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Theses

. Key technologies require Modeling, Simulation, and
Optimization (MSO) of complex dynamical systems.

. Most real world systems are multi-physics systems, with
different accuracies and scales in components.

. Modeling today becomes exceedingly automatized, linking
subsystems together.

. Modeling, analysis, numerics, control and optimization
techniques should go hand in hand.

. Most real world (industrial) models are too complicated for
optimization and control. Model reduction is a key issue.
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A new turbine
Collaborative Research Center SFB1029 ’TurbIn’ at TU Berlin.
Significant increase of efficiency via the interactive use of
instationary effects of combustion and flow in gas turbines.
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One pipe experiment

1

1Project A01, Oliver Paschereit
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Optimal fuel injection
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Technological Application, Tasks

Control of combustion process

. Experimental setup of combustion process.

. Modeling of turbulent reactive flow.

. Control methods for the filling and ignition of pipes.

. Control method for flows that hit the turbine blade.

. Model reduction and observer design.

. Model hierarchy and digital twin for simulation and control.

Ultimate engineering goal: 10 % more efficiency in turbine.
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Gas transport

Modeling, simulation, optimization of gas networks.

. Separation of trade and transport by political regulations.

. Modeling of gas transport in large networks.

. Incorporation of weather, market, physical system, real data.

. Network planning and network operation.

. Combining discrete, stochastic, and continuous control and
optimization.
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Components of gas flow model
Coupled system of partial differential-algebraic equations.
. Euler equations (with temperature) to describe flow in pipes.
. Network model, flow balance equations (Kirchoff’s laws).
. Network elements: pipes, valves, controllers, heaters,

compressors, coolers. Surrogate and reduced order models.

. Erratic demand and nomination of transport capacity.

. Using gas network as storage for hydrogen, methane
produced from unused wind energy. Power to gas.

Ultimate goal: Digital twin for reliable gas flow simulation and
optimization using a model hierarchy.
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Model hierarchy
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PDE constrained optimization
Different approaches.

. Simulate PDE to generate I/O surrogate model. Reduce I/O
model, then optimize/control.

. First semi-discretize (in space), then reduce continuous time
model, then optimize/control. (POD, Balanced truncation,
DEIM, IRKA, . . .).

. Discretize (in space and time) as optimization or control
problem in adaptive way (reduced basis).

. Discretize optimality conditions (forward and adjoint problem)
in adaptive way (adaptive FE, FD, FV).

. Combinations of all of these.

. Apply computed control in large semi-discretized model
infinite dimensional or real physical model.
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Abstract control system

. Input space U , Output space Y, State space Z.

. System governed by linear or nonlinear PDE

∂tz = Az + Bu, in Ω× [0,T ],

z(0) = z0 + boundary conditions,
y = Cz,

with operators between function spaces

B : U → Z, A : Z → Z̃, C : Z̃ → Y .

. System maps inputs u to outputs y .
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Illustration framework
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Input-output maps

Classical and successful approach in control engineering:
. Build prototype or accurate simulator for forward problem.
. Generate I/O sequences (ui)i , (yi)i either by measurement or

by solving the PDE.
. Generate I/O map (typically in frequency domain) that

interpolates the I/O sequences.
. Realize I/O map as a (small) linear finite dimensional system

ẋ = Ax + Bu, y = Cx

with matrices A,B,C.
. Build a feedback controller from the small linear model and

apply it in the full physical model.
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Controlled flow, backward facing step

Henning/ Kuzmin/M./Schmidt/Sokolov/Turek ’07. Movement of
recirculation bubble following reference curve via controller built
into flow solver FEATFLOW.
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Limits of classical I/O approach

. Prototypes are costly or not feasible.

. Simulators are typically for forward problem, they usually use
very fine grids.

. Adaptive methods adapt for the error in the forward simulation.

. Commercial CFD codes cannot be used well.

. Fine space discretization leads to a very large system.

. For multi-physics models these models may not catch the
most important part for the controller.

. Model reduction of fine model as alternative
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Model reduction in state space
Replace semidiscretized (in space) linear or nonlinear system

d
dt

zn(t) = Anzn(t) + Bnum(t), in Ω× [0,T ],

zn(0) = z0
n , yp = Cnzn,

zn : [0,T ]→ Rn, um : [0,T ]→ Rm, yp : [0,T ]→ Rp by ROM

d
dt

zr = Ar zr + Br um, in Ω× [0,T ],

zr (0) = z0
r , yp = Cr zr ,

zr : [0,T ]→ Rr , um : [0,T ]→ Rm, yp : [0,T ]→ Rp, r << n.

Goals
. Approximation error ‖y − yr‖ small, global error bounds;
. Preservation of physics: stability, passivity, conservation laws;
. Stable and efficient method for model reduction.
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Model reduction techniques
SVD (singular value decomposition) based methods
. Balanced truncation (linear) Antoulas, Benner, Li, Moore,

Mehrmann, Penzl, Stykel, Sorensen, Varga, Wang, White, ...
. Principal orthogonal decomposition (POD), (linear/nonlinear)

Banks, Benner, Hinze, King, Kunisch, Tröltzsch, Volkwein, ...
. DEIM (nonlinear) Chaturantabut, Maday, Sorensen, ...
Interpolation based methods
. IRKA (linear) Antoulas, Beattie, Gugercin, ...
Krylov methods
. Moment matching, (linear) Bai, Boley, Freund, Gallivan,

Gragg, Grimme, Van Dooren, ...
. Modal truncation (linear) Bampton, Craig, Guyan, Rommes...
Reduced basis methods
. (linear/nonlinear) Haasdonk, Ohlberger, Patera, Quateroni,

Rozza, ...
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Proper Orthogonal Decomposition (POD)
Consider infinite dimensional

d
dt

z = Az + Bu, in Ω× [0,T ],

z(0) = z0 + boundary conditions, y = Cz,

or semidiscretized (in space on a fine grid) system

d
dt

zn(t) = Anzn(t) + Bnum(t), in Ω× [0,T ],

zn(0) = z0
n yp = Cnzn,

Compute snapshot matrix for well chosen input u,

X =
[

z(t1) z(t2) . . . z(tN)
]

This has finitely or infinitely many rows.
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Petrov-Galerkin

Compute subspace Vr associated with r largest singular values
of X by truncating small singular values σi , i = r , r + 1, . . ..
Project equations by W ∗

r with W ∗
r Vr = Ir .

d
dt

zr = Ar zr + Br um, in Ω× [0,T ],

zr (0) = z0
r , yp = Cr zr ,

with Ar = W ∗
r AVr , Br = W ∗

r B, Cr = CVr

or
Ar = W ∗

r AnVr , Br = W ∗
r Bm, Cr = CpVr .
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Analysis of POD

. Cheap and easy to use.

. ‘Works’ for nonlinear systems with discrete empirical
interpolation Chaturantabut, Maday, Sorensen.

. Very successful in practice.

. Can be combined with off-line computation.

. A posteriori error estimates: Kunisch/Tröltzsch/Volkwein.

. How to choose u(t) for snapshots?

. Method is quite heuristic.

. Does not work well for transport dominant phenomena.

. But do we really discretize the right problem?

. Usually we do preserve physical properties, e.g. conservation
laws.
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Discretization of I/O maps

Suppose we have a convolution representation of the continuous
time I/O map G : u → y

y(t) = (Gu)(t) =

∫ T

0
CS(t − s)Bu(s) ds

with kernel
K(t − s) = CS(t − s)B

where S is the (time continuous) solution operator for the PDE.
Idea: Discretize this I/O map, rather than the PDE.
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Two step procedure

1. Approximation of input-output signals, by restricting to finite
dimensional subspaces in U ,Y.

2. Approximation of the dynamics/kernel

K(t) ≈ K̃

by approximate solution of many PDEs for the basis functions
of the input space to desired tolerance.
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Observations

. K(t) can be calculated column-wise for each input function.

. Parallelization is easy.

. No storage of state trajectories is necessary.

. Accuracy is only needed in the observations of excited states
not in the states itself.

. We can easily deal with non-smooth initial transients.

. Approximate error estimation is possible, e.g. via
Dual-Weighted Residuals

. The techniques work well for heat equations Diss. Schmidt
2007, Heiland/M./Schmidt 2011, Stokes, Oseen, linearized
Navier-Stokes. Diss. Heiland 2014, Heiland/M. 2012
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Lin. Navier-Stokes, Stokes

A linearization of Navier-Stokes (for Velocity V and pressure P)
along a divergence-free reference velocity V∞

Vt + (V∞ · ∇)V + (V · ∇)V∞ +∇P − 1
Re
4V =

(V∞ · ∇)V∞ + f + Bu,
∇ · V = 0,

y = CV .

together with appropriate initial and boundary conditions.

Convolution operator in linear model, together with discrete input
and output spaces, enables explicit construction of I/O-operator.
Heiland/M. 2013, Emmrich/M. 2013, Diss. Altmann 2015.
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Driven cavity flow
Application to control of driven cavity flow Heiland/M. 2012
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Optimal control
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Figure: System response for input u that was computed to match an
output yT = [1 0]T . (a) and (b) show the time evolution. Plot (c) shows
the velocities and the streamlines at t = 0.1.
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Optimal control
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Figure: System response for input u that was computed to match an
output yT = [0 1]T . (a) and (b) show the time evolution of the output
signal. Plot (c) shows the velocities and the streamlines at t = 0.1.
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Evaluation of I/O discr. Approach

. Close to the classical control approach.

. ‘Works’ also for nonlinear systems, no theory though.

. Can be combined with off-line computation.

. Needs a representation of I/O map.

. Preservation of physical properties?

. Does not work for transport dominated problems.
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How about the new turbine?

. Flow is turbulent, reactive and transport dominated.

. I/O map is highly complicated.

. All known MOR approaches fail or do not get a small model.

. We need to have reduced model that captures the transport
phenomenon and the physics.
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Experiment
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Data Assimilation
Reactive compressible Navier-Stokes equations.
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Velocity profile
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Shifted POD, SPOD

New approach SPOD Reiss/Schulze/Sesterhenn/M. 2015-17.
. Identify amplitudes, phases and directions of waves from SVD

spectrum.
. Separate them as contributions in the transport phenomenon

and do POD on the remaining components.
Ansatz:

u(x , t) =
N∑

k=1

∑
i

αk
i (t)φk

i (x −∆k (t))

Perform Galerkin model assimilation with this ansatz.
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Reduced velocity profile
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Comparison
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Identification of velocities

Singular value spectrum to identify transport velocities.

Singular value spectrum for 1D traveling waves, 2 different
velocities at ±1 and standing wave.
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Evaluation of sPOD

. Close to the classical control approach.

. ‘Works’ for nonlinear systems.

. Can be combined with off-line computation.

. ’Works’ for transport dominated problems.

. Requires to identify transport velocities (sometimes very
difficult).

. Error bounds?

. Preservation of physical properties?
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Energy based modeling

Variational principles lead to energy based models: Hamiltonian
systems with dissipation, inputs/outputs

. Multibody dynamics;

. Quantum mechanics;

. Electrical circuis;

. Power grids;

. Optimality systems in optimal control of ODEs/DAEs;

. Thermodynamics;

. Fluid dynamics;

. . . .

Is there a common description?
→ Port-Hamiltonian systems, GENERIC.
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Port-Hamiltonian systems
Classical port-Hamiltonian (pH) ODE/PDE systems have the
form

ẋ = (J(x , t)− R(x , t))∇xH(x) + (B(x , t)− P(x , t))u(t),

y(t) = (B(x , t) + P(x , t))T∇xH(x) + (S(x , t) + N(x , t))u(t),

. H is the Hamiltonian: it describes the distribution of internal
energy among the energy storage elements;

. J = −JT describes the energy flux among energy storage
elements within the system;

. R = RT ≥ 0 describes energy dissipation/loss in the system;

. B ± P: ports where energy enters and exits the system;

. S + N, S = ST , N = −NT , direct feed-through input to output.

. In the infinite dimensional case J,R,B,P,S,N are operators
that map into appropriate function spaces.
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Properties
. Port-Hamiltonian systems generalize Hamiltonian systems.
. Conservation of energy replaced by dissipation inequality

H(x(t1))−H(x(t0)) ≤
∫ t1

t0
y(t)T u(t) dt ,

. Port-Hamiltonian systems are closed under power-conserving
interconnection. Models can be coupled in modularized way.

. Minimal pH systems are stable and passive.

. Port-Hamiltonian structure allows to preserve physical
properties in Galerkin projection, model reduction.

. Physical properties encoded in algebraic structure of
coefficients and in geometric structure associated with flow.

. Systems are easily extendable to incorporate multiphysics
components: chemical reaction, thermodynamics,
electrodynamics, mechanics, etc. Open/closed systems.
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Port-Hamiltonian (P)DAEs

Discussed examples can be modeled as Port-Hamiltonian
(P)DAEs.
Current work:
. Unify concept of (P)DAEs and port-Hamiltonian systems;
. Find a representation that allows automated modeling.
. Incorporate control/optimization methods.
. Develop structured discretization methods.
. Develop structured model reduction methods.
. . . .
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Port-Hamiltonian (P)DAEs
Definition (Beattie, M., Xu, Zwart 2017)
A linear variable coefficient (P)DAE of the form

Eẋ = [(J − R)Q − EK ] x + (B − P)u,
y = (B + P)T Qx + (S + N)u,

with E ,A,Q,R = RT ,K ∈ C0(I,Rn,n), B,P ∈ C0(I,Rn,m),
S + N ∈ C0(I,Rm,m) is called port-Hamiltonian DAE (pHDAE) if :

i) L := QT E d
dt −QT JQ −QT EK is skew-adjoint.

ii) QT E = ET Q is bounded from below by a constant symmetric H0.

iii) W :=

[
QT RQ QT P
PT Q S

]
≥ 0, t ∈ I.

Hamiltonian is defined as H(x) := 1
2xT QT Ex : C1(I,Rn)→ R.
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Further properties

. Analogous definition in nonlinear/ infinite dimensional case.

. Hamiltonian defines energy functional, Lypapunov function.

. Index reduction for index one and high index pHDAEs Beattie,
M., Xu, Zwart 2017.

. Infinite dimensional pH systems Maschke, Ramirez, et al, Van
der Schaft survey 2013, Jacob, Zwart 2012
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Example gas transport
Egger/Kugler/Liljegren/Marheineke/M. 2017 Propagation of
pressure waves on the acoustic time scale in a gas network.

v1 v2

v3

v4

e1

e2

e3

Figure: Graph G = (V, E) with vertices V = {v1, v2, v3, v4} and edges
E = {e1,e2,e3} defined by e1 = (v1, v2), e2 = (v2, v3), and
e3 = (v2, v4).
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Gas transport pH-PDAE
. Model on every edge e ∈ E the conservation of mass and the

balance of momentum, z = (p,q).

ae∂tpe + ∂zqe = 0, e ∈ E ,
be∂tqe + ∂zpe + deqe = 0, e ∈ E ,

where pe, qe denote the pressure and mass flux, respectively.

. Encode in ae(t , z),be(t , z) > 0 physical properties of fluid and pipe,
in de(t , z) ≥ 0 damping due to friction, and introduce interior and
exterior vertices V0 and V∂ = V \ V0.

. Model conservation of mass and momentum at v ∈ V0 by∑
e∈E(v)

ne(v)qe(v) = 0

pe(v) = pf (v), e, f ∈ E(v),
where E(v) = {e : e = (v , ·) or e = (·, v)} is the set of edges
adjacent to v and ne(v) = ∓1 (flow direction).
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Port-Hamiltonian PDAE

. Inputs: pe(v) = uv , v ∈ V∂ , e ∈ E(v)

. Output: the mass flux in and out of the network via the exterior
vertices

yv = −ne(v)qe(v), v ∈ V∂ , e ∈ E(v),

. Initial conditions: p(0) = p0, q(0) = q0 on E for pressure and mass
flux.

. Hamiltonian:

H =
1
2

∑
e∈E

∫
e

ae|pe|2 + be|qe|2dz.

54 / 71



Discontinuous Galerkin discretization
Existence of unique solution for consistent initial conditions p0,
q0 and sufficiently smooth (uv )v∈V∂ , in Egger/Kugler 2016.
Mixed finite element space discretization leads to pHDAE:

Eẋ = (J − R)Qx + Bu,
y = BT x ,

x(0) = x0,

with Q = I, S,N,P = 0,

E =

M1 0 0
0 M2 0
0 0 0

 , J =

 0 −G̃ 0
G̃T 0 ÑT

0 −Ñ 0

 ,R =

0 0 0
0 D̃ 0
0 0 0

 ,B =

 0
B̃2
0

 .

The Hamiltonian is given by

H(x) = 1
2

xT ET Qx =
1
2
(xT

1 M1x1 + xT
2 M2x2).
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Model reduction for pHDAEs

Galerkin reduction for pH systems Beattie/ Gugercin 2011.
Replace

Eẋ = (J − R)∇xH(x) + Bu, y = BT∇xH(x)

by reduced system

Er ẋr = (Jr − Rr )∇xr Hr (xr ) + Br u, yr = BT∇xr Hr (xr )

with x ≈ Vr xr , ∇xH(x) ≈Wr∇xr Hr (xr ), Jr = W T
r JWr ,

Rr = W T
r RWr W T

r EVr = Er , Br = W T
r B.

If Vr and Wr are appropriate orthornormal bases, then the
resulting system is again pHDAE and all properties are
preserved.
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MOR for gas flow

Egger/Kugler/Liljegren-Sailer/Marheineke/M. 2017.
. Algebraic compatibility conditions for full model.
. Well-posedness, conservation of mass, dissipation inequality,

and exponentially stability of steady states.
. Model reduction via moment matching
. Specially structured Krylov method to satisfy algebraic

compatibility conditions.
. CS Decomposition to guarantee geometric structure.
. Reduced model satisfies same conditions, no reduction of

constraints.
. Efficient construction of projection spaces Vr ,Wr .
. Error bounds.
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Comparison with standard method

Initial values of mh(0) and Eh(0) for the mass and energy for full
order and reduced models obtained by projection in the energy
norm with and without additional mass constraint.
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Bases for subspaces

Bases for the subspaces obtained by the structure preserving
Krylov iteration with L = 4.
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Mesh Independence

Basis functions for the pressure and velocity computed with
space-discretized model on different meshes with mesh size
h = 1

20 , 1
40 , and 1

80 .
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Pressure correction

With and without pressure correction via CS decomposition.
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Small network
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MOR via projected Krylov methods

Results for space-discretized model (blue) and reduced model
(red) with dim. 2,5,10 and damping param. d = 0.1,1,5 (top to
bottom).
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Summary

. Coupled systems from different physical domains including
flow have wide applications.

. Energy based modeling via PH PDAEs a very promising
approach.

. Structure is rich and allows for big improvements in analysis,
numerics, control, perturbation theory.

. Space-time discretization preserving pHDAE structure.

. Model reduction preserving pHDAE structure.

. Incorporation of experimental and real time data. (Data
assimilation).

The area is wide open for very interesting research
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Happy birthday

Happy birthday Zdenek and Eduard
welcome to the O60 club.
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