On the response of physical systems governed by nonlinear ordinary differential equations to step input

Colombeau algebra and its applications in mechanics

Vít Průša prusv@karlin.mff.cuni.cz

Joint work with K. R. Rajagopal, Martin Řehoř and Karel Tůma

Mathematical Institute, Faculty of Mathematics and Physics, Charles University, Czech Republic

31st July 2017

Problem

Physics

Mathematics

Jump discontinuity in a *linear* system – classical tools

Ordinary differential equation (stress σ versus deformation ε):

$$\mathbf{a}_0 \sigma + \frac{\mathrm{d}\sigma}{\mathrm{d}t} = \mathbf{b}_0 \varepsilon + \mathbf{c}_0 \frac{\mathrm{d}\varepsilon}{\mathrm{d}t}$$

Input with jump discontinuity:

Jump discontinuity in a *nonlinear* system – classical tools

Ordinary differential equation (stress σ versus deformation ε):

$$a(\sigma,\varepsilon)\sigma + \frac{\mathrm{d}\sigma}{\mathrm{d}t} = b(\varepsilon,\sigma)\varepsilon + c(\varepsilon,\sigma)\frac{\mathrm{d}\varepsilon}{\mathrm{d}t}$$

Input with jump discontinuity:

$$c(\varepsilon,\sigma)\frac{\mathrm{d}\varepsilon}{\mathrm{d}t} =_{\mathrm{def}} \varepsilon^n \frac{\mathrm{d}\varepsilon}{\mathrm{d}t} \longrightarrow \varepsilon^n \frac{\mathrm{d}\varepsilon}{\mathrm{d}t} \propto (H)^n \frac{\mathrm{d}H}{\mathrm{d}t} = (H)^n \delta$$

Fundamental problem

Heaviside function:
$$H = \begin{cases} 1 & t \geq 0 \\ 0 & t < 0 \end{cases}$$

How to handle the term $H^n \frac{dH}{dt}$? Naive calculation, $H^n = H$:

- $H^n \frac{\mathrm{d}H}{\mathrm{d}t} = H \frac{\mathrm{d}H}{\mathrm{d}t}$
- $\blacktriangleright \ H^n \tfrac{\mathrm{d} H}{\mathrm{d} t} = H \left[H^{n-1} \tfrac{\mathrm{d} H}{\mathrm{d} t} \right] = H \tfrac{1}{n} \tfrac{\mathrm{d} H^n}{\mathrm{d} t} = \tfrac{1}{n} H \tfrac{\mathrm{d} H}{\mathrm{d} t}$
- $H^n \frac{\mathrm{d}H}{\mathrm{d}t} = H^2 \left[H^{n-2} \frac{\mathrm{d}H}{\mathrm{d}t} \right] = H \frac{1}{n-1} \frac{\mathrm{d}H^{n-1}}{\mathrm{d}t} = \frac{1}{n-1} H \frac{\mathrm{d}H}{\mathrm{d}t}$

Really?

$$H\frac{\mathrm{d}H}{\mathrm{d}t} = \frac{1}{n}H\frac{\mathrm{d}H}{\mathrm{d}t} = \frac{1}{n-1}H\frac{\mathrm{d}H}{\mathrm{d}t}$$

Classical tools (theory of distributions) are useless in the nonlinear setting. Intuition could be misleading.

Fundamental problem

Is there a theory that would allow one to simultaneously handle discontinuity, differentiation and nonlinearity?

Everything is lost, it is impossible to introduce a structure that would allow "multiplication of distributions".

Laurent Schwartz. Sur l'impossibilité de la multiplication des distributions. C. R. Acad. Sci. Paris, 239:847–848, 1954

Nonlinear theory of distributions

Everything is lost, it is impossible to introduce a structure that would allow "multiplication of distributions".

Laurent Schwartz. Sur l'impossibilité de la multiplication des distributions. C. R. Acad. Sci. Paris, 239:847–848, 1954

Nonlinear theory of distributions

Everything is lost, it is impossible to introduce a structure that would allow "multiplication of distributions".

Laurent Schwartz. Sur l'impossibilité de la multiplication des distributions. C. R. Acad. Sci. Paris, 239:847–848, 1954

Jean François Colombeau
MSC 46F30 Generalised functions for nonlinear analysis
(Rosinger, Colombeau, nonstandard, etc.)

Mathematics Genealogy Project, http://genealogy.math.ndsu.nodak.edu/ 2010 Mathematics Subject Classification, http://www.ams.org/msc/msc2010.html

Fundamental problem – Colombeau algebra

Schwartz: "multiplication must be equal to the classical multiplication provided that we consider continuous functions"

Colombeau: "multiplication must be equal to the classical multiplication provided that we consider smooth functions"

How to escape from the world of smooth functions?

Colombeau algebra – analogy

nice objects

collections of nice objects

nice collections of nice objects

two collections represent
the same generalised object

generalised objects and calculus

rational numbers

$$a \in \mathbb{Q}$$

sequences of rational numbers

$$\{a_n\}_{n=1}^{+\infty}$$

Cauchy sequences

$$|a_n - a_m| < \varepsilon$$

zero difference

$$\{a_n\}_{n=1}^{+\infty}, \{b_n\}_{n=1}^{+\infty} : |a_n - b_n| < \varepsilon$$

real numbers

$$\begin{array}{l} \pi = \sum_{k=0}^{\infty} \frac{1}{16^k} \left(\frac{4}{8k+1} - \frac{2}{8k+4} - \frac{1}{8k+5} - \frac{1}{8k+6} \right) \\ \mathrm{e} = \sum_{k=0}^{\infty} \frac{1}{k!} \\ \mathrm{e}^{\mathrm{i}\pi} = -1 \end{array}$$

Colombeau algebra – basic idea

The generalised functions are identified with collections of all smooth functions that are approximating the generalised function.

Smoothing kernel $\phi(x)$:

- $\blacktriangleright \ \phi \in \mathcal{D}\left(\mathbb{R}\right)$

Smoothing, $f \in L^1_{loc}(\mathbb{R})$:

$$R_{\mathbf{f}}(\phi, t) =_{\mathrm{def}} \int_{\mathbb{R}} f(\zeta) \phi(\zeta - t) \,\mathrm{d}\zeta$$

Colombeau algebra – construction

smooth functions

$$R_{\boldsymbol{f}}(\phi,t)$$

representatives with diminishing mollification

$$R_{\mathbf{f}}(\phi_{\varepsilon}, t), \, \phi_{\varepsilon}(t) =_{\operatorname{def}} \frac{1}{\varepsilon} \phi\left(\frac{t}{\varepsilon}\right)$$

reasonably singular representatives, $\mathcal{E}_{M}\left(\mathbb{R}\right)$

$$\left| \frac{\mathrm{d}^k}{\mathrm{d}t^k} R_f(\phi_{\varepsilon}, t) \right| \le \frac{c}{\varepsilon^n}$$

difference is in null space, $\mathcal{N}\left(\mathbb{R}\right)$

$$\left| \frac{\mathrm{d}^k}{\mathrm{d}t^k} \left(R_{\pmb{f}}(\phi_\varepsilon, t) - R_{\pmb{g}}(\phi_\varepsilon, t) \right) \right| \leq c \varepsilon^{\beta(m) - l}$$

generalised functions

$$\mathcal{G}\left(\mathbb{R}\right) =_{\operatorname{def}} \mathcal{E}_{M}(\mathbb{R}) / \mathcal{N}(\mathbb{R})$$

$$R_{\frac{\mathrm{d}^k \boldsymbol{g}}{\mathrm{d}t^k}}(\phi,t) =_{\mathrm{def}} \frac{\mathrm{d}^k}{\mathrm{d}t^k} R_{\boldsymbol{g}}(\phi,t)$$

Colombeau algebra – Heaviside function, Dirac distribution

Heaviside function:

$$R_{\mathbf{H}}(\phi, t) =_{\mathrm{def}} \int_{s=-t}^{+\infty} \phi(s) \,\mathrm{d}s$$

Dirac distribution:

$$R_{\delta}(\phi, t) =_{\text{def}} \phi(-t)$$

Example:

$$\frac{\mathrm{d}\boldsymbol{H}}{\mathrm{d}t} = \boldsymbol{\delta}$$

Colomeau algebra – summary

- It is possible to multiply distributions.
- ▶ The price to pay is the incompatibility of the multiplication with the classical multiplication, $\mathbf{H}^2 \neq \mathbf{H}$.
- ▶ This drawback is fixed by coupled calculus.

Colombeau algebra – equivalence in the sense of association

- Strict equivalence, detailed behaviour in the vicinity of the jump is important:
- ≈ Equivalence in the sense of association, detailed behaviour in the vicinity of the jump is not important:

Colombeau algebra – equivalence in the sense of association

Definition (Equivalence in the sense of association)

Generalised functions ${\pmb f}$ and ${\pmb g}$ are equivalent in the sense of association, ${\pmb f} \approx {\pmb g}$, if and only if

$$\forall \psi \in \mathcal{D}(\mathbb{R}), \ \exists R_{\mathbf{f}} \in \mathcal{E}_{M}(\mathbb{R}), \ \exists R_{\mathbf{g}} \in \mathcal{E}_{M}(\mathbb{R}), \ \exists q \in \mathbb{N}, \ \forall \phi \in \mathcal{A}_{q} :$$

$$\lim_{\varepsilon \to 0+} \int_{\mathbb{R}} \left[R_{\mathbf{f}}(\phi_{\varepsilon}, x) - R_{\mathbf{g}}(\phi_{\varepsilon}, x) \right] \psi(x) \, \mathrm{d}x = 0$$

Definition (Strict equivalence)

[...] for all $K \subset \mathbb{R}$, K compact, and for all $k \in \mathbb{N}$ there exists $I \in \mathbb{N}$ and $\beta \in \Gamma$ such that for all $m \in \mathbb{N}$, $m \ge I$ and for all $\phi \in \mathcal{A}_m$ there exists $\eta \in \mathbb{R}^+$ and $c \in \mathbb{R}^+$ such that

$$\forall t \in K, \ \forall \varepsilon \in (0, \eta): \quad \left| \frac{\mathrm{d}^k}{\mathrm{d}t^k} \left(R_{\mathbf{f}}(\phi_{\varepsilon}, x) - R_{\mathbf{g}}(\phi_{\varepsilon}, x) \right) \right| \leq c \varepsilon^{\beta(m) - l}$$

Colombeau algebra – multiplication and the equivalence in the sense of association

Heaviside function and Dirac distribution as elements in Colombeau algebra $\mathcal{G}(\mathbb{R})$:

$$H^2 \neq H$$
 $H^2 \approx H$
 $H\delta \not\approx H^2\delta$
 $x\delta \neq 0$
 $x\delta \approx 0$

Colombeau algebra – example

System:

$$a(\varepsilon,\sigma)\sigma + \frac{\mathrm{d}\sigma}{\mathrm{d}t} = b(\varepsilon,\sigma)\varepsilon + c(\varepsilon,\sigma)\frac{\mathrm{d}\varepsilon}{\mathrm{d}t}$$

Input:

$$arepsilon = egin{cases} 0 & t < 0 \ ilde{arepsilon}(t) & t \geq 0 \end{cases}$$

Notion of solution:

$$a(arepsilon, oldsymbol{\sigma}) oldsymbol{\sigma} + rac{\mathrm{d} oldsymbol{\sigma}}{\mathrm{d} t} pprox b(arepsilon, oldsymbol{\sigma}) arepsilon + c(arepsilon, oldsymbol{\sigma}) rac{\mathrm{d} arepsilon}{\mathrm{d} t}$$

Colombeau algebra – theorem

Theorem (Solution to $a(\varepsilon,\sigma)\sigma+\frac{\mathrm{d}\sigma}{\mathrm{d}t}=b(\varepsilon,\sigma)\varepsilon+c(\varepsilon,\sigma)\frac{\mathrm{d}\varepsilon}{\mathrm{d}t}$)

System response described by an ordinary differential equation (stress σ versus deformation ε):

$$a(\varepsilon, \sigma)\sigma + \frac{\mathrm{d}\sigma}{\mathrm{d}t} = b(\varepsilon, \sigma)\varepsilon + c(\varepsilon, \sigma)\frac{\mathrm{d}\varepsilon}{\mathrm{d}t}$$

Response σ of the system to the step input ε

$$arepsilon = egin{cases} 0, & t < 0, \ \widetilde{arepsilon}(t), & t \geq 0, \end{cases}$$

where $\tilde{\varepsilon}$ is a smooth function, is given by the function

$$\sigma = \begin{cases} 0, & t < 0, \\ \tilde{\sigma}(t), & t \geq 0. \end{cases}$$

Colombeau algebra – theorem

Function $\tilde{\sigma}$ is for t>0 a solution to the ordinary differential equation

$$\begin{aligned} a(\tilde{\varepsilon}, \tilde{\sigma})\tilde{\sigma} + \frac{\mathrm{d}\tilde{\sigma}}{\mathrm{d}t} &= b(\tilde{\varepsilon}, \tilde{\sigma})\tilde{\varepsilon} + c(\tilde{\varepsilon}, \tilde{\sigma})\frac{\mathrm{d}\tilde{\varepsilon}}{\mathrm{d}t}, \\ \tilde{\sigma}|_{t=0+} &= \sigma_0. \end{aligned}$$

The initial condition σ_0 for the previous ordinary differential equation—that is the height of the jump in the response—is obtained by evaluating the solution ς of the ordinary differential equation

$$\frac{\mathrm{d}\varsigma}{\mathrm{d}\epsilon} = c(\epsilon,\varsigma),$$
$$\varsigma|_{\epsilon=0} = 0,$$

at point $\epsilon=\varepsilon_0$, that is $\sigma_0=\varsigma|_{\epsilon=\varepsilon_0}$, where $\varepsilon_0=_{\operatorname{def}} \tilde{\varepsilon}|_{t=0+}$ denotes the height of the jump in the input.

Numerical results – sequetial approach

Equation:

$$a(\varepsilon,\sigma)\sigma + \frac{\mathrm{d}\sigma}{\mathrm{d}t} = b(\varepsilon,\sigma)\varepsilon + c(\varepsilon,\sigma)\frac{\mathrm{d}\varepsilon}{\mathrm{d}t}$$

$$a(\varepsilon,\sigma) =_{\mathrm{def}} \bar{a} (1 + \varepsilon^2 + \sigma^2)$$

$$b(\varepsilon,\sigma) =_{\mathrm{def}} \bar{b} (1 + \sigma^2\varepsilon^2)$$

$$c(\varepsilon,\sigma) =_{\mathrm{def}} \bar{c} (1 + \varepsilon^2) e^{-\sigma}$$

$$\bar{a} =_{\mathrm{def}} 1$$

$$\bar{b} =_{\mathrm{def}} 3$$

$$\bar{c} =_{\mathrm{def}} 5$$

Input:

$$\varepsilon = \begin{cases} 0 & t < 0 \\ \frac{\sqrt{2}}{2} & t \ge 0 \end{cases}$$

Take a sequence of smooth inputs, and see what happens for $n \to +\infty$.

Numerical results – sequential approach

Numerical results – sequential approach

Response of nonlinear dynamical systems to step inputs

- Ordinary differential equation interpreted as an equation for generalised functions in Colombeau algebra.
- Equality understood in the sense of association.
- Explicit characterisation of the jump in terms of a, b and c.

V. Průša and K. R. Rajagopal. On the response of physical systems governed by nonlinear ordinary differential equations to step input. *Int. J. Non-Linear Mech.*, 81:207–221, 2016

We have a hammer, what next?

Response of nonlinear spring/dashpot systems to step deformation/load I

V. Průša, M. Řehoř, and K. Tůma. Colombeau algebra as a mathematical tool for investigating step load and step deformation of systems of nonlinear springs and dashpots. *Z. angew. Math. Phys.*, 68(1):1–13, 2017

Response of nonlinear spring/dashpot systems to step deformation/load II

$$mrac{\mathrm{d}^2x}{\mathrm{d}t^2} = F - \sigma$$
 $g_1(\sigma - g_3(\varepsilon)) + rac{\mathrm{d}}{\mathrm{d}t}g_2(\sigma - g_3(\varepsilon)) = rac{\mathrm{d}\varepsilon}{\mathrm{d}t}$ $\varepsilon =_{\mathrm{def}} rac{x - x_{\mathrm{eq}}}{x_{\mathrm{eq}}}$

V. Průša, M. Řehoř, and K. Tůma. Colombeau algebra as a mathematical tool for investigating step load and step deformation of systems of nonlinear springs and dashpots. Z. angew. Math. Phys., 68(1):1–13, 2017

Response of nonlinear spring/dashpot systems to step deformation/load III

Input/response:

$$\mathbf{x} = x_{\mathrm{eq}} + (x_{+} - x_{\mathrm{eq}})\mathbf{H}$$

Response/input:

$$m{F} = rac{\mathrm{d}}{\mathrm{d}t} \left(f_+ m{H} + g_+ m{\delta}
ight)$$

V. Průša, M. Řehoř, and K. Tůma. Colombeau algebra as a mathematical tool for investigating step load and step deformation of systems of nonlinear springs and dashpots. *Z. angew. Math. Phys.*, 68(1):1–13, 2017

Response of nonlinear spring/dashpot systems to step deformation/load IV

(e) Response, velocity v_n .

(d) Response, position x_n .

(f) Response, stress σ_n .

Response of a viscoelastic rate type fluid in a lubricated squeeze flow I

M. Řéhoř, V. Průša, and K. Tůma. On the response of nonlinear viscoelastic materials in creep and stress relaxation experiments in the lubricated squeeze flow setting. *Phys. Fluids*, 28(10), 2016

Response of a viscoelastic rate type fluid in a lubricated squeeze flow II

Governing equations:

$$egin{aligned} \operatorname{div} oldsymbol{v} &= 0 \ arrho rac{\mathrm{d} oldsymbol{v}}{\mathrm{d} t} &= \operatorname{div} \mathbb{T} \ \mathbb{T} &= p \mathbb{I} + \mathbb{S} \ \lambda \ddot{\mathbb{S}} + \mathbb{S} &= 2\mu \mathbb{D} \end{aligned}$$

Input/response:

$$F =_{\operatorname{def}} - \int_{\Sigma} \left. \mathrm{T}_{\hat{z}\hat{z}} \right|_{z=h} \mathrm{d}\Sigma$$

Response/input:

h

Response of a viscoelastic rate type fluid in a lubricated squeeze flow III

Deformation $\chi: \mathbf{X} \mapsto \mathbf{x} = \chi(\mathbf{X}, t)$ given by the formula

$$r = \sqrt{\frac{h_0}{h}}R$$
$$\varphi = \Phi$$
$$z = \frac{h}{h_0}Z$$

where $\mathbf{X} = [R, \Phi, Z]$ and $\mathbf{x} = [r, \varphi, z]$ are the coordinates in the reference/current configuration.

Response of a viscoelastic rate type fluid in a lubricated squeeze flow ${\sf IV}$

After applying the ansatz for the deformation χ we arrive to:

$$F_{\text{cm,ap}}^* + \frac{dF_{\text{cm,ap}}^*}{dt^*} = -\left[3\left(1 + \sigma^*\right)e^{-\varepsilon^*} + 2F_{\text{cm,ap}}^*\right]\frac{d\varepsilon^*}{dt^*},$$
$$\sigma^* + \frac{d\sigma^*}{dt^*} = 2\left(1 + \sigma^*\right)\frac{d\varepsilon^*}{dt^*}$$

Height of the sample:

$$\varepsilon^* = \ln h^*$$

Input/response:

$$F_{\rm cm,ap}^*$$

Response/input:

 h^*

M. Řehoř, V. Průša, and K. Tůma. On the response of nonlinear viscoelastic materials in creep and stress relaxation experiments in the lubricated squeeze flow setting. *Phys. Fluids*, 28(10), 2016

Conclusion

- Colombeau algebra is a nonlinear theory of distributions.
- Colombeau algebra provides a relatively easy to use tool for investigating the response of nonlinear systems to step inputs.
- Using Colombeau algebra we have investigated the response of a nonlinear spring-dashpot-mass system.
- Using Colombeau algebra we have investigated the response of a nonlinear viscoelastic rate type fluid in a setting relevant in rheology.

Thank you for your attention.