

Energy based modeling and model order reduction

Volker Mehrmann Institut für Mathematik Technische Universität Berlin

with C. Beattie, H. Egger, T. Kugler, B. Liljegren-Sailer, N. Marheineke, H. Xu, H. Zwart

Research Center MATHEON

Mathematics for key technologies

Applications

PDE constrained control/optimization

Surrogate I/O map representation

Discretization and model reduction

Discretization of I/O maps

A new approach: Shifted POD

Energy based modeling

Closing

- ▶ Key technologies require Modeling, Simulation, and Optimization (MSO) of complex dynamical systems.
- Most real world systems are multi-physics systems, with different accuracies and scales in components.
- Modeling today becomes exceedingly automatized, linking subsystems together.
- ▶ Modeling, analysis, numerics, control and optimization techniques should go hand in hand.
- Most real world (industrial) models are too complicated for optimization and control. Model reduction is a key issue.

Applications

PDE constrained control/optimization

Discretization and model reduction

Discretization of I/O maps

A new approach: Shifted POD

Energy based modeling

Closing

A new turbine

Collaborative Research Center SFB1029 'TurbIn' at TU Berlin. Significant increase of efficiency via the interactive use of instationary effects of combustion and flow in gas turbines.

One pipe experiment

¹Project A01, Oliver Paschereit

Optimal fuel injection

Technological Application, Tasks

Control of combustion process

- Experimental setup of combustion process.
- Modeling of turbulent reactive flow.
- Control methods for the filling and ignition of pipes.
- Control method for flows that hit the turbine blade.
- ▶ Model reduction and observer design.
- Model hierarchy and digital twin for simulation and control.

Ultimate engineering goal: 10 % more efficiency in turbine.

Modeling, simulation, optimization of gas networks.

- Separation of trade and transport by political regulations.
- Modeling of gas transport in large networks.
- Incorporation of weather, market, physical system, real data.
- Network planning and network operation.
- ▶ Combining discrete, stochastic, and continuous control and optimization.

Components of gas flow model

Coupled system of partial differential-algebraic equations.

- □ Euler equations (with temperature) to describe flow in pipes.
- ▶ Network model, flow balance equations (Kirchoff's laws).
- Network elements: pipes, valves, controllers, heaters, compressors, coolers. Surrogate and reduced order models.

- Erratic demand and nomination of transport capacity.
- ▶ Using gas network as storage for hydrogen, methane produced from unused wind energy. Power to gas.

Ultimate goal: Digital twin for reliable gas flow simulation and optimization using a model hierarchy.

Model hierarchy

Model hierarchy for gas flow. P. Domschke, O. Kolb, J. Lang (2011).

- Introduction
- Applications
- PDE constrained control/optimization
 - Surrogate I/O map representation
 - Discretization of I/O maps
 - A new approach: Shifted POD
 - Energy based modeling
 - Closing

→ロト→個ト→重ト→重ト 重 99℃

PDE constrained optimization

Different approaches.

- Simulate PDE to generate I/O surrogate model. Reduce I/O model, then optimize/control.
- ▶ First semi-discretize (in space), then reduce continuous time model, then optimize/control. (POD, Balanced truncation, DEIM, IRKA, ...).
- Discretize (in space and time) as optimization or control problem in adaptive way (reduced basis).
- Discretize optimality conditions (forward and adjoint problem) in adaptive way (adaptive FE, FD, FV).
- Combinations of all of these.
- Apply computed control in large semi-discretized model infinite dimensional or real physical model.

Abstract control system

- ▶ Input space \mathcal{U} , Output space \mathcal{Y} , State space \mathcal{Z} .
- System governed by linear or nonlinear PDE

$$\partial_t z = \mathcal{A}z + \mathcal{B}u$$
, in $\Omega \times [0, T]$, $z(0) = z^0$ + boundary conditions, $y = \mathcal{C}z$,

with operators between function spaces

$$\mathcal{B}: \mathcal{U} \to \mathcal{Z}, \ \mathcal{A}: \mathcal{Z} \to \tilde{\mathcal{Z}}, \ \mathcal{C}: \tilde{\mathcal{Z}} \to \mathcal{Y}.$$

System maps inputs *u* to outputs *y*.

Illustration framework

Figure: Schematic illustration of the I/O map for a physical system.

- Introduction
 - Applications
 - PDE constrained control/optimization
- Surrogate I/O map representation
- Discretization and model reduction
 - Discretization of I/O maps
- A new approach: Shifted POD
 - Energy based modeling
- Closing

Input-output maps

Classical and successful approach in control engineering:

- Build prototype or accurate simulator for forward problem.
- ▷ Generate I/O sequences $(u_i)_i$, $(y_i)_i$ either by measurement or by solving the PDE.
- Generate I/O map (typically in frequency domain) that interpolates the I/O sequences.
- Realize I/O map as a (small) linear finite dimensional system

$$\dot{x} = Ax + Bu, \ y = Cx$$

with matrices A, B, C.

Build a feedback controller from the small linear model and apply it in the full physical model.

Controlled flow, backward facing step

Henning/ Kuzmin/M./Schmidt/Sokolov/Turek '07. Movement of recirculation bubble following reference curve via controller built into flow solver FEATFLOW.

Limits of classical I/O approach

- Prototypes are costly or not feasible.
- Simulators are typically for forward problem, they usually use very fine grids.
- Adaptive methods adapt for the error in the forward simulation.
- ▶ Commercial CFD codes cannot be used well.
- ▶ For multi-physics models these models may not catch the most important part for the controller.
- Model reduction of fine model as alternative

- Introduction
- Applications
 - PDE constrained control/optimization
 - Surrogate I/O map representation
- Discretization and model reduction
 - Discretization of I/O maps
- A new approach: Shifted POD
 - Energy based modeling
- Closing

Model reduction in state space

Replace semidiscretized (in space) linear or nonlinear system

$$\frac{d}{dt} z_n(t) = A_n z_n(t) + B_n u_m(t), \text{ in } \Omega \times [0, T],$$

$$z_n(0) = z_n^0, y_p = C_n z_n,$$

$$z_n : [0, T] \to \mathbb{R}^n, u_m : [0, T] \to \mathbb{R}^m, y_p : [0, T] \to \mathbb{R}^p \text{ by ROM}$$

$$\frac{d}{dt} z_r = A_r z_r + B_r u_m, \text{ in } \Omega \times [0, T],$$

$$\frac{d}{dt}z_r = A_rz_r + B_ru_m, \text{ in } \Omega \times [0, T],$$

$$z_r(0) = z_r^0, y_p = C_rz_r,$$

$$z_r:[0,T]\to\mathbb{R}^r,\ u_m:[0,T]\to\mathbb{R}^m,\ y_p:[0,T]\to\mathbb{R}^p,\ r<< n.$$

Goals

- ▷ Approximation error $||y y_r||$ small, global error bounds;
- ▶ Preservation of physics: stability, passivity, conservation laws;

Model reduction techniques

- SVD (singular value decomposition) based methods
- Balanced truncation (linear) Antoulas, Benner, Li, Moore,
 Mehrmann, Penzl, Stykel, Sorensen, Varga, Wang, White, ...
- ▶ Principal orthogonal decomposition (POD), (linear/nonlinear) Banks, Benner, Hinze, King, Kunisch, Tröltzsch, Volkwein, ...
- DEIM (nonlinear) Chaturantabut, Maday, Sorensen, ...
- Interpolation based methods
- ▷ IRKA (linear) Antoulas, Beattie, Gugercin, ...
 Kryley methods
- Krylov methods
- Moment matching, (linear) Bai, Boley, Freund, Gallivan, Gragg, Grimme, Van Dooren, ...
- ▶ Modal truncation (linear) Bampton, Craig, Guyan, Rommes...
 Reduced basis methods
- ▷ (linear/nonlinear) Haasdonk, Ohlberger, Patera, Quateroni, Rozza, ...

Proper Orthogonal Decomposition (POD)

Consider infinite dimensional

$$\frac{d}{dt}z = \mathcal{A}z + \mathcal{B}u, \text{ in } \Omega \times [0, T],$$

$$z(0) = z^{0} + \text{boundary conditions}, y = \mathcal{C}z,$$

or semidiscretized (in space on a fine grid) system

$$\frac{d}{dt}z_n(t) = A_nz_n(t) + B_nu_m(t), \text{ in } \Omega \times [0, T],$$

$$z_n(0) = z_n^0 y_p = C_nz_n,$$

Compute snapshot matrix for well chosen input u,

$$\mathcal{X} = \begin{bmatrix} z(t_1) & z(t_2) & \dots & z(t_N) \end{bmatrix}$$

This has finitely or infinitely many rows.

Compute subspace V_r associated with r largest singular values of \mathcal{X} by truncating small singular values σ_i , $i = r, r + 1, \ldots$ Project equations by W_r^* with $W_r^*V_r = I_r$.

$$\frac{d}{dt}z_r = A_rz_r + B_ru_m, \text{ in } \Omega \times [0, T],$$

$$z_r(0) = z_r^0, y_p = C_rz_r,$$

with
$$A_r = W_r^* \mathcal{A} V_r$$
, $B_r = W_r^* \mathcal{B}$, $C_r = \mathcal{C} V_r$ or $A_r = W_r^* A_n V_r$, $B_r = W_r^* B_m$, $C_r = C_p V_r$.

Analysis of POD

- Cheap and easy to use.
- 'Works' for nonlinear systems with discrete empirical interpolation Chaturantabut, Maday, Sorensen.
- Very successful in practice.
- Can be combined with off-line computation.
- ▶ A posteriori error estimates: Kunisch/Tröltzsch/Volkwein.
- \triangleright How to choose u(t) for snapshots?
- Method is quite heuristic.
- Does not work well for transport dominant phenomena.
- ▶ But do we really discretize the right problem?
- Usually we do preserve physical properties, e.g. conservation laws.

Applications

PDE constrained control/optimization

Surrogate I/O map representation

Discretization and model reduction

Discretization of I/O maps

A new approach: Shifted POD

Energy based modeling

Closing

Discretization of I/O maps

Suppose we have a convolution representation of the continuous time I/O map $G: u \rightarrow y$

$$y(t) = (\mathbb{G}u)(t) = \int_0^T \mathcal{CS}(t-s)\mathcal{B}u(s) ds$$

with kernel

$$\mathcal{K}(t-s) = \mathcal{CS}(t-s)\mathcal{B}$$

where \mathcal{S} is the (time continuous) solution operator for the PDE. Idea: Discretize this I/O map, rather than the PDE.

Two step procedure

- 1. Approximation of input-output signals, by restricting to finite dimensional subspaces in \mathcal{U}, \mathcal{Y} .
- 2. Approximation of the dynamics/kernel

$$\mathcal{K}(t) \approx \tilde{K}$$

by approximate solution of many PDEs for the basis functions of the input space to desired tolerance.

Observations

- $\triangleright \mathcal{K}(t)$ can be calculated column-wise for each input function.
- Parallelization is easy.
- No storage of state trajectories is necessary.
- Accuracy is only needed in the observations of excited states not in the states itself.
- We can easily deal with non-smooth initial transients.
- Approximate error estimation is possible, e.g. via Dual-Weighted Residuals
- ▶ The techniques work well for heat equations Diss. Schmidt 2007, Heiland/M./Schmidt 2011, Stokes, Oseen, linearized Navier-Stokes. Diss. Heiland 2014, Heiland/M. 2012

Lin. Navier-Stokes, Stokes

A linearization of Navier-Stokes (for Velocity V and pressure P) along a divergence-free reference velocity V_{∞}

$$V_t + (V_{\infty} \cdot \nabla)V + (V \cdot \nabla)V_{\infty} + \nabla P - \frac{1}{Re} \triangle V = (V_{\infty} \cdot \nabla)V_{\infty} + f + \mathcal{B}u,$$

$$\nabla \cdot V = 0,$$

$$y = \mathcal{C}V$$

together with appropriate initial and boundary conditions.

Convolution operator in linear model, together with discrete input and output spaces, enables explicit construction of I/O-operator. Heiland/M. 2013, Emmrich/M. 2013, Diss. Altmann 2015.

Application to control of driven cavity flow Heiland/M. 2012

Solver IFISS by Elman/Silvester/Rammage

Optimal control

Figure: System response for input u that was computed to match an output $y^T = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$. (a) and (b) show the time evolution. Plot (c) shows the velocities and the streamlines at t = 0.1.

Optimal control

Figure: System response for input u that was computed to match an output $y^T = [0 \ 1]^T$. (a) and (b) show the time evolution of the output signal. Plot (c) shows the velocities and the streamlines at t = 0.1.

Evaluation of I/O discr. Approach

- Close to the classical control approach.
- 'Works' also for nonlinear systems, no theory though.
- ▷ Can be combined with off-line computation.
- Needs a representation of I/O map.
- Preservation of physical properties?
- Does not work for transport dominated problems.

- Introduction
 - Applications
- PDE constrained control/optimization
 - Surrogate I/O map representation
 - Discretization and model reduction
 - Discretization of I/O maps
- A new approach: Shifted POD
- Energy based modeling
- Closing

How about the new turbine?

- Flow is turbulent, reactive and transport dominated.
- ▷ I/O map is highly complicated.
- All known MOR approaches fail or do not get a small model.
- ▶ We need to have reduced model that captures the transport phenomenon and the physics.

Experiment

Data Assimilation

Reactive compressible Navier-Stokes equations.

Velocity profile

New approach SPOD Reiss/Schulze/Sesterhenn/M. 2015-17.

- Identify amplitudes, phases and directions of waves from SVD spectrum.
- ▷ Separate them as contributions in the transport phenomenon and do POD on the remaining components.

Ansatz:

$$u(x,t) = \sum_{k=1}^{N} \sum_{i} \alpha_{i}^{k}(t) \phi_{i}^{k}(x - \Delta^{k}(t))$$

Perform Galerkin model assimilation with this ansatz.

Reduced velocity profile

Comparison

Identification of velocities

Singular value spectrum to identify transport velocities.

Singular value spectrum for 1D traveling waves, 2 different velocities at ± 1 and standing wave.

Evaluation of sPOD

- Close to the classical control approach.
- 'Works' for nonlinear systems.
- Can be combined with off-line computation.
- 'Works' for transport dominated problems.
- Requires to identify transport velocities (sometimes very difficult).
- ▶ Error bounds?
- Preservation of physical properties?

Outline

- Introduction
- Applications
 - PDE constrained control/optimization
 - Surrogate I/O map representation
 - Discretization and model reduction
 - Discretization of I/O maps
- A new approach: Shifted POD
- Energy based modeling
 - Closing

Energy based modeling

Variational principles lead to energy based models: Hamiltonian systems with dissipation, inputs/outputs

- Multibody dynamics;
- Quantum mechanics;
- ▷ Electrical circuis;
- ▶ Power grids;
- Optimality systems in optimal control of ODEs/DAEs;
- Thermodynamics;
- Fluid dynamics;
- > . . .

Is there a common description?

→ Port-Hamiltonian systems, GENERIC.

Port-Hamiltonian systems

Classical port-Hamiltonian (pH) ODE/PDE systems have the form

$$\dot{x} = (J(x,t) - R(x,t)) \nabla_x \mathcal{H}(x) + (B(x,t) - P(x,t)) u(t),
y(t) = (B(x,t) + P(x,t))^T \nabla_x \mathcal{H}(x) + (S(x,t) + N(x,t)) u(t),$$

- $\supset J = -J^T$ describes the *energy flux* among energy storage elements within the system;
- $\triangleright R = R^T \ge 0$ describes *energy dissipation/loss* in the system;
- \triangleright $B \pm P$: ports where energy enters and exits the system;
- \triangleright S + N, $S = S^T$, $N = -N^T$, direct *feed-through* input to output.
- ▶ In the infinite dimensional case J, R, B, P, S, N are *operators* that map into appropriate function spaces.

Properties

- ▶ Port-Hamiltonian systems generalize Hamiltonian systems.
- Conservation of energy replaced by dissipation inequality

$$\mathcal{H}(x(t_1)) - \mathcal{H}(x(t_0)) \leq \int_{t_0}^{t_1} y(t)^{\mathsf{T}} u(t) dt,$$

- Port-Hamiltonian systems are closed under power-conserving interconnection. Models can be coupled in modularized way.
- Minimal pH systems are stable and passive.
- ▶ Port-Hamiltonian structure allows to preserve physical properties in *Galerkin projection, model reduction*.
- Physical properties encoded in algebraic structure of coefficients and in geometric structure associated with flow.
- Systems are *easily extendable* to incorporate multiphysics components: chemical reaction, thermodynamics, electrodynamics, mechanics, etc. Open/closed systems.

Port-Hamiltonian (P)DAEs

Discussed examples can be modeled as Port-Hamiltonian (P)DAEs.

Current work:

- □ Unify concept of (P)DAEs and port-Hamiltonian systems;
- ▶ Find a representation that allows automated modeling.
- ▷ Incorporate control/optimization methods.
- Develop structured discretization methods.
- Develop structured model reduction methods.
- ▷ ..

Port-Hamiltonian (P)DAEs

Definition (Beattie, M., Xu, Zwart 2017)

A linear variable coefficient (P)DAE of the form

$$E\dot{x} = [(J-R)Q - EK]x + (B-P)u,$$

$$y = (B+P)^{T}Qx + (S+N)u,$$

with $E, A, Q, R = R^T, K \in C^0(\mathbb{I}, \mathbb{R}^{n,n}), B, P \in C^0(\mathbb{I}, \mathbb{R}^{n,m}), S + N \in C^0(\mathbb{I}, \mathbb{R}^{m,m})$ is called *port-Hamiltonian DAE (pHDAE)* if :

- i) $\mathcal{L} := Q^T E \frac{d}{dt} Q^T J Q Q^T E K$ is skew-adjoint.
- ii) $Q^T E = E^T Q$ is bounded from below by a constant symmetric H_0 .

iii)
$$W := \begin{bmatrix} Q^T R Q & Q^T P \\ P^T Q & S \end{bmatrix} \ge 0, \ t \in \mathbb{I}.$$

Hamiltonian is defined as $\mathcal{H}(x) := \frac{1}{2}x^TQ^TEx : C^1(\mathbb{I},\mathbb{R}^n) \to \mathbb{R}$.

Further properties

- Analogous definition in nonlinear/ infinite dimensional case.
- ▶ Hamiltonian defines energy functional, Lypapunov function.
- Index reduction for index one and high index pHDAEs Beattie, M., Xu, Zwart 2017.
- ▶ Infinite dimensional pH systems Maschke, Ramirez, et al, Van der Schaft survey 2013, Jacob, Zwart 2012

Example gas transport

Egger/Kugler/Liljegren/Marheineke/M. 2017 Propagation of pressure waves on the acoustic time scale in a gas network.

Figure: Graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with vertices $\mathcal{V} = \{v_1, v_2, v_3, v_4\}$ and edges $\mathcal{E} = \{e_1, e_2, e_3\}$ defined by $e_1 = (v_1, v_2), e_2 = (v_2, v_3)$, and $e_3 = (v_2, v_4)$.

Gas transport pH-PDAE

Model on every edge $e \in \mathcal{E}$ the conservation of mass and the balance of momentum, z = (p, q).

$$a^e \partial_t p^e + \partial_z q^e = 0, \qquad e \in \mathcal{E},$$

 $b^e \partial_t q^e + \partial_z p^e + d^e q^e = 0, \qquad e \in \mathcal{E},$

where p^e , q^e denote the pressure and mass flux, respectively.

- ▶ Encode in $a^e(t,z), b^e(t,z) > 0$ physical properties of fluid and pipe, in $d^e(t,z) \ge 0$ damping due to friction, and introduce interior and exterior vertices \mathcal{V}_0 and $\mathcal{V}_{\partial} = \mathcal{V} \setminus \mathcal{V}_0$.
- ho Model conservation of mass and momentum at $v \in \mathcal{V}_0$ by

$$\sum_{e \in \mathcal{E}(v)} n^{e}(v) q^{e}(v) = 0$$

$$p^{e}(v) = p^{f}(v), \qquad e, f \in \mathcal{E}(v),$$

where $\mathcal{E}(v) = \{e : e = (v, \cdot) \text{ or } e = (\cdot, v)\}$ is the set of edges adjacent to v and $n^e(v) = \pm 1$ (flow direction).

Port-Hamiltonian PDAE

- ▷ Inputs: $p^e(v) = u_v$, $v \in \mathcal{V}_{\partial}$, $e \in \mathcal{E}(v)$
- Output: the mass flux in and out of the network via the exterior vertices

$$y_v = -n^e(v)q^e(v), \qquad v \in \mathcal{V}_{\partial}, \ e \in \mathcal{E}(v),$$

- ▷ Initial conditions: $p(0) = p_0$, $q(0) = q_0$ on \mathcal{E} for pressure and mass flux.
- Hamiltonian:

$$\mathcal{H} = \frac{1}{2} \sum\nolimits_{e \in \mathcal{E}} \int_{e} a^{e} |p^{e}|^{2} + b^{e} |q^{e}|^{2} dz.$$

Discontinuous Galerkin discretization

Existence of unique solution for consistent initial conditions p_0 , q_0 and sufficiently smooth $(u_v)_{v \in \mathcal{V}_{\partial}}$, in Egger/Kugler 2016. Mixed finite element space discretization leads to pHDAE:

$$E\dot{x} = (J - R)Qx + Bu,$$

$$y = B^{T}x,$$

$$x(0) = x^{0},$$

with Q = I, S, N, P = 0,

$$E = \begin{bmatrix} M_1 & 0 & 0 \\ 0 & M_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}, J = \begin{bmatrix} 0 & -\tilde{G} & 0 \\ \tilde{G}^T & 0 & \tilde{N}^T \\ 0 & -\tilde{N} & 0 \end{bmatrix}, R = \begin{bmatrix} 0 & 0 & 0 \\ 0 & \tilde{D} & 0 \\ 0 & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 \\ \tilde{B}_2 \\ 0 \end{bmatrix}.$$

The Hamiltonian is given by

$$\mathcal{H}(x) = \frac{1}{2}x^T E^T Q x = \frac{1}{2}(x_1^T M_1 x_1 + x_2^T M_2 x_2).$$

Model reduction for pHDAEs

Galerkin reduction for pH systems Beattie/ Gugercin 2011. Replace

$$E\dot{x} = (J - R)\nabla_x H(x) + Bu, \ y = B^T \nabla_x H(x)$$

by reduced system

$$E_r\dot{x}_r = (J_r - R_r)\nabla_{x_r}H_r(x_r) + B_ru, \ y_r = B^T\nabla_{x_r}H_r(x_r)$$

with $x \approx V_r x_r$, $\nabla_x H(x) \approx W_r \nabla_{x_r} H_r(x_r)$, $J_r = W_r^T J W_r$, $R_r = W_r^T R W_r W_r^T E V_r = E_r$, $B_r = W_r^T B$.

If V_r and W_r are appropriate orthornormal bases, then the resulting system is again pHDAE and all properties are preserved.

MOR for gas flow

Egger/Kugler/Liljegren-Sailer/Marheineke/M. 2017.

- Algebraic compatibility conditions for full model.
- Well-posedness, conservation of mass, dissipation inequality, and exponentially stability of steady states.
- Model reduction via moment matching
- Specially structured Krylov method to satisfy algebraic compatibility conditions.
- ▷ CS Decomposition to guarantee geometric structure.
- Reduced model satisfies same conditions, no reduction of constraints.
- \triangleright Efficient construction of projection spaces V_r , W_r .
- Error bounds.

Comparison with standard method

		exact	$\mathbb{V}_i = \mathbb{W}_i^L$			$\mathbb{V}_i = \mathbb{W}_i^L + \mathbb{Z}_i$		
	L		1	3	10	1	3	10
projection	m_h					1.000		
	E_h	0.500	0.375	0.451	0.475	0.500	0.500	0.500
mass constraint	m_h	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	E_h	0.500	0.667	0.554	0.527	0.500	0.500	0.500

Initial values of $m_h(0)$ and $E_h(0)$ for the mass and energy for full order and reduced models obtained by projection in the energy norm with and without additional mass constraint.

Bases for subspaces

Bases for the subspaces obtained by the structure preserving Krylov iteration with L=4.

Mesh Independence

Basis functions for the pressure and velocity computed with space-discretized model on different meshes with mesh size $h = \frac{1}{20}, \frac{1}{40}$, and $\frac{1}{80}$.

Pressure correction

With and without pressure correction via CS decomposition.

MOR via projected Krylov methods

Results for space-discretized model (blue) and reduced model (red) with dim. 2, 5, 10 and damping param. d = 0.1, 1, 5 (top to bottom).

- Introduction
- Applications
 - PDE constrained control/optimization
 - Surrogate I/O map representation
 - Discretization and model reduction
 - Discretization of I/O maps
- A new approach: Shifted POD
 - Energy based modeling
- Closing

- Coupled systems from different physical domains including flow have wide applications.
- Energy based modeling via PH PDAEs a very promising approach.
- Structure is rich and allows for big improvements in analysis, numerics, control, perturbation theory.
- Space-time discretization preserving pHDAE structure.
- Model reduction preserving pHDAE structure.
- Incorporation of experimental and real time data. (Data assimilation).

The area is wide open for very interesting research

Thank you very much for your attention and my sponsors for their support

- ERC Advanced Grant MODSIMCONMP
- ▷ (DFG) Research center MATHEON
- Collaborative Research Centers 1029, TR154.

Details: http://www.math.tu-berlin.de/~mehrmann/

Happy birthday Zdenek and Eduard welcome to the O60 club.

References

- C. Beattie, V. M., H. Xu, and H. Zwart. Port-Hamiltonian descriptor systems, submitted 2017.
- H. Egger, T. Kugler, B. Liljegren-Sailer, N. Marheineke, and V.
 Mehrmann, Structure preserving model reduction for damped wave propagation in transport networks, submitted 2017.

- ▶ R. Altmann and J. Heiland. Finite Element Decomposition and Minimal Extension for Flow Equations. M2AN 2015.
- M. Baumann, J. Heiland, and M. Schmidt. Discrete Input/Output Maps and their Relation to Proper Orthogonal Decomposition. Springer, 2015.
- L. Henning, D. Kuzmin, V. M., M. Schmidt, A. Sokolov and S. Turek. Flow Control on the basis of Featflow-Matlab Coupling. Notes on Numerical Fluid Dynamics, 2007.
- M. Lemke, A. Miedlar , J. Reiss, V. Mehrmann and J. Sesterhenn *Model reduction of reactive processes*, Notes on Numerical Fluid Dynamics, 2014.

- Michael Schmidt, Systematic discretization of input/output maps and other contributions to the control of distributed parameter systems. April 2007.
- Jan Heiland, Decoupling and Optimization of Differential-Algebraic Equations with Application in Flow Control, February 2014
- Robert Altmann, Regularization and Simulation of Constrained Partial Differential Equations, May 2015,
- Philipp Schulze 2017 in preparation

References

- C. Beattie and S. Gugercin. Structure-preserving model reduction for nonlinear port-Hamiltonian systems. In 50th IEEE Conference on Decision and Control, 6564-6569, 2011.
- B. Jacob and H. Zwart. Linear port-Hamiltonian systems on infinite-dimensional spaces. Operator Theory: Advances and Applications, 223. Birkhäuser/Springer Basel CH, 2012.
- A. J. van der Schaft. Port-Hamiltonian systems: network modeling and control of nonlinear physical systems. In Advanced Dynamics and Control of Structures and Machines, CISM Courses and Lectures, Vol. 444. Springer Verlag, New York, N.Y., 2004.
- A. J. van der Schaft. Port-Hamiltonian differential-algebraic systems. In Surveys in Differential-Algebraic Equations I, 173-226. Springer-Verlag, 2013.