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Abstract. We consider a class of nonlinear non-diagonal elliptic systems with

p-growth and establish the Lq-integrability for all q ∈ [p, p + 2] of any weak

solution provided the corresponding right hand side belongs to the correspond-
ing Lebesgue space and the involved elliptic operator asymptotically satisfies

the p-uniform ellipticity, the so-called splitting condition and it is continuous

with respect to the spatial variable. For operators satisfying the uniform p-
ellipticity condition the higher integrability is known for q ∈ [p, dp/(d−2)] and

for operators having the so-called Uhlenbeck structure, the theory is valid for
all q ∈ [p,∞). The key novelty of the paper is twofold. First, the statement

uses only the information coming from the asymptotic operator and second,

and more importantly, by using the splitting condition, we are able to extend
the range of possible q’s significantly whenever p < d− 2.

1. Introduction

This paper focuses on the properties of a local weak solution v ∈ W 1,p
loc (Ω;RN ),

p > 1 to the following nonlinear system

−divA(x,∇v(x)) = −divG(x) in Ω.(1)

Here Ω ⊂ Rd is an open set with d ≥ 2, A : Ω × Rd×N → Rd×N with N ∈ N
is a Carathéodory mapping and G ∈ Lp

′

loc(Ω;Rd×N ) is arbitrary. In addition, we
assume that the mapping A has the (p − 1) growth and satisfies the p-coercivity,
i.e., there exist α0 > 0 and α1 ≥ 0 such that for almost all x ∈ Ω and all η ∈ Rd×N

the following holds

|A(x, η)| ≤ α1(1 + |η|p−1),(2)

A(x, η) · η ≥ α0|η|p − α1.(3)

Our general aim is to establish the local Lq estimates with q > p for the gra-
dient of any distributional solution v ∈ W 1,p

loc (Ω,RN ) to (1) provided that G ∈
L

q
p−1 (Ω;Rd×N ), i.e., we want to show that

(4)

∫
Q

|∇v|q ≤ C(R, q)

(
1 +

∫
4Q

|G|
q
p−1 +

(∫
4Q

|∇v|p
) q
p

)
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for every cube Q ⊂ 4Q ⊂ Ω. Under the general assumptions (2)–(3) such a theory
however cannot be built, see the counterexamples in [15, 16, 17, 18, 21], without
additional conditions on the smoothness of A with respect to the spatial variable
and the dependence of A on η. The only available positive result in this generality,
i.e., assuming only (2)–(3), is based on the use of the reverse Hölder inequality, see
e.g. [8], and we know that there exists ε > 0 depending only on α0, α1, d, p such
that (4) holds for all q ∈ [p, p+ε). On the other hand, due to the fundamental work
[20], we have the full regularity (in this case C1,α-regularity) of solution to (1) with
A(x, η) ∼ |η|p−2η and smooth right hand side. This information can be used for
establishing the nonlinear Calderón-Zygmund theory that have its roots in articles
[9] and [10] and we know that the estimate (4) is true for all q ∈ [p,∞) for these
operators. In addition, the result can be even strengthen to the BMO setting, see
[7]. Moreover, following the idea presented e.g. in [13, 14], we know that the only
operator that drives the gradient theory is the asymptotic operator (note that if it
exists, it is necessarily homogeneous of order p− 1)

A∞(x, η) := lim
λ→∞

A(x, λη)

λp−1
,

which will be also used in this paper.
Our general goal is to find a more general structural assumptions on A or A∞

respectively than those introduced by Uhlenbeck, that allow us to establish the esti-
mate (4) for larger values of q than those given by the reverse Hölder technique. The
first step in this direction was already done. The method presented in [4] somehow
separates arguments from function theory and theory of partial differential equa-
tions but is, however, not directly applicable to PDE’s for which we have relatively
poor information about the solution, which is the case of non-diagonal systems,
with right hand side and in the situation that only low regularity of comparison
problem is available. The approach to this situation was carefully developed in [11,
Section 7] for operators being uniformly p-monotone, i.e., for operators satisfying
for some δ0 ≥ 0 and all η, ξ ∈ Rd×N and almost all x ∈ Ω the following

(5) α0(δ0 + |η|2)
p−2
2 |ξ|2 ≤ ∂A(x, η)

∂η
· (ξ ⊗ ξ) ≤ α1(δ0 + |η|2)

p−2
2 |ξ|2,

see also [6] for even more general operators related to the generalized Sokes system.
Under such assumption, one can use the higher regularity technique to deduce

that for “smooth” G the solution v to (1) belongs to W
1,dp/(d−2)
loc (Ω;Rd×N ) and

incorporating this information with the fundamental paper [4], one can conclude
that (4) is valid for all q ∈ [p, dp/(d− 2)]. This approach is used also in this paper.

Recently, an everywhere C0,α-regularity theory for elliptic systems was built in
[1] (and further extended in [2, 3]) for operators A being of potential form and
satisfying the so-called splitting condition but not requiring the monotonicity as-
sumption (5). Thus, the aim of the paper is to combine the everywhere C0,α theory
with the p-monotonicity assumption in order to get the bigger class of possible q’s
for which (4) holds. It will be seen in the paper that a new borderline for these
operators then will be q ∈ [p, p+ 2], which is a significant improvement in case that
p < d− 2, i.e., in high dimensions and for low value of p.

We finish the introduction by precise formulation of the assumption on A and
by the statement of our key result.
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1.1. Assumptions. In this subsection we state the assumptions on A. Beside (2)–
(3) we shall assume some qualitative properties of the asymptotic operator A∞. To
do it, we use a Carathéodory function F : Ω×Rd×N → R and we denote

Fη(x, η) :=
∂F (x, η)

∂η
: Ω×Rd×N → Rd×N ,

which is supposed to be Carathéodory. Moreover, we assume that Fη is the asymp-
totic operator to A, i.e., for all η and almost all x ∈ Ω there holds

(6) Fη(x, η) = lim
λ→∞

A(x, λη)

λ(p−1)

and we assume the certain uniformity of the above limit. More precisely, we require
that for all ε > 0 there exists λ > 0 such that for all ζ ∈ Rd×N fulfilling |η| ≥ λ
and almost all x ∈ Ω the inequality

(7) |Fη(x, η)−A(x, η)| ≤ ε|η|p−1.

holds. Note that from the assumption (2)–(3) and (6), it directly follows that the
potential F is homogeneous of degree p, i.e., F (x, λη) = λpF (x, η) and also Fη is
homogeneous of degree (p− 1), i.e., Fη(x, λη) = λp−1Fη(x, η). Moreover, assuming
(2)–(3) and (6)–(7), we deduce that

α0|η|p ≤ Fη(x, η) · η = pF (x, η) ≤ α1|η|p,(8)

|Fη(x, η)| ≤ α1|η|p−1(9)

for all η ∈ Rd×N and almost all x ∈ Ω.
Finally, we specify the requirements for F . The theory requires also certain

smoothness with respect to the spatial variable and therefore we assume that for
all ε > 0 there exists δ > 0 such that for all x1, x2 ∈ Ω satisfying |x1 − x2| ≤ δ and
for all η ∈ Rd×N we have

|Fη(x1, η)− Fη(x2, η)| ≤ ε|η|p−1.(10)

Concerning the p-monotonicity, we transfer it to F and assume that for almost all
x ∈ Ω, the function F (x, ·) ∈ C2(Rd×N \ {0}) and that ∂2

η2F (x, η) is measurable

for all η ∈ Rd×N and further we require that for all η, ξ ∈ Rd×N with η 6= 0 and
a.a. x ∈ Ω

α0|η|p−2|ξ|2 ≤ ∂2F (x, η)

∂η2
· (ξ ⊗ ξ) ≤ α1|η|p−2|ξ|2.(11)

Finally, following [1], we shall assume the splitting1 condition for Fη. It means
we assume that there are symmetric matrix-valued Carathéodory function A : Ω×
Rd×N → RN×N and a symmetric matrix valued measurable b : Ω → Rd×d such
that

Fηαi (x, η) =

N∑
β=1

d∑
j=1

Aαβ(x, η)bij(x)ηβj(12)

for all η ∈ Rd×N , all i = 1, . . . , d, all α = 1, . . . , N and a.a. x ∈ Ω. Observe that
(12) is an additional structural condition which is independent of the fact, that the

1Splitting conditions refers to the fact that Aαβ does not depend on i, j. Recall, the indexes
i, j correspond to derivatives w.r.t. xi, xj respectively.
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Fηαi come from a potential. Moreover, we require that for all µ ∈ RN , all η ∈ Rd×N

fulfilling η 6= 0, all v ∈ Rd and almost all x ∈ Ω the inequalities

α0|η|p−2|µ|2 ≤
N∑

α,β=1

Aαβ(x, η)µαµβ ≤ α1|η|p−2|µ|2,

α0|v|2 ≤
d∑

i,j=1

bij(x)vivj ≤ α1|v|2

(13)

hold.

1.2. Main result. The main result is summarized in the following theorem.

Theorem 1. Let Ω ⊂ Rd be an open set, p ∈ (1,∞), A satisfy (2)–(3) and (6) and
the corresponding F fulfill (11)–(13). Then there exists q0 > p+2, R0 > 0 and c ≥ 0

depending only on d,N, α0, α1, p and F such that for any G ∈ Lq/(p−1)
loc (Ω;Rd×N )

with q ∈ (p, q0) and v ∈ W 1,p
loc (Ω;RN ) solving (1) in the sense of distribution, the

following estimate

(14) −
∫
Q

|∇v|q ≤ c

[
1 +−

∫
4Q

|G|q/(p−1) +

(
−
∫

4Q

|∇v|p
) q
p

]
holds true for all cubes Q ⊂ Rd with sidelength smaller than R0 and satisfying
4Q ⊂ Ω.

Remark 2. The precise value of q0 is equal to p+2/(1−α) where α is a coefficient
of Hölder continuity which appear in Theorem 6.

The remaining part of this paper is devoted to the proof of Theorem 1. In the
next section we introduce some observations concerning the Young functions and
Nikolskĭı spaces. An approximate problem as well as estimates of its solution are
presented in Section 3. The proof of Theorem 1 is concluded in Section 4 where
we use Lemma 3 in order to compare a solution to (1) with the solution of the
approximate problem.

2. Auxiliary tools and notation

Throughout this paper we work with a Young function ϕ(t) = tp

p which clearly

satisfies [5, Assumption 1]. We denote by ϕ∗ its complementary function (see cf.
[5]). In order to simplify estimates we introduce the function V (A) = |A|(p−2)/2A
for A ∈ Rd×N . With this notation we get from (8) and (9)

(15) ∃C > 0,∀η ∈ Rd×N , x ∈ Ω : |V (η)|2 ≤ CFη(x, η) · η, |Fη(x, η)| ≤ Cϕ′(|η|).
There exists c, c′, c′′ > 0 such that

(16) ϕ∗(ϕ′(|η|)) ≤ cϕ(|η|) ≤ c′|V (η)|2 ≤ c′′ϕ∗(ϕ′(|η|))
see [5, (2.3)]. Further, [5, Lemma 3] gives

(17) ∃c, C > 0,∀A,B ∈ Rd×N :

c|V (A)− V (B)|2 ≤ ϕ′′(|A|+ |B|)|A−B|2 ≤ C|V (A)− V (B)|2.
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Moreover, from (11) it follows that there exists c > 0 such that for all η, ξ ∈ Rd×N ,
x ∈ Ω

(18) (Fη(x, η)− Fη(x, ξ)) · (η − ξ) ≥ c|V (η)− V (ξ)|2,
compare with [5, proof of Lemma 21].

In the following part of the paper, estimates in Nikolskĭı spaces Nλ,p appear.
The definition and basic properties of these spaces can be found in [19, Chapter
4] where they are denoted Bλp,∞(Ω). Here we call them Nλ,p(Ω). We recall their
definition for reader’s convenience. Several equivalent definitions can be also found
in [19, Theorem 4.2.2/2]. Let Q ⊂ Rd be a cube with sidelength R > 0. Let
p ∈ [1,∞], λ ∈ (0, 1). For h ∈ Rd, h 6= 0 we denote Qh = {x ∈ Q;x+ h ∈ Q}. We
define the space Nλ,p as

Nλ,p(Q) = {w ∈ Lp(Q); [w]Nλ,p(Q) <∞},
where the seminorm [·]Nλ,p is defined as

[w]Nλ,p(Q) = RλR−d/p sup
h 6=0,h∈BR

‖dhw‖Lp(Qh)

|h|λ
.

with
dhf = f(x+ h)− f(x).

The appropriate norm is ‖ · ‖Nλ,p := R−d/p‖ · ‖Lp + [·]Nλ,p .
If λ ∈ (1, 2) there are two possibilities how to define seminorm [w]Nλ,p(Q)

[w]
(1)

Nλ,p(Q)
= RλR−d/p sup

h6=0,h∈BR

‖d2
hw‖Lp(Q2h)

|h|λ

[w]
(2)

Nλ,p(Q)
= RλR−d/p sup

h6=0,h∈BR

‖dh∇w‖Lp(Qh)

|h|λ−1
.

The norms ‖ · ‖(1)

Nλ,p(Q)
:= R−d/p‖ · ‖Lp(Q) + [·](1)

Nλ,p(Q)
and ‖ · ‖(2)

Nλ,p(Q)
:= R−d/p‖ ·

‖Lp(Q)+[·](2)

Nλ,p(Q)
are equivalent according to [19, Theorem 4.4.2/2]. It is important

that the appearing constants does not depend on R > 0.
We need the following property of Nikolskĭı spaces

(19) w ∈ Nλ,p(Q)⇔ ∇w ∈ Nλ−1,p(Q),

which is a consequence of [19, Theorem 4.4.2/2].

3. Comparison

3.1. Local Lq regularity result. The origin of the technique used to prove the
theorem can be traced back to [9, 10]. It is based on a local comparison of a given
solution with a solution to a suitably chosen approximate problem. The method
was further developed and clearly described in [4]. In this article the authors deal
with the interior Lq theory in the situation that for the approximate problem an
W 1,∞ local estimates are available. A suggestion what to do in the case that one
can obtain for the approximate problem interior W 1,q0 estimates, q0 < +∞ only,
appears also there. This situation is investigated (among other regularity results)
in [11].

For a cube Q and α > 0 we define a cube αQ as a cube with the same center as Q
whose edges are parallel and have length α times length of edges of Q. Furthermore,
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for a dyadic cube Qk we denote its predecessor by Q̃k. This notation is effective
throughout the paper. The proof of the main theorem is based on the following
lemma.

Lemma 3. Let 1 ≤ r < s < t < ∞, Q ⊂ O be a cube and Qk be dyadic cubes
obtained from Q. Further, let f ∈ Ls(4Q). g ∈ Ls(4Q) and w ∈ Lr(4Q)n. Then
there exists ε0 > 0 independent of Q such that the following implication holds:

If there exists ε ∈ (0, ε0) such that for every dyadic cube Qk ⊂ Q, Qk 6= Q there

exists wa ∈ Lp(4Q̃k)n with following properties:(
−
∫

2Q̃k

|wa|t
) 1
t

≤ C

2

(
−
∫

4Q̃k

|wa|r
) 1
r

,(20)

−
∫

4Q̃k

|wa|r ≤ C −
∫

4Q̃k

|w|r + C −
∫

4Q̃k

|g|r(21)

−
∫

4Q̃k

|w − wa|r ≤ ε−
∫

4Q̃k

|w|r + C −
∫

4Q̃k

|f |r(22)

then w ∈ Ls(Q)n. Positive constants C and ε are independent on Qk, wa and w.
Furthermore, there exists a positive constant c independent of f , g and w such that

(23)

(
−
∫
Q

|w|s
) 1
s

≤ c

[(
−
∫

4Q

|f |s
) 1
s

+

(
−
∫

4Q

|g|s
) 1
s

+

(
−
∫

4Q

|w|r
) 1
r

]
.

The proof relays on considerations presented in [4] in the situation f = 0. In
this work, the lemma is also closely connected to systems of partial differential
equations. The same technique is used in [11] to show Lq theory for more general
systems compared to systems considered here with f 6= 0 up to the boundary. Since
that problem is more general, authors have worse estimates for the comparison
problem which results in smaller range of q’s for which the theory holds. In [6] the
method was used to generalized Stokes problem with f 6= 0. The presented version
is just a slight change of [12, Lemma 2.7]. Since its proof is a modification of the
one in [4] and [12] we skip it in this article.

3.2. Comparison problem and its estimates.

3.2.1. The comparison problem. To apply Lemma 3 we need to construct for a given
solution of (1) a function wa with properties (20),(21) and (22). When studying
the elliptic systems of equations such a function is usually found as a solution to a
suitable approximate system. It is the same in our situation.

Let us assume that we have a local solution v ∈ W 1,p(Ω;RN ) of the problem
(1). Hereinafter, Q0 ⊂ Ω will be an arbitrary but fixed cube with the centre x0,
such that Q0 ⊂ B1(x0).

We consider a comparison problem

divFη(x0,∇u) = 0 in Q0,

u = v on ∂Q0

(24)

Existence and uniqueness of a weak solution to this problem follows by theory of
monotone operators due to Assumption (11). It was applied for example in [6,
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Lemma 3.1] to a similar problem motivated by fluid mechanics, with an additional
constraint div u = 0 in Q0.

We formulate the result in the next lemma.

Lemma 4. Let v ∈W 1,p(Ω) be a local weak solution to (1). Then for every κ > 0
there exists R > 0 such that for every Q0 with diam(Q0) < R there is a unique
weak solution u ∈W 1,p(Q0) to the problem (24) satisfying

∃C > 0 :

∫
Q0

|V (∇u)|2 ≤ C
∫
Q0

|V (∇v)|2,(25)

∫
Q0

|V (∇u)− V (∇v)|2 ≤ C(κ)

(
1 +

∫
Q0

|G|
p
p−1

)
+ κ

∫
Q0

|V (∇v)|2.(26)

The constants C,C(κ) are independent of u, v, Q0, x0.

Proof. We skip the proof of existence and uniqueness since it follows line by line
[6, Lemma 3.1].

Also the proofs of estimates (25) and (26) are very similar to ones in [6] but since
the elliptic operator A in (1) depends also on x we present them here. Let us start
by testing (24) by u− v to get

∫
Q0

|V (∇u)|2 ≤ c
∫
Q0

Fη(x0,∇u)∇u = c

∫
Q0

Fη(x0,∇u)∇v

≤ δ
∫
Q0

ϕ∗(|Fη(x0,∇u)|) + Cδ

∫
Q0

ϕ(|∇v|).

From (15) and (16) we get∫
Q0

|V (∇u)|2 ≤ δ
∫
Q0

|V (∇u)|2 + Cδ

∫
Q0

|V (∇v)|2,

i.e. (25).
We subtract the weak formulation of (24) from (1) and test the result by u− v

extended by zero outside Q0 in order to get

(27)

∫
Q0

(Fη(x0,∇u)−A(x,∇v))(∇u−∇v) =

∫
Q0

G(∇u−∇v)

≤ Cκ
∫
Q0

ϕ∗(|G|) + κ

∫
Q0

ϕ(|∇u−∇v|) ≤ Cκ
∫
Q0

ϕ∗(|G|) + Cκ

∫
Q0

|V (∇v)|2,

where we used (25).
Due to (18) we have

(28)

∫
Q0

(Fη(x0,∇u)− Fη(x0,∇v))(∇u−∇v) ≥ C
∫
Q0

|V (∇u)− V (∇v)|2
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The smoothness property of F (see (10)) together with the Young inequality and
(25) yield

(29)

∫
Q0

(Fη(x0,∇v)− Fη(x,∇v))(∇u−∇v) ≤ κ
∫
Q0

ϕ′(|∇v|)|∇u−∇v|

≤ κC
∫
Q0

|V (∇v)|2

provided diam(Q0) is sufficiently small.
Finally, we deduce from (2), (6), (7), (8), (25) and the Young inequality that

(30)

∫
Q0

(Fη(x,∇v)−A(x,∇v))(∇u−∇v)

≤
∫
Q0∩{|∇v|≤λ(κ)}

|Fη(x,∇v)−A(x,∇v)||∇u−∇v|

+

∫
Q0∩|∇v|>λ(κ)

|Fη(x,∇v)−A(x,∇v)||∇u−∇v|

≤ C(κ)

∫
Q0

|∇u−∇v|+ κ

∫
Q0

ϕ′(|∇v|)|∇u−∇v| ≤ C(κ) + κ

∫
Q0

|V (∇v)|2.

where we use also the fact that Q0 is bounded. Since ϕ∗(t) = (p − 1)t
p
p−1 /p the

claim follows from (27), (28), (29) and (30). �

3.2.2. Known estimates for approximative solution.

Lemma 5. Let u be the weak solution of (24).Then V (∇u) ∈W 1,2
loc (Q0). Moreover

we have for any cube Q ⊂ 2Q ⊂ B

(31)

∫
Q

|∇V (∇u)|2 ≤ c

R2

∫
4Q

|V (∇u)|2,

where R is the length of the edge of Q.

Proof. We follow the proof of [5, Theorem 11] that deals with a more complicated
situation where the elliptic term depends also on x.

Set θ ∈ C∞C (2Q), χQ≤θ≤χ2Q, |∇θ| ≤ c
R . We choose h, s ∈ Rd \{0}, |s| ≤ |h| ≤

R. We apply ds to (24) and obtain for any w ∈W 1,p
0 (2Q)

(32)

∫
2Q

(Fη(x0,∇u(x+ s)− Fη(x0,∇u(x)) · ∇w(x) = 0.

Let us denote As(x) := Fη(x0,∇u(x + s)) − Fη(x0,∇u(x)). As in the proof of [5,
Theorem 4], we choose some q̂ > 1 and c > 0 such that

(33) ϕa(θq̂−1t) ≤ cθq̂ϕa(t)

holds uniformly in a, t ≥ 0. We use in (32) the test function w := θq̂dsu to get
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(34) I1 :=

∫
2Q

As(x)θq̂ · ∇dsu(x) = −
∫

2Q

As(x)q̂θq̂−1 · dsu(x)⊗∇θ =: I2.

We obtain

I1 ≥ c
∫

2Q

θq̂ |dsV (∇u)|2

by (18) and in the same manner as in the proof of [5, Lemma 12]

I2 ≤ ε
∫

2Q

θq̂
|s|
|h|
−
∫ |s|

0

|dλV (∇u)|2dλdx+ cε
|h|2

R2

∫
2Q

|V (∇u)|2.

We integrate the resulting inequality over s ∈ [0, h) (c.f. [5, Lemma 12]) to get

−
∫ |h|

0

−
∫
Q

|dλV (∇u)|2 dxdλ ≤ ε−
∫ |h|

0

−
∫

2Q

ηq̂
|s|
|h|
−
∫ |s|

0

|dλV (∇u)|2dλdxds

+ cε
|h|2

R2
−
∫

2Q

|V (∇u)|2.

Then we apply [5, (4.20)] and [5, Lemma 13] to obtain

−
∫
Q

|dhV (∇u)|2 ≤ c |h|
2

R2

∫
4Q

|V (∇u)|2.

We divide this inequality by |h|2 and use the characterization of Sobolev spaces via
difference quotients to conclude (31).

A simple covering argument gives the statement. �

We use further local estimates to u. In [1, Theorem 1.1] the following theorem
appears.

Theorem 6. Let p ∈ (1,∞) and F satisfy (11)–(13). Then there exists α > 0 such
that the unique weak solution u to (24) belongs to Cαloc(Q0;RN ). Moreover, for all
Q ⊂ Q0 we have the estimate

‖u‖Cα(Q) ≤ C(Q)‖u‖W 1,p(Q0).

In addition, there exists C > 0 such that for all x0 ∈ Q0 and all ε > 0 the solution
u satisfies the following potential inequality∫

Br(x0)

ε|∇u|p

rε|x− x0|d−p−ε
+
|∇u|p−2|∇u · (x− x0)|2

|x− x0|d−p+2

≤ C
( r
R

)αp(
Rp +

∫
BR(x0)

|∇u|p

Rd−p

)(35)

for all 0 < 2r < R < dist (x0, ∂Q0).

Corollary 7. Assume, in addition to the assumptions of Theorem 6, that p ∈ (1, d).
Then there is c > 0 such that for any Q ⊂ 3Q ⊂ Q0

(36) [u]Cα(Q) ≤ cR−α+1

((
−
∫

2Q

|∇u|p
) 1
p

+ 1

)
,

where R is the length of the edge of Q.
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Proof. Let B ⊂ 2B ⊂ Q0 be a ball with radius ρ. From (35) it follows by Poincaré
inequality that

[u]pLp,d+pα(B)
≤ Cρp−αp −

∫
2B

(|∇u|p + 1).

Let now Q ⊂ 6
√
dQ ⊂ Q0 be a cube with sidelength R. Previous inequality

together with the integral characterization of Hölder continuous functions, (see
Lemma 13 in appendix) gives

[u]Cα(Q) ≤ [u]Cα(
√
dB) ≤ C[u]Lp,d+pα(3

√
dB) ≤ CR

1−α

((
−
∫

6
√
dB

|∇u|p
) 1
p

+ 1

)

The statement of the corollary then follows by a suitable covering argument. �

3.2.3. Interpolation of the regularity results. The integrability of ∇u can be im-
proved locally to p+ 2 as the next lemma states.

Lemma 8. Under the assumption of Theorem 6 there is c > 0 such that for any
Q ⊂ 2Q ⊂ Q0

(37)

(
−
∫
Q

|∇u|p+2

) 1
p+2

≤ c

((
−
∫

2Q

|∇u|p
) 1
p

+ 1

)

Proof. Let θ ∈ C∞C (Q0) be such that χQ ≤ θ ≤ χ2Q, |∇θ| ≤ c/R, where R is the
length of the edge of Q as usual.

We denote

A(r) =

(
−
∫
rQ

θp+2|∇u|p+2

) 1
p+2

B(r) = ‖u− (u)rQ‖L∞(rQ)

C(r) =

(
−
∫
rQ

|∇u|p
) 1
p

As a consequence of (31) and (36) we obtain

B(r) ≤ sup
x∈rQ

−
∫
Q

|u(x)− u(y)|dy ≤ Rα[u]Cα(Q) ≤ cRC(3r) + cR for r ∈ [1, 10],

(38)

−
∫

2Q

|∇u|p−2|∇2u|2 ≤ CR−2Cp(4).(39)

In order to estimate the quantity A, we use integration by parts, Hölder’s and
Young’s inequalities, (38), and (39)
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(A(2))
p+2

= −
∫

2Q

θp+2|∇u|2|∇u|p = −
∫

2Q

θp+2∇u · ∇(u− (u)2Q)|∇u|p

= −(p+ 2)−
∫

2Q

θp+1|∇u|p∇θ ⊗ (u− (u)2Q) · ∇u

−−
∫

2Q

θp+2|∇u|p(u− (u)2Q) ·∆u

− p−
∫

2Q

θp+2|∇u|p−2[∇u](u− (u)2Q) · [∇2u]∇u

≤ c

R
B(2)−

∫
2Q

θp+1|∇u|p+1 + cB(2)−
∫

2Q

θp+2|∇u|p|∇2u|

≤ c

R
B(2) (A(2))

p+1

+ cB(2)−
∫

2Q

(
θp+2|∇u|p−2|∇2u|2

) 1
2
(
θp+2|∇u|p+2

) 1
2

≤ c(ε)R−p−2 (B(2))
p+2

+ c(ε) (B(2))
2 −
∫

2Q

|∇u|p−2|∇2u|2

+ 2ε (A(2))
p+2 ≤ c (C(6))

p+2
+ 2ε (A(2))

p+2
+ c.

(40)

The demanded statement follows by a simple covering argument. �

In (37) we proved a reverse Hölder inequality which could be improved by
Gehring’s theorem. Here we proceed in a different way and trace the dependence
of integrability of ∇u on the constant α from Theorem 6.

Lemma 8 does not show the full strength of the information from Theorem 6.
We improve it in the next lemma which holds for p ≥ 2 only.

Lemma 9. Let p ≥ 2. Under the assumptions of Theorem 6 set q ∈ (p, p+ 2/(1−
α)). Then ∇u ∈ Lqloc(Q0) and there is C > 0 such that for any Q ⊂ 2Q ⊂ Q0

(41)

(
−
∫
Q

|∇u|q
) 1
q

≤ c

((
−
∫

2Q

|∇u|p
) 1
p

+ 1

)
.

The constant C may depend on q.

Remark 10. Note that the function f(α) = (2 + p(1 − α))/(1 − α) is increasing
and continuous on [0, 1), f(0) = p + 2 and f(1−) = +∞. So the information in
Lemma 9 seems to be satisfactory.



12 M. BULÍČEK, M. KALOUSEK, P. KAPLICKÝ, AND V. MÁCHA

Proof. Lemma 5 together with (17) and the fact that p ≥ 2 implies ∇u ∈ N
2
p ,p

loc (Q0)

and according to (19) u ∈ N1+ 2
p ,p

loc (Q0). Moreover, (31) implies

(42)

R−(p+2)[∇u]p

N
2
p
,p

(Q)
≤ −
∫

2Q

|∇V (∇u)|2 ≤ c

R2
−
∫

4Q

|V (∇u)|2

≤ c

R2
−
∫

4Q

|∇u|p,

where R is a sidelength of cube Q. We compute

(43)

(
[u]

(1)

N
1+ 2

p
,p

(Q)

)p
≤
(
‖u− 〈u〉Q‖(1)

N
1+ 2

p
,p

(Q)

)p
≤
(
‖u− 〈u〉Q‖(2)

N
1+ 2

p
,p

(Q)

)p

=

((
−
∫
Q

|u− 〈u〉Q|p
) 1
p

+ [∇u]
N

2
p
,p

(Q)

)p
≤ Rp −

∫
4Q

|∇u|p.

We choose h ∈ Rd. Then we obtain by (36) and (43)

−
∫
Q

|d2
hu|q ≤ ‖d2

hu‖
q−p
L∞(Q) −

∫
Q

|d2
hu|p

≤ c|h|α(q−p)[u]q−pCα(5Q)

(
|h|
R

)p+2(
[u]

(1)

N
1+ 2

p
,p

(5Q)

)p

≤ c|h|p+2+α(q−p)cR(q−p)(1−α)−2

((
−
∫

20Q

|∇u|p
) q−p

p +1

+−
∫

20Q

|∇u|p
)
.

Define µ(q) = (2 + p+ α(q − p))/q. Notice that µ : [p,+∞)→ (1, 2). We get

[u− 〈u〉Q]
(1)

Nµ(q),q(Q)
≤ cR

((
−
∫

20Q

|∇u|p
) 1
p

+ 1

)
.

Assume for a while that q < p∗ := pd/(d− p). The Poincaré inequality implies

(44) ‖u− 〈u〉Q‖(2)

Nµ(q),q(Q)
≤ c ‖u− 〈u〉Q‖(1)

Nµ(q),q(Q)
≤ cR

((
−
∫

20Q

|∇u|p
) 1
p

+ 1

)
.

As

−
∫
Q

|∇u− 〈∇u〉|q ≤ cR(µ(q)−1)q −
∫

2Q

−
∫

2Q

|∇u(x+ h)−∇u(x)|q

|h(µ(q)−1)q|
dxdh

≤ c
(

1

R
[u− 〈u〉](2)

Nµ(q),q(4Q)

)q
,

the Hölder inequality and (44) yield

(45)

(
−
∫
Q

|∇u|q
) 1
q

≤ c

((
−
∫

20Q

|∇u|p
) 1
p

+ 1

)
.

The lemma is proved under additional assumption q < p∗ and with a larger inte-
gration domain on the right hand side. We use (45) in (44) in order to increase the
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validity of the lemma for q ∈ [p,min(p∗∗, (2 + p(1 − α))/(1 − α)). The statement
of the lemma is obtained after finite number of iterations and an application of a
simple covering argument. �

Now we prove the same result as in Lemma 9 also in the case p < 2. It will need
some preparations. Unfortunately, we do not know the method that would work in
both cases.

Lemma 11. Let Q ⊂ Rd be a cube with sidelength R > 0, 1 < p ≤ r < 2 and
w ∈W 2,p(5Q). Then for all h ∈ BR(0)

(46)

|h|−2r −
∫
Q

|d2
hw|r ≤ −

∫
5Q

|∇2w|r

≤
(
−
∫

5Q

|∇w|p−2|∇2w|2
) r

2
(
−
∫

5Q

|∇w|
r(2−p)
2−r

) 2−r
2

.

Proof. The inequality |h|−2r−
∫
Q
|d2
hw|r ≤ −

∫
5Q
|∇2w|r is easy consequence of Theorem

of Newton and Leibniz, Jensen’s inequality, Fubini Theorem and a proper change
of variables. Further we estimate by Hölder’s inequality

−
∫

5Q

|∇2w|r = −
∫

5Q

(
|∇w|p−2|∇2w|2

) r
2 |∇w|r

(2−p)
2

≤
(
−
∫

5Q

|∇w|p−2|∇2w|2
) r

2
(
−
∫

5Q

|∇w|
r(2−p)
(2−r)

) 2−r
2

.

�

Lemma 12. Let p < 2. Under the assumptions of Theorem 6 set q ∈ (p, p+2/(1−
α)). Then ∇u ∈ Lqloc(Q0) and there is C > 0 such that for any Q ⊂ 2Q ⊂ Q0

(47)

(
−
∫
Q

|∇u|q
) 1
q

≤ C

((
−
∫

2Q

|∇u|p
) 1
p

+ 1

)
.

The constant C may depend on q.

Proof. We will proceed by iterations. We assume that (47) holds for some q (this is
always true for q = p) and show that if q < p+2/(1−α) then (47) holds also with q
replaced by γ ∈ (q, 2q(2−α)/(2−p+q)/(1−α)). Since 2q(2−α)/(2−p+q)/(1−α)−q
is a positive and continuous function of q on [p, p + 2/(1 − α)) the statement (47)
follows.

Let (47) hold. We show that this estimate continues to hold if we replace q with
γ ∈ (q, 2q(2 − α)/(2 − p + q)/(1 − α)). Note that this interval is nonempty. Set
r = 2q/(2− p+ q). We emphasize that if q ∈ [p, 2) then r belongs to [p,+∞) and
r ≤ q for q ≥ p. The coefficient r satisfies r(2− p)/(2− r) = q.
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Lemma 11 applied to u gives together with Lemma 5

(48)

−
∫
Q

|d2
hu|r ≤ c|h|2r

(
−
∫

5Q

|∇u|p−2|∇2u|2
) r

2
(
−
∫

5Q

|∇u|q
) r(2−p)

2q

≤ c|h|2r
(
R−2 −

∫
10Q

|∇u|p
) 1
p
rp
2
(
−
∫

5Q

|∇u|q
) 1
q
r(2−p)

2

≤ c|h|2rR−r
(
−
∫

10Q

|∇u|q
) r
q

.

We proceed similarly as in the proof of Lemma 9. Successive application of (48)
and (36) yields

−
∫
Q

|d2
hu|γ ≤ ‖d2

hu‖
γ−r
L∞(Q) −

∫
Q

|d2
hu|r

≤ c|h|α(γ−r)[u]γ−rCα(5Q)|h|
2rR−r

(
−
∫

10Q

|∇u|q
) r
q

≤ cRγ
(
|h|
R

)2r+α(γ−r)
((
−
∫

10Q

|∇u|q
) γ
q

+

(
−
∫

10Q

|∇u|q
) r
q

)
.

For µ := 2r + α(γ − r) ∈ (γ, 2γ) we obtain

[u]Nµ/γ,γ(Q) ≤ cR

((
−
∫

100Q

|∇u|q
) 1
q

+ 1

)
.

This allows to conclude(
−
∫
Q

|∇u|γ
) 1
γ

≤ c

((
−
∫

10Q

|∇u|q
) 1
q

+ 1

)
≤ c

((
−
∫

20Q

|∇u|p
) 1
p

+ 1

)
,

similarly as at the end of Lemma 9. The statement of the lemma follows by covering
argument. �

Now we may proceed to the proof of the main result.

4. The proof of Theorem 1

The statement of the theorem follows from Lemma 3 applied to w = |∇v|p/2 and
wa = |∇u|p/2 + 1 where v is a solution to (1) and v is a solution to (24) on some
cube Q0 ⊂ Ω. The inequality (21) with g ≡ 1 follows from (25) just by considering
the definition of V . Similarly we also get (20) from (41) or (47).

By the triangle inequality there exists C > 0 such that

(49) ∀A,B ∈ Rd×N : ||A|
p
2 − |B|

p
2 |2 ≤ C|V (A)− V (B)|2.

Thus |w − wa|2 ≤ C(|V (∇u)− V (∇v)|2 + 1) and the desired estimate (22) follows
from (26) provided κ < ε0, ε0 being from Lemma 3. At this moment we obtain a



Lq ESTIMATES FOR NONLINEAR NON-DIAGONAL SYSTEMS 15

restriction on the sidelength of cube Q0. As all assumptions of Lemma 3 are met
we get

(50)

(
−
∫
Q

|∇v|s
) 1
s

≤ c

[
1 +

(
−
∫

4Q

|G|s/(p−1)

) 1
s

+

(
−
∫

4Q

|∇v|p
) 1
p

]
for any s ∈ (p, p+ 2/(1− α)).

5. Appendix

Here we recall [8, Theorem III.1.2] and its proof. We focus on the fact that the
constant depends only on dimension d.

Lemma 13. Let B0 ⊂ Rd be a ball, u ∈ L1(3B0). Define

[u]Lp,d+pα(3B0) := sup{(−
∫
B

|u− 〈u〉B |p)
1
p ρ−α;B ⊂ 3B0, ρ is radius of B},

[u]Cα(B0) := sup{|u(x)− u(y)||x− y|−α;x, y ∈ B0}.
Then there is C > 0 that may depend only on d such that

[u]Cα(B0) ≤ C[u]Lp,d+pα(3B0).

Proof. First we realize that u ∈ Cαloc(B0) by [8, Theorem III.1.2]. Fix x, y ∈ B0 and
denote R = dist(x, y), Bxk = B2−kR(x), Byk = B2−kR(y). It holds limk→+∞〈u〉Bxk =
u(x), limk→+∞〈u〉Bxk = u(x) and

|〈u〉Bxk − 〈u〉Bxk+1
| ≤ 2d

(
−
∫
|u− 〈u〉Bxk |

p

) 1
p

≤ 2dRα2−kα[u]Lp,d+pα(3B0).

Consequently,

|〈u〉Bx0 − u(x)| ≤ 2dRα
2α

2α − 1
[u]Lp,d+pα(3B0)

and similarly at point y.
Further, let Bxy−1 be a ball with radius 2R containing Bx0 and By0 . We get

|〈u〉Bx0 − 〈u〉By0 | ≤ |〈u〉Bx0 − 〈u〉Bxy−1
|+ |〈u〉By0 − 〈u〉Bxy−1

|

≤ C −
∫
Bxy−1

|u− 〈u〉| ≤ CRα[u]Lp,d+pα(3B0).

Altogether,

|u(x)− u(y)| ≤ CRα[u]Lp,d+pα(3B0).

�
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