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1. Introduction

Among the challenges of the a posteriori error analysis
Bounding the appropriate norm of the errors.
Estimating the local distribution of the errors.

Specifying all the multiplicative factors in the estimators making them fully
computable.

Declaring all the used assumptions and associated restrictions of the
results.

Discussing (and possibly reducing) the evaluation cost of the estimators.
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1. Setting and notation

Poisson problem: —Au=1f in Q, u=0 on9dQ,
Weak solution v € V = H}(Q),
(Vu,Vv)=(f,v) VYvevVv,

FEM discrete approximation v, € V}, C V,
(Vu,, Vvy) = (f,vy) Vv, € V.
Algebraic problem, using the basis ® = {¢1,...,¢n} of Vp,
AU=F, (A =(V¢e, V), Fj=(f.¢), u,=U.

Inexact solution U’ ~ U, uj =®U", residual R'=F — AU".

u—u, = u— u, +  u,—up
~—— ——
total error  discretization error algebraic error
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Section 2

Residual-based error estimator for the

total error

Papez, J. and Strakos, Z. (2016). On a residual-based a posteriori error
estimator for the total error. Preprint MORE/2016/14, Accepted for publication
in IMAJNA.
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. Residual-based error estimator — notation

In this section, we consider discretization using the piecewise affine
conforming finite elements.

Denote by
e 7, the triangulation of Q with the nodes A and edges &,
e ©,, z€ N, the hat-function with the support w, (the patch).

Define the oscillations of the source term f € L2(Q)
1/2
osc = (Z |wz| ||f — mean(f, wz)||iz) ,
zeN

and for wy, € V;, the edge residual measuring the jumps of a piecewise
constant function Vw, over the inner edges

S = (Y 18] ITwn - ne2)

E€£\0Q
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2. Residual-based error estimator

For the Galerkin solution w,, there exists C > 0 depending on the minimal
angle of the triangulation such that

IV (u = up)|* < C (J5(up) + 05c?) ;

see, e.g., [Carstensen (1999)].

The proof uses the so-called Clément quasi-interpolation operator

T:1YQ) = V.
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2. Bounding the total error

[Becker, Mao (2009), Lemma 3.1]:
IV (u = wa)l[* < C (Ji(wy) + 08c®) + 2|V (up — wa)|*-

Proof: “The upper bound with w, = u,, has been proven by [Carstensen
(1999)] introducing a weighted Clément-type quasi-interpolation operator.
The generalization to w,, # u,, follows from the triangle inequality.”
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2. Bounding the total error

[Becker, Mao (2009), Lemma 3.1]:
IV (u = wa)l[* < C (Ji(wy) + 08c®) + 2|V (up — wa)|*-

Proof: “The upper bound with w, = u,, has been proven by [Carstensen
(1999)] introducing a weighted Clément-type quasi-interpolation operator.
The generalization to w,, # u,, follows from the triangle inequality.”

[Arioli, Georgoulis, Loghin (2013), proof of Theorem 3.3]:
IV (u = wi) || < 2Go 2 (S5 (wy) + 05¢%)
+ (]. + 2C2_2C3_1)||V(uh - Wh)||2 .

In numerical experiments they empirically set G, := 40, G371 := 10.
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2. Revised bound

Elaborating on [Carstensen (1999)], we can show that
IV (u = wh) I < C(Jq(wn) + 05¢) +2 oy (wh) [V (= wi) >
with

- IV T
Conal8) = =)
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2. Revised bound

Elaborating on [Carstensen (1999)], we can show that
IV (u = wh) I < C(Jq(wn) + 05¢) +2 oy (wh) [V (= wi) >
with

- IV T
Conal8) = =)

A priori bound [Carstensen (1999), Theorem 3.1]:
There exists Gutp > 0 depending only on the triangulation 7 such that,
for all w € H}(Q),

IVIw| < Gupl|Vwl|.

This gives Gingp > antp(wh), for any wy, € V.
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2. Solution-independent factor and overestimation

The factor Gintp represents the worst-case scenario and most likely
Cintp > Cintp(Wh) .

Using the discussion in [Carstensen (2006), Section 2], for a square
domain Q, homogeneous Dirichlet BC and a shape-regular mesh,

Cintp =~ 6.

In general, “it may be very large for small angles in the triangulation”.
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2. Numerical illustration

Poisson problem on the square Q = (—1,1) x (—1,1), Delaunay
triangulation with 1368 elements and with the minimal angle of the mesh
equal to 35.9° (the average of the minimal angles of the elements is 50.3°).
We recall, that in this setting G, = 6.

The exact solution is set as
u(x,y) = (x = 1)(x+1)(y — )(y +1),

and we plot Cinp(uj) for the approximations ], generated by the
conjugate gradient method with zero initial vector for solving the
discretized problem.

11
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2. Numerical illustration

Poisson problem on the square Q = (—1,1) x (=1, 1), Delaunay
triangulation with 1368 elements and with the minimal angle of the mesh
equal to 35.9° (the average of the minimal angles of the elements is 50.3°).

We recall, that in this setting G, = 6.

0 5 10 15 20 25 30
CG iteration

The factor (:mp(u;',) for the approximations u} generated in the
iterations of the conjugate gradient method.
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2. Adaptive mesh refinement

e EST(u,) = (JZ(u,) + 0sc?)Y/2 bounds the discretization error and
allows its local estimation. The adaptive mesh refinement based on
the associated error indicators has been studied and mathematically
justified, e.g. in [Morin et al. 2002].

e The efficiency of adaptive procedures based on EST(u},) remains an
open question. Does EST(u}) indicate the parts of the
computational domain where the discretization error is large?

e EST(u}) can be evaluated locally. Algebraic error?

IV (u — up)ll* < C-EST?(u}) + Ginep 1V (u, — )17

12
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Adaptive mesh refinement based on EST(u})

2r W 4
5 %"‘4,{1 = 104
= 1’1,4 2
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3 q"‘q% g 103
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g 0.4 g 4"“‘
£ 04 AFEM with EST(uy,) El o

-4-AFEM with EST (u},) Y Z 10
102 10° 10* 10 20 30 40
number of mesh vertices AFEM step

Left: the decrease of the discretization error norm in adaptive FEM that is
based on EST(u,) (black) and EST(u}) (red), respectively.
Right: the corresponding number of degrees of freedom in refinement steps.
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Section 3

Estimating total and algebraic errors

using flux reconstruction

Papez, J., Strakos, Z., and Vohralik, M. (2016). Estimating and localizing
the algebraic and total numerical errors using flux reconstructions. Preprint
MORE/2016/12, Submitted.

15
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3. Estimating total error using flux reconstruction

Goal: derive an estimator in the form

||V(U - u;r)H < néot = néisc + n;lg + néscv
where . '
[V (up — up)ll < 77;|g
and ' ' ' '
V(v = u)llk otk IV (up — up)llk = Mg,k -

The derivation elaborates on [Jiranek et al. 2010] and [Ern, Vohralik 2013]
and it is based on quasi-equilibrated flux reconstruction.

16
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3. Construction of the estimator

Flux —Vu satisfies, in the Poisson problem,
—Vu € H(div,Q), div(—Vu) =f.
Given U' ~ U, ul,
© represent the algebraic residual R'=F — AU’ by r} € L?

Elementwise construction, solving the local problems with mass
matrices corresponding to each element.
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3. Construction of the estimator

Flux —Vu satisfies, in the Poisson problem,
—Vu € H(div,Q), div(—Vu)=f.
Given U’ =~ U, u;,,

@ represent the algebraic residual R'=F — AU’ by r} € L?
® from Vul construct the flux reconstruction di € H(div, Q)

divd), = f —r}

Patchwise construction, solving the local problems corresponding to
each vertex in the triangulation.

17
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3. Construction of the estimator

Flux —Vu satisfies, in the Poisson problem,
—Vu € H(div,Q), div(—Vu)=f.
Given U' ~ U, ul,
@ represent the algebraic residual R' =F — AU’ by r} € L?
@ from Vul construct the flux reconstruction di € H(div, Q)
divd, = f —r}
© estimate the discretization error using ||Vu] + d} ||

O bound the algebraic error using ||r} ||

The upper bound on the alg.error can be related to the (algebraic)
worst-case bound. It can significantly overestimate the algebraic error and

therefore the estimators are made more accurate for the price of
performing (possibly many) additional algebraic iterations.
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. Construction using additional iterations

Given U’ =~ U, u;,,

@ represent R' =F — AU’ by r} € 2
® from Vuj construct dj, € H(div, Q)
divd), = f —r}
© estimate the discretization error using ||Vu] + dj ||
O perform v additional algebraic iterétions giving U™, utv
@ represent R =F — AU by 't e [?
0 from Vu™ construct d}™ € H(div,Q)

. i+v i+v
divd,™ =f —r,

@ estimate the algebraic error using ||r;™”|| and |d}™ —dj||

18
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3. Upper bounds

Upper bounds: [Papez, Strakos, Vohralik (2016)]

IV (= up) | < ose + 1y = di™ || + Cehallr, ™ || + |V, + di|
IV (up = up)ll < d}, — di" || + Cehallry™|

the bounds are fully computable

the bounds allows for global and local estimation of the error

+ + +

the bounds are independent of the algebraic solver

— evaluation of the estimator can be very costly (flux reconstructions +
additional algebraic iterations)

19
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3. Numerical illustration — test problem

u(x,y) = x(x — 1)y (y —1) exp<—100 (x — 0.5)% — 100 (y — 0.117)2)

Q=(0,1) x (0,1), FEM discretization with piecewise 2nd order
polynomials, algebraic system solved by PCG with ichol preconditioner.

Solution u.

20
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3. Cost of the bounds

PCG convergence The values of v, Yrem = 0.5

10°
= algebraic error ",
di tizati ",
1scretization error 80 -, .
=102
= 2 60
=}
I o
< =
= = 40
> 10 =
20
10°® o
0 50 100 150 0 50 100 150

PCG iteration PCG iteration

Convergence of PCG with ichol preconditioner and the number of
additional iterations needed for the evaluation of the error bounds.

— theoretical (minimal) value corresponding to no overestimation
5 — value corresponding to algebraic worst-case bound (requires Amin(A))
v3 — number of iterations needed for our upper bounds

21
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he local indica

Total error ||V (u — u},)| %10

Local error indicators %10
3
2
25
15 2
15
1
1
0.5
0.5
Elementwise distribution of the total error (left) and the local error
indicators (right).
MORE Roztoky Jan Papez

Algebraic error in numerical PDEs



3. Algebraic error and the local indicators

Algebraic error ||V (uy, — u})||x %107 Local error indicators, Yyem = 0.5 x107
8
7 8
6
6
5
4
4
3
2 2

[

Elementwise distribution of the algebraic error (left) and the local error
indicators (right).
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3. Current work

Avoid additional iteration steps in the setting using a hierarchy of meshes,
which naturally fits into the framework of geometric multigrid methods.
Idea: represent a (non-zero) algebraic residual by a representer that
guarantees a coarsest-level orthogonality.

Papez, J., Ride, U., Vohralik, M., and Wohlmuth, B. Sharp algebraic and
total a posteriori error bounds via a multilevel approach. In preparation.

Herein, we also discuss the cost of flux reconstructions and heuristics how
to reduce it.

24
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4. Topics of particular importance

e Deriving tight and cost-acceptable bounds on the errors of different
origin that allow for accurate estimating their spatial distribution
across the domain. Derivations should clearly declare all assumptions
that can restrict applicability of the results.

e Studying the influence of the algebraic error on local a posteriori error
indicators and the adaptive refinement procedures.

e Deriving mathematically justified stopping criteria that balance (in
the appropriate problem-dependent sense) the errors of different origin
and that avoid stopping the algebraic iterations prematurely.

e |nvestigating procedures that would allow to efficiently reduce the
algebraic error in some parts of the domain where it is indicated to be
large.

26
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Thank you for your attention!

jan.papez@inria.fr
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