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Plan of the talk

1. Etymology of the title

2. A short cv of Eduard Feireisl

3. Why we like him (= Why he is great)

4. Bits and pieces from mathematics of Eduard Feireisl

@ Feireisl-Lions existence theory for CNSE

@ Stability and Weak strong uniqueness for CNSE
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Etymology of the title

We shall proceed in two steps.
1. Why adjective "busy" ?
2. Appropriateness of noun "vacation" ?

Antonin Novotny Random talks



Etymology of the title

Step 1 : Adjective "busy”
1. Random talks with a guy on permanent vacation
2. Random talks with a Rardwesking guy on permanent
vacation
3. Random talks with a busy guy on permanent
vacation
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Etymology of the title

Step 2 : Noun "vacation”

1. First argument

Vacation is according to Cambridge dictionary "... a
time when someone does not go to his usual work or to
his usual school but is free to do what he, she wants
(including mathematics) such as travel (including to
seminars and conferences) or relax (including doing
mathematics) ..."

2. Second argument
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A short cv of Eduard Feireisl

Born in December, 60 years ago

High school at "Nové Straseci"

Master degree, Charles University in Prague (1982)

Phd., Mathematical Institute CSAV (1986)

DrSc. (99), Docent habilitation (09), Full Professor (11)

Permanent leading senior researcher in MU CAV

Long term visiting positions in Oxford (England), Madrid (Spain),

Ecole Polytechnique, Paris-Sud, Besancon, Nancy(France),

Athens(Ohio-USA), Munich, Vienna, Aquilla, Budapest, Warsaw

Member of Editorial boards of 18 mostly highly impacted journals

@ Member (sometimes chairing) Scientific Committees of many
international conferences (including ECM, 2012)

@ At least 17 invited plenary lectures at International conferences

@ Unenumarable number of talks at seminars, conferences and
scientific schools

@ Awards : Prizes of Acad. Sci. (04, 09), Premium Academae
(07-13), The Neuron Award for Contribution to Science (15)

@ ERC Advanced Grant (13-18)

@ 260 publications (4 monographs), around 3500 citations.
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Why we like him . ..

@ high-talent, hard work, modesty
"... belongs to a few mathematicians who are able to translate
with unimaginable and unsupportable lightness the problems of
real word applications into elegant and treatable mathematical
formulations . . ."

@ resistance, endurance, pertinence
@ authentic mathematician
@ generosity
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Compressible Navier-Stokes equations (CNSE)

We consider in [0, T) x Q, Q C R® (a bounded Lipschitz domain) the
following system of equations

Continuity equation

0,0+ divy(ou) =0 (1)
Momentum equation
O,(ou) + div,(ou ® u) + V,p(0) = div,S(V,u) (2 )
Boundary conditions
u ’(O,T)xé)ﬂ - (3)
Initial conditions
0(0,x) = go(x), ou(0,x) = goup(x). (4)

v
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Stress tensor

|

S(V,u) = M(qu +VTu— §divu]l) Fodival, >0, >0 (5)

V.
Pressure

p € C'[0,00) p(0)=0. (6)

Helmholiz function H

Relative energy function E

E(o,r)=H(o) —H'(r)(e—r) — H(r)

A




Weak solutions to CNSE

Functional spaces

o(t,x) > 0fora.a. (t,x) € (0,T) x Q, g € L°(0,T; L' (Q)),
ou € L=(0,T; L' (Q; R)), ou® € L>=(0,T; L' (2)),

w e L2(0,T; Wy (% R)), plo) € L=(0, T; L(Q)).

Continuity equation

0 € Cyea ([0, T]; L'(2)) and equation (1) is replaced by the family of
integral identities

/de =/ /(98t<p+gu~vx<p)dxdt (7)
Q 0 0 Ja

for all = € [0, 7] and for any ¢ € C'([0, 7] x Q) ;




Momentum equation

ou € Cyeak ([0, T]; L'(Q; R?)) and momentum equation (2) is satisfied in
the sense of distributions, specifically,

/@u'sodx
Q

’ /oT /Q <p (0)divep — S(9, V) : Wp) dx di

for all 7 € [0, 7] and for any ¢ € C1([0,T] x Q; R®);

T:/ /<Qu~8,<p+gu®uzvxgo> dxdt (8)
0 0o Jo

Energy inequality

/Q(EQ“ZJFE(Q@) dx‘;—i-/OT/QS(VXu):VXu dxdr <0, (9)

fora.a. 7 € (0,T), where g > 0.

|
\

N
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Feireisl-Lions theory of existence of weak solutions

Pressure for existence of weak solutions
p(o) > a0 —b, 0>0, (10)
p(0) =0, p(o) <a”+b, 02>0,
with some v > 3/2,a; > 0, ap,b € R.

Finite energy initial data

1
0759020,/Egou(2)+E(QO|§)dx<oo. (11)
Q

Existence of Weak solutions : Lions,98 (v > %)

, 02 (v > %), Feireisl (02) non-monotone pressure as above

Under assumptions on the initial data (11), and pressure
p € C'[0,00), (10), the compressible Navier-Stokes system (1-5)
admits at least one weak solution.




Lions approach

@ Equations
Oy0n + divy(g,u,) =0 (12)
6t(gnun) + divx(@nun & un) + vxp(@n) = diVxS(vxun) (1 3)
atb(gn) + diVx(b(Qn)un) + (an,(gn) - b(«Qn))diVUn =0 (14)

@ Energy inequality plus one additional estimate yield estimates
that guarantee weak convergence of (g, u,,p(g,)) 10 (o,u,p(0)).
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@ With this information one can pass to the limit in the above
equations and get :

0i0 + divy(ou) = 0 (15)
di(ou) + div,(ou @ u) + V,p(0) = div,S(V,u) (16)
Oroln o + div,(oIn pu) + odiva = 0 (17)

@ The first key point in this approach is that the approximated and
momentum equation verify Effective viscous flux identity :

0 < op(0) — op(0) =~ odivu — odivu > 0 (18)

@ The second key point in the approach is DiPerna-Lions transport
theory : If (o, u) verifies (15) then it verifies also (15) in the
renormalized sense provided o € L*(Q7). In particular :

d,01n o + div,(o1n gu) + odivu = 0 (19)
@ Consequently (17) and (19) yield

//glng olnpdxdr <0

which means a.e. in Qr convergence of g, and finishes the story.
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Feireisl's approach

@ Oscillations defect measure for a weakly convergent sequence
On

0scpon — 0](Qr) = sup (lim sup/Q‘ ‘Tk(gn) — Ti(o) ‘pdxdt>, (20)

>1 n—0

where truncation T (o) = min(g, k).
@ First key observation is that

oscy+1]0n — 0](Qr) is bounded.

Antonin Novotny Random talks



@ Effective viscous flux identity reads :

/OT | (@702 Tia))asar /0 | (F@idv-Tita) diva)asas

ltsr.h.s. is

< C|:OSC7+1[Qn - Q](QT)] =

Its left hand side is

> lim sup /O ' /Q (o7 = @) (Telon) — Ti(0)) dxdr+

n—0

/OT /Q (Qﬂy - E) (m - Tk(Q)) dxdr

T y+1
> lim sup/ / ‘Tk(gn) — Tk(g)‘ dxdt := o0scy+1[on — 0](Or).
0o Jo

n—0
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@ Second key observation : If the oscillation defect measure with
p > 2 is bounded and if the sequence (o,,u,) verifies continuity
equation in the renormalized sense, then its weak limit verifies
continuity equation also in the renormalized sense. (Condition
o0 € L*(Qr) is not needed !).

@ With the above statement at hand one concludes exactly as in
the Lions approach that

//glngfglngdxdtgo
0o Jo

which means a.e. in Qr convergence of o, and finishes the story.
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And what about uniqueness of weak solutions ?

@ This is millenium problem (to difficult)

@ What about weak strong uniqueness ? (Are strong solutions
-provided they exist - unique in the class of weak solutions ?)

@ Partial answer was provided independently by P. Germain and B.
Desjardins : Strong solutions are unique in the class of weak
solutions provided the weak solutions are slightly better (than the
weak solution whose existence can be proved)
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Relative energy inequality

/< S >) a, @
// u—U) dxdr
/ / (V:U) ) dudr
/0 /Q Qa’UW“'V\'U)-(U—u) drdr
- /0 T /Q p(e)div,U dx d
[ ] (5200 - G V) axr

re c[0,T] x Q), r >0, U e CH([0,T] x Q).

for all



Dissipative solutions

£(e.u]n0) = [ (Gola— 0P +E(eln)

Functional spaces

o(t,x) > 0fora.a. (t,x) € (0,T) x Q, g € L>(0,T; L' (Q)),
ou € L>(0,T; L'(; R%)), ou® € L>°(0,T; L'(Q)),
u € 120, T; Wy (% R%)), plo) € L=(0, T; L'(9)).

Relative energy inequality

E(o,u r,U)(T)+/OT/QS(Vx(u—U)) :Vx(u—U) dx dr

r, U) dr

#(0),U(0)) Jr/OTR(g,u

where the remainder R is given by the r.h.s. of formula (21) and the
test functions are the same as in formula (21).

< E(00, 19
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Existence of Weak and dissipative solutions

Existence of disspative solutions ,2012

Under assumptions on initial data(11) and pressure p € C'[0, ),
(10), there is at least one dissiptive solution.

Weak solutions are dissipative : ,2012

Under assumptions on initial data(11) and pressure p € C'[0, 00), any
weak solution of the compressible Navier-Stokes system (1-5) is a
dissipative one.
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Thermodynamic stability conditions and relative

energy function

Thermodynamic stability conditions J

p'(e)>0, 0>0 (22)

Relative energy function E under thermodynamic stability conditions
Under condition (22),

E(o,r) = H(e) — H'(r)(e —r) — H(r)

E(o,r) >0, E(o,r)=0 < o=r
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Relative entropy with (r, U) strong solution of CNSE

| (5o vr+ £ >) af] 3)
+ [ [s(v (u-0) arar
7/0/Qgfr(a,UJrU-vxu)-(Ufu)dxdt
—/OT/QQ(“—U)'VXU)-(U—u)dxdt
//Q

r) dxdr.




Relative energy and stability

p € C'0,00) N C*(0,00), p(0)=0. (24)

| N,

Weak strong uniqueness, stability |

Let (o, u) be a weak solution to the Navier-Stokes equations (1-6)
with pressure obeying regularity (24) and thermodynamic stability
conditions (22), emanating from finite energy initial data (o, up) in the
time interval [0, T'), T > 0 such that

0< o< o(tx) <o < oo. (25)

Let (r, U) be a strong solution of the same equations in the regularity
class (27), with finite enrergy initial data (ro, Up). Then

5<g,u

r, U) < cé’(go, u

r(),U()).




No conditions on weak solution, minimum conditions
on pressure

Weak strong uniqueness, stability ||

Let the pressure verifies regularity (24), thermodynamic stability
condition (22), and

p(o) <ci+co+H(o). (26)

Let (o,u) be a weak solution to the compressible Navier-Stokes
equations (1-5) emanating from the initial data (go,uy), and let (r, U)
be a strong solution of the same system emanating from the initial
data (0 < g, Up) in class (27). Then there exists

¢ = c(, T, |7 lo.00, 711,00 [ U]l 1.0) Such that

S(Q,u

r, U) < cé'(go, u

70, Uo).

Sufficient condition for (26)

1
0< —< liminf@ < limsup@ < Poo < 00, Where v > 0,

Poo o—oo 07 o—oo 0O
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Eistence of strong solutions corresponding to situations I,

0<r<r<7v¥<oo; UeL®(0,T)x ), (27)
or, OU, V,r, V,U € L*(0,T;L=(Q)),
Local in time (in large) or global in time (in small) existence of such
solutions under additional compatibility conditions on initial data

follows from the theory developed in 80’th by in works of Masumura,
Nishida, Valli, Zajaczkowski
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No conditions on weak solution, growth on pressure

Weak strong uniqueness, stability I

Let the pressure verifies regularity (24), thermodynamic stability
condition (22), and (10) with v > 6/5.
Let (o,u) be a weak solution in class (28) to the compressible
Navier-Stokes equations (1-5) emanating from the finite energy initial
data (oo, u0), and let (r, U) be a strong solution of the same system
emanating from the initial data (0 < ry, Up) . Then there exists ¢ > 0
such that

E (g, u

r,U) < cé’(go,uo ‘ ro,U()).

Regularity of the strong solution Il - corresponding to the theory of

0<r<r<r<oo, UeL>((0,T)xQ), (28)

6
Vir € (0, T LA RY), VU € L0, T5L°(@)), ¢ > max{(3, 5 o)

Antonin Novotny Random talks



Regularity, Blow-up

Bow up criterion.

Let (r,U) be a strong solution to CNSE in Cho,Choe, Kim’s class on
[07 Tmax)- If Tmax < oo then

TEITY:‘ ol (or) — 00-

Regularity criterion

Let (r, U) be a weak solution to CNSE (on (0, T')) emanating from the
Cho,Choe,Kim’s initial data. Suppose that r is bounded. Then (p,U) is
a strong solution in the Cho, Choe, Kim’s class.

V
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Approximating system of PDEs for weak solutions

Approximating system
00 + div(pu)—=Ap = 0,
8n9|‘69 = 07

0;(on) + div(gu @ u) + V,(p(0)+0")+eV,0 - V,u

= pAu + (% + n)V,diva

ulgpg =0

Weak solutions are obtained letting first ¢ — 0 and then § — 0. This is
not exploitable in the numerics !



Physical and numerical domain

The physical space is represented by a bounded domain Q c R*. The
numerical domains €2, are polyhedral domain, a union of tetrahedra K

ﬁh = UKG'EK'

If KNL#0Q, K +# L, then KN L is either a common face, or a common
edge, or a common vortex. Either Q = Q,, or

Sup,cgodist(x, 0Q) < ch, (29)

or
V, € 09, avertex = V), € 9Q. (30)

Furthermore, we suppose that

¢[K] = diam[K] =~ h, (31)

where ¢[K] is the radius of the largest ball contained in K.
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Discretisation

K € T- regular partition of 2, into tetrahedrons of size #.

o = K|L € &y - set of internal faces, £ - set of all faces.

0<t <...<t, <...<T-time discretisation of step At.

0(tn, x) = D ke Ok 1k (x) € Qi(4) - space of piecewise constants.
U(ty, x) & Y e Wodo(x) € Vio(€2) - the CR space.

/ ¢cf¢a’ds = 60,0’
Upwind :
ok ifu, -nyx >0
o = ,  where o = K|L.

o1 otherwise

Mean values :
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Numerical scheme

0" € Ou(U), 0" >0, u" € Vyo(QsR?), n=0,1,...,N, (32)

> Ik G G0t S Joleh P mo)ek =0 (39

KeT KeT ce&(K)

forany ¢ € 0,(%) andn=1,...,N,

K
Z%(Q R 1) VK+Z Z |o| g Pa Pl - ng k] - Vi

KeT KET ceE(K)
(34)
=D (k) Y lolve - nch"‘MZ/vu Vv dx
KeT se€(K) KeT

MZ/dlvu”dwvdx 0, forany ve V,o (Q;R)andn=1,...,N.
KeT




10r, V)L, 2y = [Irller o,y H N0V erlleqro,71:as sy HI O el eqro. s oy

IVllerqo,rxreseey + IVIeqo,mseewesreyy + 10 VaVlleo, e rerix3))

+||33,:"||L2(0,T;L6(R3)) and r >r>0.

Let (o}, u}) = (o, u) be a family of numerical solutions of the numerical
scheme (32-33) with v > 3/2. Let (r, V) be a classical solution of the
compressible Navier-Stokes equations (1-6) in the class XT(]R3).
Then there exists ¢ > 0 independent of i, At, o, u, such that

5(Qn7un rOaUO) + h* + v At)a

r, U) S C(S(QO,UO

where 3 2 ]
a= 72_ if3/2<y <2, a=ify22,

V) = 3 [ (GekV - 02 + EGilr)

KeT

E(o" u"




The same result holds for the FV/FD scheme :

E (0" "

r,U) < (o0, m0

2,U00) + h* + \/At).




Case Q # Qy,

Suppose that €2 is a bounded domain of class C>. Let (g4, u,) = (0, u)
be a family of numerical solutions of the numerical scheme (32—33)
with v > 3/2. Let (r, V) be a weak solution solution of the
compressible Navier-Stokes equations (1-6) with bounded density r
emanating from initial data (0 < ro, Vo) € C*(Q0) that satisfy the
compatibility condition

Voloa = 0, Vp(ro)|oa = [HAV, + ngiVVOHQQ.
Then there exists ¢ > 0 independent of i, At, g, u, such that

E(o" "

r,V) < c(S(Qo,uo‘ro,Vo) + h* + \/E),

where 5 g 1
a= 72_ if3/2<y<2 a=zifyz2.




Convergence of the n. solutions to w. solutions

Case Q2 = O, , complemented for Q # Q,

Let (o5, u;,) be a family of numerical solutions of the numerical scheme
(32—33) with Ar = h and ~ > 3. Then for a suitable subsequence

on =% 0N L=(0,T; L7(Q)),

w, —uin L2(0,T; L5(2)), Vyu, — Vuin L2(Qr)
where (p,u) is a weak solution of problem (1-6).

Antonin Novotny Random talks



Case Q) # Q,

Let  C R? be a bounded domain of class C3. Let
SUP,c a0 (1, 08,) < ch. Let the initial data [0, u] belong to the
regularity class

00 € C*(Q), 00 >0inQ, uy € C*(AR?),
and satisfy the compatibility conditions
wlan =0, Vip(oo)|aa = diviS(V.uo)|aq-

Let {¢},u}}is0, k=0,1,...,[T/Af], h = At, be a family of numerical
solutions satisfying (32—34). Finally, suppose that

of<po<ocoforallh>0,n=0,1,...,[T/Af. (35)
Then problem (1-6) admits a classical solution [, u] in (0,7) x €, and
T
€ss sup / [on[u) — ul® + |on — Q\z] (t,-) dx+/ / |V —Vul* dx dt
QNQy, 0 QN

t€(0,T) (36)
<c(mr [ 18 - wf+ 16 - o] o).
Q



Energy inequality - discrete case

Z;'At' (kI - i )+Z'K‘( H(g™)

An—1 n—112
+Z ‘fl o |0k _uK Z |K |H” ‘QK _ZQK |
+> Z \U| WP (i —07)° |ug - My k]

K 0'65)&
1 2
+3° 3 ZlolH"(ek) (ek — of) 1o - mok]
K oc€eéx

2 H ") <
+;<u/l(|vxu| dx+(3+n)/[(|d1vu| dx) <0



Discrete relative energy
1K ‘ | ( | fjn |2 o |An 1 fjn—l 2)
3 A oxlu K ok K
+Z | | ( :QK‘ ( n— 1|rn ))
#3 (i f 19300 U § o [ faivtr — v

< Z ( / V.U, : V(U — u)dx + (2 5 +1n) /K divU,div(U;, — U)dX)

K n—1,/ym ~n (1n 1 — -~ 1/~ aAn—
+Z %(QK I(Uh Kl*“h Kl) (Uh,K - Uh,Kl)+("1n<*QK)(H (’jll()*H/(rK 1))

+3° 3 Joloyr (U — ) - U@’ mo k)

K oeé&k

=D > lolp(ex)(Ug ;- mok) =D D loley ™ H' (7%) (u" - no k)

K o€e&k K océ&k



Sketch of the proof : Treatment of the

> lole (U5 — ) - Ul - mo )

K oeé&

~ Z Z |0'|Qn up( nup v uP) . (Uh,K_U0'>(u;l- 'na,K)

K oe&g

NZZ |G|Qnup(UZl;P Anup) (Uhl( U, )( n,up nal()

K oeé&k

Z Z |o_|gn up( o up v up) (UhK )fjg,up N,k

K o€k

Z Z O"OHUP< n:;p Anup) (UhK U )( n,up __ Unup) ng,K
K oeé&
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~ D03 lolan (U — 85 - (Upse Uo) U5 - moe

K oe&g

Z[(rarU-(u—U)+ZArU~VU-(u—U)+...:...

Z/rU-VU-(u—U,I)~Z/rKUh,K-VU-(uK—Uh,K)
X /K K
”ZZ/FKUM( n,x(U—Upyk) - (ax — Upk)

K oe&g

~ Z Z lo| rk Uk - 1o k(Us — Up k) - (ug — Up k)

K oc€e&k

~ 3 S (o] FP(U, — Uy) - (8% — U Y0% - n, ¢

K oe&g
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Projections

I : WP Q) =V, U)=Ui=> Usds
c€€
H{;ZLP(Q)*)L;,, Hlﬁ(r)zrhz Z;’KIK
KeT

Estimates involving projections

Lets =1,2, 1 < p < oo. There exists ¢ > 0 independent of & such that
forallK € T :

Vre WY(K), |rm— ) < chl|Varllp ),
YU € WP(K), Uy —=Ulpx) < ch’l|ViU||pi)
YU € W(K), [|ViUy — ViUl < ViU |-
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Some auxiliary estimates

Let 1 < p < . There exists ¢ > 0 independent of 4 such that for all
KeT:

YU € W'(K), Uy — Upikllri) < ch|| ViUl i),

YU € W'P(K), ||U = Ukllwi) < ch|| ViUl
VU € lep(K)v ||Uh - ﬁa

&) < chl| ViUl &)

Sobolev type inequalities

Let 2 < p < 6. There exists ¢ > 0 independent of  such that for all
KeT:

~ 3_1
YU € W'P(K), ||U=Ugllpx) < ch? 2 ||ViV]|k),

A, 3_1
YU € W(K), U= Usllw < b~ | ViUl
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Compressible Navier-Stokes equations in low Mach

number regime

We consider in [0, 7T) x ©, Q C R®* (a bounded Lipschitz domain or a
periodic cell) the following system of equations

Continuity equation

0,0+ divy(ou) =0 (37)

Momentum equation

1
9,(ou) + div,(ou ® u) + ;pr(g) = div,S(V,u) (38)

Boundary conditions

| \

u ‘(O,T)XE?Q =0 or periodic b.c. (39)

| \

Initial conditions

0(0,x) = 00.-(x) =7+ 02 (x), u(0,x) = wo < (x). (40)




Expected target systemas  — 0

Incompressible Navier-Stokes equations

@(a,v V. vxv) FVII=0, divV=0.

V(0) =V,, homogenous Dirichlet or periodic b.c.

Il and Well prepared initial data
Il Prepared :

1 1 _
(00, wo[o, Vo) = / (590\110 — Vol + sz(Qo|Q)>dx
Q [

is bounded as € — 0.
Well prepared :

1 1
& (on,wofe Vo) = | (Geoluo — Vol + SE(al)dr
Q (=}

tendsto0as e — 0.
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A result of Lions/Masmoudi

Consider the sequence of weak solutions (o.,u.) of CNSE
corresponding to ill prepared initial data (go., uo ) such that up . — ug
in W2(Q). The there is a subsequence such that

0c — 0, Uz =V

and there is IT € D’'((0, T) x Q) such that the couple (II, V) is a weak
solution to the NSE with Vo = H(uy).

| \

A result via the relative energy

Let (II, V) be a strong solution to the NSE with initial data V, on
interval [0, T) and (o.,u.) a weak solution of CNSE with ill prepared
initial data. Then there is ¢ independent of e such that

56(967 ll€|§7 V) (7—) S C(SE(QO,€7 uO,E @7 VO) + E)
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||(HaV)||XT(Q) = HHHC([O,T];C(ﬁ)) + HatH||Ll(0,T;U(Q))+
HV||C‘([07T]x§;R3) + ||V||C([0,T];c2(ﬁ;k3)) + ||avaV||L2(O,T;L6/5(Q;R3><3))
+Hat2,tV||LZ(O,T;L(’/5(Q)) and r 2 r> 0.

Let (¢of,u}) = (o, u) be a family of numerical solutions of the FV/CR
numerical scheme (32—33) with initial data (¢°, u’) obeying

£.(c", 0[5, Up) < Eo < 00, M/2< / 0 <2M, M=7g)
Q

and with v > 3/2. Let (II, V) be a classical solution of the
compressible Navier-Stokes equations (1-6) in the class X7(£2)
corresponding to the initial velocity Uy. Then there exists ¢ > 0
independent of i, At, € o, u, such that

EE(Qnaun E?U0)+ha+ VAI+5>7

r, U) < 6(56(907110

where

. (27-—3
a:mln{ ,1}.
gl




The same result holds for the FV/FD scheme :

& (0" "

r,U) < ¢(E.(o0,m0

3,Uo) + he + \/At+€).
Recall :

E(o" "

V)= 3 [ (GeV - 80 + SEI)

KeT
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