional (2.1) is positive definite
on Pn. The output after n steps of the Lanczos algorithm is real providing that the
algorithm is based on monic orthogonal polynomials. However, in this case there is no
scaling of the vectors v̂j and ŵj . If the scaling of the vectors v̂j , ŵj is required (for
any reason), then one can use the following orthogonal polynomials; cf. [10, Section
2]. The polynomials p0 = p̃0, . . . , pj−1 = p̃j−1 are constructed by Algorithm 2.2 as
long as they have real coefficients, i.e., as long as L(p̂2k), k = 0, . . . , j − 1, is positive.
When L(p̂2j ) is negative, then we scale p̂j in the following way:

δj =
√
|L(p̂2j )|, pj =

p̂j
δj
.
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Algorithm 5.2 (Lanczos algorithm in the real number setting).
Input: real matrix A, two real vectors v,w such that w∗v 6= 0.
Output: vectors v0, . . . ,vn−1 that span Kn(A,v) and vectors w0, . . . ,wn−1 that span
Kn(A∗,w), satisfying the biorthogonality conditions (2.2).

Initialize: v−1 = w−1 = 0, γ0 = 0, ŝ = 1, s = 1,

v0 = v/||v||, w0 = w/(w∗v0).

For j = 1, 2, . . . , n

αj−1 = s ·w∗
j−1Avj−1,

v̂j = Avj−1 − αj−1vj−1 − γj−1vj−2,

ŵj = A∗wj−1 − αj−1wj−1 − γj−1wj−2,

s = sign (ŵ∗
j v̂j),

if s = 0 then stop,

δj =
√
|ŵ∗

j v̂j |,

γj = s · ŝ · δj ,
ŝ = s,

vj = v̂j/δj ,

wj = ŵj/δj ,

end.

Thus we get the sequence of orthogonal polynomials such that L(p2j ) is either 1 or -1.
The other coefficients from the three-term recurrence relation are also real. They are
given by

γj =
L(xpj−1pj)

L(p2j−1)
=
L(p2j )

L(p2j−1)
δj =

{
δj , if L(p2j−1) · L(p2j ) = 1
−δj , if L(p2j−1) · L(p2j ) = −1,

αj =
L(xp2j )

L(p2j )
=

{
L(xp2j ), if L(p2j ) = 1
−L(xp2j ), if L(p2j ) = −1.

The resulting form of the Lanczos algorithm involving only real number computations
is given as Algorithm 5.2. The tridiagonal matrix Tn = W ∗

nAVn obtained by the first
n iterations of the algorithm has sub- and super-diagonal elements such that δj = γj
or δj = −γj , for j = 1, . . . , n− 1.

6. Conclusion. The paper presents the Lanczos algorithm as a matrix represen-
tation of the complex Gauss quadrature. It justifies the approach from [21] where we
argue that the complex Gauss quadrature must inherit the properties G1, G2 and G3
of the Gauss quadrature for the positive definite functionals. The weights ωi,j from
the Gauss quadrature (3.1) appear in the representation (4.3) of the rows of W−1

from the Jordan decomposition (4.1) of the corresponding complex Jacobi matrix.
When the moments of the quasi-definite linear functional approximated by the Gauss
quadrature Gn are real, then the non-real nodes and weights of Gn come in the con-
jugate pairs. Therefore the value of Gn(f) is a real number whenever the real-valued
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function f satisfies f (j)(λ̄i) = f (j)(λi) for i = 1, . . . , ` and j = 0, . . . , si − 1. This
property is linked with the fact that if the input is real, then the Lanczos algorithm
with an appropriate scaling can be performed in the real number setting.

If the linear functional L is not quasi-definite on Pn, then the maximal algebraic
degree of exactness of the n-weight quadrature (3.1) is not a priori given. The asso-
ciated questions, which are related to the existence and uniqueness of the nth degree
orthogonal polynomial with respect to L, will be considered in a further work.
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