Traveling waves in one-dimensional non-linear models of strain-limiting viscoelasticity

Yasemin Şengül Sabancı University - Istanbul, Turkey

Conference MORE Implicitly constituted materials: Modeling, Analysis and Computing

31 July 2017

The equation

We are interested in the equation

$$T_{xx} + \nu T_{xxt} = g(T)_{tt},$$

where T(x,t) is the Cauchy stress at point x and time t, $g(\cdot)$ is a nonlinear function, and $\nu > 0$ is a constant.

Contents

Implicit constitutive modelling

Derivation of the model

Choices for the nonlinearity

Traveling wave solutions

Current interests

Example 1

An explicitly constituted material:

Figure: Applying an external force puts the system in motion

We can write the constitutive specification for the spring as

$$f_s = g(x)$$
 \Longrightarrow $f_s = kx$, k spring constant.

One then writes the balance of linear momentum and use this relation to get an ODE in terms of the displacement as

$$m\ddot{x} + f_s = f_{\text{ext}}.$$

Example 2

An implicitly constituted material:

Figure: A mass-spring-wire system in its equilibrium

Figure: Applying an external force puts the system in motion

Example 2

- · The wire of maximal length L cannot break whatever force is applied to it.
- · The extension of the spring is limited to L.
- \cdot Once the maximal length L is obtained, no change in the position occurs.

In this case it is much more sensible to prescribe an implicit relation between the force and the displacement as

$$g(f_s, x) = 0.$$

Focus of the talk

The focus of my talk is a particular subclass of elastic bodies which are defined through implicit constitutive relations where the linearized strain is a nonlinear function of the stress and exhibits a limiting strain irrespective of the stress to which the material is subject.

Notations

- · $\Omega \subset \mathbb{R}^d$ for $d \in \mathbb{N}$ with Lipschitz boundary
- $\mathbf{u}: \Omega \times [0,T] \to \mathbb{R}^d$ is the deformation of the body
- $\mathbf{F} = \nabla \mathbf{u} \in \mathbb{R}^{d \times d}$ is the deformation gradient
- \cdot **B** = **FF**^T is the left Cauchy-Green stretch tensor
- · $\mathbf{L} = \nabla \mathbf{v}$ is the velocity gradient, $\mathbf{D} = \frac{1}{2}(\mathbf{L} + \mathbf{L}^T)$ is the symmetric part of \mathbf{L}
- $\epsilon(\mathbf{u}) = \frac{1}{2}(\nabla \mathbf{u} + \nabla \mathbf{u}^T)$ is the linearized strain

We are interested in class of implicit models defined through

$$G(\mathbf{T}, \mathbf{B}) = 0.$$

Since the body is isotropic, it has to satisfy the condition $G(\mathbf{Q}\mathbf{T}\mathbf{Q}^T, \mathbf{Q}\mathbf{B}\mathbf{Q}^T) = \mathbf{Q}G(\mathbf{T}, \mathbf{B})\mathbf{Q}^T, \forall \mathbf{Q} \in SO(3)$, which leads to

$$G(\mathbf{T}, \mathbf{B}) = \alpha_0 \mathbf{I} + \alpha_1 \mathbf{T} + \alpha_2 \mathbf{B} + \alpha_3 \mathbf{T}^2 + \alpha_4 \mathbf{B}^2 + \alpha_5 (\mathbf{T}\mathbf{B} + \mathbf{B}\mathbf{T}) + \alpha_6 (\mathbf{T}^2 \mathbf{B} + \mathbf{B}\mathbf{T}^2) + \alpha_7 (\mathbf{T}^2 \mathbf{B}^2 + \mathbf{B}^2 \mathbf{T}^2) = 0,$$

where α_i depend on the invariants

$$\operatorname{tr} \mathbf{T}, \operatorname{tr} \mathbf{B}, \operatorname{tr} \mathbf{T}^2, \operatorname{tr} \mathbf{B}^2, \operatorname{tr} \mathbf{T}^3, \operatorname{tr} (\mathbf{TB}), \operatorname{tr} (\mathbf{T}^2 \mathbf{B}), \operatorname{tr} (\mathbf{TB}^2), \operatorname{tr} (\mathbf{T}^2 \mathbf{B}^2).$$

An implicit subclass is $\mathbf{B} = \beta_0 \mathbf{I} + \beta_1 \mathbf{T} + \beta_2 \mathbf{T}^2$, where β_i depend on $\mathrm{tr} \mathbf{T}, \mathrm{tr} \mathbf{T}^2, \mathrm{tr} \mathbf{T}^3$.

Linearization gives

$$2\epsilon = (\beta_0 - 1)\mathbf{I} + \beta_1 \mathbf{T} + \beta_2 \mathbf{T}^2,$$

which is a nonlinear relationship between the linearized strain and the stress.

We are interested in the viscoelastic version

$$\gamma \mathbf{B} + \nu \mathbf{D} = \beta_0 \mathbf{I} + \beta_1 \mathbf{T} + \beta_2 \mathbf{T}^2,$$

where γ and ν are nonnegative constants.

Rajagopal & Saccomandi (2014) introduced this model which explains responses of viscoelastic bodies such as Titanium and Gum metal alloys.

Linearizing the strain we get

$$\epsilon + \nu \epsilon_t = \beta_0 \mathbf{I} + \beta_1 \mathbf{T} + \beta_2 \mathbf{T}^2,$$

where $\epsilon_t = \partial \epsilon / \partial t$ is the linearized counterpart of **D** and β_i depend on $\text{tr} \mathbf{T}, \text{tr} \mathbf{T}^2, \text{tr} \mathbf{T}^3$.

We want to consider the one-dimensional problem with more general right-hand sides;

$$\epsilon + \nu \epsilon_t = g(T),$$

which gives the linearized strain $\epsilon = u_x$ and the strain rate ϵ_t as a nonlinear function of the Cauchy stress T.

In the absence of external body forces the equation of motion leads to

$$u_{tt} = T_x \quad \Rightarrow \quad u_{ttx} = T_{xx} \quad \Rightarrow \quad \epsilon_{tt} = T_{xx}.$$

On the other hand, $\epsilon + \nu \epsilon_t = g(T)$ gives

$$\epsilon_{tt} + \nu \epsilon_{ttt} = [g(T)]_{tt}.$$

Combining these two relations, we obtain the PDE we want to study:

$$T_{xx} + \nu T_{xxt} = [g(T)]_{tt}.$$

Model A: 1D version of model introduced by Kannan, Rajagopal & Saccomandi (2014)

$$g(T) = \beta T + \alpha \left(1 + \frac{\gamma}{2}T^2\right)^n T,$$

where $\alpha \geq 0, \beta \leq 0, \gamma \geq 0$ and n are constants.

Note that when n = 0, or $\gamma = 0$, one recovers the standard constitutive equation for a linearized material.

Model B: Simplified version of a model introduced by Rajagopal (2011)

$$g(T) = \frac{T}{(1+|T|^r)^{1/r}},$$

where r > 0 is a constant.

Note that when $\beta = 0, n = -1/2, \alpha = 1$ and $\gamma = 2$, Model A becomes Model B with r = 2.

This model is studied in elastic setting by many authors in different contexts, see e.g., Bulíček, Málek, Rajagopal & Süli (2014), Bulíček, Málek, Rajagopal & Walton (2015), Bulíček, Málek & Süli (2015).

Model C: 1D version of a nonlinearity introduced by Rajagopal (2010, 2011)

$$g(T) = \alpha \left\{ \left[1 - \exp\left(\frac{-\beta T}{1 + \delta |T|}\right) \right] + \frac{\gamma T}{1 + |T|} \right\},$$

where $\alpha, \beta, \gamma, \delta$ are constants.

Note that when $\beta = 0$ and $\alpha = \gamma = 1$, Model C reduces to Model B with r = 1.

Model D: 1D version of another model introduced by Rajagopal (2010, 2011)

$$g(T) = \alpha \left(1 - \frac{1}{1 + \frac{T}{1 + \delta|T|}} \right) + \beta \left(1 + \frac{1}{1 + \gamma T^2} \right) T,$$

where $\alpha, \beta, \gamma, \delta$ are constants.

Note that when $\alpha = 0$, with appropriate choice of the remaining parameters, one can derive Model A from this model.

Remarks:

- Models C and D have a drawback when T is compressive and sufficiently large since they violate the assumption of small strain due to their initial terms when stress is negative and large.
- · In a moderate stress regime all these models look as follows:

We look for traveling wave solutions of the PDE we derived with g(T) as in Models A, B, C and D, as well as quadratic and cubic nonlinearities:

$$T_{xx} + \nu T_{xxt} = [g(T)]_{tt}$$
 where $T = T(\xi)$ with $\xi = x - ct$.

(c is the constant wave propagation speed) The equation becomes

$$T'' - \nu c T''' = c^2 [g(T)]''.$$

Setting

$$\lim_{\xi\to -\infty} T(\xi) = T_{\infty}^-, \ \lim_{\xi\to +\infty} T(\xi) = T_{\infty}^+,$$

integrating and using $T'(\xi), T''(\xi) \to 0$ as $\xi \to \mp \infty$ we get T' = f(T) with

$$f(T) = \frac{1}{\nu} \left\{ \left(T - \frac{T_\infty^- + T_\infty^+}{2}\right) - c^2 \left(g(T) - \frac{g(T_\infty^-) + g(T_\infty^+)}{2}\right) \right\}.$$

Two obvious equilibrium points are $T = T_{\infty}^-$ and $T = T_{\infty}^+$. Integrating, one get an implicit solution of the form

$$\xi - \xi_0 = \int_{T_0}^T \frac{ds}{f(s)}$$

with $T(\xi_0) = T_0$.

We also find

$$c^{2} = \frac{T_{\infty}^{-} - T_{\infty}^{+}}{g(T_{\infty}^{-}) - g(T_{\infty}^{+})}.$$

Therefore we have two possible cases:

- (i) $T_{\infty}^- > T_{\infty}^+$ and $g(T_{\infty}^-) > g(T_{\infty}^+)$.
- (ii) $T_{\infty}^- < T_{\infty}^+$ and $g(T_{\infty}^-) < g(T_{\infty}^+)$.

Without loss of generality, we look at case (i) and take $T_{\infty}^-=1$ and $T_{\infty}^+=0$ to get

$$T' = \frac{1}{\nu c g(1)} (g(1)T - g(T)).$$

We will take T(0) = 1/2.

Remarks:

- · There is no heteroclinic traveling wave solution when we consider an elastic solid, i.e. $\nu = 0$.
- · There is no heteroclinic traveling wave solution for the linear viscoelastic model where g(T) = g'(0)T with $g'(0) \neq 0$.

Quadratic case: We let $g(T) = g'(0)T + \frac{1}{2}g''(0)T^2$. In this case we obtain the explicit solution

$$T(\xi) = (1 + e^{a_2 \xi})^{-1}$$

where $a_2 = -\frac{g''(0)c}{2\nu}$.

- · We need $a_2 > 0$, hence traveling wave solution exists if g''(0) < 0 and c > 0 (right-going wave) or g''(0) > 0 and c < 0 (left-going wave).
- · No solution if $a_2 < 0$, or g''(0) and c have the same sign.
- \cdot Traveling wave solution becomes smaller as c increases.
- · No shock waves.

Figure: Variation of (a) T and (b) g(T) of the quadratically nonlinear model

Cubic case: We let $g(T) = g'(0)T + \frac{1}{2}g''(0)T^2 + \frac{1}{6}g'''(0)T^3$. In this case we obtain the implicit solution

$$\frac{T^{1+b}}{(1-T)^b(T+b)} = \frac{1}{1+2b}e^{b(1+b)a\xi},$$

where $a = -\frac{g'''(0)c}{6\nu}$ and $b = 1 + 3\frac{g''(0)}{g'''(0)}$.

- · When b (or equivalently g'''(0)) increases, traveling wave solution becomes smoother.
- · When g''(0) = 0 we obtain the explicit solution

$$T(\xi) = \frac{e^{a\xi}}{(3 + e^{2a\xi})^{1/2}}.$$

· Traveling wave solution exists if a < 0 or equivalently if g'''(0) and c have the same sign.

Figure: Variation of (a) T and (b) g(T) of the cubically nonlinear model

Case of Model A: When n = 1 we obtain the explicit solution we obtained in the cubic case with a replaced by

$$\frac{\alpha\gamma}{[\alpha(1+\gamma)+\beta]\nu c}.$$

Case of Model B: When r = 2 we obtain the solution implicitly as

$$H(T) = H(1/2)e^{\xi/\nu c},$$

where
$$H(s) = \frac{(1-s^2)^2}{s(3+s^2+2^{3/2}(1+s^2))} \left(\frac{(1+s^2)^{1/2}+1}{s}\right)^{2^{1/2}}$$
.

- · Note that $H(\mp 1) = 0$, H(1/2) > 0 and $H(s) \to \infty$ as $s \to 0^+$.
- · If c > 0 we have $T \to 0^+$ as $\xi \to +\infty$, and $T \to \mp 1$ as $\xi \to -\infty$, which are incompatible with the conditions we chose.
- · Traveling wave solution exists if a < 0 or equivalently if g'''(0) and c have the same sign.

Figure: Variation of (a) T and (b) g(T) of Model B

- · For Models C and D, we obtain highly nonlinear equations for which analytical solutions are not available.
- · We find kink-type traveling wave solutions numerically.
- \cdot The profiles for stress T are in good agreement with those derived from analytical solutions belonging to previous models.
- · However, the profiles for the strain are significantly different.

Figure: Variation of (a) T and (b) g(T) of Model C

Figure: Variation of (a) T and (b) g(T) of Model D

Further analysis of the PDE

We study the initial-boundary value problem for the PDE

$$T_{xx} + \nu T_{xxt} = [g(T)]_{tt},$$

with the following initial and boundary conditions:

$$T(x,0) = T_0(x), \quad T_t(x,0) = T_1(x).$$

 $T(0,t) = T(1,t) = 0.$

- · This model is different from classical viscoelastic models since the inertia term is nonlinear.
- · The unknown is the stress T instead of the deformation u unlike classical models.

References

- 1. H. A. Erbay, Y. Şengül, Traveling waves in one-dimensional non-linear models of strain-limiting viscoelasticity, Int. J. Non-Linear Mech., 77, 61-68, 2015.
- 2. K. R. Rajagopal, On implicit constitutive theories, Appl. Math., 48, 279-319, 2003.
- 3. K. R. Rajagopal, On a new class of models in elasticity, J. Math. Comput. Appl., 15, 506-528, 2010.
- 4. K. R. Rajagopal, On the nonlinear elastic response of bodies in the small strain range, Acta. Mech., 225, 1545-1553, 2014.
- 5. K.R. Rajagopal, G. Saccomandi, Circularly polarized wave propagation in a class of bodies defined by a new class of implicit constitutive relations, Z. Angew. Math. Phys. 65, 1003-1010, 2014.
- 6. M. Bulíček, J. Málek, K.R. Rajagopal, E. Süli, On elastic solids with limiting small strain: modelling and analysis, EMS Surv. Math. Sci.,1(2), 283-332, 2014.