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Why limiting strain

The talk is based on the following results

M. Buĺıček, J. Málek, K. R. Rajagopal and J. R. Walton: Existence of solutions
for the anti-plane stress for a new class of “strain-limiting” elastic bodies,
Calc. Var. Partial Differential Equations, 2015

M. Buĺıček, J. Málek and E. Süli: Analysis and approximation of a
strain-limiting nonlinear elastic model, Mathematics and Mechanics of Solids,
2014

M. Buĺıček, J. Málek, K. R. Rajagopal and E. Süli: On elastic solids with limiting
small strain: modelling and analysis, EMS Surveys in Mathematical Sciences,
2014.

L. Beck, M. Buĺıček, J. Málek and E. Süli: On the existence of integrable
solutions to nonlinear elliptic systems and variational problems with linear
growth, ARMA 2017

L. Beck, M. Buĺıček, E. Maringová: On regularity up to the boundary for
variational problems with linear growth, submitted
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Why limiting strain

Linearized nonlinear elasticity

We consider the elastic deformation of the body Ω ⊂ Rd with Γ1 ∩ Γ2 = ∅ and
ΓD ∪ ΓN = ∂Ω described by

−divTTT = f in Ω,

u = u0 on ΓD ,

TTTn = g on ΓN .

(El)

where u is displacement, TTT the Cauchy stress, f the external body forces, g the external
surface forces and εεε is the linearized strain tensor, i.e.,

εεε = εεε(u) :=
1

2
(∇u + (∇u)T )

The implicit relation between the Cauchy stress and the strain

GGG(TTT, εεε) = 0

The key assumption in linearized elasticity

|εεε| � 1 . (A)
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Why limiting strain

Limiting strain model

The standard linear models immediately may lead to the contradiction:

Consider Ω a domain with non-convex corner at x0, Γ = ∂Ω, u0 = 0
and GGG of the form

TTT = εεε.

There exists a smooth f such that the solution (TTT, εεε) fulfils

|TTT(x)| = |εεε(x)| x→x0→ ∞.

=⇒ contradicts the assumption of the model (A) =⇒ not valid model at
least in the neighborhood of x0.
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Why limiting strain

Limiting strain model

Consider implicit models which a priori guarantees |εεε| ≤ K :

εεε = εεε∗(TTT) := λ1(| trTTT|)(trTTT)III + λ2(|TTT|)TTT + λ3(|TTTd |)TTTd , (L-S)

where

TTTd := TTT− trTTT

d
, |λ1,2,3(s)| ≤ K

3(s + 1)
.

A priori estimates: from (L-S)
|εεε| ≤ K .

From the equation, we may hope thatˆ
Ω

λ1(| trTTT|)| trTTT|2 + λ2(|TTT|)|TTT|2 + λ3(|TTTd |)|TTTd |2 =

ˆ
Ω

TTT · εεε ≤ C .

The reasonable assumptions (∞-Laplacian-like problem):

λ1,2,3(s) ≥ α

s + 1
.
}

=⇒
ˆ

Ω

|TTT| ≤ C .
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Why limiting strain

Limiting strain model & monotonicity

Apriori estimates for TTT in L1

For the convergence at least some monotonicity needed, the minimal assumption:

0 ≤ d

ds
(λ1,2,3(s)s). (M)

If we would have a sequence fulfillingˆ
Ω0

|TTTn|1+δ ≤ C(Ω0) for all Ω0 ⊂⊂ Ω,

=⇒ TTTn ⇀ TTT weakly in L1
loc .

then using (M) we can identify the limit.

Assume kind of uniform monotonicity, i.e., for some α, a,K > 0

α

(K + s)a+1
≤ d

dt
(λi (s)s) (UM)

for example

λi (s) :=
1

(1 + sa)
1
a

for simplicity εεε = εεε∗(TTT) :=
TTT

(1 + |TTT|a)
1
a

.
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Variational approach and BV setting

Simplified setting - potential structure

We look for (u,TTT) such that u = u0 on ΓD and TTTn = g on ΓN such that
in Ω there holds

−divTTT = f ,

εεε(u) = εεε∗(TTT).

}
⇔

{
−divTTT∗(εεε(u)) = f .

with

εεε∗(TTT) :=
TTT

(1 + |TTT|a)
1
a

and T ∗(WWW) := (εεε∗)−1(WWW) :=
WWW

(1− |WWW|a)
1
a

for all TTT ∈ Rd×d
sym and WWW ∈ Rd×d

sym such that |WWW| < 1.
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Variational approach and BV setting

Simplified setting - potential structure

First, we introduce the space of functions having bounded the symmetric gradient

E := {u ∈W 1,1(Ω)d ; εεε(u) ∈ L∞(Ω)d×d}.

and assume at least u0 ∈ E , f ∈ L2(Ω)d and g ∈ L1(ΓN)d .

the set of admissible displacement

V := {u ∈W 1,1(Ω) : u − u0 ∈W 1,1
ΓD

(Ω)d , u ∈ E}

the set of admissible stresses

S :=

{
TTT ∈ L1(Ω)d×d

sym : ∀v ∈ E ∩W 1,1
ΓD

ˆ
Ω

TTT · εεε(v) =

ˆ
Ω

f · v +

ˆ
ΓN

g · v
}

Weak solution: Find (u,TTT) ∈ V × S such that εεε(u) = εεε∗(TTT) a.e. in Ω.
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Variational approach and BV setting

Potential structure - primary formulation

Find potential F : Rd×d
sym → R+ such that F (0) = 0 and

∂F (WWW)

∂WWW
= TTT∗(WWW) if |WWW| < 1,

F (WWW) =∞ if |WWW| > 1.

Primary (variational) formulation: Find u ∈ V such that for all v ∈ V
ˆ

Ω

F (εεε(u))− f · u −
ˆ

ΓN

g · u ≤
ˆ

Ω

F (εεε(v))− f · v −
ˆ

ΓN

g · v

Lemma

Let ‖εεε(u0)‖∞ < 1 (the safety strain condition). Then there exists a unique u solving the
primary formulation. Moreover there exists TTT ∈ L1(Ω)d×d such that εεε(u) = εεε∗(TTT) and
for all v ∈ V such that TTT∗(εεε(v)) ∈ L1 there holds

ˆ
Ω

TTT · εεε(u − v) ≤
ˆ

Ω

f · (u − v) +

ˆ
ΓN

g · (u − v)

In addition, if there is a weak solution then it also solves the primary formulation.
Similarly, if u satisfies the safety strain condition, then (u,TTT) is a weak solution.
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Variational approach and BV setting

Potential structure - dual formulation

Find potential F ∗ : Rd×d
sym → R+ such that F (0) = 0 and (note here that F (WWW) ∼ |WWW| at

infinity
∂F ∗(WWW)

∂WWW
= εεε∗(WWW).

Dual (variational) formulation: Find TTT ∈ S such that for all WWW ∈ S
ˆ

Ω

F ∗(TTT)−TTT · εεε(u0) ≤
ˆ

Ω

F (WWW)−WWW · εεε(u0)

Lemma

The existence of weak solution is equivalent to the existence of the minimizer to the
dual problem. Moreover, if ‖εεε(u0)‖∞ < 1 (the safety strain condition) then there exists
a finite infimum of the dual formulation which maybe attained by TTT ∈M(Ω)d×d

sym .
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Variational approach and BV setting

Potential structure - relaxed dual formulation

the relaxed set of admissible stresses

Sm :=

{
TTT ∈M(Ω)d×d

sym : ∀v ∈ C1
ΓD (Ω)d

ˆ
Ω

TTT · εεε(v) =

ˆ
Ω

f · v +

ˆ
ΓN

g · v
}

Dual (variational) relaxed formulation: For u0 ∈ C1(Ω)d , find TTT ∈ Sm such that for all
WWW ∈ Sm

ˆ
Ω

F ∗(TTTr ) + (WWWr −TTTr ) · εεε(u0) + |TTTs |(Ω) + 〈WWWs −TTTs , εεε(u0)〉 ≤
ˆ

Ω

F ∗(WWWr ) + |WWWs |(Ω)

where TTT = TTTr + TTTs and TTTr is a regular part (i.e., absolutely continuous w.r.t. Lebesgue
measure) and TTTs is a singular part (i.e., supported on the set of zero Lebesgue measure).

Lemma

Let ‖εεε(u0)‖∞ < 1. Then there exists a minimizer to relaxed dual formulation.
Moreover, the regular part TTTr is unique and satisfies εεε(u) = εεε∗(TTTr ), where u is (unique)
minimizer to primary formulation. In addition, if TTTs

1 and TTTs
2 are two singular parts then

for all v ∈ C1
ΓD

(Ω)d

|TTTs
1|(Ω)− 〈TTTs

1, εεε(u0)〉 = |TTTs
2|(Ω)− 〈TTTs

2, εεε(u0)〉 and 〈TTTs
1 −TTTs

2,∇v〉 = 0
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Variational approach and BV setting

Conclusion

We solved the problem completely. Natural setting is the relaxed dual
formulation. The displacement is unique. The regular part of the
Cauchy stress is unique. There is non-uniquely given singular part of
the Cauchy stress.

Where is the singular measure supported? Is it really there? How do
you explain that the regular part did not solve the balance equation?
Is there some crack/damage possible region? Is there any influence of
the shape Ω or the parameter a? etc. etc.
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Buĺıček (Charles University in Prague) L1 minimizers July 31, 2017 12 / 26



Special geometry

Limiting strain model - anti-plane stress

We consider the following special geometry

Ω

g

g

ν

Figure: Anti-plane stress geometry.

and we look for the solution in the following from:

u = u(x1, x2) = (0, 0, u(x1, x2)), g(x) = (0, 0, g(x1, x2)),

and

TTT(x) =

 0 0 T13(x1, x2)
0 0 T23(x1, x2)

T13(x1, x2) T23(x1, x2) 0

 . (1)
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Special geometry

Equivalent reformulation-simply connected domain

Find U : Ω→ R - the Airy stress function such that

T13 =
1√
2
Ux2 and T23 = − 1√

2
Ux1 .

=⇒ divTTT = 0 is fulfilled.

U must satisfy (εεε(u) = TTT

(1+|TTT|a)
1
a

)

div

(
∇U

(1 + |∇U|a)
1
a

)
= 0 in Ω,

Ux2n1 − Ux1n2 =
√

2g on ∂Ω.

Dirichlet problem, indeed assume that ∂Ω is parameterized by
γ(s) = (γ1(s), γ2(s)). Then

U(γ(s0)) = a0 +
√

2

ˆ s0

0

g(γ(s))
√

(γ
′
1(s))2 + (γ

′
2(s))2ds =: U0(x).
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Special geometry

Consequences for U

We look for U ∈W 1,1(Ω)

div

(
∇U

(1 + |∇U|a)
1
a

)
= 0 in Ω, U = U0 on ∂Ω.

It is equivalent to find U ∈W 1,1(Ω) such that U = U0 on ∂Ω andˆ
Ω

F ∗(∇U) ≤
ˆ

Ω

F ∗(∇V ).

In general does not exists - relaxed formulation: fixed Ω ⊂⊂ Ω0 and find
U ∈ BV (Ω0) such that U = U0 in Ω0 \ Ω andˆ

Ω

F ∗((∇U)r ) + |∇Us |(Ω) ≤
ˆ

Ω

F ∗((∇V )r ) + |∇V s |(Ω).

We have the same result as before:( But consider a = 2 then we know that (∇U)s

is supported only on ∂Ω and we have “half”-relaxed formulation: Find
u ∈W 1,1(Ω) such thatˆ

Ω

√
1 + |∇U|2 +

ˆ
∂Ω

|U − U0| ≤
ˆ

Ω

√
1 + |∇V |2 +

ˆ
∂Ω

|V − U0|.
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1 + |∇V |2 +

ˆ
∂Ω

|V − U0|.
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Special geometry

Consequences for U II

a = 2 - the minimal surface equation, you know everything that means you know
nothing in general:

for convex domains and smooth data the classical solution
exists, for non-convex domains the weak solution does not exist in general, the
proper function space is BV , the trace is not attained

a = 2 what does it say for “physics”? the solution TTT must be of the prescribed
form due to the uniqueness, g cannot be prescribed arbitrarily to get the weak
solution, if g attains some critical value something very “bad” happens - either the
model is not valid (there is not deformation for large g) or the body is no more
continuum

a 6= 2 we cannot use all the geometrical machinery, but on convex domains we can
prove |∇U| ≤ C

a < 2 we can localize and prove ∇U ∈ L∞loc

a ∈ (1, 2) the weak solution may not exists eg. for Ω = B2 \ B1

on the flat part of the boundary, one can extend the solution outside
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Buĺıček (Charles University in Prague) L1 minimizers July 31, 2017 16 / 26



Special geometry

Consequences for U II

a = 2 - the minimal surface equation, you know everything that means you know
nothing in general: for convex domains and smooth data the classical solution
exists, for non-convex domains the weak solution does not exist in general, the
proper function space is BV , the trace is not attained

a = 2 what does it say for “physics”? the solution TTT must be of the prescribed
form due to the uniqueness, g cannot be prescribed arbitrarily to get the weak
solution, if g attains some critical value something very “bad” happens - either the
model is not valid (there is not deformation for large g) or the body is no more
continuum

a 6= 2 we cannot use all the geometrical machinery, but on convex domains we can
prove |∇U| ≤ C

a < 2 we can localize and prove ∇U ∈ L∞loc

a ∈ (1, 2) the weak solution may not exists eg. for Ω = B2 \ B1

on the flat part of the boundary, one can extend the solution outside
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Special geometry

Consequences for solution in general case/geometry

Bildhauer & Fuchs (2001–): General theory for a ∈ (0, 2] there exists u ∈W 1,1(Ω)
ˆ

Ω

F ∗(∇U) +

ˆ
∂Ω

|U − U0| ≤
ˆ

Ω

F ∗(∇V ) +

ˆ
∂Ω

|V − U0|.

i.e., smoothness locally in Ω, the trace may not be attained; for convex domains
everything is nice up to the boundary

We cannot solve the problem in general for the Neumann data - counterexamples

Maybe we can avoid to be TTT measure in the interior of Ω at last for some a’s

Maybe for a ∈ (0, 1) the theory can be built up to the boundary

Maybe the Dirichlet problem is easier to handle - we do not need the estimates up
to the boundary

But in all cases we need to face the problem with symmetric gradient contrary to
the full gradient as in Bildhauer & Fuchs

Is really the assumption a ≤ 2 essential? Counterexamples only for non-smooth
data
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Buĺıček (Charles University in Prague) L1 minimizers July 31, 2017 17 / 26



Special geometry

Limiting strain - anti-plane stress geometry

Theorem (anti-plane stress)

Let U0 be arbitrary. Then there exists unique weak solution U provided that one of the
following holds.

Ω is uniformly convex, a > 0 is arbitrary and U0 smooth.

a ∈ (0, 2) and ∂Ω =
⋃N

i=1 Γi such that either Γi is uniformly convex and U0 is
smooth on Γi or Γi is flat and U0 is constant there.

a ∈ (0, 1], Ω arbitrary piece-wise C1,1 and U0 piece-wise in C1,1. Moreover, if U0

and Ω smooth then U is C1,α(Ω).

Theorem (anti-plane stress II)

Let a ∈ (0, 2], U0 and Ω ⊂ Rd be arbitrary. Then there exists unique weak solution
U ∈W 1,1(Ω) in the following sense

ˆ
Ω

F (∇U) +

ˆ
∂Ω

|U − U0| ≤
ˆ

Ω

F (∇V ) +

ˆ
∂Ω

|V − U0| ∀V ∈W 1,1(Ω).

Defining TTT13 := Ux2 and TTT23 := −Ux1 we have divTTT = 0 but TTTn = g is not attained but
we have “best approximation”.
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Special geometry

General result

Theorem (Beck, Buĺıček, Maringová)

Let F ∈ C2(0,∞) be increasing strictly convex fulfilling

lim
s→∞

F (s)

s
= lim

s→∞
F ′(s) = K > 0.

Then the following is equivalent

For any Ω ∈ C1,1 and any u0 ∈ C1,1(Ω) there exists unique u ∈W 1,∞(Ω) fulfilling

ˆ
Ω

F (|∇u|) ≤
ˆ

Ω

F (|∇u0 +∇ϕ|) for all ϕ ∈W 1,1
0 (Ω).

ˆ ∞
1

sF ′′(s) =∞.

The second condition is equivalent to the fact that

lim
s→K−

F ∗(s) =∞.
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General setting

Result for particular model and general geometry

Consider εεε∗(TTT) = TTT/(1 + |TTT|a)
1
a :

Theorem (General result for a > 0)

Let a > 0 and u0 satisfy the safety strain condition. Then there exists a unique triple
(u,TTT, g̃) ∈ V × L1(Ω)d×d

sym × (C1
0 (ΓN))∗ such that for all v ∈ C1

ΓD
(Ω)

εεε(u) = εεε∗(TTT)ˆ
Ω

TTT · εεε(u − w) ≤
ˆ

Ω

f · (u − w) +

ˆ
ΓN

g · (u − w)

u = u0 on ΓD ,

where w ∈ V is arbitrary such that there exists T̃TT ∈ L1 fulfilling εεε(w) = εεε∗(T̃TT).

Moreover, ˆ
Ω

TTT · ∇v =

ˆ
Ω

f · v + 〈g − g̃ , v〉ΓN
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General setting

Assumptions for general model

Assumptions on εεε∗: Denote AAA(TTT) := ∂εεε∗(TTT)
∂TTT

.

εεε∗ is coercive, i.e.,
εεε∗(TTT) ·TTT ≥ C1|TTT| − C2

εεε∗ is h-elliptic, i.e., there exists nonincreasing function h such that for all WWW 6= 0

0 < h(|TTT|)|WWW|2 ≤ (WWW,WWW)AAA(TTT) ≤
|WWW|2

1 + |TTT| ,

where

(WWW,WWW)AAA(TTT) :=
∑

AAAνiµj(TTT)WWWνiWWWµj , AAAνiµj(TTT) :=
∂(εεε∗)νi (TTT)

∂TTTµj
.

AAA is asymptotically symmetric, i.e.,

|AAAs(TTT)−AAA(TTT)|2

h(|TTT|) ≤ C2

1 + |TTT| .

either h does not decrease faster than |TTT|−1−2/d or εεε∗ is asymptotically radial, i.e.,
there exists a function g such that g(|TTT|) ≤ C(1 + |TTT|) fulfilling

|g(|TTT|)εεε∗(TTT)−TTT|2

h(|TTT|) ≤ C2(1 + |TTT|3).
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General setting

Assumptions for general models

Assumptions on data:

f ∈ L2

g ∈ L1

u0 satisfies safety strain condition, i.e., there exists a compact set K ⊂ εεε∗(Rd×d
sym )

such that for almost all x ∈ Ω

εεε(u0(x)) ∈ K

.
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General setting

Result for limiting strain models

Theorem (General result)

There exists a unique triple (u,TTT, g̃) ∈W 1,1(Ω)d × L1(Ω)d×d
sym × (C1

0 (Γd))∗ such that
u − u0 ∈W 1,1

ΓD
(Ω′Rd) and for all v ∈ C1

ΓD
(Ω)

ˆ
Ω

TTT · εεε(v) =

ˆ
Ω

f · v + 〈g − g̃ , v〉ΓN

εεε(u) = εεε∗(TTT) ∈ L∞(Ω;Rd×d)

Moreover, for all w ∈W 1,∞(Ω) being equal to u0 on ΓD such that there exists
T̃TT ∈ L1(Ω)d×d

sym fulfilling εεε(w) = εεε∗(T̃TT) we have

ˆ
Ω

TTT · εεε(u − w) ≤
ˆ

Ω

f · (u − w) +

ˆ
ΓN

g · (u − w)

Buĺıček (Charles University in Prague) L1 minimizers July 31, 2017 23 / 26



General setting

Conclusion II

The first result for the symmetric gradient, where the structure of the
nonlinearity plays the crucial role

The same result obviously holds also for the full gradient case

For any C1 strictly monotone operator being asymptotically
symmetric and having asymptotically radial structure we avoided the
presence of the singular part in the interior!

At least in 2D and a simply connected domains, we can convert this
setting to the minimal surface-like problems and get the same result.
Improvement of the known results in a significant way!

The method does not use the improved integrability result (which
even may not be true)!

The same theory for minimal surface-like problems and general
geometries. Sharp identification of the cases when the theory can be
built up to the boundary without any restriction on the shape of the
domain.
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Sketch of the proof

Scheme of the proof

We find a mollified problem for which we have a solution and then go to
the limit. The approximation is of the form

εεε∗n(TTT) := εεε∗(TTT) + n−1 TTT

(1 + |TTT|)1− 1
n

.

The first a priori estimate

ˆ
Ω
|TTTn| ≤ C , ‖εεε(un)‖n ≤ C .

TTTn ⇀∗ TTT inM(Ω)d×dsym ,

εεε(un) ⇀ εεε(u) in Lq(Ω)d×dsym , for all q <∞.

and TTT solves the equation but we do not know that εεε(u) = εεε∗(TTT)
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Sketch of the proof

Scheme

First we show that

TTTn → TTT a.e. in Ω,

where TTT ∈ L1(Ω)d×dsym but we do not know that TTT = TTT.

Then due to the continuity of εεε∗ we have

εεε(u) = εεε∗(TTT) a.e. in Ω.

Fatou lemma and monotonicity justifies the limit passage in
ˆ

Ω
TTT · εεε(u −w) ≤

ˆ
Ω
f · (u −w) +

ˆ
ΓN

g · (u −w)

the final step is to show that

−divTTT = f
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