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The equation

We are interested in the equation
Tow + Vg = g(T)tta

where T'(z,t) is the Cauchy stress at point = and time ¢, g(-) is
a nonlinear function, and v > 0 is a constant.
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Example 1

An explicitly constituted material:
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Figure: Applying an external force puts the system in motion

We can write the constitutive specification for the spring as

fs =g(x) = fs = kx, k spring constant.

(linear spring)

One then writes the balance of linear momentum and use this
relation to get an ODE in terms of the displacement as

mi + fs = fext'



Example 2
An implicitly constituted material:
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Figure: A mass-spring-wire system in its equilibrium
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Figure: Applying an external force puts the system in motion
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Example 2

- The wire of maximal length L cannot break whatever force

is applied to it.

- The extension of the spring is limited to L.

- Once the maximal length L is obtained, no change in the

position occurs.

In this case it is much more sensible to
prescribe an implicit relation between
the force and the displacement as

g(fs, ) = 0.




Focus of the talk

The focus of my talk is a particular subclass of elastic bodies
which are defined through implicit constitutive relations where
the linearized strain is a nonlinear function of the stress and
exhibits a limiting strain irrespective of the stress to which the
material is subject.




Notations

- Q C R? for d € N with Lipschitz boundary

- u: Q% [0,T] — R? is the deformation of the body
- F = Vu € R¥™9 is the deformation gradient

. B = FF7 is the left Cauchy-Green stretch tensor

- L = Vv is the velocity gradient, D = $(L 4+ L7) is the
symmetric part of L

- €(u) = 1(Vu+ VuT) is the linearized strain



Derivation of the model

We are interested in class of implicit models defined through
G(T,B) =0.

Since the body is isotropic, it has to satisfy the condition
G(QTQT,QBQY) = QG(T,B)Q”,vQ € SO(3), which leads to

G(T,B) = apl + a1 T + asB + a3T? + ayB? + a;5(TB + BT)
+a6(T?B + BT?) + a7 (T?B? + B2T?) = 0,

where «; depend on the invariants

tr'T, trB, trT?, trB?, tr'T3, tr(TB), tr(T2B), tr(TB?), tr(T*B?).



Derivation of the model

An implicit subclass is B = SoI + 51T + 52 T?, where 3; depend
on trT, trT?, trT3.
Linearization gives

2¢ = (B — DI+ BT + 5o T2,

which is a nonlinear relationship between the linearized strain
and the stress.
We are interested in the viscoelastic version

B +vD = Bol + /1T + B T2,

where v and v are nonnegative constants.

Rajagopal & Saccomandi (2014) introduced this model which
explains responses of viscoelastic bodies such as Titanium and
Gum metal alloys.



Derivation of the model

Linearizing the strain we get
e+ ve = Bl + 51T + ,BQTQ,

where €, = 0e¢/0t is the linearized counterpart of D and g;
depend on tr'T, trT?, trT3.

We want to consider the one-dimensional problem with more
general right-hand sides;

e+ ve = g(7T),

which gives the linearized strain € = u, and the strain rate ¢; as
a nonlinear function of the Cauchy stress T



Derivation of the model

In the absence of external body forces the equation of motion
leads to

ug =T, = Uy =Toe = €4 = Tis.
On the other hand, € + ve, = g(T') gives

err + vewr = [9(T)]u-

Combining these two relations, we obtain the PDE we want to
study:
Tow + VTt = [Q(T)]tt-



Previously studied nonlinearities

Model A: 1D version of model introduced by Kannan,
Rajagopal & Saccomandi (2014)

g(T) = BT +a (1+ gT2>nT,

where a > 0,5 < 0,7 > 0 and n are constants.

Note that when n = 0, or v = 0, one recovers the standard
constitutive equation for a linearized material.



Previously studied nonlinearities

Model B: Simplified version of a model introduced by
Rajagopal (2011)

T

9(T) = Wa

where r > 0 is a constant.

Note that when = 0,n = —1/2,a = 1 and v = 2, Model A
becomes Model B with r = 2.

This model is studied in elastic setting by many authors in
different contexts, see e.g., Bulicek, Mélek, Rajagopal & Siili
(2014), Bulicek, Mélek, Rajagopal & Walton (2015), Bulicek,
Malek & Siili (2015).



Previously studied nonlinearities

Model C: 1D version of a nonlinearity introduced by
Rajagopal (2010, 2011)

g(T)—Oz{[l—eXp (j(g‘Tﬂ)} * 1fy1T|}’

where «, 3,7, are constants.

Note that when =0 and o = v = 1, Model C reduces to
Model B with » = 1.



Previously studied nonlinearities

Model D: 1D version of another model introduced by
Rajagopal (2010, 2011)

1 1
g =all—-—F— +5<1+>T,
@) ( 1+1+:§|T|> 1+~17

where «, 3,7, 0 are constants.

Note that when a = 0, with appropriate choice of the remaining
parameters, one can derive Model A from this model.



Previously studied nonlinearities

Remarks:

- Models C and D have a drawback when T is compressive
and sufficiently large since they violate the assumption of
small strain due to their initial terms when stress is
negative and large.

- In a moderate stress regime all these models look as follows:

-

S e Model C iGN




Traveling wave solutions

We look for traveling wave solutions of the PDE we derived
with g(7T) as in Models A, B, C and D, as well as quadratic and
cubic nonlinearities:

Tow +VTpat = [g(T)] where T =T(&) with £ =z — ct.

(c is the constant wave propagation speed)
The equation becomes

"

T —veT” = [g(T)].



Traveling wave solutions

Setting
lim T(¢) =T, lim T(¢) =T,

£——00 E—+o0

/!

integrating and using 7' (£),T" (£) — 0 as £ — Too we get
T' = f(T) with

H(T) = i{(T‘ T;);T;> 2 <9<T) _9(Tx) ;g(T@)}

Two obvious equilibrium points are T' = T and T = T.f.
Integrating, one get an implicit solution of the form

T ds

$0= )

with T(fo) =Tj.



Traveling wave solutions

We also find
2 T — T

S ErE)
Therefore we have two possible cases:
(i) T > T and g(Tg) > g(T5).
(i) T < T and g(Ty) < g(T).

Without loss of generality, we look at case (i) and take T =1
and T = 0 to get

/ 1
T —
veg(1)

We will take 7'(0) = 1/2.

(9T = g(T))-



Traveling wave solutions

Remarks:
- There is no heteroclinic traveling wave solution when we
consider an elastic solid, i.e. v = 0.

- There is no heteroclinic traveling wave solution for the
linear viscoelastic model where g(T') = ¢’(0)T" with

9'(0) # 0.



Traveling wave solutions

Quadratic case: We let g(T') = ¢/(0)T + 14" (0)T2.
In this case we obtain the explicit solution
T(€) = (1+¢6)7!

g"(0)c
v

where ag = —

- We need as > 0, hence traveling wave solution exists if
g"(0) < 0 and ¢ > 0 (right-going wave) or g”(0) > 0 and
¢ < 0 (left-going wave).

- No solution if as < 0, or ¢”(0) and ¢ have the same sign.

- Traveling wave solution becomes smaller as ¢ increases.

- No shock waves.



Traveling wave solutions

Figure: Variation of (a) T and (b) g(T) of the quadratically
nonlinear model



Traveling wave solutions

Cubic case: We let g(T) = ¢/(0)T + 3¢"(0)T? + +¢" (0)T.
In this case we obtain the implicit solution

T1+b 1
_ eHI+b)ag
(1 —T)b(T—i—b) 14+ 2b
_ _g"(0)c _ g"(0)
where a = 5 and b=1+ 39,,/(0).

- When b (or equivalently ¢”’(0)) increases, traveling wave
solution becomes smoother.

- When ¢”(0) = 0 we obtain the explicit solution
€%
T(é.) = (3_’_62(1{)1/2'

- Traveling wave solution exists if a < 0 or equivalently if
g"(0) and ¢ have the same sign.



Traveling wave solutions

Figure: Variation of (a) T" and (b) g(T') of the cubically nonlinear
model



Traveling wave solutions

Case of Model A: When n = 1 we obtain the explicit solution
we obtained in the cubic case with a replaced by
oy
[a(1+7) + Blve




Traveling wave solutions

Case of Model B: When r» = 2 we obtain the solution
implicitly as
H(T) = H(1/2)es/ve,

/2
_ (1—s)2 (152124112
where H(s) = 3(3+52+2§/2(1+32)) ( § S ) .
- Note that H(F1) =0, H(1/2) > 0 and H(s) — oo as
s— 07,

- If¢>0wehave T — 07 as £ — +o0, and T' — F1 as
& — —oo, which are incompatible with the conditions we
chose.

- Traveling wave solution exists if a < 0 or equivalently if
g"(0) and ¢ have the same sign.



Traveling wave solutions

Figure: Variation of (a) T and (b) g(T) of Model B



Traveling wave solutions

- For Models C and D, we obtain highly nonlinear equations
for which analytical solutions are not available.

- We find kink-type traveling wave solutions numerically.

- The profiles for stress 1" are in good agreement with those

derived from analytical solutions belonging to previous
models.

- However, the profiles for the strain are significantly
different.



Traveling wave solutions

Figure: Variation of (a) T and (b) ¢(T') of Model D



Further analysis of the PDE

We study the initial-boundary value problem for the PDE
Tiw +v T = [g(T>]tta
with the following initial and boundary conditions:

T(x,0) =To(x), Ti(x,0)=Ti(x).
7(0,t) = T(1,t) = 0.

- This model is different from classical viscoelastic models
since the inertia term is nonlinear.

- The unknown is the stress T instead of the deformation u
unlike classical models.
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