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Abstract

We discuss the role of relative entropies in the analysis of complete fluid

systems. The relative entropy, or rather relative energy functional measures

the “distance” between a weak solution of a given system of equations and

any other trajectory ranging in the same function space. We introduce a

relative entropy functional for the full Navier-Stokes-Fourier system based on

the ballistic free energy and discuss possible applications in the mathematical

analysis of singular limits.
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1 Introduction

The method of relative entropies has been widely used in rather di↵erent areas
of the modern theory of partial di↵erential equations, see Berthelin and Vasseur
[3], Carrillo [5], Dafermos [7], Saint-Raymond [31], among others. To introduce the
concept of relative entropy, we consider an abstract (infinite-dimensional) dynamical
system generated by the solution operator of the evolutionary problem

d

dt
U(t) = A(t, U(t)), t > 0, U(0) = U

0

, (1.1)

where A is a (non-linear) generator. We suppose that the problem (1.1) admits a
(not necessarily) unique solution U ranging in a Banach space X. Here, we suppose
that U is a kind of generalized (weak) solution and the space X chosen as large
as possible. In the applications studied in the present paper, the system (1.1) will
be a system of partial di↵erential equations governing the time evolution of a fluid,
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while U is its distributional solution. Besides, we introduce a target space for regular
(smooth) solutions Y ⇢ X.

We say that a functional

E
⇣
U
���V
⌘
: X ⇥ Y, Y ⇢ X ! R (1.2)

is a relative entropy for the problem (1.1) if E enjoys the following properties:

• Distance property. We have E(U |V ) � 0 and

E
⇣
U
���V
⌘
= 0 only if U ⌘ V.

• Lyapunov functional. Let V be an equilibrium solution of the system (1.1),
meaning

A(t, V ) = 0 for all t.

Then V 2 Y and
d

dt
E
⇣
U(t)

���V
⌘
 0 (1.3)

for any (weak) solution U of (1.1).

• Gronwall inequality. Let U be a (weak) solution of the system (1.1) ranging
in the space X and V a more regular (strong) solution of the same problem
ranging in the space Y . Then

E
⇣
U(⌧)

���V (⌧)
⌘
 E

⇣
U(0)

���V (0)
⌘
+ c

Z ⌧

0

E
⇣
U(t)

���V (t)
⌘

dt for a.a. ⌧ � 0.

(1.4)

Possessing a relative entropy provides a valuable piece of information concerning
a given system of equations, in particular in the case when the latter is known
to admit only global-in-time weak solutions - the situation typical for the Navier-
Stokes system and related problems posed in the natural 3D-topology, see Fe↵erman
[13]. With a relative entropy at hand, it is possible to introduce the concept of
dissipative solution and show the principle of weak-strong uniqueness. Specifically,
the weak (dissipative) and strong solution coincide as long as the latter exists,
meaning, the strong solutions are unique in the class of weak solutions - this is a
direct consequence of (1.4). Another application of the relative entropy discussed
in the present paper is the rigorous justification of several singular limits in fluid
mechanics, in particular in the cases where viscosity becomes negligible.

The paper is organized as follows. In the first part, consisting in Sections 2 - 4
we introduce the concept of relative entropy and dissipative solutions to the Navier-
Stokes-Fourier system describing the motion of a general compressible, viscous, and
heat conducting fluid and compare it to the quantity introduced by Dafermos [7] in
the context of hyperbolic conservation laws. Section 5 is devoted to the analysis of
singular limits of the scaled problem by means of the method of relative entropies,
in particular, the case of the inviscid incompressible limit. We present frequency
localized Strichartz estimates for the acoustic equation and extend the result of [16]
to more general physical domains.
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2 Thermostatics, relative entropies

To begin, we review some basic concepts of continuum fluid mechanics. We suppose
that the state of a fluid in thermodynamic equilibrium is fully determined by its
mass density % and the absolute temperature #. Alternatively, we may also replace
% by the specific volume V = 1/% and # by the internal energy e. The internal
energy e, the pressure p, and the entropy s satisfy Gibbs’ equation:

#Ds = De+ pDV, V =
1

%
. (2.1)

In this section, we discuss relative entropies ⌘(%,#|%̃, #̃) relating the thermostatic
variables %, # to some reference values %̃, #̃.

2.1 Thermodynamic stability

The concept of relative entropy in hyperbolic systems of conservation laws was
proposed by Dafermos [7] in order to study the stability issues. Following [7], we
consider first the standard entropy s = s(V, e) expressed as a function of the specific
volume V and the internal energy e. Furthermore, we impose the hypothesis of
thermodynamic stability :

@p(%,#)

@%
> 0,

@e(%,#)

@#
> 0, (2.2)

where the former condition expresses positive compressibility of the fluid, while the
latter enforces positivity of the specific heat at constant volume. Both conditions
are rather natural and form one of the main building blocks of the theory developed
below.

Expressing the thermodynamic functions p, s, as well as the absolute tempera-
ture # in terms of %, e we deduce from (2.1), (2.2) that the mapping

(V, e) 7! �s(V, e) is convex in (V, e),

cf. Bechtel, Rooney, and Forest [2]. Consequently, a natural candidate for the
relative entropy evaluated in terms of the thermostatic variables V , e is the quantity
⌘,

⌘
⇣
V, e
���Ṽ , ẽ

⌘
= �

⇣
s(V, e)� @V s(Ṽ , ẽ)(V � Ṽ )� @es(Ṽ , ẽ)(e� ẽ)� s(Ṽ , ẽ)

⌘
.

Going back to the independent variables %, # and using Gibbs’ relation (2.1) we
obtain

⌘
⇣
%,#
���%̃, #̃

⌘
= �

 
s(%,#)� p(%̃, #̃)

#̃

✓
1

%
� 1

%̃

◆
� 1

#̃

⇣
e(%,#)� e(%̃, #̃)

⌘
� s(%̃, #̃)

!
,

which may be viewed as a “specific” relative entropy related to unit mass. For ap-
plications to conservation laws, it is more convenient to replace ⌘ ⇡ %⌘, specifically
we take

⌘
⇣
%,#
���%̃, #̃

⌘
= �%

 
s(%,#)� p(%̃, #̃)

#̃

✓
1

%
� 1

%̃

◆
� 1

#̃

⇣
e(%,#)� e(%̃, #̃)

⌘
� s(%̃, #̃)

!

(2.3)
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2.2 Ballistic free energy

In applications to dissipative equations like the Navier-Stokes system, we further
modify the functional ⌘ by introducing:

⇠
⇣
%,#
���%̃, #̃

⌘
= #̃ ⌘

⇣
%,#
���%̃, #̃

⌘

=
⇣
%e(%,#)� #̃%s(%,#)

⌘
�
⇣
%̃e(%̃, #̃)� #̃%̃s(%̃, #̃)

⌘

+

"
p(%̃, #̃)

%̃
+ e(%̃, #̃)� #̃s(%̃, #̃)

#
(%̃� %).

Consequently, using once more Gibbs’relation (2.1) we arrive at

⇠
⇣
%,#
���%̃, #̃

⌘
= H

˜#(%,#)�
@H

˜#(%̃, #̃)

@%
(%� %̃)�H

˜#(%̃, #̃), (2.4)

where we have introduced another thermodynamic potential called ballistic free
energy (cf. Ericksen [11]),

H
˜#(%,#) = %

⇣
e(%,#)� #s(%,#)

⌘
,

see [17]. Note that ⇠ has the physical dimension of energy rather than entropy.

3 Fluids in motion

Up to now, we have considered fluids in thermodynamic equilibrium characterized
by the thermostatic variables %, #. Now, we suppose that the fluid moves with a
macroscopic velocity u = u(t, x), which is a function of the time t and the spatial
position x. In accordance with the commonly accepted principles of continuum
thermodynamics, we assume that the state of the fluid at each instant t is still
described by the density % = %(t, x) and the absolute temperature # = #(t, x).
Thus the trio [%,#,u] provides a full description of the fluid at any time and any
spatial position of a given physical domain ⌦ ⇢ R3.

3.1 Navier-Stokes-Fourier system

Given the initial state of the fluid

%(0, ·) = %
0

, u(0, ·) = u
0

, #(0, ·) = #
0

, (3.1)

the time evolution of the state variables is described by means of the following
Navier-Stokes-Fourier system that expresses the fundamental physical principles:

mass conservation

@t%+ divx(%u) = 0; (3.2)

momentum balance

@t(%u) + divx(%u⌦ u) +rxp(%,#) = divxS(#,rxu) + %f ; (3.3)
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energy balance

@t

✓
1

2
%|u|2 + %e(%,#)

◆
+ divx

✓
1

2
%|u|2 + %e(%,#)

◆
u+ p(%,#)u� S(#,rxu) · u

�

(3.4)
+divxq(#,rx#) = %f · u;

where f is an external force, S(#,rxu) is the viscous stress tensor here determined
by

Newton’s law

S(#,rxu) = µ(#)

✓
rxu+rt

xu� 2

3
divxuI

◆
+ ⌘(#)divxuI; (3.5)

and q(#,rx#) is the heat flux given by
Fourier’s law

q(#,rx#) = �(#)rx#. (3.6)

3.2 Physical domains, boundary conditions

In the case @⌦ 6= ;, relevant boundary conditions must be prescribed. We focus
on the domains with impermeable boundaries, both mechanically and thermally.
Accordingly, we impose the boundary conditions

u · n|@⌦ = 0 (3.7)

and
q(#,rx#) · n|@⌦ = 0. (3.8)

In addition to (3.7), we suppose that the behavior of the fluid in the tangential
direction to @⌦ obeys

Navier’s slip boundary condition

[S(#,rxu) · n]
tan

+ �[u]
tan

|@⌦ = 0, (3.9)

where � 2 [0,1] plays the role of a friction coe�cient. We focus on the two extremal
situations where either � = 0 and (3.9) reduces to the complete slip boundary
condition

[S(#,rxu) · n]⇥ n|@⌦ = 0, (3.10)

or � = 1, for which (3.7), (3.9) give rise to the very common no slip condition

u|@⌦ = 0. (3.11)

The boundary conditions (3.7), (3.8), supplemented with either (3.10) or (3.11),
are conservative and give rise, by integrating (3.4), to

total energy balance

d

dt

Z

⌦

✓
1

2
%|u|2 + %e(%,#)

◆
dx =

Z

⌦

%f · u dx (3.12)

at least if ⌦ ⇢ R3 is a bounded domain.
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If ⌦ ⇢ R3 is unbounded, the far-field behavior of the state variables must be
prescribed, for instance,

% ! %1, # ! #1, u ! u1 as |x| ! 1, (3.13)

and the total energy balance (3.12) must be modified accordingly.

3.3 Equivalent formulation of the energy balance

The energy balance equation (3.4) is very often replaced by another balance law
that is equivalent to (3.4) at least in the framework of classical solutions to the
Navier-Stokes-Fourier system.

3.3.1 Thermal energy

Introducing the specific heat at constant volume (cf. (2.2))

cV (%,#) =
@e(%,#)

@#

we may rewrite (3.4) in the form of
thermal energy equation

%cv(%,#)
⇣
@t#+ u ·rx#

⌘
� divx

⇣
(#)rx#

⌘
= S(#,rxu) : rxu� #

@p(%,#)

@#
divxu,

(3.14)
where, of course, we have exploited several identities resulting from the remaining
equations in the Navier-Stokes-Fourier system.

The formulation of the Navier-Stokes-Fourier system by means of the equations
(3.2), (3.3), and (3.14) is frequently used in the literature, in particular, the nowa-
days standard existence theory in the framework of classical solutions developed by
Matsumura and Nishida [28], [29], Tani [35], Valli [36], [37], Valli and Zajackowski
[38] uses this setting.

3.3.2 Entropy equation and the Second law of thermodynamics

Unlike (3.4), the thermal energy equation (3.14) is not in a divergence form that
is more convenient for the weak formulation, where the di↵erential operators are
typically transferred on suitable smooth test functions. To this end, it seems more
convenient to use

entropy production equation

@t(%s(%,#)) + divx(%s(%,#)u) + divx

✓
q(#,rx#)

#

◆
= �, (3.15)

with the entropy production rate

� =
1

#

✓
S(#,rxu) : rxu� q(#,rx#) ·rx#

#

◆
, (3.16)

which can be obtained dividing (3.14) on # and using the continuity equation.
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In accordance with the Second law of thermodynamics, the entropy production
rate � must be non-negative. On the other hand, it is di�cult to establish (3.16) in
the framework of weak solutions to the Navier-Stokes-Fourier system. The problem
seems to be of the same origin as its counterpart in the theory of incompressible
fluid flows discussed by Duchon and Robert [9], Eyink [12], Nagasawa [30], Shvydkoy
[32], or, in the context of inviscid incompressible fluids by DeLellis and Székelyhidi
[8]. In other words, the weak solutions may, hypothetically, dissipate more kinetic
energy than expressed by the quantity on the right-hand side of (3.16), specifically

� � 1

#

✓
S(#,rxu) : rxu� q(#,rx#) ·rx#

#

◆
. (3.17)

On the other hand, under the conservative boundary conditions specified in Sec-
tion 3.2, the balance of the total energy (3.12) remains valid. Consequently, we may
use the equations (3.2), (3.3), together with the entropy production equation (3.15),
where � satisfies (3.17), and the total energy balance (3.12) as a new formulation
of the Navier-Stokes-Fourier system. It can be shown (see [15, Chapter 2]) that
this new formulation is perfectly equivalent to the original system of equations, in
particular the entropy production rate is given by (3.16), as soon as the state vari-
ables [%,#,u] are smooth. As we will see below, the new formulation can be suitably
adapted in the context of weak (distributional) solutions to obtain a mathematically
tractable object.

4 Weak and dissipative solutions

In accordance with the previous discussion, one of possible weak formulations of the
Navier-Stokes-Fourier system consists of the equation of continuity (3.2), the mo-
mentum equation (3.3), together with entropy production inequality (3.15), (3.17),
supplemented with the total energy balance (3.12), where the derivatives as well as
the boundary conditions are satisfied in the sense of distributions and their traces,
see [15, Chapter 3] for details. Here, we introduce even more general class of the so-
called dissipative solutions characterized by the satisfaction of the relative entropy
inequality specified below.

4.1 Relative entropy

Motivated by the discussion in Section 2.2, specifically by formula (2.4), we intro-
duce a relative entropy

E
⇣
%,#,u

��� r,⇥,U
⌘

(4.1)

=

Z

⌦


1

2
%|u�U|2 +H

⇥

(%,#)� @H
⇥

(r,⇥)

@%
(%� r)�H

⇥

(r,⇥)

�
dx.

If [%,#,u] is a smooth solution of the Navier-Stokes-Fourier system, supple-
mented with the no-slip condition (3.11) or the complete slip condition (3.7), (3.10),
and if [r,⇥,U] is and arbitrary trio of smooth test functions satisfying

r > 0, ⇥ > 0, and U|@⌦ = or U · n|@⌦ = 0, (4.2)
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then it is a routine matter to check that the following relative entropy inequality
holds:

h
E
⇣
%,#,u

���r,⇥,U
⌘it=⌧

t=0

+

Z ⌧

0

Z

⌦

⇥

#

✓
S(#,rxU) : rxu� q(#,rx#) ·rx#

#

◆
dx dt

(4.3)


Z ⌧

0

Z

⌦

⇣
%(U� u) · @tU+ %(U� u)⌦ u : rxU� p(%,#)divxU

⌘
dx dt

+

Z ⌧

0

Z

⌦

⇣
S(#,rxu) : rxU+ %f · (u�U)

⌘
dx dt

�
Z ⌧

0

Z

⌦

⇣
%
⇣
s(%,#)� s(r,⇥)

⌘
@t⇥+ %

⇣
s(%,#)� s(r,⇥)

⌘
u ·rx⇥

⌘
dx dt

+

Z ⌧

0

Z

⌦

q(#,rx#)

#
·rx⇥ dx dt

+

Z ⌧

0

Z

⌦

⇣⇣
1� %

r

⌘
@tp(r,⇥)� %

r
u ·rxp(r,⇥)

⌘
dx dt

for a.a. ⌧ 2 [0, T ].
Now, the crucial observation exploited in [17] is that the relative entropy in-

equality (4.3) remains valid also for any weak solution [%,#,U] as long as the test
functions [r,⇥,U] are su�ciently smooth and satisfy the compatibility condition
(4.2).

4.2 Dissipative solutions

Following the idea of DiPerna and Lions [25] we say that [%,#,u] is a dissipative
solution of the Navier-Stokes-Fourier system if

% 2 L1(0, T ;Lp(⌦)) for a certain p > 1, % � 0 a.a. in (0, T )⇥ ⌦,

# 2 L1(0, T ;Lp(⌦))\Lr(0, T ;W 1,r(⌦)) for certain q, r > 1, # > 0 a.a. in (0, T )⇥⌦,

u 2 Ls(0, T ;W 1,s(⌦;R3)) for a certain s > 1, u|@⌦ = 0 or u · n|@⌦ = 0,

and the relative entropy inequality (4.3) holds for any trio of smooth test functions
[r,⇥,U] satisfying (4.2). Of course, the exponents p, q, r, and s are not arbitrary
and must be adjusted so that all integrals appearing in (4.3) make sense. This issue
will be discussed in detail in the following part of the paper.

4.3 Existence theory

The main advantage of the weak formulation of the Navier-Stokes-Fourier system
based on the entropy production balance discussed in Section 3.3.2 is that the result-
ing problem is mathematically tractable, specifically, we can establish an existence
theory of global-in-time solutions in the spirit of Leray’s seminal paper [24].
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4.3.1 Hypotheses

In order to present the main existence result in the framework of weak solutions,
the class of thermodynamic functions p, e, and s as well as the transport coe�cient
µ, ⌘ and  must be restricted.

To begin, we assume that the pressure p obeys a state equation in the form

p(%,#) = #5/2P
⇣ %

#3/2

⌘
+

a

3
#4, a > 0, (4.4)

with P 2 C1[0,1). The first expression on the right-hand side is a general pressure
of a monoatomic gas, while the second one accounts for the e↵ect of radiation,
see Eliezer, Ghatak, and Hora [10]. The reader may consult [15, Chapter 1] for
details concerning the physical background of (4.4) as well as the other hypotheses
introduced below.

The specific internal energy will be taken in the form

e(%,#) =
3

2

#5/2

%
P
⇣ %

#3/2

⌘
+

a

%
#4, (4.5)

and

s(%,#) = S
⇣ %

#3/2

⌘
+

4a

3

#3

%
, (4.6)

where

S0(Z) = �3

2

5

3

P (Z)� P 0(Z)Z

Z2

. (4.7)

In accordance with the hypothesis of thermodynamic stability, we further sup-
pose that

P 0(Z) > 0 for any Z � 0,
5

3

P (Z)� P 0(Z)Z

Z
> 0 for any Z > 0, (4.8)

and

lim
Z!1

P (Z)

Z5/3
= p1 > 0. (4.9)

Finally, we impose technical but physically grounded hypotheses (cf. [15, Chap-
ter 1])

P (0) = 0,
5

3

P (Z)� P 0(Z)Z

Z
< c for all Z > 0. (4.10)

The transport coe�cients µ, ⌘, and  are continuously di↵erentiable for # 2
[0,1) satisfying

µ(1 + #⇤)  µ(#)  µ(1 + #⇤), |µ0(#)| < c for all # 2 [0,1) for some
2

5
< ⇤  1,

(4.11)
0  ⌘(#)  ⌘(1 + #⇤) for all # 2 [0,1), (4.12)

(1 + #3)  (#)  (1 + #3) for all # 2 [0,1). (4.13)
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4.3.2 Global-in-time existence

Having specified the basic hypotheses, we are ready to state the following global-
in-time existence result for the Navier-Stokes-Fourier system in the framework of
weak solutions, see [15, Theorem 3.1].

Theorem 4.1 Let ⌦ ⇢ R3 be a bounded domain of class C2+⌫ , ⌫ > 0. Assume
that the initial data satisfy

%
0

2 L1(⌦), #
0

2 L1(⌦), (%u)
0

2 L1(⌦;R3), %
0

> 0, #
0

> 0 a.a. in ⌦,

and let f 2 L1((0, T )⇥⌦;R3) be given. Let the functions p, e, s and the transport
coe�cients µ, ⌘, and  satisfy the hypotheses (4.4 - 4.13).

Then the Navier-Stokes-Fourier system admits a weak solution [%,#,u] in the
set (0, T )⇥ ⌦ for any T > 0.

4.3.3 Weak-strong uniqueness and regularity criterion

As observed in [17], any weak solution satisfies the relative entropy inequality (4.3).
This fact can be used for deriving a version of the Gronwall inequality (1.4), in
particular, the weak and strong solutions emanating from the same initial data
coincide as long as the latter exists. This is the weak-strong uniqueness property
shown in [17, Theorem 2.1]:

Theorem 4.2 In addition to the hypotheses of Theorem 4.1 suppose that the initial
data belong to the class:

%
0

, #
0

2 W 3,2(⌦), u
0

2 W 3,2(⌦;R3). (4.14)

Let [%,#,u] be the weak solution of the Navier-Stokes-Fourier system, the exis-
tence of which is guaranteed by Theorem 4.1, and let [%̃, #̃, ũ] be a strong solution
of the same problem belonging to the class

%̃, #̃ 2 C([0, T ];W 3,2(⌦)), ũ 2 C([0, T ];W 3,2(⌦;R3)),

#̃ 2 L2(0, T ;W 4,2(⌦)), @t#̃ 2 L2(0, T ;W 2,2(⌦)),

ũ 2 L2(0, T ;W 4,2(⌦;R3)), @tũ 2 L2(0, T ;W 2,2(⌦;R3)),

and emanating from the same initial data.
Then % = %̃, # = #̃, and u = ũ in [0, T ].

Note that local-in-time strong solutions in the afore-mentioned class were con-
structed by Valli [36], [37], Valli and Zajackowski [38]. Since the proof uses only
the relative entropy inequality, the same result is valid in the class of dissipative
solutions.

Finally, we report a conditional regularity result in the spirit of Beale, Kato,
and Majda [1], see [18, Theorem 2.1]:

Theorem 4.3 In addition to the hypotheses of Theorem 4.1 suppose that the initial
data belong to the regularity class (4.14) and satisfy the compatibility conditions:

rx#0

· n|@⌦ = u
0

|@⌦ = 0, rxp(%0,#0

)|@⌦ = divxS(#0

,rxu0

) + %
0

f |@⌦. (4.15)
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Let [%,#,u] be a weak (dissipative) solution of the Navier-Stokes-Fourier system
satisfying

ess sup
(t,x)2(0,T )⇥⌦

|rxu(t, x)| < 1.

Then [%,#,u] is a classical solution in the open space-time cylinder (0, T )⇥ ⌦.

The reader will have noticed that the compatibility conditions (4.15) reflex the
no-slip boundary condition for the velocity. The same result, with an obvious
modification, applies to a general Navier slip boundary condition.

5 Singular limits

Singular limits are closely related to scale analysis of di↵erential equations - an
e�cient tool used both theoretically and in numerical experiments to reduce the
undesirable and mostly unnecessary complexity of the underlying physical system.
The Navier-Stokes-Fourier system, in the entropy formulation, can be written in
the dimensionless form:

Sr @t%+ divx(%u) = 0, (5.1)

Sr @t(%u) + divx(%u⌦ u) +
1

Ma2
rxp =

1

Re
divxS(#,rxu) +

1

Fr2
%rxF, (5.2)

Sr @t(%s) + divx(%su) +
1

Pe
divx

⇣q(#,rx#)

#

⌘
= �, (5.3)

Sr
d

dt

Z

⌦

⇣Ma2

2
%|u|2 + %e� Ma2

Fr2
%F
⌘
dx = 0, (5.4)

with the scaled entropy production rate

� � 1

#

⇣Ma2

Re
S : rxu� 1

Pe

q ·rx#

#

⌘
, (5.5)

where we have taken the potential driving force f = rxF (x).
The dimensionless characteristic numbers appearing in the preceding system are

defined as follows, see Klein et al. [23]:

Symbol Definition Name

Sr L
ref

/(T
ref

U
ref

) Strouhal number

Ma U
ref

/
p

p
ref

/%
ref

Mach number

Re %
ref

U
ref

L
ref

/µ
ref

Reynolds number

Fr U
ref

/
p
L
ref

f
ref

Froude number

Pe p
ref

L
ref

U
ref

/(#
ref


ref

) Péclet number

Here L
ref

stands for the characteristic length, T
ref

is the characteristic time, and
U
ref

is the characteristic velocity.
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5.1 Inviscid incompressible limits

In many real world applications, in particular in meteorology, the fluid motion is
rather slow, and, at the same time, the transport coe�cients are small. This the
situation corresponding to the choice:

Sr = 1, Ma = ", Re = "�a, Pe = "�b, a, b > 0,

where " ! 0 is a small parameter. Moreover, for the sake of simplicity, we set
F = 0.

The initial data are ill-prepared, specifically,

%(0, ·) = %
0," = %+ "%

(1)

0,", #(0, ·) = #
0," = #+ "#

(1)

0,", u(0, ·) = u
0,", (5.6)

where %, # are positive constants, and the perturbations %(1)
0,", #

(1)

0," are allowed to be
large.

For [%",#",u"] a family of solutions to the scaled Navier-Stokes-Fourier system,
we may anticipate that

%" ! %, #" ! #, u" ! v,
#" � #

"
! T, (5.7)

where the limit velocity v and the temperature deviation T satisfy

divxv = 0, (5.8)

@tv + v ·rxv +rx⇧ = 0, (5.9)

@tT + v ·rxT = 0, (5.10)

cf. [16]. The system (5.8), (5.9) is nothing other than the incompressible Euler
system known to possess a local in time strong solution for any regular initial data.
The equation (5.10) represents pure transport of the temperature deviation.

5.2 Mathematical analysis

A rigorous justification of the limit (5.7), carried over in [16], is rather technical
and demonstrates the strength of the method of relative entropies. Results of this
type for a simpler compressible Navier-Stokes system (without temperature) were
obtained by Masmoudi [26], [27].

The leading idea of the analysis is rather simple, namely, take the trio

U = rx�" + v, r = %+ "R", ⇥ = #+ "T"

as test functions in the relative entropy inequality (4.3). The function v is the
solution of the Euler system (5.8), (5.9), while R", T", and �" solve the acoustic-
transport system:

"@t(↵R" + �T") + !��" = 0, (5.11)

"@trx�" +rx(↵R" + �T") = 0, (5.12)

@t(�T" � �R") +U" ·rx(�T" � �R") + (�T" � �R")divxU" = 0, (5.13)

12



with the constants

↵ =
1

%

@p(%,#)

@%
, � =

1

%

@p(%,#)

@#
, � = %

@s(%,#)

@#
, ! = %

✓
↵+

�2

�

◆
.

For Z" = ↵R" + �T", the system (5.11), (5.12) can be written in the form of
acoustic equation

"@tZ" + !��" = 0, "@t�" + Z" = 0. (5.14)

The system (5.14) governs the propagation of acoustic waves supposed to “disap-
pear” in the incompressible limit. The principal idea of the analysis is therefore to
show that

�" ! 0, Z" ! 0 in some sense, (5.15)

and to recover the limit equation (5.10) from (5.13). In order to show (5.15), we
use the dispersive (Strichartz type) estimates discussed in the next section.

5.3 Propagation of acoustic waves

We consider a fluid flow confined to a general (unbounded) domain ⌦ ⇢ R3, where
the velocity u" satisfies the complete slip boundary conditions (3.7), (3.10). Ac-
cordingly, the acoustic potential �" appearing in (5.14) satisfies the homogeneous
Neumann boundary condition

rx�" · n|@⌦ = 0. (5.16)

Note that the complete slip boundary conditions are also necessary in order to
avoid the up to now unsurmountable di�culties connected with the presence of a
boundary layer in the inviscid limit, see e.g. Kato [21].

5.3.1 Frequency localized Strichartz estimates

A short inspection of the solution formula associated to the acoustic problem (5.15),
(5.16) reveals that solutions may be expressed by means of the wave propagator

h 7! exp

✓
±i

t

"

p
��N

◆
[h],

where �N denotes the L2-realization of the Neumann Laplacean on ⌦. Our goal
will be to show
Z 1

�1

���G(��N ) exp
⇣
±i
p
��N t

⌘
[h]
���
p

Lq
(⌦)

 c(G)khkpH1,2
(⌦)

,
1

2
=

1

p
+

3

q
, q < 1,

(5.17)
where G 2 C1

c (0,1), and where H1,2 denotes the homogeneous Sobolev space.
The estimate (5.17) can be viewed as frequency localized Strichartz estimates, cf.
[34]. They provide the necessary piece of information in order to show the (local)
decay of acoustic waves claimed in (5.15), cf. [16]. In the remaining part of this
section, we show (5.17) by means of the arguments of developed by Burq [4], Smith
and Sogge [33]. To this end, we suppose that ⌦ = R3 \ K is a regular exterior
domain, K a compact set in R3 with a smooth boundary.
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5.3.2 Dispersive estimates for the free Laplacean

We recall the standard Strichartz estimates for the free Laplacean � in R3,
Z 1

�1

���exp
⇣
±i

p
��t

⌘
[h]
���
p

Lq
(R3

)

dt  khkpH1,2
(R3

)

,
1

2
=

1

p
+

3

q
, q < 1, (5.18)

see Keel and Tao [22], Strichartz [34].
In addition, the free Laplacean satisfies the local energy decay in the form
Z 1

�1

���' exp
⇣
±i

p
��t

⌘
[h]
���
2

H↵,2
(R3

)

dt  c(')khk2H↵,2
(R3

)

, ↵  3

2
, (5.19)

see Smith and Sogge [33, Lemma 2.2].

5.3.3 Frequency localized estimates

To show (5.17), we decompose the function

U(t, ·) = G(��N ) exp
⇣
±i
p
��N t

⌘
[h] = exp

⇣
±i
p

��N t
⌘
G(��N )[h]

as
U = v + w, v = �U, w = (1� �)U,

where
� 2 C1

c (R3), 0  �  1, �(x) = 1 for |x|  R.

Here R is chosen so large that the complement K of ⌦ is contained in the ball of
the radius R.

Thus we write
w = w1 + w2,

where w1 solves the homogeneous wave equation

@2

t,tw
1 ��w1 = 0 in R3,

supplemented with the initial conditions

w1(0) = (1� �)G(��N )[h], @tw
1(0) = ±i(1� �)

p
��NG(��N )[h],

while
@2

t,tw
2 ��w2 = F in R3,

w2(0) = @tw
2(0) = 0,

with
F = �rx�rxU � U��.

As a direct consequence of the standard Strichartz estimates (5.18), we obtain
Z 1

�1

��w1

��p
Lq

(R3
)

dt  c(G)khkpH1,2
(R3

)

,
1

2
=

1

p
+

3

q
, q < 1. (5.20)

As the next step, we use Duhamel’s formula to deduce

w2(⌧, ·) = 1

2
p
��


exp

⇣
i
p
��⌧

⌘Z ⌧

0

exp
⇣
�i

p
��s

⌘
[⌘2F (s)] ds

�
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� 1

2
p
��


exp

⇣
�i

p
��⌧

⌘Z ⌧

0

exp
⇣
i
p
��s

⌘
[⌘2F (s)] ds

�
,

with
⌘ 2 C1

c (R3), 0  ⌘  1, ⌘ = 1 on supp[F ].

Now, similarly to Burq [4], we use the following result of Christ and Kiselev [6]:

Lemma 5.1 Let X and Y be Banach spaces and assume that K(t, s) is a continuous
function taking its values in the space of bounded linear operators from X to Y . Set

T [f ](t) =

Z b

a

K(t, s)f(s) ds, W[f ](t) =

Z t

a

K(t, s)f(s) ds,

where
0  a  b  1.

Suppose that
kT [f ]kLp

(a,b;Y )

 c
1

kfkLr
(a,b;X)

for certain
1  r < p  1.

Then
kW[f ]kLp

(a,b;Y )

 c
2

kfkLr
(a,b;X)

,

where c
2

depends only on c
1

, p, and r.

We apply Lemma 5.1 to

X = L2(R3), Y = Lq(R3), q < 1,
1

2
=

1

p
+

3

q
, r = 2,

and

f = F, K(t, s)[F ] =
1p
��

exp
⇣
±i

p
��(t� s)

⌘
[⌘2F ].

Writing
Z 1

0

K(t, s)F (s) ds = exp
⇣
±i

p
��t

⌘ 1p
��

Z 1

0

exp
⇣
⌥i

p
��s

⌘
[�2F (s)] ds,

we have to show, in accordance with the Strichartz estimates (5.18), that
����
Z 1

0

exp
⇣
±i

p
��s

⌘
[⌘2F (s)] ds

����
L2

(R3
)

 ckFkL2
(0,1;L2

(R3
))

. (5.21)

On the other hand, however,
����
Z 1

0

exp
⇣
±i

p
��s

⌘
[�2F (s)] ds

����
L2

(R3
)

= sup
kvkL2(R3)1

Z 1

0

D
exp

⇣
±i

p
��s

⌘
[�2F (s)]; v

E
ds

= sup
kvkL2(R3)1

Z 1

0

D
�F (s);� exp

⇣
�i

p
��s

⌘
[v]
E

ds;
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whence the desired conclusion (5.21) follows from the local energy decay estimates
(5.19). As the norm of F is bounded, we may infer that

Z 1

�1

��w2

��p
Lq

(R3
)

dt  c(G)khkpH1,2
(R3

)

,
1

2
=

1

p
+

3

q
, q < 1. (5.22)

Finally, since v = �U is compactly supported, we deduce form the standard
elliptic regularity for ��N that

Z 1

0

kvk2Lq
(⌦)

dt  c(G)khk2H1,2
(⌦)

; (5.23)

while, by virtue of the standard energy estimates,

sup
t>0

kv(t, ·)kLq
(⌦)

 c(G)khkH1,2
(⌦)

. (5.24)

where q < 1 is the same as in (5.18). Interpolating (5.23), (5.24), we get the
desired conclusion (5.17).

To conclude this section, we note that similar estimates on exterior domain can
be obtained by the method of Isozaki [19]. On the other hand, the present method
seems more versatile and applicable to a larger class of unbounded domains, for
instance to a perturbed half-space or wave operators with non-constant coe�cients
arising in the stratified limits, cf. [14].

5.4 Singular limit - main result

In order to formulate our main result, several remarks are in order. In agreement
with the previous section, we consider the fluid confined to an unbounded domain
⌦ ⇢ R3 with a compact and regular boundary @⌦, on which the velocity field u"

satisfies the complete slip boundary conditions (3.7), (3.10). Moreover, the initial
data are taken in the form (5.6), where

%
(1)

0," ! %
(1)

0

in L2(⌦), #
(1)

0," ! #
(1)

0

in L2(⌦), k%(1)
0,"kL1

(⌦)

, k%(1)
0,"kL1

(⌦)

 c, (5.25)

and
u
0," ! u

0

in L2(⌦;R3). (5.26)

Since the spatial domain is un bounded, the far field conditions must be pre-
scribed. In agreement with (5.25), (5.26), we take

%" ! %, #" ! #, u" ! 0 as |x| ! 1. (5.27)

Accordingly, the natural function spaces the solution is sought in read

%" � %

"
2 L1(0, T ;L5/3 + L2(⌦)),

#" � #

"
2 L1(0, T ;L4 + L2(⌦)), (5.28)

and, if we fix ⇤ = 1 in the hypotheses (4.11 - 4.13),

#" 2 L2(0, T ;W 1,2(⌦)), u" 2 L2(0, T ;W 1,2(⌦;R3)). (5.29)

Finally, we denote

v
0

= H[u
0

], where H denotes the standard Helmholtz projection,
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and suppose that

v
0

2 W k,2(⌦;R3), k >
5

2
.

Our result concerning the inviscid, incompressible limit of the Navier-Stokes-
Fourier system will be formulated directly in terms of the dissipative solutions,
meaning the functions [%",#",u"] satisfying the relative entropy inequality (4.3).
Since the domain ⌦ is unbounded, we have to modify the space of test functions
accordingly, namely

r > 0, ⇥ > 0, and U · n|@⌦ = 0, r � %,⇥� #, U in C1
c ([0, T ]⇥ ⌦).

Combining the dispersive estimates obtained in Section 5.3 with the method of
[16] we obtain the following generalization of [16, Theorem 3.1]:

Theorem 5.2 Let ⌦ ⇢ R3 be an unbounded domain with a compact boundary of
class C2+⌫ . Suppose that the thermodynamic functions p, e, and s and the transport
coe�cients µ, ⌘,  satisfy the hypotheses (4.4 - 4.13), with ⇤ = 1. Let

b > 0,
10

3
> a > 0.

Furthermore, suppose that the initial data (5.6) are chosen in such a way that

{%(1)
0,"}">0

, {#(1)

0,"}">0

are bounded in L2\L1(⌦), %(1)
0," ! %

(1)

0

, #
(1)

0," ! #
(1)

0

in L2(⌦),

and
{u

0,"}">0

is bounded in L2(⌦;R3), u
0," ! u

0

in L2(⌦;R3),

where

%
(1)

0

, #
(1)

0

2 W 1,2 \W 1,1(⌦), H[u
0

] = v
0

2 W k,2(⌦;R3) for a certain k >
5

2
.

Let T
max

2 (0,1] denote the maximal life-span of the regular solution v to the Euler
system (5.8), (5.9) satisfying v(0, ·) = v

0

. Finally, let {%",#",u"} be a dissipative
solution of the scaled Navier-Stokes-Fourier system in (0, T )⇥ ⌦, T < T

max

, with

Sr = 1, Ma = ", Re = "�a, Pe = "�b.

Then
ess sup

t2(0,T )

k %"(t, ·)� % kL2
+L5/3

(⌦)

 "c,

p
%"u" !

p
% v in L1

loc

((0, T ];L2

loc

(⌦;R3)) and weakly-(*) in L1(0, T ;L2(⌦;R3)),

and

#" � #

"
! T in L1

loc

((0, T ];Lq
loc

(⌦;R3)), 1  q < 2, and weakly-(*) in L1(0, T ;L2(⌦)),

where v, T is the unique solution of the Euler-Boussinesq system (5.8 - 5.10), with
the initial data

v
0

= H[u
0

], T
0

= %
@s(%,#)

@#
#
(1)

0

� 1

%

@p(%,#)

@#
%
(1)

0

.

Finally, we note that existence of the dissipative solutions for the Navier-Stokes-
Fourier system in general (unbounded) domains was shown by Jesslé, Jin, and
Novotný [20].
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